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Nanofiltration, one type of the pressure-driven membrane separation processes, has 

become very important during the past decade. In regard to separation performance, 

nanofiltration lies between reverse osmosis (RO) and ultrafiltration (UF) with nominal 

molecular weight cutoffs ranging from 200 to 1000 Da (neutral solutes) with estimated pore 

sizes of around 0.5–2 nm(1). Nanofiltration has been used for liquid-phase separation of a 

wide range of aqueous mixtures and solutions.  

Potential application of nanofiltration membranes include separation of non-aqueous 

liquids, such as removal of impurities from used organic solvents in solvent recycle 

processes. Growing environmental concerns, increased public awareness and stricter 

environmental regulations have resulted in a more sustainable practice in various industries, 

such as solvent recovery to reduce the amount of solvent waste in the chemical, 

pharmaceutical, and petrochemical industries. Up to now, solvent waste is recovered by 

distillation, which is not energy-efficient, or directly sent to burners or incinerators, resulting 

in global warming due to increased emissions of CO2. Solvent Resistant Nanofiltration (SRNF) 

or Organic Solvent Nanofiltration (OSN) has great potential for better sustainable processes 

in industry. By applying SRNF, the used solvent can be recycled and the solvent waste can be 

minimized. SRNF is more environmentally friendly due to its lower chemicals and energy 

consumption compared to other separation technologies such as evaporation, extraction, 

and distillation. Potential industrial applications for SRNF in the pharmaceutical, biochemical, 

and petrochemical industries for recovery of valuable compounds are identified. Examples 

are separations in the lube oil dewaxing process, homogeneous catalyst recycling and 

recovery, ionic liquids recovery, solvent exchange in chemical synthesis, edible oil 

production (2-3), concentration of reaction products (4), removal of solvent from mother 

liquor crystals (5), removal of toxins from pharmaceutical compounds (6), or as a membrane 

reactor to perform organic reactions, i.e.  biotransformations of hydrophobic molecules (7).  

However, industrial application of this technology demands a robust membrane that is able 

to endure aggressive environments such as a continuous exposure towards organic solvents.   
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1.1.  Membrane materials for solvent resistant nanofiltration 

Membranes have been developed for several decades using polymers as a main ingredient 

(1). Polymers are relatively inexpensive materials and are available with a wide variety of 

functional groups. They are frequently used as a material for SRNF membranes (3, 8). 

However, currently investigated SRNF polymeric membranes, such as those made from 

PDMS (polydimethylsiloxane) (9),  PPSU (polyphenylsulfone) (10), and chitosan (11), were 

reported to swell significantly in organic solvents, like toluene, diethylether, acetone, 

methylene chloride, hexane, ethyl acetate, methanol, ethanol, isopropanol, or methyl ethyl 

ketone (9-14).  

Ceramic membranes, on the other hand, exhibit a high chemical stability towards organic 

solvents (15-16). Despite these superior characteristics, ceramic membranes are not suitable 

for nanofiltration of nonpolar solvents, because the pore surface of these membranes is 

always covered with the surface OH-groups when the membranes are not well dried and are 

stored at ambient conditions [21]. As a consequence, pore blockage, due to the adsorbed 

water bonded on the ceramic pore wall, hinders the permeation of nonpolar organic 

solvents in the nanofiltration regime, causing negligible permeation of nonpolar organic 

solvent (17-19). Significant decline in nonpolar solvent flux after water permeation has been 

observed with hydrophilic tight UF ceramic membranes (20-21). It is also reported that a 

serious decrease in flux was observed for nonpolar feed contaminated with water due to the 

adsorption of this water on the hydrophilic pore walls (22). For these reasons, the 

functionalization of porous ceramics by hydrophobic organic moieties for nonpolar solvent 

filtration was proposed (19). On the other hand, for polar solvents, functionalization of 

porous ceramic is interesting for pore size tuning or introducing special functions to the 

ceramic membranes. 

1.2. Functionalization of ceramic membranes 

Functionalization of ceramic membranes is viable through grafting. Grafting is a process in 

which a specific organic substance is chemically bonded to an inorganic substrate. The OH- 

groups of the oxide ceramic surface will react with the hydrolysable groups of the to-be-
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grafted organic moiety to produce a stable covalent bond, resulting in a permanent 

modification of ceramic membranes.  

Modification of porous inorganic membranes by grafting has been used to prepare 

membranes for various applications (23-30). Leger et al. (23) used silicone oil (viscosity 545 

mPa) to graft the surface of alumina membranes with a pore size of 5 nm  used for gas 

permeation and pervaporation. The membrane was shown to be chemically stable in 

toluene, acetone and THF. Faibish et al.(24) grafted polyvinylpyrrolidone on zirconia 

membranes for oil-in-water emulsion treatment. Here free-radical graft polymerization was 

applied by using a vinyl silane as linker to the zirconia membranes. The authors claim a 

reduction in pore size of around 25 % after grafting but no pore  size values are given in this  

paper. Yoshida et al. (25) grafted y-alumina (pore size 5 nm) by using vinyl acetate or vinyl 

pyrrolidone monomers and made a layer of terminally bonded polymer on the surface of a y-

alumina tubular support. In another paper Yoshida et al. (26) grafted vinyl acetate or vinyl 

pyrrolidone to silica membranes (pore size of 20 nm) by free radical graft polymerization for 

pervaporation of methyl-tert-butyl ether from water. Popat et al. (27) grafted polyethylene 

glycol to straight pore alumina membranes (“anodisc”) using a silane coupling agent. Lee et 

al. (28) used polyethylene glycol to graft straight pore alumina membranes for the 

application as anti-fouling membrane for biomolecules. The pore size of the bare alumina, 

used in (27) and (28), are of the order of 25 - 80 nm, while the grafted membranes are still in 

the ultra-filtration range. These studies showed that permanent membrane modification by 

grafting is possible. Moreover, these studies demonstrate that grafting can reduce the 

membrane pore size due to the presence of the grafted moiety. The possibility that by 

means of  grafting the membrane pore size can be reduced is interesting for the 

development of new types solvent resistant nanofiltration  (SRNF) membranes, meaning that 

existing UF ceramic membranes can be modified and turned into NF membranes. This 

approach was used in Chapter 2, 5 and 6 of this thesis, in which mesoporous y-alumina UF 

membranes were grafted by different natures of organic moieties to decrease the 

membrane pore diameter of the existing y-alumina UF down to the nanofiltration range. 

The hydroxyl groups on the membrane surface can be exploited as reactive sites for 

introduction of organic moieties. Figure 1.1 shows different possible –OH configurations on 
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the surface of y-alumina: the isolated hydroxyl groups (Figure 1.1a) and the non-isolated 

hydroxyl groups forming hydrogen bonding with the adjacent hydroxyl (Figure 1.1b to d) (31-

32). The non-isolated hydroxyl groups are those that can form hydrogen bridges with the 

adjacent hydroxyl while the isolated hydroxyl groups refer to the hydroxyl groups where the 

separation distance between each oxygen atom of the two surface hydroxyl is larger than 

0.3 nm(33). All these surface –OH configurations were identified as potentially reactive on y-

alumina (31-32).  

The surface concentration of hydroxyl groups on the -alumina has been reported to be 

between 3 to 9 –OH groups per nm
2
 (31-32). For comparison, an average concentration of 3 

to 4.6 -OH groups per nm
2
 were reported for silica (34). The -alumina layer being sintered 

at high temperatures (1000°C or more), on the other hand, has a low concentration of 

surface hydroxyl groups (35). In this thesis, a mesoporous layer of y-alumina, supported on a 

macroporous -alumina macroporous, was chosen as the inorganic substrate to be grafted.  

 

 

Figure 1.1. Different possible –OH configurations on the surface of y-alumina as described in (31-32) : a) isolated -OH 

groups, b-d) the non-isolated hydroxyl groups forming hydrogen bonding with the adjacent –OH or water molecules. Figure 

adapted from (36). 

 

Organosilanes compounds such as chloroalkylsilanes and fluoroalkylsilanes have 

hydrolysable groups on one end and an organic moiety on the other end. These 

organosilanes can be utilized to graft an organic moiety to the pore wall of the inorganic 

substrate. The hydrolysable groups of these organosilanes can react with the hydroxyl 

groups on the inorganic substrates such as ceramics to form stable covalent bonds. The 

grafting reaction between the organoalkoxysilanes and the surface hydroxyls proceeds by 

hydrolysis of the alkoxy groups, followed by a condensation reaction upon meeting the 

hydroxyl groups on the membrane surface, resulting in a stable covalent Al-O-Si bond 
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between the oxide surfaces and the grafting agent (37-38). In this reaction, moisture from 

the substrate acts as a catalyst for the hydrolysis (37-38). For the silanes to access the 

hydroxyl groups on the membrane surface, no more than 2 or 3 monolayers of water should 

exist on the substrate surface (37).   

The nature of the grafting agents such as the number of the hydrolyzable groups can affect 

the grafting result. Fadeev et al. (39) found that the number of the hydrolyzable groups , 

such as mono-, di-, or trifunctional organosilanes, affect the layer thickness, homogeneity, 

and wettability degree of the modified substrate. Organosilanes with more functional groups 

promote thicker layers, better homogeneity and higher water contact angle than 

organosilanes with less functional groups. Two possibilities of binding routes were identified 

for organosilanes with two or more functional groups. First, the hydrolyzable group of the 

organosilanes may condense with the hydroxyl groups on the inorganic substrate and a 

stable covalent bond was formed between the organosilyl and the inorganic surface.  

Secondly, the hydrolyzable group of the organosilanes may react with other organosilanes 

and form a polymeric layer in the presence of water. Several possible structures that can 

result from the  grafting reaction between organosilanes and metal oxide surfaces are given 

in Figure 1.2.  
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Figure 1.2. Possible structures resulting from the grafting reaction between organosilanes and metal oxide surfaces (39) 

Sah et al. (40) hydrophobized a mesoporous metal oxide membrane using organosilanes 

with different bulkiness of the alkyl/aromatic chain and different numbers of hydrolysable 

groups. For the membrane modified with less bulky silanes and more hydrolysable groups, a 

higher density of grafting was found. 

Picard et al. (41) modified a mesoporous metal oxide membrane using fluorinated silanes. 

The effect of grafting time on the degree of modification was studied. It was found that 
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longer grafting time results in a higher water contact angle of the modified membranes, 

possibly due to longer time allowed to complete the grafting reaction.  

Alami Younsi et al. (42-43) modified a mesoporous metal oxide membrane using 

organosilanes with different types of hydrolyzable groups.  The effect of different chemical 

nature of the functional groups like chloro-, methoxy-, and ethoxy-groups on the surface 

modification result studied. It was found that among the three, chlorosilanes results in the 

highest grafting density as concluded from TGA measurements, followed by the 

methoxysilanes, and finally the ethoxysilanes.  

Belyavskii et al. (44) studied the effect of several factors on the grafting of -Al2O3 substrate 

by aryl silanes, such as the nature of the grafting agents as well as the presence of water. 

The amount of grafted moieties, as studied by FTIR and elemental analysis, largely depends 

on the number of functional groups of the organosilanes. Organosilanes with more 

functional groups achieve higher surface coverage. Moreover, water was found to play an 

important role in the grafting process. It was observed that the hydrolysis step is the rate 

limiting step in the silanization process which caused silanization to progress very slowly 

without the presence of water.  

All these studies showed that the nature of the grafting agents can affect the grafting 

results. In chapter 6 of this thesis, the grafting performance of y-alumina with different 

grafting agents having different number of hydrolyzable groups, different number of ureido 

functionality groups and different molecular weights, were assessed further by means of 

FTIR, TGA, 
29

Si-NMR, and BET in order to study the effect of different properties on the 

grafting result. 

Grafting with silylated low MW polymers was found to be an effective way to prepare an 

SRNF membrane(29). Pinheiro et al. (29) developed nanofiltration membranes by grafting 

PDMS in the pores of porous -alumina supports (pore size 5 nm) using 

aminopropylethoxysilane (APTES) as the linker and (mono(2,3-epoxy) polyetherterminated 

polydimethylsiloxane with an average number of repeating monomers (n) of 10 and a 

viscosity of 10-50 mPa. This two-step grafting procedure is schematically given in Figure 1.3. 

It was demonstrated that polymer grafting can result in a chemically stable membrane with 
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a permselectivity in the nanofiltration regime. In (29), grafting of silanes with the surface 

hydroxyl groups of the ceramic substrate was done by a vapor phase deposition method 

(VPD). Depending on the reactivity of the silylated grafting agents solvent phase deposition 

(SPD) or VPD will be used. VPD is used for relatively reactive silanes as it results in a 

monolayer or near-monolayer silane coverage on the pore wall (45). The strategy as shown 

in Figure 1.3 was adopted in Chapter 2.  

 

Figure 1.3. Schematic description of a two-step chemical grafting process 

Another grafting route involves preparation of an organic group, where the low MW organic 

moiety was silylated prior to grafting. This strategy was adopted in Chapter 6. 

The small-chain organic polymer can be grown from monomers both in-situ during grafting 

or ex-situ (46-47). In the “grafting–to” approach the organic moiety is grown ex-situ from the 

monomers before the functional groups of the organic moiety are reacted with the reactive 

sites of the solid substrate. The “grafting-to” mechanism is interesting due to several 

advantages, i.e. the grafted polymer can be thoroughly synthesized and characterized by 

traditional methods in solution. 

In the “grafting from” approach, the organic moiety is grown from the monomers in-situ 

during grafting. Theoretically, any possible polymerization mechanisms can be employed to 

grow the polymeric chain from the monomers (46). An example is the free radical 

polymerization by vinyl monomers as performed by the group of Cohen et. al. (24-26). In this 

approach the immobilization of the initiator near the reactive sites of the substrate is an 

important step. Since the grafting from mechanism involves a polymerization at high local 

concentration of monomers, side reactions could occur and polydispersity might be difficult 

Metal Oxides Substrate 

Grafting of Linker (Organosilanes) 

Covalent Bonding of Organic Moiety to Linker 
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to control. Another way to grow the organic moiety from the pore wall is by covalent 

coupling.This covalent coupling technique can be used to extend the length of the grafted 

moiety by means of reactions between organic molecules and a coupling agent. Popat et al. 

(27) and Lee et al. (28) employed a catalyzed covalent reaction between low MW 

poly(ethylene glycol) and a coupling agent (in this case silicon tetrachloride) so that the 

organic chain was grown from the surface of the pore wall. In covalent coupling the 

structure of the monomer and the coupling agent can be chosen in such a way that grafting 

results in a not too dense membrane, so pore size can be controlled in this way. This strategy 

is adopted in Chapter 5 in order to form a grafted network on the membrane pore wall. 

Figure 1.4 gave an illustration of different grafting methods, i.e. the “grafting to” method 

(Figure 1.4a) and the “grafting from” method (Figure 1.4b). 

 

Figure 1.4. Grafting methods, i.e. a) “grafting to” b) “grafting from” method 

Porous ceramic material as a non-swelling material is considered suitable to be used as a 

cylindrical frame for the organic moieties to be grafted on. For the development of the 

grafted ceramic membranes, it is important to have a good quality support in terms of pore 

size distribution, porosity, and chemical stability. A -alumina mesoporous layer with an 

average pore diameter of  5 nm supported on an -alumina membrane with an average pore 

diameter of 80 nm (Pervatech) were chosen. A ceramic support having a pore size as small as 
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possible but sufficiently large to graft a (small) polymer on the pore walls was chosen in 

order to have the largest benefit of the rigid character of a ceramic membrane system. The 

membrane with a porosity of 40-50% can stand pressures up to 30 bars (48). 

1.3.  Transport Behavior of SRNF Membranes 

More attention on how these membranes perform in different solvents is important. Yang et 

al. (49) observed that the solute retention in nanofiltration of organic solvents are specific 

for each solvent due to the different membrane-solvent-solute interaction for each specific 

solvent, governing the solvent and solute transport through the membranes. In aqueous 

applications, the membrane selectivity can be defined by a rejection of a certain solute in 

water. For the non-aqueous application, especially for polymeric membranes, it was found 

that different types of solvents can lead to different membrane permeability and selectivity.  

Variables such as membrane process parameters, membrane material properties, as well as 

the type of solvents and solutes influence the nanofiltration performances (50). The type of 

modules as well as the process parameters of the membrane (e.g. feed concentrations, 

applied pressures and temperatures) can be important parameters influencing the 

membrane performance. The membrane material properties such as pore size, swelling 

resistance, and surface chemistry can also affect the membrane performance. The types of 

solvent (e.g. viscosity, polarity, molecular size, and/or surface tension) and the types of 

solute (e.g. size, shape, and/or charges of the solute) is another factor influencing 

nanofiltration performance. In summary solvent nanofiltration is affected by the interactions 

between membrane, solvents and solutes (3). Figure 1.5 summarizes possible governing 

factors affecting solvent and solute transport in SRNF membranes.  
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Figure 1.5. Several possible governing factors affecting solvent and solute transport in SRNF membranes  

Castro et al. (51) studied the effect of different types of solvents on the permeability of an 

ultrafiltration membrane, prepared by grafting of PVP inside the pores of a macroporous 

silica support with a native pore diameter of 410 nm. It was found that for the hydrophilic 

PVP grafted membranes, the permeability of nonpolar solvents, like cyclohexane and 

toluene, was higher than the permeability of polar solvents, like propanol, water, and 

ethanol contrary to what was expected. Further on, Castro et al. (52) observed a shear-rate 

flow induced behavior of a PVP grafted macroporous ceramic substrate with an average 

pore size of 410 nm due to the mobility of the grafted polymeric chains. The effect of shear 

rate on the permeability of the grafted membrane was described as a condition that at 

increasing trans-membrane pressure, the membrane is experiencing a more open 

membrane structure due to the movement of the grafted moieties in the direction of the 

feed flow, resulting in an exponential increase in the membrane permeability towards the 

trans-membrane pressure. These findings signify that the grafted ceramic membranes may 

possess a unique set of transport behaviour that is worth further investigation. 

As many parameters can affect the nanofiltration performance in non-aqueous applications, 

quantification of each factor contributing to the nanofiltration performance as well as 
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modelling of transport can be difficult. A general strategy on quantifying the transport 

mechanism of a membrane (despite the many possible contributing factors) is by looking 

whether the transport models previously applied for aqueous systems can be used to 

describe membrane transport in solvent nanofiltration. 

Two models are generally used to describe solvent transport through membranes, i. e. the 

pore flow model and the solution diffusion model (1). In the pore-flow model, the 

membrane is regarded to have defined open pores from the feed side to the permeate side. 

Darcy’s Law, often referred to as the pore-flow or viscous-flow model, describes liquid 

permeation through porous media as a function of the trans-membrane pressure (TMP):  

ܬ ൌ � ߤ݇ ο݈ܲ (1.1) 

where J is the solvent flux, k the permeability constant,  the fluid viscosity, οܲ the trans-

membrane pressure, and ݈ the membrane thickness. 

For viscous flow, the Darcy’s law can be combined with the Hagen–Poiseuille equation: ܬ ൌ �݇ οܲߤ  (1.2) 

with ݇ ൌ � ݌ݎߝ ʹͺ݈߬  (1.3) 

where J is the solvent flux,  P the trans-membrane pressure,  the solvent viscosity, and k 

the membrane permeability constant representing the structural properties of the 

membrane with  the membrane porosity, rp the membrane average pore diameter,  the 

membrane tortuosity, and  ݈ the membrane thickness. Pore tortuosity, , is defined as the 

true length of the flow path relative to the straight-line distance between the feed and 

permeate side of the membrane. The solvent viscosity ( ) is a parameter identifying the 

characteristics of different solvents. 

If there are no pores identified in the membrane, the solution-diffusion model is generally 

used (1). This means that the transport of liquids occurs via free volume elements between 

polymeric chains, which can appear and disappear as a function of time and place according 

to the movement of the solvent (53). This model assumes that the pressure is constant 

throughout the membrane and the driving force of solvent transport is the chemical activity 



 

14 

 

difference between the feed and permeate side of the dense membrane. The solution-

diffusion equation is as follows: 

ܬ݅  ൌ ݈݅ܭ݅ܦ� � ൤݂ܽ݅ െ ݌݅ܽ ݌ݔ݁� ൬െ݅ݒ൫݂ܲെ ܲ݌ ൯ܴ݃ܶ ൰൨ (1.4) 

where Ji represents the solvent flux, ݈ the membrane thickness, Di  the diffusion coefficient 

of the solvent or solute i through the membrane, Ki  the partition coefficient,  aif  and aip  are 

the activities of species i in respectively feed and permeate, i  the partial molar volume of 

specimen i, Pf and Pp the pressures at feed and permeate side, Rg the gas constant and T the 

temperature. If a pure solvent is used, then aif  is 1 and i is 1, while aip is 0. Thus, the 

equation becomes: 

ܬ݅  ൌ ݈݅ܭ݅ܦ� � ൤ͳ െ ݌ݔ݁ ൬െሺοܲെοߨሻܴ݃ܶ ൰൨ (1.5) 

where ο  stands for the osmotic pressure (54).  

