.. .. Motivations,

. .. Protocole, 121 7.2.1 Fabrication des échantillons d'alumine

.. .. Traitements,

L. Fort and P. ,

. .. , 131 7.5.1 Mise en équations du problème

.. .. Conclusions,

, Aussi pouvons-nous être amenés à douter objectivement du bien-fondé de l'hypothèse d'homogénéité de la pression du liquide aux alentours de la ligne triple, hypothèse qui nous a conduit à fixer à une valeur nulle le membre de

, Nous pourrions ainsi imaginer réécrire cette équation sous une forme plus générale telle que ? (? x cos ? + ? z cos ?) = ?(x, z)

, Il correspond à la pression de disjonction, notion déjà introduite dans la section 3.3. En effet, ce terme est connu pour avoir un rayon d'action d'environ 0,1 µm autour des interfaces. Cette distance correspond exactement à l'ordre de grandeur du problème traité. De plus, au niveau de la ligne triple, deux types d'interfaces se recouvrent : l'une solide-liquide et l'autre liquide-gaz, Le symbole utilisé à droite n'a pas été choisi de manière innocente

, Pour conclure, nous pouvons citer une autre issue qui est la mise à profit du logiciel Surface Evolver, vol.121

L. Surface-evolver and K. Brakke, comme un programme interactif conçu pour l'étude de surfaces modelées par la tension de surface et d'autres énergies. Comme spécifié dans le manuel d'utilisation mis à disposition par son auteur [122], c'est un programme disponible gratuitement et utilisé par de nombreux chercheurs et dans des domaines très vastes (voir l'introduction du manuel pour les exemples et les références associées)

C. Dans-ce, Un 25 ème échantillon d'alumine lisse (non poreuse) a également été utilisé comme référence. Pour chacun d'entre eux, les angles de contact apparents d'avancée et de recul ont été mesurés. Indépen-damment de la morphologie, chaque échantillon nanoporeux a révélé par ces tests une forte tendance adhésive couplée à une hydrophobie assez marquée. Ce constat trouve son explication dans les grandes valeurs de l'hystérésis relevées, concours d'un angle d'avancée toujours supérieur à 90°(plafonnant à 140°) et d'un angle de recul invariablement nul (ou du moins, non défini). L'angle d'avancée n'est pas influencé par la profondeur des pores. La comparaison de ces angles au modèle de surface appliqué à la ligne de contact nous a appris que l'épaisseur de cette ligne n'est pas supérieure à la distance interpore, c'est-à-dire 65 nm pour la valeur la plus faible

A. S. Skapski, The temperature coefficient of the surface tension of liquid metals, The Journal of Chemical Physics, vol.16, p.386, 1948.

I. Langmuir, Oil lenses on water and the nature of monomolecular expanded films, The Journal of Chemical Physics, vol.1, p.756, 1933.

N. A. Miller, Investigation of the tension mechanisms responsible for lens formation and a new method for measuring the angles of liquid lenses, The Journal of Physical Chemistry, vol.45, issue.6, pp.1025-1045, 1941.

D. J. Donahue and F. E. Bartell, The boundary tension at water-organic liquid interfaces, The Journal of Physical Chemistry, vol.56, issue.4, pp.480-484, 1952.

T. Young, An essay on the cohesion of fluids, Phil. Trans. R. Soc. Lond, pp.65-87, 1805.

A. W. Adamson and A. P. , Gast et Inc NetLibrary : Physical chemistry of surfaces, 1997.

R. Shuttleworth, The surface tension of solids, Proceedings of the Physical Society. Section A, vol.63, p.444, 1950.

A. B. , Cassie : Contact angles, Discuss. Faraday Soc, vol.3, pp.11-16, 1948.

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry, vol.28, issue.8, pp.988-994, 1936.

L. C. Gao and T. J. Mccarthy, How Wenzel and Cassie were wrong, Langmuir, vol.23, issue.7, pp.3762-3765, 2007.

M. V. Panchagnula and S. Vedantam, Comment on How Wenzel and Cassie were wrong by Gao and McCarthy, vol.23, p.13242, 2007.

G. Mchale, Cassie and Wenzel : were they really so wrong ?, Langmuir, vol.23, issue.15, pp.8200-8205, 2007.

M. Nosonovsky, On the range of applicability of the Wenzel and Cassie equations. Langmuir, vol.23, pp.9919-9920, 2007.

A. Marmur and E. Bittoun, When Wenzel and Cassie are right : reconciling local and global considerations, Langmuir, vol.25, issue.3, pp.1277-1281, 2009.