When the difference between the applied and osmotic pressure is small, the equation can 

be written as:  

ܬ݅ ൌ � ܴ݃݅ܭ݅ܦ ݈ܶ �ሺοܲ െ οߨሻ (1.6) 

ܬ݅ ൌ ሺοܲܣ െ οߨሻ (1.7) 

where A is a solvent permeability constant.  

For a PDMS-based solvent resistant NF membrane, both pore-flow and solution-diffusion 

models have been used to describe the membrane transport. Vankelecom et al. (53) 

suggested that a viscous flow model can be used to describe the permeation of pure 

solvents through non-supported PDMS polymeric membranes by taking into account 

membrane swelling. This finding was later confirmed by Robinson et al. (55), who 

successfully used a pore-flow model to describe the solvent transport through  PAN-

supported PDMS membranes for nonpolar solvents based on the reasoning that the dense 

selective PDMS layer may form a pore-like structure in the presence of nonpolar solvents.  

Meanwhile,  Zeidler et al. (56) observed negative rejections of dye solutes in ethanol through 

PDMS membranes. It was confirmed that in the presence of swelling solvents like n-heptane 
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and THF, a viscous flow behavior was observed for PDMS membranes. On the other hand, in 

the presence of non-swelling solvents like ethanol, it was proposed that the rejection of 

PDMS might be closer to that of the solution-diffusion mechanism. Postel et al. (57) 

examined this phenomenon and successfully used the solution-diffusion model to describe 

the negative rejections of dye solutes using ethanol as a solvent through dense PDMS 

polymeric membranes. These studies show that the existing transport model for aqueous 

applications can be used as a starting point to investigate the transport behavior of solvent-

resistant nanofiltration membranes. Once the identification of the major parameters is 

carried out in this way, the identification of the more subtle factors influencing the 

membrane transport may be progressed further by studying whether there are any 

differences between the experimental data and the existing transport models. In chapter 3, 

this strategy is followed to identify major parameters governing the solvent and solute 

transport through the grafted ceramic membranes.   

A general model to describe solute transport for both porous and nonporous membranes is 

given by Kedem-Katchalsky (58). In this model membranes are considered as a black box 

comprising feed and permeate as the input and output, respectively. The flux of the solute 

through the membrane is described as: 

ܬܿ ൌ � ܲܿ �οݔ� ݔ݀ܿ݀ ൅ ሺͳ െ ݒܬሻߪ�  (1.8) 

with ܿܬ  is the solute flux, Pc the solute permeability, οݔ the membrane thickness, 
ݔ݀ܿ݀  the 

concentration gradient over the membrane, ߪ the reflection coefficient, which is a measure 

for the rejection of a solute,  ܿܬ  the solute flux, and  ݒܬ �the solvent flux. 

In Equation 1.8, the first term describes the transport of solutes by a diffusion mechanism, 

while the second term describes the transport of solutes by a convection mechanism. If the 

contribution of solute flux by diffusion is negligible, Equation 1.8 can be simplified to 

Equation 1.9 as follows ɐ ൌ ͳ െ� 
�
�  (1.9) 

Ferry et al. (59) proposed a solute transport model, which relates the reflection coefficient 

with the ratio of solute diameter versus pore diameter. In this model it is assumed that 
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solutes, having similar or larger diameter than the membrane pore diameter, are completely 

rejected and solutes with smaller diameter than the effective diameter of the membrane 

pores completely permeate. The membrane pore diameter, as well as the diameter of the 

solute, are defined as average values  rather than nominal values. Besides, no interaction 

between the membrane, solvent, and solute is taken into account in this model of Ferry. 

Here, the reflection coefficient will develop from 0 to 1 as the ratio of dc (the average solute 

diameter) versus dp (the mean pore diameter) increases. This means  = 0 for ��Ȁ��   1 and 

=1 for ��Ȁ��   1. The model of Ferry describes  in the following way:  

 ɐ ൌ ሺ݀ܿ݀݌ ൬݀ܿ݀݌ െ ʹ൰ሻʹ (1.10)

  

The Verniory model (60) considers that solutes with particle diameter smaller than the pore 

diameter of the membranes are partially rejected due to drag forces, caused by wall friction. 

The Verniory model can be written as: 

 

ߪ ൌ �ͳ െ�ቌͳെʹ͵݀ܿ݀݌ ʹെ�ͲǤʹ݀ܿ݀݌ͷͳെ�ͲǤ͹͸݀ܿ݀݌ͷ ቍ൬ͳ െ ʹ൰݌݀ܿ݀ ൬ʹ െ ሺͳ െ  ൰ʹሻ (1.11)݌݀ܿ݀

 

The Verniory model accounts for the wall friction occurring between the solute and 

membrane wall while attractive forces between the solute and membrane are not taken into 

account. The steric hindrance pore model (61), instead, accounts for a rejection case in 

which the wall friction effect is negligible due to attractive forces between membrane and 

solute. As a consequence, solutes having a particle diameter larger than the pore diameter 

of the membranes were assumed to be partially permeated. The steric hindrance pore 

model is presented as: 

 ɐ ൌ ͳ െ�൬ͳ ൅ ͳ͸ͻ � ൰ʹ݌݀ܿ݀ ൬ͳ െ ʹ൰݌݀ܿ݀ ൬ʹ െ ሺͳ െ  ൰ʹሻ (1.12)݌݀ܿ݀

 

When the solute transports by a diffusion mechanism, the solute flux proceeds by 



 

17 

 

ܬܿ ൌ � ܲܿ �οݔ� ݔ݀ܿ݀   (1.13) 

With ܲܿ ൌ ݏܭ݉ݏܦ�  (1.14) 

with ܿܬ  is the solute flux, Pc the solute permeability, οݔ the membrane thickness, 
ݔ݀ܿ݀  the 

concentration gradient over the membrane, ݉ݏܦ  the diffusivity of the solute, and ݏܭ  the 

solute distribution coefficient.   

In Chapter 4, the applicability of the existing rejection models to predict the rejection 

behavior of PDMS-grafted ceramic membranes is described. 

1.4. Dissertation overview 

This thesis deals with the grafting of ceramic membranes with organic moieties for solvent 

resistant nanofiltration and studying of their solvent and solute transport properties. 

In Chapter 2, the grafting of a mesoporous (pore size 5 nm) -alumina layer, supported on 

macro porous -alumina, with 3-mercaptopropyltriethoxysilane (MPTES) as linking agent is 

described. Subsequently, the system is grafted with monovinyl-terminated 

polydimethylsiloxane (PDMS) in order to generate a membrane suitable for solvent 

nanofiltration.  PDMS was selected as it has been proven to be an excellent material for 

SRNF applications (29-30, 62-64). -alumina with a pore size as small as possible but 

sufficiently large to graft a (small) polymer on the pore walls was chosen in order to have the 

largest benefit of the rigid character of a ceramic membrane system, while changing the 

hydrophilic nature of the inorganic membrane to hydrophobic. The grafting behaviour of the 

organic moieties on the -alumina was studied by Fourier Transform Infrared spectroscopy 

(FTIR). Contact angle measurements and solvent permeability tests were used to study the 

membrane properties. Chemical stability tests in toluene at elevated temperatures were 

performed as well.  

In Chapter 3, major parameters influencing solvent transport were investigated for two 

types of grafted membranes with a relatively short or long chain of PDMS (n=10 and n=39). 

The permeability was studied by means of permeation tests at operating pressures between 

1 to 20 bar to investigate the effect of trans-membrane pressure on the membrane 
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permeability. Various solvents were used to study the effect of different solvent types on the 

membrane permeation behavior. Permeation tests at elevated temperature were conducted 

to study the effect of temperature on the membrane permeability. A model is proposed to 

describe the permeation of pure solvents through these membranes. 

In Chapter 4, rejection behavior of PDMS grafted membranes for different types of solutes in 

nonpolar and polar solvents were studied. The applicability of existing solute rejection 

models, based on a size-exclusion mechanism, to describe the solute rejection of the PDMS-

grafted ceramic membranes is discussed and were assessed. Three rejection models based 

on size-exclusion, namely the Ferry, Verniory, and SHP models were used to predict the 

rejection of several solutes using pore diameter information from the N2 physisorption 

measurement when no solvent is present. Important parameters which control the transport 

mechanism through PDMS grafted ceramic membranes were identified. 

In Chapter 5, grafting of mesoporous -alumina membranes with hydride terminated 

polydimethylsiloxanes, using vinyltriethoxysilanes as linking agent and tetrakis 

(vinyldimethylsiloxy)silane as the coupling agent, in order to generate a membrane suitable 

for solvent nanofiltration is described. In this work, a coupling agent was used via a covalent 

coupling technique to couple the grafted moiety inside the ceramic pores to further 

decrease the pore size of the grafted membranes. Different from the material as described 

in Chapter 2, in which a low MW PDMS was grafted to the ceramic pore wall without an 

additional growing of the organic chain from the pore wall, in this Chapter 5 a covalent 

coupling technique was used to couple the grafted moiety forming a polymer network inside 

the ceramic pores via a covalent reaction between PDMS molecules and a coupling agent. It 

is expected that this method results in a smaller membrane pore diameter compared to the 

results given in Chapter 2 to accommodate the need for removing very small size impurities 

during solvent recycling. Grafting performance of the organic moieties on -alumina 

powders was analyzed by FTIR, TGA, contact angle, SEM-EDX, permeation and solute 

rejection tests. 

In Chapter 6, grafting of a mesoporous -alumina layer, supported on a macro porous -

alumina, with several types of silane terminated polyethylene glycol as to result in a 
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chemically and thermally stable membrane with hydrophilic characteristic for solvent 

nanofiltration is described. The grafting performance of each grafting agent, having different 

molecular weights, number of alkoxy groups, and number of ureido functionalities, was 

analysed by means of thermogravimetrical analysis, FTIR, Si-NMR and BET. The grafting 

agent having the highest grafting density according to the TGA analysis was selected to be 

grafted on ceramic membranes. Contact angle measurements, solvent permeability tests, 

and rejection tests were used to assess the membrane performance. The permeability 

behavior with respect to different types of permeating solvent (polar and nonpolar) was also 

investigated. 

Finally, the general conclusions and future work are presented in Chapter 7. 
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Abstract 

 

Grafting of mesoporous -alumina membranes with monovinyl terminated 

polydimethylsiloxane (PDMS), using 3-mercaptopropyltriethoxysilane (MPTES) as a linking 

agent, is described. The grafting performance of the organic moieties on -alumina powders 

was studied by FTIR. Contact angle measurements and solvent permeability tests were used 

to characterize the membrane properties. The results indicated that grafting reactions were 

successfully carried out. The toluene permeability of the membrane was reduced from 5.3 to 

2.1 L/m
2
.h.bar after grafting with the polymer. No degradation of the membrane material 

was observed after chemical stability tests in toluene for 6 days at room temperature and at 

elevated temperatures (up to 90ûC).  
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2.1.  Introduction 

Nanofiltration of organic solvents for solvent recovery is an ideal solution in the quest for 

more sustainable processes in the pharmaceutical, biochemical, and petrochemical industry. 

The main driver for applying nanofiltration is that it consumes less energy compared to other 

separation technologies, such as evaporation and distillation. However, industrial application 

of this technology demands a robust membrane that is able to endure an aggressive 

environment such as a continuous exposure towards organic solvents.  In order to make the 

application of solvent nanofiltration technically feasible, a hydrophobic and chemically 

stable membrane with nanofiltration properties is required.  

Membranes have been developed for several decades using polymers as a main ingredient 

(1). Polymers are relatively inexpensive materials and are available with a wide variety of 

functional groups. They are frequently used as Solvent Resistance Nanofiltration (SRNF) 

membranes (2-3). However, currently used SRNF polymeric membranes, such as those made 

from PDMS (polydimethylsiloxane) (4),  PPSU (polyphenylsulfone) (5), and chitosan (6), were 

reported to swell significantly in organic solvents, like toluene, diethylether, acetone, 

methylene chloride, hexane, ethyl acetate, methanol, ethanol, isopropanol, or methyl ethyl 

ketone (4-6). A loss in nanofiltration performance of these membranes due to swelling was 

observed after several hours in contact with these organic solvents (3, 7-9). A need for 

nanofiltration membranes with less swelling towards organic solvents therefore emerged. 

Ceramic membranes exhibit a high chemical stability towards organic solvents (10-11). In 

addition to this ceramic membranes are also mechanically stable under operational 

pressures of up to at least 20 bars (10), in which most polymers will severely suffer from 

compaction. Despite these superior characteristics, ceramic membranes are not suitable for 

the nanofiltration of nonpolar solvents, because the hydroxyl (OH-) groups on the ceramic 

pore walls hinder the permeation of organic solvents in the nanofiltration regime (12).  

A new type of membrane showing 1) high chemical stability, 2) suitable wettability 

properties, 3) high permeability and selectivity, and 4) non-swelling and non-compressible, is 

expected to be interesting for organic solvent nanofiltration applications. To achieve this 

aim, a method is proposed, in which applying a polymer inside the pores of a ceramic 
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material can provide a win-win solution to obtain in this way a hydrophobic and chemically 

stable membrane. A mesoporous ceramic, as non-swelling and non-compressible porous 

material, is rendered suitable to provide a rigid support for polymeric materials grafted 

inside their pores. If the polymer is confined in the perimeter of the ceramic pores, swelling 

can be brought to a minimum (being the space left inside the pores as the maximum swelling 

limit). Besides, the ceramic pore will act as a rigid cylindrical spine which will restrain the 

movement of the grafted polymers from compaction when high pressures are introduced to 

the membrane system.  

A suitable polymeric material grafted on the ceramic pore walls can give a hydrophobic 

character to the porous ceramic support, thus allowing better wettability for organic 

solvents. The effective pore size of the ceramic membrane is reduced, thus increasing the 

selectivity of the membrane. In this way a porous UF ceramic membrane can be changed 

into a NF membrane we intended. In the work, as described in this paper, a ceramic 

membrane is used with a pore size as small as possible but sufficiently large to graft a (small) 

polymer on the pore walls in order to have the largest benefit of the rigid character of a 

ceramic membrane system, while changing the hydrophilic property of the inorganic 

membrane in a hydrophobic structure. Polymer grafting is a process in which a specific 

organic substance is chemically bonded to an inorganic substrate. The OH- groups of the 

oxide ceramic surface will react with the hydrolysable groups of the to-be-grafted organic 

moiety to produce a stable covalent bond.  

In literature several examples are given on modification of porous inorganic membranes by 

grafting for various applications. Leger et al. (13) used silicone oil (viscosity 545 mPa) to graft 

the surface of alumina membranes with a pore size of 5 nm  used for gas permeation and 

pervaporation. The membrane was shown to be chemically stable in toluene, acetone and 

THF. Faibish et al.(14) grafted polyvinylpyrrolidone on zirconia membranes for oil-in-water 

emulsion treatment. Free-radical graft polymerization was used by using a vinyl silane as 

linker to the zirconia membranes. The authors claim a reduction in pore size of around 25 % 

after grafting but no pore size values are given in this paper. Yoshida et al. (15) grafted y- 

alumina (pore size 5 nm) by using vinyl acetate or vinyl pyrrolidone monomers and made a 

layer of terminally bonded polymer on the surface of the gamma alumina tubular support. In 
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another paper Yoshida et al. (16) grafted vinyl acetate or vinyl pyrrolidone to silica 

membranes (pore size of 20 nm) by free radical graft polymerization for pervaporation of 

methyl-tert-butyl ether from water. Popat et al. (17) grafted polyethylene glycol to straight 

pore alumina membranes(“anodisc”) using a silane coupling agent. Lee et al. (18) used 

polyethylene glycol to graft straight pore alumina membranes for the application of anti-

fouling membrane for biomolecules. The pore size of the bare alumina, used in (17) and (18), 

are in the order of 25 - 80 nm, while the grafted membranes are in the ultra-filtration range. 

Pinheiro et al. (19) developed nanofiltration membranes by grafting PDMS in -alumina 

porous supports (pore size 5 nm) using aminopropylethoxysilane (APTES) as the linker and 

(mono(2,3-epoxy) polyetherterminated polydimethylsiloxane with an average number of 

repeating monomers (n) of 10 and a viscosity of 10-50 mPa.  

The work described in this paper is on grafting a mesoporous (pore size 5 nm) -alumina 

layer, supported on macro porous -alumina, with 3-mercaptopropyltriethoxysilane (MPTES) 

as linking agent. Subsequently, the system is grafted with monovinyl-terminated 

polydimethylsiloxane (PDMS) in order to generate a membrane for solvent nanofiltration. 

The grafting behaviour of the organic moieties on the -alumina was studied by Fourier 

Transform Infrared spectroscopy (FTIR). Contact angle measurements and solvent 

permeability tests were used to determine the membrane properties. Chemical stability 

tests in toluene at elevated temperatures were performed as well.  

2.2.  Experimental procedure 

Anhydrous toluene was obtained from Sigma-Aldrich. 3-mercaptopropyltriethoxysilane 

(MPTES) was purchased from Fluka. Monovinyl terminated polydimethylsiloxane (PDMS) 

was purchased from ABCR with an average number of repeating monomers (n) of 39 and a 

viscosity of 80-100 mPa.s. An azobisisobutyronitrile catalyst was purchased from Sigma 

Aldrich. All chemicals were used as received. Flat -Al2O3 supported -Al2O3 membranes with 

a diameter of 39 mm were purchased from Pervatech. The mean pore diameter of the 3 m 

thick -Al2O3 layer and the 1.7 mm thick -Al2O3 support were 5 nm and 80 nm, respectively 

(20-21).  
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The unmodified -Al2O3 membranes were soaked in an ethanol/water (2:1) solution for 24 

hours at ambient temperature to remove dust and provide suitable hydroxylation. The 

membranes were then dried at 100 C for 24 hours under vacuum and stored at room 

temperature under nitrogen atmosphere until further use. 

Inside a glove box, under nitrogen atmosphere, a 100 ml solution of 12.5 mM MPTES in 

anhydrous toluene was prepared in a 500 ml five-necked round flask.  A soaked and dried -

Al2O3 membrane was placed in a sample holder located a few centimetres above the MPTES 

solution. The solution was stirred and heated to perform the grafting reaction between 

MPTES vapour and -Al2O3 at 80 C for 4 hours under nitrogen flow. Details on this Vapour 

Phase Deposition (VPD) method are given elsewhere (22-23). After 4 hours the reaction 

mixture was allowed to cool down. Immediately after the cooling down, the membrane was 

retrieved from the sample holder and rinsed with toluene and dried under vacuum at 100 C 

for 24 hours. 

PDMS was grafted on the MPTES linker by a Solution Phase Deposition (SPD) method. A 100 

ml solution of 12.5 mM PDMS in toluene was prepared in a 500 ml five-necked round flask. 

The MPTES-grafted -Al2O3 membrane was then immersed into the PDMS /toluene solution 

on a sample holder and kept in the solution throughout the reaction. As catalyst, 5% (n/n) 

Azobisisobutyronitrile (ABN) was added. The grafting reaction between monovinyl 

terminated PDMS and the MPTES-grafted -Al2O3 was carried out under continuous stirring 

at 70 C for 24 hours under nitrogen flow.  After 24 hours the reaction mixture was allowed 

to cool down. The membrane was then retrieved from the mixture and soaked overnight in 

toluene to remove any physically adsorbed PDMS. The membrane was further rinsed by 

isopropanol and ethanol before drying under vacuum at 100 C for 24 hours. 

In order to study the grafting performance of -Al2O3 by means of FTIR, porous -Al2O3 flakes 

were used as starting inorganic material. The -Al2O3 flakes were prepared from a boehmite 

sol which was dried and calcined at 650 C  for 3 hours at a heating rate of 1 C/min. To 

remove dust and provide suitable hydroxylation, the -Al2O3 flakes were soaked in an 

ethanol/water (2:1) solution for 24 hours at ambient temperature. The flakes were then 

dried at 100 C for 24 hours under vacuum and stored under nitrogen atmosphere prior to 
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grafting. Grafting of the -Al2O3 flakes was performed as follows. Inside a glove box, under 

nitrogen atmosphere, a 100 ml solution of 12.5 mM MPTES in anhydrous toluene was 

prepared in a 250 ml two-necked round flask. The round flask was removed from the glove 

box and connected with a glass tube to another 250 ml round flask where 600 mg of -Al2O3 

flakes were placed. Both flasks were heated at 80 C for 4 hours under nitrogen flow to allow 

the grafting reaction between MPTES vapor and -Al2O3. Details on this vapor phase 

deposition (VPD) method are given elsewhere (22-23). After 4 hours, both flasks were cooled 

to ambient temperature. Immediately after, the modified flakes were retrieved and rinsed 3 

times in toluene to remove any physically absorbed MPTES. The flakes were further dried for 

24 hours at 100 C under vacuum.  