. Lc-gao and . Mccarthy, Reply to" comment on how wenzel and cassie were wrong by gao and mccarthy, Langmuir, vol.23, issue.26, pp.13243-13243, 2007.

A. Marmur, Solid-surface characterization by wetting, Annual Review of Materials Research, vol.39, pp.473-489, 2009.

A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces : theoretical comparison of the captive bubble and drop methods, vol.136, pp.209-215, 1998.

R. E. Johnson and R. H. Dettre, Contact angle hysteresis. III. study of an idealized heterogeneous surface, The Journal of Physical Chemistry, vol.68, issue.7, pp.1744-1750, 1964.

J. D. , Andrade : Surface and interfacial aspects of biomedical polymers, vol.2, 1985.

P. Langevin, Sur la théorie du magnétisme, J. Phys. Theor. Appl, vol.4, issue.1, pp.678-693, 1905.

D. Maugis, Contact, adhesion, and rupture of elastic solids, vol.3540661131, 2000.

J. Briant, Phénomènes d'interface, agents de surface : Principes et modes d'action. Editions Technip, 1989.

J. H. De and . Boer, The influence of van der Waals' forces and primary bonds on binding energy, strength and orientation, with special reference to some artificial resins, Transactions of the Faraday Society, vol.32, pp.10-37, 1936.

H. Hamaker, The London-van der Waals attraction between spherical particles, Physica, vol.4, pp.1058-1072, 1937.

E. M. Lifshitz, The theory of molecular attractive forces between solids, Sov. Phys. JETP, vol.2, issue.1, pp.73-83, 1956.

S. Rytov, The theory of electrical fluctuations and thermal radiation, ussr, 1953.

I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, The general theory of van der Waals forces, Advances in Physics, vol.10, issue.38, pp.165-209, 1961.

V. A. Parsegian, Long-range physical forces in the biological milieu. Annual review of biophysics and bioengineering, vol.2, pp.221-255, 1973.

V. A. , Parsegian : van der Waals interactions, Physical Chemistry, 1975.

B. Bhushan, Encyclopedia of nanotechnology, 2012.

F. Brown, W. D. Mackintosh-;-ar, . Kr, K. Xe, . Rb et al., The use of Rutherford backscattering to study the behavior of ion-implanted atoms during anodic oxidation of aluminum, Journal of The Electrochemical Society, vol.120, issue.8, pp.1096-1102, 1973.

K. R. Hebert, T. Gessmann, K. G. Lynn, and P. Asoka-kumar, Positron annihilation spectroscopy study of interfacial defects formed by anodic oxidation of aluminum, Journal of The Electrochemical Society, vol.151, issue.1, pp.22-26, 2004.

R. Huang, K. R. Hebert, T. Gessmann, and K. G. Lynn, Effect of impurities on interfacial void formation in aluminum, Journal of the Electrochemical Society, vol.151, issue.4, pp.227-232, 2004.

M. S. Hunter and P. Fowle, Determination of barrier layer thickness of anodic oxide coatings, Journal of The Electrochemical Society, vol.101, issue.9, pp.481-485, 1954.

W. Zhou and Z. Su, Porous anodic metal oxides, 2008.

J. P. Sullivan and G. C. Wood, The morphology and mechanism of formation of porous anodic films on aluminum, Proc. R, vol.317, pp.511-543, 1970.

O. Jessensky, F. Muller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Applied Physics Letters, vol.72, issue.10, pp.1173-1175, 1998.

H. Masuda and M. Satoh, Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask, Japanese Journal of Applied Physics, vol.2, issue.1B, pp.126-129, 1996.

Z. Su and W. Zhou, Formation mechanism of porous anodic aluminium and titanium oxides, Advanced Materials, vol.20, issue.19, pp.3663-3667, 2008.

G. K. Singh and A. A. , Golovin et I.S. Aranson : Formation of self-organized nanoscale porous structures in anodic aluminum oxide, Physical Review B, vol.73, issue.20, p.205422, 2006.

S. J. Garcia-vergara, L. Iglesias-rubianes, C. E. Blanco-pinzon, P. Skeldon, G. E. Thompson et al., Mechanical instability and pore generation in anodic alumina, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Science, vol.462, pp.2345-2358, 2006.