PDMS was grafted on the MPTES linker by a solution phase deposition (SPD) method. A 100 

ml solution of 12.5 mM PDMS in toluene was prepared in a 250 ml two-necked round flask. 

The MPTES-grafted -Al2O3 flakes were then immersed into the PDMS/toluene solution and 

kept stirred in the solution throughout the reaction. 5% of ABN catalyst was added. The 

grafting reaction between monovinyl terminated PDMS and the MPTES-grafted -Al2O3 was 

carried out at 70 C for 24 hours under nitrogen flow. After 24 hours the reaction mixture 

was allowed to cool down. Immediately after, the flakes were retrieved from the mixture 

and centrifuged 3 times in toluene to remove any physically adsorbed MVPDMS. The flakes 

were further dried at 100 C for 24 hours under vacuum. 

Characterization 

FTIR analysis was performed using a Bruker Optik GmbH Tensor 27 TGA-IR spectrometer 

equipped with a universal ATR polarization accessory. The FTIR spectra were recorded at 

room temperature over a scanning range of 600-4000 cm
-1

 with a resolution of 4.0 cm
-1

. The 

grafted -Al2O3 powder sample is considered to have the same chemical characteristics as 

the actual -Al2O3 membrane and therefore can be used to describe the chemical reactions 

that occur between ceramic membrane and grafting agent. 

Contact angles were measured by the sessile drop method to evaluate the hydrophobicity of 

the membrane after the modification was carried out. 5 L Millipore Q2 water was dropped 

at a speed of 2 L s
-1

 on a membrane surface using a Hamilton Microliter syringe. The water 
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contact angle data were collected by a Data Physics Optical Contact Angle instrument (OCA 

20).  

Toluene permeation tests were carried out at room temperature using a dead-end pressure 

cell made from stainless steel. Three different membrane samples were analysed to ensure 

reproducibility. Prior to the solvent permeation test the membranes were soaked for 

preconditioning in the organic solvent for 12 hours. The cell was filled with the solvent and 

helium was used to pressurize the cell. Permeate fluxes were obtained by measuring the 

weight of the collected permeate as a function of time. The membrane permeability was 

calculated in L.m
-2

.hr
-1

.bar
-1

 unit according to the equation below: 

Permeability= J/ P where J= V/A.t, 

J is the flux in L.m
-2

.hr
-1

, V is the permeate volume in L, A is the effective membrane surface 

area in m
2
, t is the permeation period in hr, and P is the trans-membrane pressure in bar.  

Chemical stability tests were done by immersing 0.1 gr of grafted -Al2O3 powders into 40 ml 

of toluene for 6 days at 30, 60, 80 or 90 C under continuous stirring. After immersion, the 

system was cooled down to room temperature and retrieved from the solvent by centrifuge. 

The retrieved powder was three times washed by centrifuging with respectively ethanol and 

water and subsequently dried in the vacuum oven. Afterwards FTIR analysis were done to 

check whether there is any degradation of membrane material, marked by appearance of 

new bands or absence of characteristic absorption bands as compared to the FTIR spectra of 

freshly-grafted powders.  

2.3.  Results and Discussion 

2.3.1. Chemical Reaction Background 

In this work chemical grafting was carried out using two consecutive steps. The first step was 

the attachment of 3-mercaptopropyl-triethoxysilane (MPTES) onto the pore wall of the 

gamma-alumina. The grafting reaction between the -Al2O3 pore surface and MPTES is 

depicted in step 1 of Figure 2.1.  
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Figure 2.1. Proposed grafting reactions; step 1 grafting of the linker MPTES; step 2: grafting of MVPDMS 

 

The hydroxyl groups on the -alumina surface act as the active sites for the grafting reaction. 

The silylation of the porous ceramic substrate by Vapor Phase Deposition (VPD) provides a 
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more uniform and homogeneous distribution of products as compared to a Solution Phase 

Deposition (SPD) method and results in a monolayer or near-monolayer silane coverage on 

the pore wall (22-23). The grafting reaction proceeds by hydrolysis of the alkoxy groups of 

the MPTES followed by a condensation reaction upon meeting the hydroxyl groups on the 

membrane surface, resulting in a stable covalent Al-O-Si bond between the oxide surfaces 

and the MPTES.  In this reaction, moisture from the substrate acts as a catalyst for the 

hydrolysis (23-24). For the silanes to access the hydroxyl groups on the membrane surface, 

no more than 2 or 3 monolayers of water should exist on the substrate surface (24).  In order 

to limit the amount of moisture present on the substrate to be grafted, the substrate was 

kept in nitrogen atmosphere before grafting. To limit the amount of moisture present in the 

grafting process, the reaction was performed in a dry atmosphere and anhydrous solvents 

are used.  

After this first reaction step, the S-H group from the linker will react with the vinyl group 

from the Monovinyl terminated polydimethylsiloxane to form a stable S-C bond. PDMS was 

chosen due to its highly hydrophobic character and good chemical stability towards organic 

solvents (25). Upon successful grafting, the grafted polydimethylsiloxane will act as a 

hydrophobic pillow that will enhance the permeation of nonpolar organic solvents through 

the membrane pores. The reaction between the MPTES-grafted -Al2O3 membrane and 

monovinyl terminated PDMS is represented in step 2 of Figure 2.1. It is a thiol-ene reaction 

which involves the reaction of a S-H with a double bond. Thiol-ene reactions are efficient 

since it produces high yields and the resulting chemical bond is stable in various solvents 

(26). 

2.3.2. FTIR  

Figure 2.2 shows the FTIR absorbance spectra of unmodified, silane-grafted and polymer-

grafted -Al2O3 powders. Figure 2.2a shows the spectrum of the unmodified -Al2O3 powder. 

For the silane-grafted powder spectrum (Figure 2.2b), the characteristic absorption peaks at 

1060 and 700 cm
-1

 are attributed to the covalent Si-O-Al bonds (27-28) confirming that 

grafting of the linker, MPTES, on the -Al2O3 powder has occurred. 
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Figure 2.2. FTIR absorbance spectra of a) unmodified -Al2O3 powder b) MPTES-grafted -Al2O3  powder and c) MVPDMS-

MPTES-grafted -Al2O3 powder 

The peaks at 2335 and 2362 cm
-1

 in Figure 2.2b are ascribed to S-H stretching of the thiol 

(SH-) groups from the MPTES-grafted -Al2O3 powder (29).  During the grafting reaction, not 

all three functional alkoxy groups from the MPTES might react with the surface -OH groups. 

One or more hydrolysable groups out of total three functional alkoxy groups that are present 
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at MPTES may also react with one of the silanols from the adjacent MPTES forming a 

siloxane network. The reaction of silanols with the surface hydroxyl groups on the ceramic 

surface and the adjacent silanols can happen at the same time, creating Si-O-Si bonds that 

are apparent by the peak at 1092 cm
-1 

(30). The polycondensation reaction between two 

silanols occurs through the reaction:  

-Si-OH + Si-OH  -Si-O-Si- + H2O.  

The peak at 2935 cm
-1

 is ascribed to the asymmetric stretching of CH2 from the propyl 

groups of the grafted silanes (31). The peak at 1246 cm
-1

 is assigned to the CH2 wagging of 

the Si(CH2) groups of the grafted silanes (31). During the grafting reaction between the 

MPTES-grafted -Al2O3 powder and the MVPDMS polymer, the S-H bond should be broken 

by forming a covalent S-C bond through a thiol-ene reaction. Clearly the S-H bands at 2335 

and 2362 cm
-1

 disappeared after reaction of the linker with MVPDMS as can be seen from 

Figure 2.2c, confirming the thiol-ene reaction between MPTES and MVPDMS. In the FTIR 

spectrum of polymer-grafted -Al2O3  powder (Figure 2.2c), the peaks at 2965 cm
-1

 and 2874 

cm
-1

 are ascribed to C-H asymmetric stretching and symmetric stretching of methyl (CH3-) 

groups of PDMS (31). A strong peak at 1260 cm
-1

 is caused by symmetric C-H bending and 

peaks at 860 and 793 cm
-1

 are caused by Si-C vibration and CH3 rocking from the SiCH3 group 

(30). The two peaks at 1092 and 1017 cm
-1

 are ascribed to the Si-O-Si bond (30-31).  These 

peaks at 793, 1017, 1092, 1260 cm
-1

 and 2965 cm
-1

 confirm the presence of 

polydimethylsiloxane groups on the PDMS-grafted -Al2O3 powder (23, 30-31). Figure 2.3 

shows a schematic illustration of the possible structure resulted from the overall reaction 

between linker and alumina and respectively between linker and PDMS.  
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Figure 2.3. Schematic illustration of the possible structure resulted from the overall reaction between linker and alumina 

and respectively between linker and PDMS.  

It can be concluded from these FTIR analysis that the grafting reaction between -alumina 

and MPTES and subsequently with a monovinyl terminated PDMS is successfully performed. 

2.3.3. Contact Angle  

Table 2.1 shows the measured contact angles of the unmodified, silane-grafted, and PDMS-

grafted -Al2O3 membranes. The observed change in the contact angles represents the 

change of the surface properties of the modified membrane relative to those of the 

unmodified substrate. The contact angle measurements were taken from 5 different points 

on the flat membrane surface and averaged. The negligible standard deviation shows that 

grafting reaction has occurred homogeneously over the membrane surface.  

Table 2.1. Water contact angles ( ) of unmodified, MPTES and MPTES-PDMS grafted -Al2O3 membranes 

 Unmodified 

( -Al2O3 membrane) 

After silylation 

with MPTES 

After PDMS Grafting  

Contact Angle ( ) 0 44 ± 2 95 ± 1 
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For the unmodified gamma-alumina membrane, the water droplet immediately wetted the 

membrane surface. A corresponding water contact angle of 0° is therefore assumed, 

indicating the hydrophilic characteristic of the -Al2O3 membrane due to natural presence of 

hydroxyl (OH-) groups on the ceramic surface. In general, an increase in contact angle was 

observed after modification of y-Al2O3 membranes with MPTES and PDMS.  

A higher contact angle observed after modification with MPTES might be attributed to the 

presence of the thiol group and the hydrophobic propyl group after modification of -Al2O3 

with MPTES. Thiol (SH-) groups are less polar than hydroxyl (OH-) groups, causing a weaker 

attraction between the water droplet and the MPTES-grafted -Al2O3 membrane, and thus a 

comparatively higher contact angle. 

A further increase in contact angle was observed after modification with PDMS. The higher 

contact angle might be attributed to the nonpolarity of the dimethylsiloxane groups.  There 

are more potential sources contributing to the actual contact angle value measured, such as 

the nanotextures of the grafted moieties depending on the molecule orientation and 

grafting density of the grafted moieties, in combination with the presence of the pores. For a 

comparison, the modification of -alumina membranes with a mono-epoxy-terminated 

PDMS (n=10), using an aminosilane as the linker, resulted in contact angle values ranging 

from 91 to 97 degrees (23).  

2.3.4. Permeation  

Permeation tests were conducted on the unmodified and modified membranes, using 

toluene as a probe solvent to assess the membrane permeability after grafting with PDMS. 

The toluene permeability of the unmodified and modified -alumina membranes are shown 

in Table 2.2. 

 

Table 2.2. Toluene permeability of unmodified, MPTES and MPTES-PDMS grafted -Al2O3 membranes. Average values and 

standard deviations are given for measurements on three different membranes. 

 Unmodified After PDMS Grafting 

Toluene permeability, L.m
-2

.h
-1

.bar
-1

 5.80±0.11 2.09±0.13 
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 From Table 2.2, it can be seen that the toluene permeability is lower after grafting with 

PDMS. The improvement of wettability properties should have led to higher fluxes of 

toluene if we assumed that the membrane pore size is constant before and after grafting. 

However, lower toluene permeability was observed after grafting with PDMS. The lower 

permeability observed is attributed to the membrane pore size reduction due to the 

presence of the grafted molecules.  In such cases, overall reduction of fluxes may be the 

result when the flux decrease due to the pore size reduction is more significant than the flux 

improvements due to better surface wettability. In this work, three membranes were 

grafted separately using the same grafting procedure. The standard deviations, given in 

Table 2.2, were calculated from the average values of the toluene permeability of three 

membranes. It was demonstrated that this method of grafting results in membranes with 

high reproducibility.  

In order to examine whether the way of applying subsequent trans membrane pressures 

(TMP) affects the  flux, permeation tests were performed in two different orders, starting 

from the lowest and going to the highest TMP and subsequently from the highest to the 

lowest TMP (see Figure 2.4). No significant differences in fluxes were observed for ascending 

or descending TMP permeation tests. Thus no irreversible effects towards pressure are 

present in the tested trans-membrane pressure range. 
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Figure 2.4. Flux (J) as a function of Trans Membrane Pressure (TMP) at room temperature 

An estimation of the pore radius of the modified membrane can be obtained by using the 

simple pore capillary model (32). For a steady-state system, where the solvent is 

incompressible, a simple capillary model for the pore geometry can be derived: ݂݀݁݅݅݀݋݉݊ݑݎ݂݀݁݅݅݀݋݉ݎ  = ට ሺܮᢡሻ݂݉݀݁݅݅݀݋ሺܮᢡሻ݂݀݁݅݅݀݋݉݊ݑ          (1) 

where rmodified and runmodified are the mean pore radii of the modified and unmodified -Al2O3 

membranes, Lmodified and Lunmodified are the permeabilities of toluene for the modified and 

unmodified membranes in L.m
-2

.hr
-1

.bar
-1

, and modified and unmodified are the toluene 

viscosity. 

The mean pore radius of the unmodified -Al2O3 membrane is 2.5 nm, as determined by 

permporometry [13]. The values of Lmodified and Lunmodified are respectively 2.1 and 5.8 L.m
-

2
.hr

-1
.bar

-1
.   By applying these data in equation (1) a pore radius of 1.5 nm is calculated for 

the PDMS modified membrane. In this model any possible interactions between solvent and 

the respective membranes are not taken into account. This implies that in the case of 

negligible interfacial tension differences between the reference and the system in question, 

the estimated pore radius value of 1.5 nm might hold. However, the PDMS-modified 
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membrane is much more hydrophobic than the pure -Al2O3 and it is therefore expected 

that there is less interfacial tension between the toluene and the grafted PDMS. So, the 

estimation method as used over here is expected to give a maximum value of the pore 

radius for the PDMS-modified membrane. The same calculation for the -alumina 

membranes grafted with a mono-epoxy-terminated PDMS (n=10), using an aminosilane as 

the linker from Pinheiro et al. work (23) gave a maximum pore radius of 1.83 nm, with 

Lmodified and Lunmodified of 3.1 and 5.9 L.m
-2

.hr
-1

.bar
-1

. 

2.3.5. Chemical stability  

The chemical stability of the membrane material in toluene was analyzed on -Al2O3 flakes  

grafted with only MPTES and flakes grafted with MPTES and PDMS. If the chemical bond 

between the grafting agents and the -Al2O3, was not stable then toluene, used as solvent 

for grafting the membranes, would likely wash away the grafting agents. The FTIR spectra of 

the MPTES grafted -Al2O3 powder immersed in toluene at different temperatures (30 - 

90ûC) are shown in Figure 2.5. 

 

Figure 2.5. FTIR Absorbance Spectra of MPTES-grafted -Al2O3 powders soaked in toluene at different temperatures  for 6 

days: a) no immersion, b)30 C, c)60 C, d)80 C, e)90 C 

From these chemical stability tests, it was observed that the MPTES grafted -Al2O3 powder 

immersed in toluene at all temperatures showed no changes in FTIR spectra. The 

characteristic bands of S-H at 2335 and 2362 cm
-1

 were still present with no change in 
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intensity. It was demonstrated that continuous stirring for 6 days cannot dissolve the MPTES 

that has been grafted onto the -Al2O3 powder. This is only possible if a stable covalent bond 

is present between the grafted moiety and the -Al2O3 surface.  

Figure 2.6 shows the FTIR Spectra of the PDMS-grafted -Al2O3 powder after being immersed 

in toluene at different temperatures (30 - 90ûC) for 6 days.  

 

 

 

Figure 2.6. FTIR Absorbance Spectra of MVPDMS-grafted -Al2O3 powders immersed in toluene at different temperatures 

for 6 days: a) no immersion, b)30 C, c)60 C, d)80 C, e)90 C 

 

Pure PDMS easily dissolves in toluene (33).  If PDMS is only physically adsorbed on the 

ceramic powder, the grafted material will easily be washed away by toluene. The 

characteristic absorption peaks at 793, 1092, 1017, 1260 cm
-1

 of the PDMS-grafted -Al2O3 

powders were still present without any decrease in intensity, demonstrating that the grafted 

material can maintain its integrity even after long term exposure of toluene at elevated 

temperatures. From the chemical stability tests it can be concluded, that no degradation of 

the membrane material was found, demonstrating the potential use of these membranes in 

solvents like toluene at elevated temperatures.  
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2.4.  Conclusion 

A method of grafting a mesoporous -alumina layer, supported on macro porous -alumina, 

with 3-mercaptopropyltriethoxysilane (MPTES) as linking agent and subsequently with 

Monovinyl terminated polydimethylsiloxane (PDMS)  as polymer grafted to this linker was 

presented. It was shown that this method of grafting resulted in stable covalent bonds 

between the PDMS, MPTES, and -alumina. Contact angle measurements have shown that 

this method of grafting renders the -Al2O3 substrate into hydrophobic properties. The 

grafting method described in this paper resulted in a hydrophobic and chemically stable 

membrane for potential use as chemical and thermal stable organic solvent nanofiltration 

membranes.  
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Abstract 

 

Solvent permeability in PDMS grafted ceramic membranes was described by incorporating 

solvent sorption terms into the Hagen-Poiseuille equation. Two types of ceramic membranes 

grafted with a relative short or long PDMS chain (n=10 and n=39), which differed in pore 

size, were examined. Sorption was measured "ex situ" using a pure PDMS phase. The results 

show that the flux differences can be described by incorporating sorption and viscosity 

differences between the solvents. It is suggested that the membrane permeable volume 

reduces if a solvent is strongly swelling. This provides an initial way to predict the 

performance of grafted ceramic membranes for solvent nanofiltration. 
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3.1.  Introduction 

Solvent resistant nanofiltration (SRNF) or organic solvent nanofiltration (OSN) is a potential 

separation technology for e.g. the recycling of solvents and the recovery of products from 

reaction solvents (1). For SRNF, a chemically stable membrane is required to endure the 

rather aggressive operation environment. Modification of mesoporous ceramic membranes 

by means of grafting is an interesting way to prepare a chemically stable nanofiltration 

membrane. In the grafting process, the macromolecules are linked to the membrane surface 

by a covalent bond, resulting in a chemically stable modified ceramic membrane. The surface 

wettability of the membrane can be tuned by grafting a suitable polymer with the desired 

hydrophobicity. In the same time, pore size tuning can be realized by grafting 

macromolecules inside the ceramic pores.  

In literature, several examples are given on modification of porous inorganic membranes by 

grafting for various applications. Leger et al. (2) used silicone oil (viscosity 545 mPa) to graft 

the surface of alumina membranes with a pore size of 5 nm for gas permeation and 

pervaporation. Faibish et al. (3) grafted polyvinylpyrrolidone on zirconia membranes for oil-

in-water emulsion treatment. Free-radical graft polymerization was performed by using a 

vinyl silane as linker to the zirconia membranes. A reduction in pore size of around 25 % 

after grafting was claimed. Yoshida et al. (4) grafted y-alumina membranes (pore size 5 nm) 

by using vinyl acetate or vinyl pyrrolidone monomers. Yoshida et al. (5) grafted vinyl acetate 

or vinyl pyrrolidone to silica membranes (pore size of 20 nm) by free radical graft 

polymerization for pervaporation of methyl-tertiary-butyl ether from water. Popat et al. (6) 

grafted polyethylene glycol to straight pore alumina membranes (“anodisc”) using a silane 

coupling agent. Lee et al. (7) grafted polyethylene glycol to render straight pore alumina 

membranes for anti-fouling properties. The pore sizes of the bare alumina, used in (6) and 

(7), are in the order of 25 - 80 nm, while the grafted membranes are still in the ultrafiltration 

range.  

Pinheiro et al. (8) developed nanofiltration membranes by grafting PDMS in the pores of -

alumina membranes (pore size 5 nm) using aminopropylethoxysilane as the linker and 

(mono(2,3-epoxy) polyetherterminated polydimethylsiloxane with an average number of 

repeating monomers (n) of 10 and a viscosity of 10-50 mPa. Tanardi et al. (9) grafted PDMS 
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with an average number of repeating monomers (n) of 39 on the same type of mesoporous 

(pore size 5 nm) -alumina layer, supported on macro porous -alumina, with 3-

mercaptopropyltriethoxysilane as linker. 

Detailed knowledge of major parameters influencing the solvent transport of grafted 

ceramic membranes is very important in order to predict their permeation behavior for 

various solvents. Castro et al. (10) studied the effect of different types of solvents on the 

permeability of an ultrafiltration membrane, prepared by grafting of PVP inside the pores of 

a macroporous silica support with a native pore diameter of 410 nm. It was found that the 

permeability of nonpolar solvents, like cyclohexane and toluene, was higher than the 

permeability of polar solvents, like propanol, water, and ethanol, for the hydrophilic PVP 

grafted membranes, as opposite to what was expected. 

An interesting behavior of modified ceramic membranes prepared via grafting of 

macromolecules inside the pores is their response towards the applied pressure. Castro et 

al. (11) observed a shear-rate flow induced behavior of the PVP grafted macroporous 

ceramic substrate with davg of 410 nm due to the mobility of the grafted polymeric chain. 

The effect of shear rate on the permeability of the grafted membrane was described as a 

condition in which the membrane is experiencing a more open membrane structure due to 

the movement of the grafted moieties in the direction of the feed flow, resulting in an 

exponential increase in the membrane permeability towards the trans-membrane pressure. 

In this study, the effect of viscosity, as well as sorption of solvent, on the transport behavior 

were investigated for two types of grafted membranes with a relative short or long chain of 

PDMS (n=10 and n=39). PDMS was selected as it has been proven to be an excellent material 

for SRNF applications (8-9, 12-14) . The permeability was studied by means of permeation 

tests at operating pressures between 1 to 20 bar to investigate the effect of trans-

membrane pressure on  the membrane permeability. Various solvents were used to study 

the effect of different solvent types on the membrane permeation behavior. Permeation 

tests at elevated temperature were conducted to study the effect of temperature on the 

membrane permeability. A model is proposed to describe the permeation of pure solvents 

through these membranes. 
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3.2.  Existing transport models for porous and dense membranes 

Two models are generally used to describe solvent transport through membranes (15). The 

first one is the pore-flow model, in which the membrane is regarded to have defined open 

pores from the feed side to the permeate side. Darcy’s Law, often referred to as the pore-

flow or viscous-flow model, describes liquid permeation through porous media as a function 

of the trans-membrane pressure (TMP):  ܬ ൌ � ߤ݇ ο݈ܲ           (3.1) 

where J is the solvent flux, k the permeability constant,  the fluid viscosity, οܲ the trans-

membrane pressure, and ݈ the membrane thickness. 

For viscous flow, the Darcy’s law can be combined with the Hagen–Poiseuille equation: ܬ ൌ �݇ οܲߤ            (3.2) 

with ݇ ൌ � ݌ݎߝ ʹͺ݈߬            (3.3) 

where J is the solvent flux,  P the trans-membrane pressure,  the solvent viscosity, and k 

the membrane permeability constant representing the structural properties of the 

membrane with  the membrane porosity, rp the membrane average pore diameter,  the 

membrane tortuosity, and  ݈ the membrane thickness. 

If there are no pores identified in the membrane, the solution-diffusion model is generally 

used (15). This means that the transport of liquids occurs via free volume elements between 

polymeric chains which can appear and disappear as a function of time and place according 

to the movement of the solvent (16). The model assumes that pressure is constant through 

the membrane and the driving force of solvent transport is the chemical activity difference 

between the feed and permeate side of the dense membrane. The solution-diffusion 

equation is as follows: 

ܬ݅  ൌ ݈݅ܭ݅ܦ� � ൤݂ܽ݅ െ ݌݅ܽ ݌ݔ݁� ൬െ݅ݒ൫݂ܲെ ܲ݌ ൯ܴ݃ܶ ൰൨       

 (3.4) 

where Ji represents the solvent flux, ݈ the membrane thickness, Di  the diffusion coefficient 

of solvent or solute i through the membrane, Ki  the partition coefficient,  aif  and aip  are the 
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activities of species i in respectively feed and permeate, i  the partial molar volume of 

specimen i, Pf and Pp the pressures at feed and permeate side, Rg the gas constant and T the 

temperature. If a pure solvent is used, then the aif  is 1 and i is 1, while the aip is 0. Thus, the 

equation becomes: 

ܬ݅  ൌ ݈݅ܭ݅ܦ� � ൤ͳ െ ݌ݔ݁ ൬െሺοܲെοߨሻܴ݃ܶ ൰൨        (3.5) 

where ο  stands for the osmotic pressure (17).  

When the difference between the applied and osmotic pressure is small, the equation can 

be written as:  

  i i
i i

g

DK
J P S P

R lT
        (3.6) 

where Si is a solvent permeability constant of solvent or solute i.  

The pore-flow and the solution-diffusion models are commonly used for aqueous 

applications (15, 18-19). For SRNF membranes, both pore-flow and solution-diffusion models 

have been used in literature to describe the transport behavior of PDMS membranes. 

Vankelecom et al. (16) found that a viscous flow model can be used to describe the 

permeation of pure solvents through PDMS membranes by taking into account membrane 

swelling. This finding was later confirmed by Robinson et al. (20), who successfully used a 

pore-flow model to describe the transport behavior of PDMS membranes for nonpolar 

solvents based on the reasoning that the swollen PDMS layer may form a pore-like structure 

in the presence of nonpolar solvents.  Meanwhile,  Zeidler et al. (21) observed that a viscous 

flow behavior was observed for PDMS membranes in the presence of swelling solvents like 

n-heptane and THF. On the other hand, in the presence of non-swelling solvents, like 

ethanol, it was proposed that the rejection of PDMS might be closer to that of the solution-

diffusion mechanism. Postel et al. (22) used the solution-diffusion model to describe the 

negative rejections of dye solutes in ethanol by dense PDMS membranes.  No prior study is 

found in the literature to investigate the use of these models for modelling of the transport 

behavior of grafted ceramic membranes.  
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3.3.      Experimental procedures 

Three types of membranes were investigated. All membranes were in the form of flat discs 

with a diameter of 20 mm and a total thickness of 2.5 mm. The first series of membranes 

(M1) consisted of a mesoporous -Al2O3 layer with a pore diameter of 5 nm and 3 m 

thickness, supported on macroporous - Al2O3 supports (23-24).  The second series (M2) 

consisted of macroporous - Al2O3 supports, coated with a 3 m thick  mesoporous (5 nm) -

Al2O3 layer, which is modified with 3-aminopropyltriethoxysilane followed by mono(2,3-

epoxy)polyetherterminated polydimethylsiloxane (n=10). Details of the membrane 

fabrication procedures for M2 were described in (8). The third series of membranes (M3) 

consisted of macroporous - Al2O3 supports, coated with a 3 m thick mesoporous (5 nm) -

Al2O3 layer and further modified with 3-mercaptopropyl triethoxysilane followed by 

monovynil terminated polydimethylsiloxane (n=39). Details of the membrane fabrication 

procedures for M3 were described in (9). SEM-EDX analysis by a Thermo-Noran instrument 

was used to identify the morphology of the grafted membranes. 

Pure solvent flux tests were conducted with different solvents. Octane (98 % purity), 

cyclooctane (> 99 %), p-xylene (> 99 %), and n-hexane (> 99 %) were purchased from Sigma-

Aldrich. Toluene (100 %), ethyl acetate (99.9 %), and isopropanol (100 %) were purchased 

from VWR. Zeolite A (molecular mesh 4-8 nm) was purchased from Sigma-Aldrich to dry all 

chemicals. Table 3.1 gives some physical characteristics of these solvents.  

Table 3.1. Physical properties of the solvents used for permeability tests (26-31) 

Name 
Molecular 

Shape 

Viscosity 

(mPa.s at 

20°C) 

Dipole 

Moment 

(D) 

Dielectric 

Constant 

( ) 

Surface 

Tension 

(mN/m 

at 20°C) 

Molar 

volume 

(cm
3
/mol) 

Vapor 

Pressure 

(mmHg 

at 20°C) 

Hexane linear 0.31 0.08 1.89 18 130.58 129.1 

Octane linear 0.54 0 1.95 22 162.49 13.9 

Cycloocta

ne 
cyclic 2.13 0 2.12 32 107.91 4.4 

p-Xylene aromatic 0.64 0.07 2.27 29 123.31 7.6 

Toluene aromatic 0.59 0.34 2.38 30 105.91 26.3 

Ethyl 

acetate 

branched 

linear 
0.45 1.88 6.02 24 97.68 109.1 

Isopropan

ol 

branched 

linear 
2.39 1.66 19.92 21 76.90 78.2 
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Permeability tests were performed using a high pressure dead-end stainless steel 

permeation set-up at operating pressures between 1 to 20 bar (25). The cell was filled with 

solvent and nitrogen was used to pressurize the cell. Permeate fluxes (J in L.m
-2

.h
-1

) were 

obtained by measuring the weight of the collected permeate as a function of time.  

After each permeation test, the samples were rinsed thoroughly with ethanol 3 times and 

soaked in fresh ethanol for 24 hours before being dried in a vacuum oven for one hour at 

110°C. Membranes were cooled down for 24 hours in a vacuum oven at 30
0
C prior to 

soaking for 8 hours in the solvent to be tested before the permeation test was started. All 

measurements were performed on three samples for each type of membrane and two times 

for each sample. The influence of temperature was studied by performing permeability tests 

up to 70 C at 6 bars for octane, toluene, and isopropanol.  

Contact angle measurements, hexane flux tests at 10 bar, and molecular weight cut off 

(MWCO) measurements were used to control the membrane condition before and after the 

permeation tests with series of solvents. 

Contact angles were measured by the static sessile drop method by the Data Physics Optical 

Contact Angle (OCA 20) instrument.  5 L of water was dropped respectively at a speed of 2 

l s
-1

 on the membranes surface using a Hamilton Microliter syringe. Measurements were 

taken on 5 different spots on the membrane surface.  

MWCO measurements were performed with the same dead-end permeation set-up as used 

for the permeation tests by using polyethylene glycol (PEG, Fluka) with molecular weights of 

200, 400, 600, and 1000 g/mol respectively as probe solutes in toluene. The rejection test 

was performed until an equilibrium retention value was reached. All measurements were 

performed on three different membrane samples for each type of membrane. The feed 

solution was stirred at 500 rpm to avoid any concentration polarization. The feed 

concentration was set at 8000 ppm. Solute concentrations in the permeate and feed 

solution were analyzed by a Thermo Electron Corporation HPLC with a C8 econosphere 

column connected to an Evaporative Light Scattering Detector 2000 ES (32). A nebulizer 

temperature of 95 C, a gas flow of 2.5 L/min, a column temperature of 40 C and a sample 

volume of 20 L were used. Methanol-water (4:1) was used as the eluent for the HPLC. The 
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feed and permeate solute concentration (Cf and Cp) were determined for different MWs as a 

function of the total peak area from the electrical potential difference plot against the 

retention time. The rejection percentage (R) was calculated from the following equation:  R = 

(1-Cp/Cf) x 100%, where Cp and Cf are the solute concentrations in the permeate and feed 

solution, respectively. The MWCO value is determined as a solute molecular weight for 

which a 90% retention is observed.  

It was not possible to directly measure the solvent sorption behavior of PDMS in different 

solvents using the as-prepared membranes. Thus, to indicate the sorption tendency of PDMS 

in different solvents, sorption tests were performed on non-grafted PDMS samples and the 

values were normalized towards the PDMS sorption of one reference solvent. This provides 

an indication of the affinity between PDMS and different types of solvent. For this sorption 

study PDMS samples were prepared by dissolving 10 wt% of RTV-615 A in hexane. PDMS 

RTV-615A and RTV-615B were purchased from Momentive Performance Materials Belgium. 

1% of RTV-615B was added into the solution and pre-polymerized at 60 C for 1 hour. The 

pre-polymerized solution was then poured into a flat petri dish and the solvent was allowed 

to evaporate overnight. The samples were put into a vacuum oven at 110°C for 8 hours to 

complete the polymerization. Afterwards, the samples were cooled down and cut into 0.2 

mm thick discs with a diameter of 20 mm each. Sorption tests were performed by immersing 

the PDMS samples into 10 ml of solvents at different temperatures. The mass of the PDMS 

sample was weighed before and after the immersion, by wiping the solvent quickly from the 

external surface after immersion. The sorption value (S) in cm
3
/g was defined as: S = ((me-

mo)/mo)/ s, with mo is the dry mass of PDMS (g), me the mass of swollen PDMS (g), and s 

the density of the solvents (g/cm
3
). Measurements were performed three times for each 

type of solvent.  
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3.4.  Results and Discussion 

3.4.1.  Membrane structure and stability 

In previous work, it was shown that a chemical bond exists between -alumina and the 

grafted organic moieties (8-9). The thickness of the polymer grafted layer was analysed by 

SEM-EDX which results are given in Figure 3.1.  

 

Figure 3.1. SEM and EDX results for M2 membrane (a) SEM picture, (b) Al mapping (green), (c) Si mapping (blue) as well as 

for M3 membrane (d) SEM picture, (e) Al mapping (green), (f) Si mapping (blue) 

The SEM pictures of the M2 and M3 membranes in Figure 3.1a and d show the modified -

Al2O3 substrate supported on top of -Al2O3. Al and Si EDX mapping of the M2 and M3 

membranes are given in Figure 3.1. As can be seen from the EDX picture, the grafting occurs 

throughout the y-alumina layer with an observed thickness of about 3 m for the selective 

layer for both M2 and M3 membranes. 

In order to conduct proper solvent transport studies, it is important that the membranes 

remain stable and retain their (micro) structure during all tests. Therefore, some membrane 
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characteristics were analysed before and after these permeation tests: water contact angle, 

hexane flux and MWCO of PEG in toluene. These results are summarized in Table 3.2. 

Table 3.2. Membrane characteristics 

Code Material Water 

Contact 

Angle (°)
a
  

Water 

Contact 

Angle (°)
b 

 

MWCO 

(Da)
a
 

MWCO  

(Da)
b
 

Hexane flux 

at 10 bar 

 (L.m
-2

h
-1

)
a
 

Hexane flux 

at 10 bar 

 (L.m
-2

h
-1

)
b 

M1 y-alumina 0 0 7500(33)  N/A 87.1±2.7 87.0±2.5 

M2 y-alumina/ 

PDMS n=10 

94±1 94±1 600 600 48.0±1.9 47.9±1.8 

M3 y-alumina/ 

PDMS n=39 

95±1 95±1 400 400 26.7±1.0 26.6±0.9 

a 
Values, measured prior to permeability experiments on the solvents as indicated in Table 3.1 

b
 Values, measured after all permeability experiments were performed 

 

As can be seen from this table, water contact angle, MWCO and hexane permeability are 

similar before and after all permeation tests without any significant differences. All these 

results showed that all membranes remained stable during the whole testing period. 

Both M2 and M3 showed lower MWCO values as compared to the unmodified -alumina 

membranes due to the presence of the grafted PDMS in the pores. M3 showed a lower 

MWCO than M2. On the other hand, the pure hexane permeability through the M2 

membranes is higher than that of M3. This is an indication that M2 membranes have a more 

open structure than M3 membranes. This will be discussed further in the next section. 

3.4.2. Permeability performance  

Pure solvent flux data at room temperature for M2 and M3 membranes at different trans-

membrane pressures (TMP) are given in Figure 3.2. The flux values, as presented in Figure 

3.2, are the average equilibrium values of measurements performed on  three different 

membrane samples for each type of membrane and two measurements for each sample. 

Standard deviations observed for the fluxes were within 4% error. 
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Figure 3.2. Pure solvent flux versus TMP for a) M2 and b) M3 membranes at 20°C 
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As can be seen in Figure 3.2, a linear relationship of flux versus TMP was observed for both 

types of membranes for all solvents, suggesting no effect of compaction. This behavior is in 

contrast with what is mostly found for pure PDMS polymeric membranes where a non-linear 

behavior in flux versus TMP is observed due to compaction (16, 34). The  linear relationship 

between the flux and TMP, as observed in our work, also indicates the absence of any shear 

rate flow-induced behavior as described by Castro et al. (11), who studied the permeability 

for PVP-grafted porous silica membranes with a native pore diameter of 410 nm. In Castro’s 

work, a more than linear increase of flux (J) as function of TMP was observed, suggesting 

deformation of the grafted polymeric chains as a result of the shear rate, which increases 

the effective membrane pore diameter with increasing operational pressure. This difference 

between the results as described in (11) and those given in Figure 3.2 can be explained by 

the smaller pore size of the ceramic porous support (5 nm) used in this work which might 

provide higher confinement towards the shear rate effect than for macroporous ceramic 

supports (410 nm). 

If solvent transport in these membranes is according to the viscous-flow or pore-flow model 

(Hagen- Poiseuille law), an identical slope (k) must be found for all solvents, when flux is 

plotted versus TMP/  ( : solvent viscosity). In that case the membrane permeability 

constant (k) in Equation 3.2 represents the membrane pore geometry, meaning a single 

value of k should be identified for all solvents since it is assumed that the membrane pore 

geometry is identical regardless of the type of the permeating solvent. To validate whether 

the solvent permeation through the grafted membranes is following the viscous-flow 

mechanism, fluxes are plotted as function of TMP/  in Figure 3.3. 
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Figure 3.3. Fluxes versus the TMP/  for a) M2 and b) M3 membranes at 20°C 
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From the different slopes in Figure 3.3, whose values are summarized in Table 3.3, it can be 

deduced that for both M2 and M3, permeability is not (or not only) dependent on solvent 

viscosity. 

 

Table 3.3. Slopes (ki) of J versus TMP/  curves, as given in Figure 3.3 for each solvent 

Solvent Types ki 

M2  

ki 

M3 

Isopropanol 0.60±0.02 0.50±0.02 

Ethyl acetate 0.57±0.02 0.46±0.02 

Octane 0.52±0.02 0.43±0.02 

Toluene 0.51±0.02 0.40±0.02 

p-xylene 0.47±0.02 0.28±0.01 

Hexane 0.41±0.02 0.24±0.01 

Cyclooctane 0.37±0.01 0.18±0.01 

 

The pore-flow model does not take into account the interaction between the membrane and 

the permeating solvent. It is assumed that the membrane pore geometry is constant 

regardless the type of the permeating solvent. An adapted pore-flow model is now 

discussed, assuming that permeation is following the viscous flow mechanism, while the 

membrane pore geometry is varying in the presence of different types of solvent. It is known 

that PDMS can swell to a large extent in the presence of nonpolar solvents (14, 35). The 

degree of swelling depends on the affinity between the PDMS and the solvent. Larger 

swelling means that more solvent molecules are sorbed by PDMS. Swelling can have an 

influence on the pore geometry of a grafted membrane, because sorption of the solvent 

molecules by the grafted moiety can decrease the effective membrane permeation volume 

(porosity and pore size), i.e. the cylinder-like empty space in the central axis of the pores left 

by the swollen grafted PDMS. It should be noted that molecules that are responsible for the 

PDMS swelling are only loosely interacting with the PDMS chains and should surely not be 

considered as completely immobile. 

This hypothesis can be translated into a modified Hagen-Poiseuille law. Assuming that the 

slope of J versus TMP/  is different for every solvent due to a change in membrane porosity 

and pore size when using different solvents, a slope ki  for each solvent i can be determined 

and by using Equation 3.3 we obtain:. 
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2

i p,ir
k  

8 l
i            (3.7) 

where i and rp,i are the actual membrane porosity and pore size in the presence of the 

permeating solvent i. It is assumed that the membrane porosity and pore size do not have 

the same value for all solvents, while the other parameters (tortuosity and thickness) do not 

change significantly with changing solvent. 

The permeability constant for each solvent (ki) can be normalized towards the permeability 

constant of a reference solvent (kref). In combination with Equation 3.7 this normalized 

permeability constant (ki’)  is expressed as: 

2

,

'

2

,

8k

8

i p i

i e
i

ref ei p i ref

ref

r

k Vl

k Vr

l

        (3.8) 

Here an effective permeable volume of the membrane (Ve) is defined (  and l are identical 

for all solvents). Ve can be described as the difference between the membrane permeable 

volume per unit mass of the grafted moiety when there is no solvent present (Vo  in cm
3
/g) 

and the volume of sorbed solvent per unit of mass of the grafted moiety (Vs  in cm
3
/g):  

  e o sV V V            (3.9) 

Combination of Equation 3.8 and 3.9 gives:  

,'

,

k
o s ii e

i

ref e o s refref

V Vk V

k V V V
        (3.10) 

The value of Vo is specific for each type of grafted membrane (M2, M3) and depends on the 

pore volume of the ceramic substrate and the mass of the grafted moiety. The values of Vs,i 

in cm
3
/g depends on the type of solvent (the affinity of the solvent with the grafted moiety). 