G. D. Sulka, Highly ordered anodic porous alumina formation by self-organized anodizing. Nanostructured materials in electrochemistry, pp.1-116, 2008.

S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta et al., Large-scale fabrication of ordered nanoporous alumina films with arbitrary pore intervals by critical-potential anodization, Journal of The Electrochemical Society, vol.153, issue.9, pp.384-391, 2006.

S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization, Advanced Materials, vol.17, issue.17, pp.2115-2119, 2005.

F. Ap-li, U. Müller, and . Gösele, Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina, Electrochemical and Solid-State Letters, vol.3, issue.3, pp.131-134, 2000.

G. D. Sulka, S. Stroobants, V. V. Moshchalkov, G. Borghs, and J. P. , Celis : Effect of tensile stress on growth of self-organized nanostructures on anodized aluminum, Journal of the electrochemical society, vol.151, issue.5, pp.260-264, 2004.

A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gosele, Polycrystalline nanopore arrays with hexagonal ordering on aluminum, Journal of Vacuum Science & Technology A : Vacuum, Surfaces, and Films, vol.17, issue.4, pp.1428-1431, 1999.

J. Yan, G. V. Rao, M. Barela, D. A. Brevnov, Y. Jiang et al., Atanassov : Growth of patterned nanopore arrays of anodic aluminum oxide, Advanced Materials, vol.15, issue.23, pp.2015-2018, 2003.

K. Nielsch, F. J. Castano, C. A. Ross, and R. Krishnan, Magnetic properties of templatesynthesized cobalt/polymer composite nanotubes, Journal of applied physics, vol.98, issue.3, pp.34318-034318, 2005.

M. A. Kashi and A. Ramazani, The effect of temperature and concentration on the selforganized pore formation in anodic alumina, Journal of Physics D : Applied Physics, vol.38, issue.14, p.2396, 2005.

J. J. Schneider, J. Engstler, K. P. Budna, C. Teichert, and S. Franzka, Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology, European journal of inorganic chemistry, issue.12, pp.2352-2359, 2005.

H. Masuda, K. Kanezawa, and K. Nishio, Fabrication of ideally ordered nanohole arrays in anodic porous alumina based on nanoindentation using scanning probe microscope, Chemistry Letters, vol.31, issue.12, pp.1218-1219, 2002.

T. Iwasaki and T. Den, Method of producing structure having narrow pores by anodizing, US Patent, vol.15, p.853, 2002.

Z. Sun and H. K. Kim, Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films, Applied Physics Letters, vol.81, issue.18, pp.3458-3460, 2002.

A. Nw-liu, C. Y. Datta, . Liu, and . Wang, High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays, Applied physics letters, vol.82, issue.8, pp.1281-1283, 2003.

H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao et al., Highly ordered nanochannel-array architecture in anodic alumina, Applied Physics Letters, vol.71, issue.19, pp.2770-2772, 1997.

J. Choi, K. Nielsch, M. Reiche, R. B. Wehrspohn, and U. Gosele, Fabrication of monodomain alumina pore arrays with an interpore distance smaller than the lattice constant of the imprint stamp, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.21, issue.2, pp.763-766, 2003.

Y. Matsui, K. Nishio, and H. Masuda, Highly ordered anodic porous alumina by imprinting using ni molds prepared from ordered array of polystyrene particles, Japanese journal of applied physics, vol.44, p.7726, 2005.

K. Nishio, T. Fukushima, and H. Masuda, Control of pitting sites on al for electrolytic capacitors using patterned masking film. Electrochemical and solid-state letters, vol.9, pp.39-41, 2006.

H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao et al., Square and triangular nanohole array architectures in anodic alumina, Advanced Materials, vol.13, issue.3, pp.189-192, 2001.

E. Lichtenberger-bajza, A. Donony, and P. Csokfáah, Untersuchung der struktur und anderer eigenschaften von durch anodische oxydation auf aluminium erzeugten hartoxydschichten, Materials and Corrosion, vol.11, issue.11, pp.701-707, 1960.

S. John, V. Balasubramanian, and B. A. Shenoi, Hard anodizing aluminium and its alloys -AC in sulphuric acid-sodium sulphate bath, Met. Finish, vol.82, pp.33-39, 1984.

B. Olbertz, Hartanodisieren eröffnet aluminum vielfältige technische anwendungsmöglichkeiten. Aluminium, vol.3, pp.268-270, 1988.