݂݁ݎǡݏܸ  is the volume of the sorbed solvent per unit mass of the grafted moiety for a reference 

solvent (cm
3
/g). From here, with a simple mathematical derivation Equation 3.10 becomes: 
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If:  
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with ܸݏǡ݅ Ԣ  the ratio of the sorption tendency in one solvent relative to that of the reference 

solvent, or so called the normalized sorption value, then Equation 3.11 becomes: 
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where A is the intercept and B the slope of a plot of �݅ Ԣ  versus � ǡ݅ݏܸ Ԣ . 
Incorporating Equation 3.13 in Equation 3.2 results in: 

'

,   (  )i i ref s i

P P
J k k A BV         (3.16) 

with ݇݅  is the slope of Ji versus TMP/฀ for each solvent as a function of � ǡ݅ݏܸ Ԣ Ǥ In this work 

values of � ǡ݅ݏܸ  are obtained through sorption measurements of a PDMS sample in different 

types of solvent. Crosslinked PDMS samples with a low amount of crosslinker (9 %w/w) is 

chosen as the sample. Table 3.4 gives the measured sorption values  and the sorption values 

normalized against the sorption of isopropanol, which is chosen as a solvent of reference in 
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this work. In fact, any solvent can be freely chosen as a reference solvent for the calculation 

of the normalized sorption value. 

Table 3.4. Sorption value of a pure PDMS sample with a 9 w/w% of crosslinker at 20°C and the normalized sorption values 

against the sorption of isopropanol which is chosen as a solvent of reference 

Solvent Sorption value ��ǡ� (cm
3
/g) 

Normalized sorption value ܸݏǡ݅�Ԣ ൌ � ǡ݅ݏܸ Τ݈݋݊ܽ݌݋ݎ݌݋ݏǡ݅ݏܸ (-)  

Dipole 

Moment 

(D) 

Dielectric 

Constant 

( ) 

Vapor Pressure 

(mmHg at 20°C) 

Isopropanol 0.47 1.00 1.66 19.92 78.2 

Ethyl acetate 0.48 1.02 1.88 6.02 109.1 

Toluene 0.53 1.12 0.34 2.38 26.3 

Octane 0.54 1.15 0.00 1.95 13.9 

p-Xylene 0.63 1.34 0.07 2.27 7.6 

Hexane 0.66 1.40 0.08 1.89 129.1 

Cyclooctane 0.70 1.48 0.00 2.12 4.4 

 

A possible relation between sorption values and solvent polarity (such as dipole moment and 

dielectric constant) as well as solvent vapor pressure is summarized in Table 3.4. In general a 

lower sorption value is observed for polar solvents like isopropanol (dielectric constant of 

19.92) or ethyl acetate (dielectric constant of 6.02) if compared to sorption values of 

nonpolar solvents having dielectric constanst between 1.5 and 2.5. A lower sorption value 

was also found for polar solvents with dipole moments of more than 1.5, while higher 

sorption values were found for nonpolar solvents with dipole moments less than 0.5. No 

trend was observed between the sorption value and the vapor pressure of the solvents. 

In order to use Equation 3.16, the A and B values needs to be determined. To solve the A and 

B, the �݅ Ԣ  is plotted against � ǡ݅ݏܸ Ԣ  according to Equation 3.13. In this way for membrane M2 A 

and B values of respectively 1.68 ± 0.07 and 0.68 ± 0.09 were calculated while for membrane 

M3 A and B values were respectively 2.27 ± 0.09 and 1.27 ± 0.07. Details on �݅ Ԣ  versus � ǡ݅ݏܸ Ԣ  
are given in the appendix to this paper. If ki is corrected with ሺܣ െ �ܤ ǡ݅ݏܸ Ԣሻ , then, according 

to Equation 3.16,  the slopes in the curve of flux versus TMP/  will unite into a single slope, 

which is equal to kref. The plot of the flux/ሺܣ െ �ܤ ǡ݅ݏܸ Ԣሻ versus TMP/  for M2 and M3 

membranes are given in Figure 3.4. 
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Figure 3.4. Plot of J corrected with ሺܣ െ �ܤ ǡ݅ݏܸ Ԣሻ against TMP/  at 20°C 
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From Figure 3.4, it can be seen that almost a single slope is formed when J corrected with ൫ܣ െ �ܤ ǡ݅ݏܸ Ԣ൯  is plotted against TMP/  in accordance to Equation 3.13. The applicability of 

this equation for describing the solvent permeation of these grafted ceramic membranes 

indicates that the solvent permeability behavior of grafted membranes is governed by the 

sorption tendency of the grafted moiety aside from the solvent viscosity for porous grafted 

membranes. The slopes of J/൫� െ ����ǡ� Ԣ൯  versus TMP/  as given in Figure 3.4 for each 

solvent including the error values are presented in Table 3.5 for M2 and M3 approaching the 

kref. 

Table 3.5. Slopes of J/൫ܣ െ �ܤ ǡ݅ݏܸ Ԣ൯  versus TMP/  as given in Figure 3.4 for each solvent indicating the kref values 

Solvent Types Slopes 

M2  

Slopes 

M3 

Isopropanol 0.60±0.02 0.50±0.02 

Ethyl acetate 0.58±0.02 0.47±0.03 

Octane 0.58±0.02 0.53±0.02 

Toluene 0.56±0.03 0.47±0.04 

p-xylene 0.61±0.03 0.49±0.02 

Hexane 0.56±0.03 0.49±0.03 

Cyclooctane 0.55±0.03 0.46±0.02 

 

3.4.3. Flux as function of temperature 

In order to check whether similar major parameters affect membrane permeability at 

elevated temperatures, permeability tests were done in the temperature range of 20 - 70 °C 

and given in Figure 3.5. 
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Figure 3.5. Flux versus temperature at a constant TMP of 6 bar for a) M2 and b) M3 membranes 

It can be seen from Figure 3.5 that the flux increases with increasing temperature. The 

increased movements of individual molecules at higher temperature reduce the 

intermolecular forces resulting in a decrease of solvent viscosity. Besides, there is also an 
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enhanced polymer chain mobility at elevated temperatures. The solvent viscosities as 

function of temperature are given in Table 3.6. 

 

Table 3.6. Solvent viscosity at elevated temperatures (26) 

T ( C) 

Viscosity  (mPa.s) 

octane toluene isopropanol 

20 0.54 0.59 2.39 

30 0.48 0.52 1.88 

40 0.43 0.48 1.45 

50 0.39 0.45 1.20 

60 0.35 0.43 0.89 

70 0.33 0.42 0.82 

 

The viscosity corrected flux, according to Darcy´s law, are plotted in Figure 3.6 as a function 

of permeation temperature.  
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Figure 3.6. Solvent fluxes corrected for the solvent viscosity versus T for a) M2 and b) M3 membranes 

It can be seen from Figure 3.6 that the permeability of isopropanol decreases for both 

membranes with increasing temperature after being corrected for the solvent viscosity at 

the pertinent temperatures. For octane and toluene on the other hand, the viscosity 

corrected flux was found to be constant with the increase in temperature. 

The differences in permeability behavior as function of temperature between octane and 

toluene on one side and isopropanol on the other side might indicate a difference in 

sorption behavior of PDMS in the different solvents for the studied temperature range. 

Table 3.7 shows the sorption values (VS,T) of PDMS at different temperatures for the 

respective solvents. 
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Table 3.7. Sorption values of PDMS samples as function of temperature 

T ( C) 

Sorption values 

Vs,T (cm
3
/g) 

Normalized sorption values ܸܵ ǡܶ�Ԣ ൌ�ܸܵ ǡܶ ܸܵ ǡʹͲιܥǡ݈݅݋݊ܽ݌݋ݎ݌݋ݏΤ (-) 

octane toluene isopropanol octane toluene isopropanol 

20 0.54 0.53 0.47 1.15 1.13 1.00 

30 0.54 0.53 0.51 1.15 1.13 1.09 

40 0.55 0.53 0.56 1.17 1.13 1.19 

50 0.55 0.53 0.59 1.17 1.13 1.26 

60 0.55 0.54 0.60 1.17 1.15 1.28 

70 0.55 0.54 0.61 1.17 1.15 1.30 

 

A significant dependency of the sorption value with temperature is observed for PDMS-

isopropanol systems. A dependency of sorption value with temperature is also observed for 

PDMS-octane or PDMS-toluene systems.  

The increasing sorption of isopropanol in the grafted moiety at increasing temperature 

might be the reason for the decrease in isopropanol permeability, as shown in Figure 3.6a 

and b. To check whether solvent sorption also affects the solvent transport through grafted 

membranes as function of temperature, the viscosity corrected flux is further on corrected 

for the sorption of solvent at the pertinent temperature according to (see also Equation 

3.16) 

,  

.
  . 

( . ' )
ref

S T

J
k P

A B V
         (3.17) 

If similar parameters affecting the membrane permeability as function temperatures, ܬ ǤߤሺܣെܤǤܸܵǡܶ�Ԣ �ሻ  should be constant against the permeation temperature.  

The fluxes corrected with the  
ͳܣെܤǤܸܵǡܶ�Ԣ �  for each membrane types plotted against the 

permeation temperature are given in Figure 3.7. 
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Figure 3.7. The fluxes corrected with 
ͳܣെܤǤܸܵ ǡܶ �Ԣ �   plotted against the permeation temperature using A and B values calculated 

previously for a) M2 and b) M3 membranes  

 

As can be seen from Figure 3.7 Equation 3.17 can be applied for describing the membrane 

permeability behavior.  From all these results it can be concluded that the permeability of 

PDMS-grafted -alumina ceramic membranes, as studied in this work, is dominated by the 

solvent viscosity and the solvent sorption of the grafted moiety in a solvent when used in a 

temperature range of 20 - 70 °C. 
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5. Conclusions 

Prepared PDMS-grafted alumina membranes are stable for permeation of different types of 

solvent for at least 10 days. No compaction or shear flow-induced behavior was observed 

during solvent transport through the grafted membranes at trans-membrane pressures up 

to 20 bars. The solvent permeation of these ceramic membranes was found to be mainly 

governed by Darcy’s and Hagen-Poiseuille law, but with taking into account swelling of the 

grafted moiety. An empirical model, derived from the Hagen-Poiseuille model, using the 

sorption tendency of the grafted material in different solvents, can be used to describe the 

membrane permeability behavior.  
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Supporting Information for Chapter 3 

In order to determine the A and B values as given in Equation 3.13, the normalized values of 

ki (�݅ Ԣ ) was plotted against � ǡ݅ݏܸ Ԣ  . The values of ki are obtained from the slope of J versus 

TMP/ curves for each solvent as given in Figure 3.3. These values are  normalized towards 

the ki of isopropanol which is chosen as a solvent of reference. 

By plotting �݅ Ԣ  (see Table 3.A.1) versus � ǡ݅ݏܸ Ԣ  (see Table 3.5) Figure 3.A.1a and b are obtained 

for respectively membrane M2 and M3. In this way for membrane M2 A and B values of 

respectively 1.68 ± 0.07 and 0.68 ± 0.09 were calculated while for membrane M3 A and B 

values were respectively 2.27 ± 0.09 and 1.27 ± 0.07 

Table 3.A.1. Values of ki , normalized towards the ki of isopropanol (ൌ �݅ Ԣ ) 
Solvent �݅ Ԣ  for M2 �݅ Ԣ  for M3 

Isopropanol 1.00 1.00 

Ethyl acetate 0.96 0.92 

Octane 0.86 0.85 

Toluene 0.85 0.81 

p-Xylene 0.79 0.56 

Hexane 0.69 0.48 

Cyclooctane 0.62 0.36 
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Figure 3.A.1. Plot of �݅ Ԣ  versus � ǡ݅ݏܸ Ԣ  for a) M2 and b) M3 membranes 
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Abstract 

 

The solute rejection of PDMS grafted -alumina membranes was investigated for different solvent-

solute pairs. In contrast to the behavior of pure PDMS polymeric membranes, higher rejections were 

found in nonpolar solvents, like toluene, than in polar solvents, such as isopropanol. It is suggested 

that the transport of solute is following a size based exclusion mechanism as the solute rejection is 

related to the ratio solute diameter/pore diameter. The Ferry, Verniory and steric hindrance pore 

(SHP) models were used to predict the membrane rejection using the pore diameter information 

from N2 physisoprtion measurements as the pore size if no solvent was present. For dye solutes in 

isopropanol, the experimental data fall in the range of the predicted rejection values for Ferry, 

Verniory, and SHP model, while under-predicted values resulted for solutes in the toluene system. 

The difference of dyes rejection in isopropanol and toluene can be attributed to the change in the 

membrane pore size as a result of the membrane-solvent interaction. The effective solute diameter 

and the ability of one component to create a hydrogen bond with either membrane, solvent, or 

solute are important factors determining the separation performance of these SRNF membranes. 
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4.1. Introduction 

Solvent resistant nanofiltration (SRNF) is a useful tool for separations in organic media, such as the 

removal of impurities from used solvents, recycling of solvents or the recovery of products from 

reaction mixtures in chemical, petrochemical, and pharmaceutical industries (1-2). For these kinds of 

applications, continuous exposure towards organic solvents is expected, giving a need for a robust 

membrane.  

Membrane preparation by means of grafting of polymers inside the pores of ceramic membranes 

offers the possibility of integrating pore size tuning and surface wettability/functionality process into 

one single fabrication step. Several examples of modifying porous inorganic membranes by grafting 

are known for various applications (3-10) indicating the potential of grafting as a method to prepare 

selective and chemically stable membranes.  

The solvent and solute transport mechanism of membranes, prepared in this way, has not been 

described in literature yet. To enable process modelling and facilitate process design of SRNF 

processes, the major parameters as well as transport mechanisms, which influence the transport of 

solvents and solutes through the membranes, must be quantified.  

Variables such as the type of module as well as the process parameters during operation (e.g. feed 

concentrations, applied pressures and temperatures) can be important parameters influencing the 

observed selectivity (1-2, 11-12).  The properties of the membrane material (e.g. pore size, swelling 

resistance, and surface properties), as well as the properties of the solvent (e.g. viscosity, polarity, 

molecular size, and/or surface tension) or the solute (e.g. size, shape, and/or charges of the solute) 

play a vital role in determining the observed membrane rejection (1-2, 11-12). The separation 

performance for SRNF is the result of the interactions between membrane, solvents and solutes (1). 

Due to the overlapping effect of the above mentioned parameters on the observed membrane 

permeability and selectivity, quantification of each factor that determine the NF separation 

performance, can be challenging. 

The pore-flow and the solution-diffusion models are commonly used for aqueous applications (13-

15). A general strategy that can be utilized to identify the transport mechanism of a membrane 

(despite the many possible contributing factors) is looking whether transport models previously 

applied for aqueous systems can be used to describe the transport behavior of a SRNF membrane. 

By identifying the dominant transport mechanism, the important parameters, governing solvent and 

solute transport, can be singled out first before going for an investigation of the more subtle factors 

influencing nanofiltration. For a PDMS-based SRNF membrane, both pore-flow and solution-diffusion 
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models have been used in literature to describe the process. Vankelecom et al. (16) suggested that a 

viscous flow model can be used to describe the permeation of pure solvents through PDMS 

membranes by taking into account membrane swelling. This finding was later confirmed by Robinson 

et al. (17), who successfully used a pore-flow model to describe the transport behavior of PDMS 

membranes for nonpolar solvents based on the reasoning that the swollen PDMS layer may form a 

pore-like structure in the presence of nonpolar solvents.  Meanwhile,  Zeidler et al. (18) observed 

negative rejections of dye solutes in ethanol through PDMS membranes. It was confirmed that in the 

presence of swelling solvents like n-heptane and THF, a viscous flow behavior was observed for 

PDMS membranes. On the other hand, in the presence of non-swelling solvents, like ethanol, it was 

proposed that the rejection by PDMS might be closer to that of the solution-diffusion mechanism. 

Postel et al. (19) examined this phenomenon and successfully used the solution-diffusion model to 

describe the negative rejections of dye solutes by PDMS membranes using ethanol as a solvent. 

These studies show that the existing transport models for aqueous applications can be used as a 

starting point to investigate the transport behavior of SRNF membranes. Once the identification of 

the major parameters is carried out in this way, the identification of the more subtle factors 

influencing the membrane transport may be progressed further by studying whether there is any 

difference between the experimental data and the existing model.  

By following this strategy, the dominant parameters, which determine the transport of several pure 

solvents through PDMS-grafted ceramic membranes, were identified (20). It was found that pure 

solvent permeation through these membranes can be described by a pore flow behavior by taking 

into account the solvent viscosity and the effect of sorption of the solvent in the grafted moiety. It is 

suggested that the membrane permeation volume reduces if a solvent is strongly sorbed. Since SRNF 

involves a variety of solvent and solute combination, it is very important to study the rejection 

behavior of the membranes for different solvent-solute systems.  

In this work the major parameters, governing the SRNF performance and the transport mechanism 

for the rejection of solutes, are described. First, the effect of Trans Membrane Pressures on solute 

transport is discussed. Second, the effect of solvent or solute type on membrane selectivity is 

explored. Finally, the applicability of existing solute rejection models, based on a size-exclusion 

mechanism, to describe the solute rejection behavior of the PDMS-grafted ceramic membranes is 

discussed. An estimate of pore sizes of the membranes, based on solute rejection measurements 

and existing transport models will be provided. 
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4.2. Existing solute transport models based on a size-exclusion mechanism 

 

A general model to describe solute transport for both porous and nonporous membranes is given by 

the Kedem-Katchalsky model (21), in which the membrane is considered as a black box comprising 

feed and permeate as the input and output respectively. The flux of the solute through the 

membrane is described as: 

ܿܬ ൌ� ܲܿ �οݔ� ݔ݀ܿ݀ ൅ ሺͳ െ ݒܬሻߪ�  (4.1) 

with ܿܬ  the solute flux, Pc the solute permeability, οݔ the membrane thickness, 
ݔ݀ܿ݀  the concentration 

gradient over the membrane, ߪ the reflection coefficient, which is a measure for the rejection of a 

solute,  ܿܬ  the solute flux,and  ݒܬ �the solvent flux. 

In Equation 4.1, the first term describes the transport of solutes by a diffusion mechanism, while the 

second term describes the transport of solutes by a convection mechanism. If the contribution of 

solute flux by diffusion is negligible, Equation 4.1 can be simplified to Equation 4.2 as follows ɐ ൌ ͳ െ� 
�
�  (4.2) 

Ferry et al. (22) proposed a solute transport model, which relates the reflection coefficient with the 

ratio of solute diameter versus pore diameter. In this model it is assumed that solutes, having similar 

or larger diameter than the membrane pore diameter, are completely rejected and solutes with 

smaller diameter than the effective diameter of the membrane pores are passing completely. The 

membrane pore diameter, as well as the diameter of the solute, are defined as average values  

rather than nominal values. Besides, no interaction between the membrane, solvent and solute is 

taken into account. Here, the reflection coefficient will develop from 0 to 1 as the ratio of  ��Ȁ��  

increases, with dc the average solute diameter and dp the mean pore diameter. This means  = 0 for ��Ȁ��   1 and =1 for ��Ȁ��   1. The model of Ferry describes  in the following way:  

 ɐ ൌ ሺ݀ܿ݀݌ ൬݀ܿ݀݌ െ ʹ൰ሻʹ  (4.3)

  

The Verniory model (23) considers that solutes with particle diameter smaller than the pore 

diameter of the membranes are partially rejected due to wall friction drag forces. The Verniory 

model can be written as: 
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ߪ ൌ �ͳ െ�ቌͳെʹ͵݀ܿ݀݌ ʹെ�ͲǤʹ݀ܿ݀݌ͷͳെ�ͲǤ͹͸݀ܿ݀݌ͷ ቍ൬ͳ െ ʹ൰݌݀ܿ݀ ൬ʹ െ ሺͳ െ  ൰ʹሻ (4.4)݌݀ܿ݀

 

The Verniory model accounts for the wall friction occurring between the solute and membrane wall 

while no attractive forces between the solute and membrane are taken into account. The SHP model 

(24), instead, accounts for a rejection case in which the wall friction effect was negligible due to 

attractive forces between membrane and solute. As a consequence, solutes having a particle 

diameter larger than the pore diameter of the membranes were assumed to be partially 

disseminated. The SHP model is presented as: 

 ɐ ൌ ͳ െ�൬ͳ ൅ ͳ͸ͻ � ൰൬ͳʹ݌݀ܿ݀ െ ʹ൰݌݀ܿ݀ ൬ʹ െ ሺͳ െ  ൰ʹሻ (4.5)݌݀ܿ݀

 

In this work, the applicability of these models to describe the solute rejection behavior of the PDMS 

grafted -alumina membranes will be investigated.  

 

4.3. Materials and Methods 

Two types of polymer-grafted ceramic membranes were studied. The first series of membranes (M1) 

consisted of macroporous - Al2O3 supports, topped with a 0.3 m thick mesoporous (pore size 5 nm) 

-Al2O3 layer which was modified with 3-aminopropyltriethoxysilane followed by mono(2,3-

epoxy)polyetherterminated polydimethylsiloxane (n~10). Details of the membrane modification 

procedure are described elsewhere (9).  

The second series of membranes (M2) consisted of  macroporous - Al2O3 supports, topped with an 

identical 0.3 m thick mesoporous -Al2O3 layer which was modified with mercaptopropyl 

triethoxysilane followed by monovynil terminated polydimethylsiloxane (n~39). Details of this 

membrane modification procedure was described in  (25). All membranes were flat discs with a 

diameter of 20 mm and a thickness of 2.5 mm. 

The solvents, octane (98% purity), cyclooctane (>99%), p-xylene (>99%), and n-hexane (>99%) were 

purchased from Sigma-Aldrich. Toluene (100%), ethyl acetate (99.9 %), and isopropanol (100 %) 

were purchased from VWR. All solvents were dried using zeolite A (molecular mesh 4-8 nm) 

purchased from Sigma-Aldrich which had been pretreated for 1 hour at 200°C. As  solutes, 

polyethylene glycol (PEG; Fluka) with molecular weights of 200, 400, 600, 1000, 1500, and 2000 
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g/mol, polystyrene (PS; Sigma-Aldrich) with molecular weights of 500, 1000, and 2000 as well as a 

series of dyes (Sigma-Aldrich) were used. The chemical structures of the dyes are given in Figure 4.1.  

1 

 

 
 

Solvent Blue 36 (322.4 g/mol) 

2 

 

 
 

Solvent Blue 35 (350.45 g/mol) 

 

3 

 

 
 

Solvent Red 27 (408.49 g/mol) 

 

4 

 

 

 
 

Sudan Black B (456.54 g/mol) 

5 

 

 
Bromothymol Blue (624.38 g/mol) 

6 

 

 
Rose Bengal (973.67 g/mol) 

 

Figure 4.1. The chemical structures of the dyes used 

The nanofiltration behavior of Sudan Black B was investigated for all solvents. All other dyes (except 

Rose Bengal) as well as PEG were studied in toluene and isopropanol, while SRNF selectivity for PS 

was only studied in toluene due to the insolubility of PS in isopropanol. Rose Bengal was only studied 

in isopropanol, due to its insolubility in toluene. 

Molecular Weight Cut Off (MWCO) measurements were performed using a stainless steel dead-end 

pressure cell at a 50% recovery. The feed solution was constantly stirred at a speed of 500 rpm to 

prevent concentration polarization on the membrane surface. 8000 ppm of dye was used in the feed 

solution. The same solute concentration and procedure was used for PS and PEG samples for each 

MW. All measurements were performed on three different samples for each type of membrane with 

three measurements per sample. Between each rejection test, the membranes were rinsed with the 

previous solvent and subsequently three times ultrasonically cleaned in fresh ethanol 10 minutes at 

room temperature. After this ultrasonic treatment the membranes were dried in a vacuum oven 

under nitrogen for 24 hours at 80°C. After being cooled down to room temperature, the membranes 

were soaked for 24 hours in the solvent to be tested.  
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Dye solute concentrations in the feed and permeate solution were analyzed using a Perkin-Elmer 

12 UV-Vis Spectrophotometer. The rejection (R in %) was calculated by the following equation:  R = 

(1-Cp/Cf) x 100%, where Cp and Cf are the solute concentrations in permeate and feed solution, 

respectively. PS and PEG solute concentrations in the feed and permeate solution were analyzed by 

a Thermo Electron Corporation HPLC coupled to an Evaporative Light Scattering Detector (ELSD 2000 

ES). A nebulizer temperature of 80°C, a gas flow of 2.5 L/min, a column temperature of 30°C and a 

sample volume of 20 L were used for the ELSD. As eluent for the HPLC 1 mL/min of THF was used. 

The feed and permeate solute concentration (Cf and Cp) were determined as a function of total area 

from a plot of electric potential versus time. The rejection (R) was calculated by the following 

equation:  R = (1-Cp/Cf) x 100%, where Cp and Cf are the solute concentrations in permeate and feed 

solution, respectively. 

In order to check whether any concentration polarization occurs, the solvent permeation of blank 

feeds (pure solvents without solutes) and those with solutes were compared using a similar set-up. 

Permeate fluxes were obtained by measuring the weight of the collected permeate as a function of 

time. 

 

4.4. Results and Discussion 

Figure 4.2 shows the results of rejection tests using Sudan Black B in different solvents using trans 

membrane pressures (TMP) ranging from 6 to 20 bars at 50% recovery.  

 

Figure 4.2. Rejection of Sudan Black B in different solvents versus TMPs at room temperature for a) 

M1 and b) M2  membranes at 50% recovery 

From the results in Figure 4.2, it can be seen that dye rejection increases with increasing applied 

pressure regardless the type of solvents used. If a deformation of the polymer occurs, due to a shear 

induced behavior, then this results in a larger membrane pore diameter at increasing applied 

pressure and consequently a decrease in rejection. However, the opposite is found, namely an 
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increase in rejection at higher TMP. This is in agreement with the previous observation on the same 

type of membranes that a shear rate flow induced behavior is not present which might be due to the 

nanostructure of the rigid ceramic substrate causing a negligible shear at the pressure range studied 

(20).  

Further it can be observed in Figure 4.2 that different rejections were found for the same Sudan 

Black B in different solvents. The highest rejection was found for Sudan Black B in cyclooctane, while 

the lowest rejection was found in isopropanol.  

No significant differences were observed between the permeation of blank feeds (pure solvents 

without solutes) (20) and those with solutes, suggesting that no concentration polarization of solutes 

occurred during the measurements. In Table 4.1, rejection values (R) of Sudan Black B at a TMP of 20 

bars for M1 and M2 membranes at 50% recovery are given. In order to see whether there is a 

relation between the rejection and the solvent viscosity, the viscosity values are also given in Table 

4.1. Another factor, which can influence the rejection, is the degree of polymer swelling as function 

of the type of solvent. A measure of polymer swelling is the solvent sorption (S) by the polymer 

(PDMS) as defined in (20). Several solvent sorption values are given in Table 4.1. 

 

Table 4.1. The rejection (R) of Sudan Black B in different solvents for M1 and M2 membranes at TMP 

of 20 bar at 50% recovery  

Solvent Types 
(1)

 

(mPa.s) 

S
(2)

 ��ǡ� (cm
3
/g) 

RM1  

(%) 

RM2 

 (%) 

Isopropanol 2.39 0.47 55 ± 1 66 ± 1 

Ethyl acetate 0.45 0.48 64 ± 1 75 ± 1 

Octane 0.54 0.54 71 ± 1 80 ± 1 

Toluene 0.59 0.53 72 ± 1 83 ± 1 

p-xylene 0.64 0.63 75 ± 1 87 ± 1 

Hexane 0.31 0.66 78 ± 1 88 ± 1 

Cyclooctane 2.13 0.70 82 ± 1 93 ± 1 

(1) Solvent viscosity (at 20°C); (2) Sorption value as described in (20) 

The results in Table 4.1 show that for solvents with comparable viscosity, e.g. isopropanol and 

cyclooctane, higher rejection is achieved for cyclooctane than isopropanol. In a previous study 

where pure solvent permeation was studied on the same membranes (20), it was indicated that both 

solvent viscosity and sorption of the solvent in the grafted moiety determine solvent transport 

through the membrane. It is possible that the sorbed solvent does not only influence the solvent 

transport, but also the solute rejection of the membrane. In this case, the relatively stronger 

sorption of cyclooctane in the grafted moiety compared to that of isopropanol may result in a 
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smaller membrane pore size in the presence of cyclohexane, thus a higher rejection observed in 

cyclohexane than isopropanol.  

For free (or unconfined) PDMS polymeric membranes, a lower rejection is observed in the presence 

of toluene whereas a higher rejection is observed in the presence of isopropanol (16, 26-27). The 

results of the work described in this chapter, as summarized in Table 4.1, show the opposite 

behavior, meaning a higher solute rejection in toluene than in isopropanol for both types of PDMS 

grafted ceramic membranes (M1 and M2). This again emphasizes the different behavior of a “free” 

PDMS membrane compared to that of membranes where PDMS is confined in a ceramic matrix. For 

a “free” PDMS membrane, the sorption of solvent leads to swelling, thus a more open membrane 

structure, while for grafted membranes, it is suggested that a strongly sorbed solvent leads to a 

more closed structure of the grafted membranes (20). This may explain the higher solute rejection in 

the presence of toluene than that in the presence of isopropanol (see Table 4.1).  

Besides the solvent-membrane interaction as discussed above, the solvent-solute and solute-

membrane interactions may also play a role in the nanofiltration performance. Figure 4.3 shows the 

rejection for PEG in toluene and isopropanol and PS in toluene. No differences were observed 

between the solvent flux containing the probe solutes and that of the pure solvent showing that in 

this case also no concentration polarization occurred during the measurements. 
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Figure 4.3. Rejection results of PEG and PS in toluene (tol) and isopropanol (ipa) at TMP = 10 bars for 

a) M1 and b) M2 membranes 

 

It can be seen in Figure 4.3 that the solute rejection is a function of the solute molecular weight with 

a higher rejection for a higher solute molecular weight. The M1 membranes show in general a lower 

rejection than the M2 membranes for all solvent-solute systems. The results in Figure 4.3 also show 
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that the rejection differs for each solvent-solute pair for both membranes. A lower rejection is found 

for PEG in isopropanol, followed by PS in toluene with the highest rejection values for PEG in toluene.  

The dependence of the rejection on the solute molecular weight suggests that the rejection is a 

function of solute size. This leads to the hypothesis that solute transport is according to a size based 

exclusion mechanism. To provide a quantitative comparison whether rejection can be described as a 

function of solute size and membrane pore diameter, the experimental rejection data were 

compared with the calculated values predicted by the three size-based exclusion solute transport 

models as described in section 2. The way these models quantitatively describe the membrane 

rejection behavior for different solvent-solute systems may provide insight in the identification of 

important parameters governing the transport of solutes through these types of membranes. In 

order to use these models, an appropriate approximation of the solute diameter and the membrane 

pore diameter is required.  

The dynamic properties of oligomers moving in a solvent can be represented by the hydrodynamic 

diameter, as calculated from the Einstein viscosity relation (28):  

ݎ݄ ൌ � ቀ ͵ሾߟሿݓܯͶߨʹǤͷܰܣቁͲǤ͵͵  (4.9) 

with dh is the hydrodynamic radius, ߟ the intrinsic viscosity, Mw the molecular weight, and NA 

Avogadro number. The intrinsic viscosity ሾߟሿ� can be calculated from the Mark-Houwink parameters 

using the following equation: 

ሾߟሿ ൌ ߙݓܯܭ  (4.10) 

where K and  are the Mark Houwink parameters, depending on the particular polymer-solvent 

system (28), and Mw the molecular weight in g/mol.  The K and  values for PS in toluene are 0.012 

and 0.71 respectively (28). The K and  values for PEG in toluene are 0.014 and 0.7, while for PEG in 

isopropanol these values are 0.07 and 0.57 (28) respectively. The calculated hydrodynamic 

diameters for PS in toluene, PEG in toluene, and PEG in isopropanol and the experimental rejection 

values are given in Table 4.2.   
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Table 4.2. Hydrodynamic diameters (dH) of various solutes as calculated by Equation 4.9 and 4.10 

and the experimental rejection values at TMP = 10 bars in toluene or isopropanol for membranes 

M1 (= RM1 ) and M2 (=RM2)  

   Toluene   Isopropanol  

Solute 
Mw  

(g/mol) 

dH 

(nm) 

R M1  

(%) 

R M2  

(%) 

dH 

(nm) 

R M1  

(%) 

R M2  

(%) 

PS  500 0.86 28 ± 1 47 ± 1 - 

- 

- 

- 

- 

- 

- 

- 

- 
1000 1.28 48 ± 1 66 ± 1 

2000 1.88 68 ± 1 84 ± 1 

PEG  200 0.54 58 ± 1 80 ± 1 0.72 1 ± 1 5 ± 1 

400 0.78 80 ± 1 90 ± 1 1.02 3 ± 1 14 ± 1 

600 1.00 90 ± 1 98 ± 1 1.26 8 ± 1 20 ± 1 

1000 1.32 97 ± 1 100 ± 0 1.66 16 ± 1 32 ± 1 

 
1500 1.66 100 ± 0 100 ± 0 2.04 22 ± 1 38 ± 1 

 
2000 1.96 100 ± 0 100 ± 0 2.38 30 ± 1 45 ± 1 

 

It can be seen from Table 4.2 that the rejection increases when the solute diameter increases, 

meaning that a size-exclusion rejection mechanism is appropriate. 

 

The rejection of the several dyes in toluene or isopropanol is summarized in Table 4.3. The average 

molecular diameter of the dye solutes is calculated by using the CS 3D Model software by taking into 

account the bond length, the corresponding Van der Waals radius, and the bond angle as given in 

(29-30). Since the dye solute can be positioned in different conformations when approaching the 

membrane pores and assuming that the different conformations may have a similar probability to 

occur (31), an average value for each type of dye is used, representing the average size of the solute 

molecular diameter in the axial, horizontal and lateral direction. These calculated average molecular 

diameters are also given in Table 4.3. 
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Table 4.3. Average molecular diameter (davg) of the dye solutes and its experimental rejection values 

at TMP = 10 bar in toluene or isopropanol for membranes M1 (= RM1) and M2 (=R M2) 

Solutes davg 

(nm) 

Toluene Isopropanol 

R M1 

 (%) 

R M2 

 (%) 

R M1  

(%) 

R M2 

(%) 

Solvent blue 35 0.58 40 ± 1 55 ± 1 16 ± 1 28 ± 1 

Solvent blue 36 0.61 44 ± 1 60 ± 1 18 ± 1 31 ± 1 

Solvent Red 27 0.63 46 ± 1 62 ± 1 19 ± 1 33 ± 1 

Sudan Black B 0.65 45 ± 1 64 ± 1 20 ± 1 35 ± 1 

Bromothymol blue 0.89 65 ± 1 81 ± 1 31 ± 1 53 ± 1 

Rose bengal 1.02 - - 40 ± 1 65 ± 1 

 

Also from Table 4.3 it can be logically seen that the rejection increases when the solute diameter 

increases. Since the size-exclusion separation mechanism is dependent on the pore size besides the 

size of solute (as can be seen in Equation 4.3, 4.4, and 4.5), an actual pore size of the membranes is 

required under the experimental conditions with regard to the solvent used. As a first 

approximation, the analysis of nitrogen adsorption/desorption isotherms on grafted -alumina was 

used to obtain a pore diameter value, which is an indication of the actual pore diameter of the 

grafted M1 and M2 membranes in the presence of no solvent (32). Based on the N2 physisorption 

isotherms of the M1 and M2 grafted y-alumina flakes, uniform pores were observed with the 

estimated pore diameter of 2.2 nm for the grafted M1 -alumina flakes (32) and 1.8 nm for the 

grafted M2 -alumina flakes. These pore size values can be regarded as the diameter of the pores of 

PDMS-grafted membranes under dry, non-swollen, conditions. 

At a first approximation, the reflection coefficient ( ) values, as described in the the Ferry (Equation 

4. 3), the Verniory (Equation 4.4) and the SHP model (Equation 4.5), can be calculated by using the 

solute diameters as given in Tables 4.2 and 4.3 and the membrane pore diameter in the dry, non-

swollen state, as provided by the nitrogen physisorption measurements on the grafted y-Al2O3 flakes. 

The reflection coefficient (or rejection values), calculated from the solute transport models (  = 

Rpredicted) can then be compared with the rejection data obtained experimentally (  = Rexp). In this 

regard, the predicted  by the solute transport model is assumed to be representative for the 

rejection observed when there is no solvent present. Thus, this comparison can give information of 

the actual membrane pore diameter (dp) in the presence of a specific solvent. If for example the 
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experimental rejection results are higher than those calculated by the models, it means that the 

actual dp in the presence of that specific solvent is smaller than the dp when no solvent is present.  

A comparison of the experimental results with the calculated rejection values for the solutes in 

isopropanol system is presented in Figure 4.4. 
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Figure 4.4. Comparison of experimental rejection results with the calculated rejection values from 

the Verniory, Ferry and SHP model for different solutes in isopropanol for a) M1 (dp = 2.2 nm) b) M2 

(dp = 1.8 nm) membranes. The number of the dyes (1-6)refer to the numbers as given in Figure 4.1. 

PEG with Mw of 200-2000 is shown in (a) while PEG with Mw of 200-1500 is shown in (b). 

For both membranes, it can be seen in Figure 4.4 that for the dye solutes in isopropanol, the 

experimental data fall in the range of the predicted  by the solute transport models. For the M2 

membranes the results almost coincide with the Ferry model.  The pore diameter (dp) of the M1 and 

M2 membrane in the presence of isopropanol, as calculated by the Ferry model (Equation 4.3), are 

respectively 2.5 and 1.8 nm, using the experimental rejection data of the several dyes in isopropanol 

and the dc of the dyes given in Table 4.3. These calculated pore diameters are is close to the pore 

diameters as determined by N2 physisorption measurements. This may imply that, assuming there is 

no important solvent-solute or solute-membrane interaction present in the observed rejection 

behavior, the membrane actual pore diameter in the presence of isopropanol can be described with 

the pore diameter when no solvent is present. This means that for a rather polar solvent, like 

isopropanol, no strong solvent sorption by the grafted PDMS moiety occurs, resulting in almost no 

decrease in pore size by swelling. This seems in contradiction to a  previous study, in which 

isopropanol sorption does occur though in lesser degree than that of toluene, meaning that the 
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membrane pore diameter in the presence of isopropanol should not be comparable, but should be 

slightly smaller, than that predicted when no solvent is present (20). This contradiction along with 

the slightly different observation between Figure 4.4a and b with regard to the comparison of the 

experimental data and the solute transport models for dyes and PEG in isopropanol, may highlight 

the complexity of the system in the presence of isopropanol. The interaction between the dyes and 

the grafted moiety, as well as between the dyes and isopropanol,  must be investigated further as 

they may mask the contribution of the membrane-solvent interaction alone on the membrane 

selectivity.  

In Figure 4.4, it can be seen that for both M1 and M2 system, the rejection of PEG in isopropanol as a 

function of dc/dp is lower than that of dyes in isopropanol. The lower rejection of PEG in isopropanol 

can be attributed to a strong solute-solvent interaction. A strong solute-solvent interaction may 

occur between the PEG and isopropanol due to the hydrogen bonding. Hydrogen bonding between 

the PEG solutes and the isopropanol may increase the flexibility of PEG, resulting in a decrease in 

solute rejection. Based on the experimental rejection data the diameter of the PEG is calculated to 

be 0.3-0.4 its hydrodynamic diameter, assuming that the rejection of PEG can be modeled by Ferry.   

A comparison of the experimental results ( =Rexperimental) of all solutes in toluene for M1 and M2 

membranes with the calculated rejection values ( =Rpredicted) using the Ferry, SHP, and Verniory 

model is given in Figure 4.5. 

 



96 

 

 

Figure 4.5. Comparison of the experimental rejection results ( =Rexperimental) with the calculated 

rejection values ( =Rpredicted) from the Ferry, SHP, and Verniory model for solutes in toluene for a) M1 
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b) M2 membranes. The number of the dyes refer to the numbers as given in Figure 4.1. PEG with Mw 

of 200-2000 is shown in (a) and (b). 

Figure 4.5 shows that for the toluene-solute systems the experimental data are far above the 

predicted  values for all transport models used. Further on, as can be seen from the figures 4.2, 4.4 

and 4.5 rejection of the dyes in toluene is much higher than in isopropanol. This may suggest that 

the actual membrane pore diameter (dp) is much smaller in the presence of toluene than 

isopropanol. Assuming that the Ferry model is applicable to describe rejection of the dyes in toluene 

for M1 and M2 membranes, dp of these membranes in toluene can be calculated by Equation 4.3, 

using the experimental rejection results and dc values of the dyes as given in Table 4.3. In this way a 

pore diameter of 1.6 nm for M1 membranes and 1.3 nm for M2 membranes in the presence of 

toluene was determined.  

From Figure 4.5 it can be seen that rejection of PS is lower than that of the dyes in toluene . A strong 

solvent-solute interaction may increase the flexibility of PS, resulting in a decrease in solute 

rejection. Based on the experimental rejection data, the diameter of the PS is calculated to be 0.7-

0.9 its hydrodynamic diameter, assuming that the rejection of PS can be modeled by Ferry. 

Finally, at a given dc/dp value, the rejection of PEG in toluene is higher than that of the dyes in 

toluene (Figure 4.5). This is just the other way around when compared to the rejection behavior of 

PEG in isopropanol (see Figure 4.4), where the rejection of PEG is lower than that of the dyes. The 

different order of PEG rejection as compared to those of dyes in the two different solvents might be 

attributed to the hydrophilicity of PEG.  Hydrophilic PEG solutes may form clusters in the presence of 

nonpolar solvents like toluene by means of hydrogen bonds between the PEG solutes. In turn, this 

will cause a higher rejection of PEG in toluene (than that of the non-hydrogen-bonded dyes in 

toluene) since the diameter of a PEG cluster is larger than that of a calculated single PEG solute. 