B. Rajendra, A. K. Parmar, H. Sharma, M. M. Bhojraj, K. Nayak et al., Hard anodisation of aluminium and its application to sensorics, Surface engineering, vol.21, issue.3, pp.193-197, 2005.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature materials, vol.5, issue.9, pp.741-747, 2006.

V. Raspal, K. O. Awitor, C. Massard, E. Feschet-chassot, R. S. Bokalawela et al., Nanoporous surface wetting behavior : The line tension influence, Langmuir, vol.28, issue.30, pp.11064-11071, 2012.

A. Amirfazli and A. W. , Neumann : Status of the three-phase line tension : a review, Advances in colloid and interface science, vol.110, issue.3, pp.121-141, 2004.

S. Lahooti, H. K. Yueh, and A. W. , Neumann : An image analysis strategy to study cell adhesion, Colloids and Surfaces B : Biointerfaces, vol.3, issue.6, pp.333-342, 1995.

R. C. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent, Microbial adhesion to surfaces. Microbial adhesion to surfaces, 1980.

. Rcw-berkeley, . Lynch, . Melling, . Rutter, and . Vincent, Microbial adhesion to surfaces, 1980.

B. V. Toshev, D. Platikanov, and A. Scheludko, Line tension in three-phase equilibrium systems, Langmuir, vol.4, issue.3, pp.489-499, 1988.

F. C. Goodrich, The Modern theory of capillarity : to the centennial of Gibbs' theory of capillarity, 1981.

D. Platikanov, M. Nedyalkov, and A. Scheludko, Line tension of Newton black films. I. determination by the critical bubble method, Journal of Colloid and Interface Science, vol.75, issue.2, pp.612-619, 1980.

D. Platikanov, M. Nedyalkov, A. Scheludko, and B. V. Toshev, On the curvature dependence of the film tension of newton black films, Journal of colloid and interface science, vol.121, issue.1, pp.100-106, 1988.

S. Torza and S. G. , Mason : Effects of the line tension on 3-phase liquid interactions, Colloid & Polymer Science, vol.246, issue.1, pp.593-599, 1971.

C. Ran, G. Ding, W. Liu, Y. Deng, and W. Hou, Wetting on nanoporous alumina surface : transition between Wenzel and Cassie states controlled by surface structure, Langmuir, vol.24, issue.18, pp.9952-9955, 2008.

W. Lee, B. G. Park, D. H. Kim, D. J. Ahn, Y. Park et al., Nanostructuredependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces : From highly adhesive to self-cleanable, Langmuir, vol.26, issue.3, pp.1412-1415, 2009.

J. N. Mateo, S. S. Kulkarni, L. Das, S. Bandyopadhyay, G. C. Tepper et al., Wetting behavior of polymer coated nanoporous anodic alumina films : transition from super-hydrophilicity to super-hydrophobicity, Nanotechnology, vol.22, p.35703, 2011.

Z. Li, J. Wang, Y. Zhang, J. Wang, L. Jiang et al., Closed-air induced composite wetting on hydrophilic ordered nanoporous anodic alumina, Applied Physics Letters, vol.97, issue.23, p.233107, 2010.

R. J. Good and M. N. Koo, The effect of drop size on contact angle, Journal of Colloid and Interface Science, vol.71, issue.2, pp.283-292, 1979.

J. Gaydos and A. W. Neumann, The dependence of contact angles on drop size and line tension, Journal of colloid and interface science, vol.120, issue.1, pp.76-86, 1987.

J. Drelich, J. D. Miller, and J. Hupka, The effect of drop size on contact angle over a wide range of drop volumes, Journal of colloid and interface science, vol.155, issue.2, pp.379-385, 1993.

J. Drelich and J. D. Miller, The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship, Journal of colloid and interface science, vol.164, issue.1, pp.252-259, 1994.

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, Line tension measurements through drop size dependence of contact angle, Journal of colloid and interface science, vol.205, issue.1, pp.1-11, 1998.

P. Chen, S. S. Susnar, A. Amirfazli, C. Mak, and A. W. Neumann, Line tension measurements : an application of the quadrilateral relation to a liquid lens system, Langmuir, vol.13, issue.11, pp.3035-3042, 1997.

A. Amirfazli, S. Hänig, A. Müller, and A. W. , Neumann : Measurements of line tension for solid-liquid-vapor systems using drop size dependence of contact angles and its correlation with solid-liquid interfacial tension, Langmuir, vol.16, issue.4, pp.2024-2031, 2000.