Based on the experimental rejection data the diameter of the PEG clusters in toluene can be 

calculated to be 1.6-2 times that of a single PEG solute, assuming that the rejection of PEG follows 

the same mechanism as that of the dyes.   

4.5. Conclusions 

For PDMS-grafted -alumina ceramic membranes higher rejection values of an identical solute were 

found in the presence of nonpolar solvents, like toluene, than in polar solvents, like isopropanol. A 

relation was observed between solute rejection and the ratio of solute diameter versus membrane 

pore diameter, indicating that a size-exclusion mechanism may be applicable to describe the 

membrane solute rejection.  
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The Ferry, Verniory, and SHP size-exclusion models were used to identify the rejection 

characteristics of these membranes . For the dye solutes in isopropanol, the experimental rejection 

data are in the range of the predicted rejection ( ) as based on all three models, using the pore 

diameter information, obtained from N2 physisorption measurements when no solvent is present. 

This is an indication that polar solvents, like isopropanol, do not significantly swell the PDMS in its 

confined, ceramic environment. No further conclusion can be drawn as the interactions between the 

dyes and the grafted moiety, as well as between the dyes and isopropanol, must be investigated 

further to see, as these effects may mask the contribution of the membrane-solvent interaction on 

membrane selectivity. 

If using the pore diameter, obtained from N2 physisoprtion measurements, the calculated   

rejections of the dyes or PEG by using the three solute transport models in toluene were much lower 

than experimentally observed.  This is an indication of a more closed pore structure of the 

membranes in toluene than in isopropanol, caused by a strong swelling of PDMS in the apolar 

solvent. The higher rejection of PEG in toluene than that of the dyes may be attributed to the ability 

of the hydrophilic PEG solutes to form clusters in the presence of nonpolar solvents, such as toluene, 

by means of internal hydrogen bonds. 
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Abstract 

 

In this paper grafting of mesoporous -alumina membranes with hydride terminated 

polydimethylsiloxane is described.  Vinyltriethoxysilane is used as linking agent and 

tetrakis(vinyldimethylsiloxy)silane as a coupling agent, to create a dense network structure 

that is grafted in the ceramic pores. Grafting performance of the organic moieties on -

alumina powders was analyzed by FTIR and TGA. The results indicate that grafting reactions 

were successfully carried out. SEM-EDX and contact angle analysis on the grafted 

membranes showed that grafting occurs throughout the y-alumina layer and that the 

resulting membrane surface had a water contact angle of 108°. From permeability and 

rejection tests using Sudan Black in toluene, ethyl acetate or isopropanol, the use of a 

coupling agent was found to result in a more dense network structure grafted in the gamma 

alumina pores. This resulted in a higher selectivity for nanofiltration of solvents but at the 

cost of a lower solvent permeability, when compared with PDMS-grafted alumina 

membranes where no coupling of PDMS was applied. 
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5.1. Introduction 

Organic Solvent Nanofiltration (OSN) is a potential technology to recover solvents (1-2). For 

this application, a chemically stable membrane is required that can endure continuous 

exposure towards organic solvents. Grafting of porous ceramic substrates by an organic 

moiety is an interesting way to prepare chemically and mechanically stable membranes for 

nanofiltration of solvents (3-4). During organic grafting of oxide ceramic membranes the OH- 

groups that are present at the oxide surface, react with hydrolysable groups from an organic 

moiety to produce a stable covalent bond. Most work done in this area describes a two-step 

reaction, in which the surface hydroxyl groups are first reacted with organosilanes to provide 

reactive sites for the organic moiety to be grafted (3-9).  

Several examples of membrane preparation by organic grafting of ceramic membranes are 

given in literature (3-10). Pinheiro et al. (3) and Tanardi et al. (4) graft low molecular weight 

(MW) PDMS to silylated -alumina porous supports (pore size 5 nm) for the fabrication of 

nanofiltration membranes. Here a “grafting to” method was used, in which a low MW 

polymer was grafted to the ceramic mesoporous substrate without additional growing of the 

organic chain from the surface of the pore wall. Another way of grafting is the “grafting 

from” method where the polymer chains are synthesized from the monomer molecules by 

initiating chain growth from an active centre on the ceramic surface, e.g. via free radical 

polymerization between the organic molecules in order to result in a as small as possible 

membrane pore diameter (5-7).  Faibish et al. (5) used free-radical graft polymerization of 

vinylpyrrolidone monomers to grow the organic layer during grafting of silylated zirconia 

membranes for the fabrication of ultrafiltration membranes. This way of grafting resulted in 

a reduction in pore size of around 25 %. Yoshida et al. made a layer of a terminally bonded 

polymer via free radical graft polymerization of vinyl acetate or vinyl pyrrolidone monomers 

on the silylated surface of gamma alumina tubular support (pore size 5 nm) (6) and silica 

membranes  (pore size of 20 nm) (7) for pervaporation application. Besides free-radical 

polymerization, another way to increase the thickness of the grafted organic layer is by 

means of reactions between organic molecules and a coupling agent. Popat et al. (8) and Lee 

et al. (9) employed a catalyzed covalent reaction between low MW poly(ethylene glycol) and 

a coupling agent (in this case silicon tetrachloride) so that the organic chain was grown from 
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the surface of the pore wall during the grafting of straight pore alumina (“anodisc”) 

membranes to be used for ultrafiltration. 

Different from (3) and (4), in which a low MW PDMS was grafted to the ceramic mesoporous 

substrate without additional covalent coupling for growing of  the organic chain from the 

pore wall, in this work a covalent reaction between PDMS molecules and a coupling agent 

was used in order to result in a more dense organic network grafted inside the pores. It is 

expected that this method may lead to a smaller membrane pore diameter compared to the 

results given in (3) and (4) to accommodate the need for removing very small impurities 

during solvent recycling.  

In this paper the grafting of mesoporous -alumina membranes with hydride terminated 

polydimethylsiloxanes is described. Vinyltriethoxysilane is used as linking agent and tetrakis 

(vinyldimethylsiloxy)silane as coupling agent, in order to generate a membrane for solvent 

nanofiltration. The grafting behaviour of the organic moiety was studied by Fourier 

Transform Infrared spectroscopy (FTIR) and TGA. Contact angle measurements and SEM-EDX 

analyses were used to characterize the grafted membrane properties. Permeation tests with 

toluene, isopropanol, and ethyl acetate, as well as rejection tests with Sudan Black B were 

performed to characterize the membrane performance. 

5.2. Experimental procedure 

Anhydrous toluene, ethyl acetate, and isopropanol were obtained from Sigma-Aldrich. 

Vinyltriethoxysilane and Tetrakis(vinyldimethylsiloxy)silane were purchased from ABCR. 

Hydride terminated polydimethylsiloxane (PDMS), with an average number of repeating 

monomers (n) of 10, was purchased from Gelest. All chemicals were used as received. Flat -

Al2O3 supported -Al2O3 membranes with a diameter of 39 mm were purchased from 

Pervatech. The mean pore diameter of the 3 m thick -Al2O3 layer and the 1.7 mm thick -

Al2O3 support were 5 nm and 80 nm, respectively (11-12). The -Al2O3 powder was bought 

from Alfa-Aesar, having a BET surface area of 84.38 m
2
/g. 

The unmodified -Al2O3 membranes were soaked in an ethanol/water (2:1) solution for 24 

hours at ambient temperature to remove dust and provide suitable hydroxylation. The 



105 

 

membranes were then dried at 100 C for 24 hours under vacuum and stored at room 

temperature under nitrogen atmosphere until further use. 

Inside a glove box, under nitrogen atmosphere, a 100 ml toluene solution of 25 mM of the 

linking agent, vinyltriethoxysilane, was prepared in a 250 ml five-necked round flask. After 

removing the linking agent/toluene solution from the glove box a -Al2O3 membrane was 

placed in a sample holder located a few centimeters above the vinyltriethoxysilane solution. 

The solution was stirred and heated to perform the grafting reaction between 

vinyltriethoxysilane vapour and -Al2O3 at 90 C for 4 hours under nitrogen flow. Details on 

this Vapour Phase Deposition (VPD) method are provided elsewhere (3, 13). After the 

reaction mixture was allowed to cool down to room temperature, the membrane was 

retrieved from the sample holder and rinsed with toluene before being dried in a vacuum 

oven at 100 C for 2 hours.  

Grafting of PDMS combined with the coupling agent tetrakis(vinyldimethylsiloxy)silane was 

performed through hydrosilylation (14) on the vinyl grafted membranes by a solution phase 

deposition (SPD) method. A 100 ml solution of 37.5 mM of hydride terminated PDMS in 

toluene was added under stirring at room temperature to a 500 ml flask containing a vinyl-

grafted membrane, submerged in toluene. A 100 ml solution of 12.5 mM 

tetrakis(vinyldimethylsiloxy)silane was added under stirring to this solution, and 

subsequently 10 mg of a Pt catalyst (50% of Pt-divinyltetramethyldisiloxane complex and 

50% of Pt-cyclovinylmethylsiloxane complex, Fluka) was added to this solution under stirring. 

The mixture was heated under reflux at 60 °C for 0.5 h to initiate the addition reaction 

between the vinyl groups of the linker and coupling agent with the hydride terminated 

PDMS. Afterwards, the membrane was retrieved from the solution and rinsed three times 

with toluene, dried overnight in a fumehood and further dried at 100 C in a vacuum oven for 

2 hours. 

In order to study the grafting performance of -Al2O3 by means of FTIR, a -Al2O3 powder was 

used as starting inorganic material. To remove dust and provide suitable hydroxylation, the 

-Al2O3 powder was soaked in an ethanol/water (2:1) solution for 24 hours at ambient 

temperature. The powder was then dried at 100 C for 24 h under vacuum and stored under 
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nitrogen atmosphere prior to grafting. Grafting of the -Al2O3 powder was performed as 

follows. Inside a glove box, under nitrogen atmosphere, a 100 ml solution of 25 mM 

vinyltriethoxysilane in anhydrous toluene was prepared in a 250 ml two-necked round flask. 

The round flask was removed from the glove box and connected with an U-shaped glass 

tube to another 250 ml round flask where 600 mg of -Al2O3 powder was placed. Both flasks 

were heated at 90 C for 4 hours under nitrogen flow to allow the grafting reaction between 

vinyltriethoxysilane vapor and -Al2O3. Details on this vapor phase deposition (VPD) method 

are given elsewhere (13, 15). After 4 hours, both flasks were cooled to ambient temperature. 

Immediately after, the modified powder was retrieved and rinsed with toluene to remove 

any physically absorbed vinyltriethoxysilane. The powder was further dried for 2 hours at 

100 C in a nitrogen vacuum oven. 

Grafting of PDMS coupled with tetrakis(vinyldimethylsiloxy)silane was performed on the 

vinyl grafted powder by a solution phase deposition (SPD) method. A 100 ml solution of 37.5 

mM of hydride terminated PDMS in toluene was added to a 500 ml flask containing a 

submerged vinyl grafted powder at room temperature. A 100 ml solution of 12.5 mM 

tetrakis(vinyldimethylsiloxy)silane was added to the solution and stirred. 10 mg of Pt catalyst 

(1 : 1 of Pt-divinyltetramethyldisiloxane complex and Pt-cyclovinylmethylsiloxane complex) 

was added to this solution under stirring. The mixture was heated under reflux at 60 °C for 

0.5 h to initiate the addition reaction between the vinyl groups of the linker and coupling 

agent with the hydride terminated PDMS. Afterwards, the powder was retrieved from the 

solution and rinsed with toluene before being dried overnight in the fume hood before being 

dried at 100 C in a vacuum oven for 2 hours. 

Characterization 

FTIR analysis was performed using a Bruker Optik GmbH Tensor 27 TGA-IR spectrometer 

equipped with a universal ATR polarization accessory. The FTIR spectra were recorded at 

room temperature over a scanning range of 700-3000 cm
-1

 with a resolution of 4.0 cm
-1

. The 

grafted -Al2O3 powder sample is considered to have the same chemical characteristics as 

the actual -Al2O3 membrane and therefore can be used to describe the chemical reactions 

that occur between ceramic membrane and grafting agent. 
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Thermogravimetrical analysis on the PDMS-grafted powder was conducted from room 

temperature until 700°C in nitrogen. The measurement was performed at a heating rate of 

10°C per minute. 

Water contact angles of the membrane surfaces were measured by the sessile drop method 

to evaluate the surface wettability for grafted and ungrafted membranes. 5 L Millipore Q2 

water was dropped at a speed of 2 L s
-1

 on a membrane surface using a Hamilton Microliter 

syringe. The water contact angle data were collected by the Data Physics Optical Contact 

Angle instrument (OCA 20).  

Morphologies of the membranes were observed by scanning electron microscopy (SEM-EDX, 

Thermo NORAN Instruments). 

Solvent permeation tests were carried out at room temperature using a dead-end pressure 

cell made from stainless steel. Membranes to be tested were soaked in the organic solvent 

for 12 hours prior to each experiment for preconditioning. The cell was filled with the feed 

solution and helium was used to pressurize the cell. Solvent permeation values were 

obtained by measuring the weight of the collected permeate as a function of time. Three 

different membrane samples were analysed for each data point to ensure reproducibility 

and measurements were performed three times for each sample. 

Rejection tests using Sudan Black B were performed using the same dead-end pressure cell 

at 50% recovery. The cell was filled with feed solution and helium was used to pressurize the 

cell. The feed solution was constantly stirred at a speed of 500 rpm to prevent concentration 

polarization on the membrane surface. Sudan Black B (Fluka, MW 456.54 g/mol) was used at 

a concentration of 8000 ppm as probe solute in pure solvents. The rejection test was 

performed until an equilibrium retention value was reached. All measurements were 

performed on three different membrane samples to ensure reproducibility and three 

measurements were done for each sample. UV-Vis Spectrophotometer was used to analyze 

the Sudan Black concentrations in the feed and permeate. In order to check for the 

occurrence of any concentration polarization, fluxes of solvents with solutes were compared 

with those of pure solvents. Between each cycle, the samples were rinsed with the previous 

solvent and subsequently three times ultrasonically cleaned in ethanol for 10 minutes at 
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room temperature. After this ultrasonic treatment the membranes were dried in a vacuum 

oven under nitrogen for 24 hours at 30°C. After being cooled down, membranes were 

soaked for 24 hours in the solvent to be tested. 

The solvent fluxes and the rejection results of the membranes developed in this work were 

compared with those of two other types of PDMS-grafted ceramic membranes as developed 

in previous works. These are -alumina membranes grafted with a mono-vinyl-terminated 

PDMS (n=39), using mercaptopropylsilane as the linker, hereinafter referred to as M2 (4), 

and -alumina membranes grafted with mono-epoxy-terminated PDMS (n=10) and 

aminosilane as the linker, hereinafter referred to as M3 (3). All membranes were tested in 

the same equipment for flux and rejection measurements.  

5.3. Results and Discussion 

5.3.1. Grafting performance 

In this work chemical grafting was carried out using two consecutive steps as shown in 

Figure 5.1.  

Step 1:  

` 

Step 2:  
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Figure 5.1. The reaction steps of grafting -alumina with the linker (step 1) and PDMS plus coupling agent (step 2) 

 

The first step is the grafting of vinyltriethoxysilane to the ceramic pore wall as depicted in 

step 1 of Figure 5.1. Grafting proceeds according to the reaction between a surface hydroxyl 

group with an ethoxysilane group resulting in a vinyl-terminated surface with a covalent Si-

O-Al bond to the ceramic. In the second reaction step, the hydride terminated PDMS is 

reacted with the available vinyl group of the linker and of the tetrakis(vinyl)dimethylsiloxane 

through a hydrosilylation reaction using a Pt catalyst, which is the addition of the H-Si bond 

across the C double bond (Figure 5.1, step 2). The two step reaction as shown in Figure 5.1 is 

aimed to create a random network structure grafted inside the membrane pores.  

 

 

(a) 
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(b) 

 

(c) 

Figure 5.2. Several possible structures resulted during random grafting: (a) and (b) possible morphologies of grafting on the 

inorganic surface; (c) “free” polymer, formed without reaction with the inorganic surface  
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Figure 5.2 shows the possible structures formed during the grafting reaction. The 

morphologies (a) and (b) are the result of respectively grafting the organic moiety parallel or 

perpendicular to the membrane pore wall. Morphology (c) is a result when “free” polymers 

are formed without reaction with the inorganic surface. It is expected that the latter 

morphology will be removed from the grafted system by washing (see experimental).   

Figure 5.3 shows the results of FTIR analysis on the unmodified, vinyl-grafted and coupled-

PDMS-grafted -Al2O3 powders.  

 

Figure 5.3. FTIR absorbance spectra of a) unmodified -Al2O3 b) vinyl grafted -Al2O3 c) coupled-PDMS grafted -Al2O3  

 

In the FTIR spectrum of the vinyl grafted powder (Figure 5.3b), the broad peak at around 

1000 - 1100 cm
-1

 consists of a peak at 1060 cm
-1

 and a peak at 1090 cm
-1

 which can be 

attributed to the formation of covalent Si-O-Al and Si-O-Si bonds respectively (16-18). One or 

more hydrolysable groups out of total three functional alkoxy groups that are present at the 

vinyltriethoxysilane linking agent can react with the surface hydroxyl groups of -Al2O3 

forming a covalent Si-O-Al bond or with the adjacent silanols through the reaction of -Si-OH 
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+ Si-OH  -Si-O-Si- + H2O, forming a covalent Si-O-Si bond. In Figure 5.3b, the peak at 1399 

cm
-1

 is ascribed to the bending of CH2 of the vinyl (-CH=CH2) groups, while the peak at 1635 

cm
-1

 is a characteristic absorption peak for the bending of the C=C groups (19). The peaks at 

2845 and 2912 cm
-1

 can respectively be attributed to the asymmetric and symmetric 

stretching of CH2 and furthermore the peak at 2980 cm
-1

 is attributed to the symmetric 

stretching of C=C of the vinylsilanes (20). 

During the reaction between the PDMS with the grafted silanes as well as with the coupling 

agent, the hydrides of the PDMS will react with the vinyl groups from the grafted linker 

and/or coupling agent through a hydrosilylation reaction forming a stable covalent bond. 

The peaks at 1399 cm
-1

 and 1635 cm
-1

, ascribed to C=C bending of the vinyl groups as 

present in the silane grafted -Al2O3 system (Figure 5.3b), are no longer observed after the 

reaction with PDMS (Figure 5.3c). This confirms the hydrosilylation reaction between the 

hydride and vinyl groups, which indicate the reaction between the hydride PDMS and the 

vinyl of the coupling agent and/or the linking agent on the gamma alumina surface. In the 

FTIR spectrum of the PDMS grafted powder (Figure 5.2c), the peak at 793 cm
-1

 is attributed 

to the stretching of Si-C from the SiCH3 group of PDMS (18). The two peaks at 1017 and 1092 

cm
-1

 can be ascribed to the Si-O-Si group of dimethylsiloxanes (18, 20). A characteristic peak 

at 1260 cm
-1

 is attributed to symmetric C-H bending from the SiCH3 group. The peak at 2965 

cm
-1

 can be assigned to the asymmetric stretching of C-H of the methyl groups of the PDMS 

(20). The presence of all these IR peaks indicates the  presence of PDMS on the grafted 

powder and that the reactions, as given in Figure 5.1, have occurred  (15, 18, 20).  

Figure 5.4 shows the TGA results of 11.635 mg of PDMS grafted -Al2O3 powder. A first stage 

of weight loss (around 0.3%, 0.035 mg) was observed up to 200 C. This initial weight loss can 

be attributed to the evaporation of adsorbed solvents from the samples. A second stage in 

weight loss of 8.7% (1.009 mg) was found at higher temperatures with a maximum loss 

observed in the temperature range between 300 C and 400°C. This significant weight loss 

can be attributed to the decomposition of the organic groups from the grafted samples. The 

decomposition temperature of the organic groups is higher than the boiling point of the 

individual grafting agents which are 205 C, 160 C, and 130 C, respectively for the hydride 

PDMS, vinyltriethoxysilane, and tetrakis(vinyldimethylsiloxy)silane. Thus, the TGA analysis 
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suggests that due to grafting an increase in the thermal stability of the organic moieties is 

achieved.  

 

Figure 5.4. TGA results of the PDMS grafted -Al2O3 powder 

5.3.2. Membrane Characteristics  

In order to characterize the grafting performance of the -Al2O3 membranes, SEM-EDX and 

contact angle analyses were conducted. A SEM picture and EDX mappings of the coupled 

PDMS grafted -Al2O3 membrane are shown in Figure 5.5. 