Z. Zorin, D. Platikanov, and T. Kolarov, The transition region between aqueous wetting films on quartz and the adjacent meniscus. Colloids and surfaces, vol.22, pp.133-145, 1987.

H. Vinke, G. Bierman, P. J. Hamersma, and J. M. Fortuin, Adhesion of small catalyst particles to gas bubbles : determination of small effective solid-liquid-gas contact angles, Chemical engineering science, vol.46, issue.10, pp.2497-2506, 1991.

R. Aveyard and J. H. Clint, New method for the measurement of line tensions at the solid/liquid/air three-phase contact line, J. Chem. Soc., Faraday Trans, vol.91, issue.1, pp.175-176, 1995.

R. Vera-graziano, S. Muhl, and F. Rivera-torres, The effect of illumination on contact angles of pure water on crystalline silicon, Journal of colloid and interface science, vol.170, issue.2, pp.591-597, 1995.

V. Raspal and K. O. , Awitor : Theoretical approach of nanostructuration effects on surface energies, International Journal of Solids and Structures, vol.49, issue.5, pp.846-852, 2012.

. Bradley, LXXIX. The cohesive force between solid surfaces and the surface energy of solids. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.13, issue.86, pp.853-862, 1932.

R. C. Tolman, Consideration of the Gibbs theory of surface tension, The Journal of Chemical Physics, vol.16, p.758, 1948.

T. L. Hill, Concerning the dependence of the surface energy and surface tension of spherical drops and bubbles on radius, Journal of the American Chemical Society, vol.72, issue.9, pp.3923-3927, 1950.

M. P. Fisher and M. Wortis, Curvature corrections to the surface tension of fluid drops : Landau theory and a scaling hypothesis, Physical Review B, vol.29, issue.11, p.6252, 1984.

Y. A. Lei, T. Bykov, S. Yoo, and X. C. Zeng, The Tolman length : Is it positive or negative, Journal of the American Chemical Society, vol.127, issue.44, pp.15346-15347, 2005.

K. Nishioka, H. Tomino, I. Kusaka, and T. Takai, Curvature dependence of the interfacial tension in binary nucleation, Phys. Rev. A, vol.39, issue.2, pp.772-782, 1989.

K. K. Nanda, Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles, Applied Physics Letters, vol.87, p.21909, 2005.

A. H. Falls, L. E. Scriven, and H. T. Davis, Structure and stress in spherical microstructures, The Journal of Chemical Physics, vol.75, p.3986, 1981.

R. Guermeur, F. Biquard, and C. Jacolin, Density profiles and surface tension of spherical interfaces. Numerical results for nitrogen drops and bubbles, The Journal of chemical physics, vol.82, p.2040, 1985.

V. G. Baidakov and G. S. Boltachev, Curvature dependence of the surface tension of liquid and vapor nuclei, Physical Review E, vol.59, issue.1, p.469, 1999.

K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, and S. Stappert, Higher surface energy of free nanoparticles, Physical review letters, vol.91, issue.10, p.106102, 2003.

M. Jia, Y. Lai, Z. Tian, and Y. Liu, Calculation of the surface free energy of FCC copper nanoparticles. Modelling and Simulation in, Materials Science and Engineering, vol.17, p.15006, 2009.

A. E. Van-giessen, E. M. Blokhuis, and D. J. Bukman, Mean field curvature corrections to the surface tension, The Journal of chemical physics, vol.108, p.1148, 1998.

M. P. Moody and P. Attard, Curvature dependent surface tension from a simulation of a cavity in a Lennard-Jones liquid close to coexistence, The Journal of Chemical Physics, vol.115, p.8967, 2001.

W. K. Kegel, On the variation of the interfacial tension with cluster size in connection to homogeneous nucleation from the vapor phase, The Journal of chemical physics, vol.102, p.1094, 1995.

M. Shimada, T. Seto, and K. Okuyama, Thermophoretic and evaporational losses of ultrafine particles in heated flow, AIChE journal, vol.39, issue.11, pp.1859-1869, 1993.

R. Tolman, The effect of droplet size on surface tension, The journal of chemical physics, vol.17, p.333, 1949.

E. M. Blokhuis and D. Bedeaux, Pressure tensor of a spherical interface, The Journal of chemical physics, vol.97, p.3576, 1992.

V. Raspal, K. O. Awitor, C. Massard, and R. S. Bokalawela, Study of hydrophobic adhesive nanostructured surfaces. Proceedings of the 3 rd European Conference on Microfluidics, 2012.

M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir, vol.16, issue.13, pp.5754-5760, 2000.

W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, and G. H. Mckinley, A modified cassiebaxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, Journal of colloid and interface science, vol.339, issue.1, pp.208-216, 2009.

S. M. Ramos, E. Charlaix, and A. Benyagoub, Contact angle hysteresis on nanostructured surfaces, vol.540, pp.355-362, 2003.

S. M. Ramos, E. Charlaix, A. Benyagoub, and M. Toulemonde, Wetting on nanorough surfaces, Physical Review E, vol.67, issue.3, p.31604, 2003.

H. E. Jeong, M. K. Kwak, C. I. Park, and K. Y. Suh, Wettability of nanoengineered dualroughness surfaces fabricated by uv-assisted capillary force lithography, Journal of colloid and interface science, vol.339, issue.1, pp.202-207, 2009.

K. Kurihara, Y. Suzuki, K. Suto, N. Shiba, T. Nakano et al., Wettability control using large-area nanostructured film, Microelectronic Engineering, vol.87, issue.5-8, pp.1424-1427, 2010.

J. G. Fan, X. J. Tang, and Y. P. Zhao, Water contact angles of vertically aligned si nanorod arrays, Nanotechnology, vol.15, p.501, 2004.

E. Balaur, J. M. Macak, H. Tsuchiya, and P. Schmuki, Wetting behaviour of layers of TiO 2 nanotubes with different diameters, Journal of Materials Chemistry, vol.15, issue.42, pp.4488-4491, 2005.

R. Redon, A. Vázquez-olmos, M. E. Mata-zamora, A. Ordóñez-medrano, F. Rivera-torres et al., Contact angle studies on anodic porous alumina, vol.287, pp.664-670, 2005.

P. De-gennes, F. Brochard-wyart, and D. Quéré, Gouttes, bulles, perles et ondes. Belin Paris, 2002.

K. A. Brakke, The surface evolver. Experimental mathematics, vol.1, pp.141-165, 1992.

K. A. Brakke, Surface evolver manual, Mathematics Department, vol.17870, issue.2, p.24, 1994.

C. Dorrer and J. Rühe, Contact line shape on ultrahydrophobic post surfaces, Langmuir, vol.23, issue.6, pp.3179-3183, 2007.

N. Anantharaju, M. V. Panchagnula, S. Vedantam, S. Neti, and S. Tatic-lucic, Effect of three-phase contact line topology on dynamic contact angles on heterogeneous surfaces, vol.23, pp.11673-11676, 2007.

S. Brandon, A. Wachs, and A. Marmur, Simulated contact angle hysteresis of a threedimensional drop on a chemically heterogeneous surface : a numerical example, Journal of colloid and interface science, vol.191, issue.1, pp.110-116, 1997.

S. Roy, R. Raju, H. F. Chuang, B. A. Cruden, and M. Meyyappan, Modeling gas flow through microchannels and nanopores, Journal of applied physics, vol.93, issue.8, pp.4870-4879, 2003.

T. Ewart, P. Perrier, I. A. Graur, and J. G. Méolans, Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes, Journal of Fluid Mechanics, vol.584, pp.337-356, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01442523

, Les paramètres morphologiques caractérisant la membrane d'oxyde que sont le diamètre des pores, leur profondeur et leur espacement, sont finement contrôlés par les paramètres expérimentaux. Ces surfaces nanotexturées ont permis l'étude approfondie de l'interaction solide-liquide au sein des pores et de la physique de la ligne de contact devant composer avec les nano-aspérités de surface. Ces deux éléments ont pu être appréhendés par des mesures d'angles de contact à l'équilibre et d'hystérésis de mouillage. La modélisation des résultats a montré l'inadéquation des modèles classiques de CASSIE, WENZEL ou de capillarité à cette situation. L'adjonction du terme controversé de tension de ligne permet de bonnes prévisions, nous avons décrit et mis en oeuvre la fabrication de surfaces nanostructurées d'alumine par anodisation de feuilles d'aluminium de très grande pureté

, Sa forme tridimensionnelle a été abordée au travers d'un modèle numérique restant à perfectionner

, Mots clés : Surfaces d'alumine nanoporeuse, Mouillabilité, Énergie de surface, Tension de ligne, Hystérésis