   
(a) (b) (c) 

 

Figure 5.5. SEM-EDX maps for the coupled PDMS grafted -Al2O3 membrane (a) SEM picture, (b) Al-mapping (green), 

(c) Si-mapping (blue) 

In Figure 5.5a, the modified -Al2O3 layer is shown at the left side of the SEM picture, while 

the -Al2O3 support layer appears on the right side of the same picture. The presence of Al 
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and Si in the modified membranes were shown on the EDX maps in Figure 5.3b and c, 

respectively. As can be seen from the EDX mapping of Si, grafting occurs throughout the -

alumina layer with an observed thickness of about 3 m.  

The results of the contact angle measurements of the unmodified, silane-grafted, and 

polymer- grafted -Al2O3 membranes are given in Table 5.1. The contact angle values are the 

average of contact angles taken from 5 different points on the membrane surface. The 

almost negligible standard deviation indicates that the grafting reaction has occurred 

homogeneously over the membrane surface.  

For the unmodified gamma-alumina membrane, the water droplet immediately wetted the 

membrane surface. A corresponding water contact angle of 0° is therefore assumed, 

indicating the hydrophilic character of the -Al2O3 membrane due to natural occurrence of 

hydroxyl (OH-) groups on the ceramic surface. A relatively higher contact angle was observed 

after modification of -Al2O3 with vinyl triethoxysilane. The higher contact angle might be 

attributed to the presence of the vinyl groups. Vinyl (C=C) groups are less polar than 

hydroxyl (OH-) groups, causing a weaker attraction between the water droplet and the vinyl-

grafted -Al2O3 membrane, and thus a relatively higher contact angle. Other factors such as 

the nanotextures of the grafted moieties as a result of the molecule orientation, the grafting 

density of the grafted moieties, as well as the presence of the pores can contribute to the 

actual contact angle value (21).  

Table 5.1. Water contact angle of unmodified y-Al2O3, vinyl grafted y-Al2O3, and PDMS grafted y-Al2O3 

 Unmodified 

( -Al2O3 

membrane) 

After silanization 

with 

vinyltriethoxysilane 

After reaction with PDMS and 

tetrakis(vinyldimethylsiloxy)silane  

Contact Angle ( ) 0 63 ± 2 108 ± 1 

 

After grafting with PDMS and coupling agent an increase in contact angle was observed. A 

higher contact angle for the PDMS-grafted membranes relative towards the vinyl grafted -

Al2O3 membranes might be attributed to the nonpolarity of dimethylsiloxane groups. The 

contact angle measurement suggests that a change in the membrane surface wettability has 
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occurred after grafting. For a comparison, a contact angle in the range of 91 to 97 degree 

were observed for -alumina membranes grafted with a mono-epoxy-terminated PDMS 

(n=10), using an aminosilane as the linker (3), and a contact angle of 95 degrees was 

observed for -alumina membranes grafted with a mono-vinyl-terminated PDMS (n=39), 

using mercaptopropylsilane as the linker (4). The slightly  larger contact angle observed in 

this work, when compared to the previously reported results, might be attributed to the 

more dense structure realized due to the use of a coupling agent. 

5.3.3. Membrane Performance  

Figure 5.6 shows the flux of toluene, ethyl acetate and isopropanol through the modified 

membranes at different trans membrane pressures (TMPs) at 20 C.

 

Figure 5.6. Flux of toluene, ethyl acetate, and isopropanol through the modified membranes as a function of trans 

membrane pressure (TMP) at 20 C 
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A linear relationship of flux versus pressure was observed for increasing as well as 

decreasing trans membrane pressure (TMP). The linearity of flux versus TMP suggests that 

the membrane structure does not deform under the applied TMP. 

In Table 5.2, the fluxes of toluene, ethyl acetate, and isopropanol and the rejection results of 

Sudan Black in different types of solvents at 20 C and TMP of 10 bar for the three types of 

membranes are given. No significant differences were observed between the flux of the 

solvent with solutes and that of the pure solvents suggesting that no concentration 

polarization occurred during the rejection measurements at 50% recovery.  

A membrane permeability constant (k) is determined from the Hagen-Poiseuille relation ( ݅ܬ ൌ � ߤ݅݇ ݅ �οܲ) (Table 5.2). This viscosity-corrected membrane permeability constant is a 

function of the parameters representing the membrane pore geometry as given by:  ݇݅ ൌ ݌ݎ݅ߝ ǡ݅ʹͺ݈߬ , where ݅ߝ  is the membrane porosity, ݌ݎǡ݅  the pore diameter,  the membrane 

tortuosity, and L the membrane thickness.  

Table 5.2. Solvent fluxes (J), Hagen-Poiseuille membrane permeability constants ሺ݇ሻ and Sudan Black rejections (R) in 

different solvents at 20 C and TMP of 10 bar for different PDMS-grafted alumina membranes 

Solvent Type 

 

J (L.m
-2

.h
-1

) 

M1 M2* M3* 

 A** B** A** B** A** B** 

Toluene 12.7 ± 0.4 12.7 ± 0.3 23.8 ± 1.0 23.7 ± 1.0 30.6 ± 1.2 30.6 ± 1.2 

Ethyl Acetate 19.0 ± 0.7 19.0 ± 0.7 35.7 ± 1.4 35.8 ± 1.0 44.8 ± 1.8 44.7 ± 1.7 

Isopropanol 4.0 ± 0.1 4.0 ± 0.1 7.5 ± 0.3 7.6 ± 0.2 9.0 ± 0.4 9.0 ± 0.3 

 

k
(1) 

(L.m
-2

) 

M1 M2 M3 

Toluene 0.21 ± 0.02 0.40±0.02 0.51±0.02 

Ethyl Acetate 0.24 ± 0.02 0.46±0.02 0.57±0.02 

Isopropanol 0.27 ± 0.02 0.50±0.02 0.60±0.02 
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R at 50% recovery (%) 

M1 M2 M3 

Toluene 95 ± 1 65 ± 1 45 ± 1 

Ethyl Acetate 88 ± 1 47 ± 1 30 ± 1 

Isopropanol 80 ± 1 35 ± 1 20 ± 1 

(1) k for pure solvent: The viscosity corrected membrane permeability constants according to the Hagen-Poiseuille 

equation, ݇ ൌ ܬ�  οܲ , with J solvent flux,  the solvent viscosity, and P the applied pressureߤ

A**: Pure solvent flux 

B**: Flux of solvent containing 8000 ppm Sudan Black B 

* Details on fabrication of M2 and M3 membranes can respectively be found in ref (4) and (3) 

 

The results in Table 5.2 indicate that there is an increase in flux and permeability constant 

and a decrease in retention from M1 to M2 to M3. A trade-off is seen between the flux and 

rejection in which a higher flux accompanied by a lower rejection. 

 

If for all solvents the membrane-solvent interaction is identical, k should be independent of 

the type of the permeating solvent. However, the results in Table 5.2 indicate that for all 

three membranes (M1, M2, and M3) different k values were observed for each solvent and 

each membrane types. The ratio of k in one solvent towards that in a reference solvent can 

be used to indicate the effect of the membrane-solvent interaction between the membrane 

and the permeating solvent on the membrane pore geometry  as described in (22). In 

mathematical form, it is given by  

�݅ Ԣ ൌ ݂݁ݎ݇݅݇ ൌ ݌ݎ݅ߝ ǡ݅ʹͺ݈߬ቆ݌ݎ݅ߝ ǡ݅ʹͺ݈߬ ቇ݂݁ݎ ൌ �݂�ሺ� ǡ݅ݏܸ Ԣሻ ൌ ܣ െ �ܤ ǡ݅ݏܸ Ԣ       (5.1) 

with ��  the membrane permeability constant for solvent i, �� Ԣ  the membrane permeability 

constant for solvent i normalized for the k value of a reference solvent ����  , ���ǡ� Ԣ  the 

sorption volume of sorbed solvent i per mass of the grafted material, normalized towards 

solvent of reference, and A the intercept and B the slope of a plot of �� Ԣ  versus ���ǡ� Ԣ . By 

making this correction for the sorbed volume, identical values (thus independent of solvent) 

of the permeability constant were observed (22).  
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Toluene has the strongest interaction with PDMS, followed by ethyl acetate and finally by 

isopropanol. According to Equation 5.1, the membrane permeable volume reduces if the 

solvent is strongly swelling the membrane material. The Hagen-Poiseuille pore flow model, 

corrected for solvent sorption, can be applied for all three membranes. For the M1 (the 

coupled PDMS grafted membrane), the strongest interaction of toluene with the grafted 

PDMS, results in the smallest membrane permeable volume compared to those of ethyl 

acetate and isopropanol.  

The more closed membrane structure in the presence of toluene, as a result of a stronger 

membrane-solvent interaction, is therefore the cause of the higher Sudan Black rejection 

observed in toluene as compared to those in other solvents. As a similar ceramic porous 

ceramic substrate is used for all types of grafted membranes, the higher Sudan Black 

rejection (selectivity) of M2 compared to that of M3 might be explained by the difference in 

the chain length of the PDMS used for grafting.  When the flux data of grafted membranes 

with identical PDMS chain length (n=10) with (M1) and without the use of a coupling agent 

(M3), than it can be seen that M1 showed 2.3 - 2.4 times lower flux than M3. A higher 

selectivity is achieved for as well for M1 if compared with M3. This is an indication that the 

pore size of M1 is smaller than of M3. This may be a result of the thicker grafted material in 

the pores due to the use of coupling agent. 

It is worth to mention that the increase of the membrane selectivity obtained from the use 

of coupling agent during grafting came at the cost of the permeability, as indicated by the 

low permeability of M1 compared to M3. Comparing M1 with M2, and assuming a similar 

transport model, it can be seen that a stronger pore size reduction is realized for M1 by 

using a coupling agent, than that of M2 in which a longer chain length of PDMS was used. 

This indicates that from M1 to M3, there is a trend in decreasing pore size or decreasing 

thickness of grafted organic moiety layer in the gamma alumina pores. 

5.4.  Conclusion 

A method was presented of grafting a mesoporous -alumina layer, supported on macro 

porous -alumina membrane, with hydride terminated polydimethylsiloxane coupled with 

tetrakis(vinyldimethylsiloxy)silane, by using  vinyltriethoxysilane as linking agent in order to 
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create a coupled grafted PDMS network in the ceramic pores for solvent nanofiltration. 

Grafting performance of the organic moieties on -alumina powders was analyzed by FTIR 

and TGA indicating that grafting of vinyltriethoxysilane and hydrosilylation between the 

hydride group of PDMS and the vinyl group of the linking and/or coupling agent were 

successfully carried out. SEM-EDX and contact angle analysis on the grafted membranes 

showed that the grafting occurs throughout the -alumina layer and that the resulting 

membrane surface had a water contact angle of 108°. From pure solvent permeability and 

rejection tests in toluene, ethyl acetate, and isopropanol using Sudan Black as probe solute, 

an increased selectivity was found for membranes grafted with the use of coupling agent 

than those without the use of coupling agent. The use of a coupling agent increases the 

grafted organic layer thickness in the gamma alumina pores and thus a higher selectivity for 

nanofiltration of solvents but with the cost of lower permeability, if compared with PDMS-

grafted alumina membranes where no PDMS-coupling agent was applied.  
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Abstract 

 

A method is presented for the grafting of a mesoporous -alumina layer, supported on a 

macro porous -alumina membrane, by polyethylene glycols (PEG). The grafting 

performance of -Al2O3 powder with various PEG grafting agents having different molecular 

weights, alkoxy groups, and ureido functionality were analysed by TGA, 
29

Si-NMR, FTIR, and 

BET to see the effects of different properties of the grafting agent on the grafting results. 

The molecular weights, the presence of the ureido functionality, and the number of 

hydrolyzable groups of the grafting agents were found to influence the grafting density. FTIR 

analysis indicated that grafting of the  -Al2O3 powders has occured. The degree of self-

condensation is almost identical for most of the grafting agents. The grafting density 

increases with decreasing chain length of the grafting agents. The highest grafting density in 

this work is obtained by using a silylated ureido PEG with the shortest chain length (n=10). 

The number of alkoxy groups of the grafting agents influences the structural configuration of 

the grafted moiety. Moreover, for grafting agents having an ureido functionality, the chain 

length of the grafting agents was found the structural configuration of the grafted moiety. 

Contact angle measurements, solvent permeability tests, and rejection tests were used to 

assess the grafted membrane performance. A higher contact angle was observed after 

grafting. A lower solvent permeation of both ethanol and hexane was observed due to the 

presence of the grafted moiety inside the membranes reducing the membrane pore 

diameter. The permeability behavior with respect to different types of permeating solvent 

(polar and nonpolar) was investigated. Lower permeability of ethanol than hexane was 

observed accompanied by a  higher retention of Sudan Black in ethanol than in hexane. This 

effect is explained by the difference in solvent sorption in the grafted moiety for different 

types of permeating solvents. 
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6.1. Introduction 

Solvent resistant nanofiltration (SRNF), a type of pressure-driven membrane separation, 

is a potential economic and energy-efficient solution for solvent recovery in various 

industries due to the lower amount of energy it consumes than evaporation or 

distillation (1). With regard to separation performance, nanofiltration generally has 

nominal molecular weight cutoffs ranging from 200 to 1000 Da (neutral solutes), using 

membranes with pore sizes of around 0.5–2 nm (2). In order for SRNF to be applicable 

for industrial applications, the membranes need to be chemically stable and robust to 

endure a continuous exposure towards organic solvents.   

Grafting of ceramic substrates by organic moieties is a convenient method to prepare 

chemically stable membranes for various purposes (3-10). During grafting a specific 

organic moiety is chemically bonded to an inorganic substrate. The hydrolysable groups 

of the to-be-grafted organic moiety will react with the OH- groups of an oxide ceramic 

surface to produce a stable covalent bond. Faibish et al.(3) grafted zirconia membranes 

with polyvinylpyrrolidone using free-radical graft polymerization, resulting in a reduction 

in pore size of around 25 % after grafting (no pore  size values are given in this paper), 

suitable for ultrafiltration. Here a vinyl silane was used as linker to the zirconia 

membranes. Popat et al. (6) and Lee et al. (7) grafted polyethylene glycol to straight pore 

alumina membranes (“anodisc”), with a pore size of 25 and 80 nm, using a silane 

coupling agent to obtain anti-fouling ultrafiltration membranes. Yoshida et al. made a 

layer of terminally bonded polymer via free radical graft polymerization of vinyl acetate 

or vinyl pyrrolidone monomers on the surface of  -alumina tubular supports (pore size 5 

nm) using silane as a linker (10), while in other work of the same group (5) silica 

membranes (pore size of 20 nm) were used as inorganic substrate to be grafted using the 

same monomers as in (10) for pervaporation. Pinheiro et al. (8) and Tanardi et al. (9) 

grafted low molecular weight PDMS in -alumina membranes(pore size 5 nm) using 

alkoxysilanes as the linker suitable for nanofiltration.  

Recent work has been dedicated to prepare hydrophobic PDMS grafted y-alumina 

membranes for the filtration of nonpolar solvents (8-9). The PDMS grafted y-alumina 
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membranes are less attractive for the filtration of polar solvents since these membranes 

show a lower membrane selectivity in polar solvents than in non-polar solvents. This can 

be explained by the difference in the sorption behavior of the grafted moiety in different 

types of solvents affecting the effective membrane pore diameter (11-12). As such, 

hydrophilic grafted ceramic membranes may be more interesting for the filtration of 

polar solvents, as a opposed to the hydrophobic grafted membranes which are more 

directed for the filtration of nonpolar solvents.  

In this work, grafting of mesoporous -alumina by different types of silylated poly 

(ethylene glycols) (PEGs) was performed in order to result in Solvent Resistant 

NanoFiltration (SRNF) grafted ceramic membranes for the filtration of polar solvents. The 

different PEG compounds are chosen in such a way that they vary in terms of molecular 

weight, number of alkoxy groups, and self-assembling ability as indicated by the number 

of ureido functionalities present.  The chemical structures of all grafting agents used in 

this study (compound A to H) are given in Figure 6.1.  
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Figure 6.1. The chemical structures of the grafting agents studied 

The grafting performance of each grafting agent on inorganic, -alumina, particles (acting 

as surrogate membrane surfaces) was analyzed by means of FTIR, 
29

Si-NMR, TGA, and 

BET. In this work, the y-alumina membranes were grafted with the grafting agent that 

gave the highest grafting density according to the TGA analysis. The performance of the 

grafted membranes was assessed by means of water contact angle measurements, as 

well as permeability and rejection tests. 
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6.2. Experimental Methods 

Compounds A till D (silylated PEG with an average molecular weight, Mn, of 740, 950, 

1820, and 2170 g/mol respectively) were purchased from Specific Polymers. Compounds 

E till H (silylated ureido PEGs) were prepared by a reaction between amine terminated 

PEGs with an average molecular weight (Mn) of respectively 500, 750, 1500, and 2000 

g/mol (Sigma Aldrich) and isocyanate triethoxysilane (95%, Sigma Aldrich). The solvents, 

acetonitrile (99.9%) and toluene (99.9%), were dried using zeolite A with a particle size of 

4-8 nm and pore diameter of 4 Å (Sigma Aldrich). -alumina powder with a BET surface 

area of 84.36 m
2
/g was purchased from Alfa Caesar. Flat -Al2O3 membranes supported 

on -Al2O3 supports with a diameter of 39 mm were purchased from Pervatech. The 

mean pore diameter of the 3 m thick -Al2O3 layer and the 1.7 mm thick -Al2O3 

support were 5 nm and 80 nm, respectively (13-14).  

6.2.1. Synthesis of grafting agents with ureido functionality 

The silylated ureido PEG grafting agents (compounds E - H) were prepared by a reaction 

between isocyanates and amines to result in ureido groups (15-16). The reaction rate of 

an aliphatic isocyanate increases with the addition of a primary aliphatic amine (15-16).  

Figure 6.2 gives the chemical structure of the reactants and products. Details on the 

experimental procedures and purification steps are given in the Supporting Information. 

 

Figure 6.2. The reaction between isocyanate triethoxysilanes and the corresponding amine terminated PEG to result in 

the ureido PEG 

6.2.2. Grafting method for -Al2O3 powders and membranes  

Grafting of the -Al2O3 powder was performed as follows.  

The -Al2O3 powder was soaked in an ethanol/water (2:1) solution for 8 hours at room 

temperature to remove dust and provide suitable hydroxylation and subsequently dried 



129 

 

at 100 C for 2 hours under vacuum and stored under nitrogen atmosphere until further 

use.  

In a fumehood, a 50 mL solution of 3 mM of a silane terminated PEG in toluene was 

prepared. The solution was added into a flask containing 1.8 g -Al2O3 powder. The 

mixture was stirred and heated under reflux with a Dean Stark apparatus (a laboratory 

glassware used in combination with a reflux condenser to remove side products such as 

water and alcohols from a batch reactor containing a reaction performed at a reflux 

temperature) for 24 hours at 110 C for the silylation reaction between the silane 

terminated PEG and the -Al2O3 powder. Afterwards, the mixture was cooled to room 

temperature. The powders were retrieved by centrifuging the mixture and were 3 times 

washed with fresh toluene. Afterwards, the powders were placed in a vacuum oven for 2 

hours at 115°C. 

The -Al2O3 membranes were soaked in an ethanol/water (2:1) solution for 8 hours at 

room temperature to remove dust and provide suitable hydroxylation. The membranes 

were then dried at 100 C for 2 hours under vacuum and stored under nitrogen 

atmosphere until further processing.  

In a fumehood, a 50 mL solution of 3 mM of a silane terminated PEG in toluene was 

prepared in a flask. The unmodified -Al2O3 membrane was placed in a sample holder 

and kept in the solution throughout the reaction. The grafting reaction between the 

silane terminated PEG and the hydroxylated -Al2O3 was carried out under continuous 

stirring and reflux at 110 C for 24 hours. After 24 hours, the reaction mixture was 

allowed to cool down. The membrane was retrieved from the mixture and rinsed 3 times 

with toluene before placing in a vacuum oven at 115°C for 2 hours. 

6.2.3. Characterization 

1
H NMR spectra of the in-house prepared grafting agents (compounds E - H) were 

acquired using a Bruker Avance 300 NMR spectrometer. 
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FTIR analysis on ungrafted and grafted y-alumina powders was conducted using a 

Thermo-Fischer Nicolet 710 spectrometer. The FTIR spectra were recorded at room 

temperature over a scanning range of 400-4000 cm
-1

 with a resolution of 4.0 cm
-1

 using 

32 scans. The samples were in the form of -Al2O3 powders which were modified using 

the same grafting procedure as the actual membrane. The sample in powder form is 

considered to have the same chemical characteristics as the actual membrane and can 

therefore be used to describe the chemical reactions that occur between the membrane 

and the grafting agent. 

Solid-state 
29

Si NMR experiments on the grafted y-alumina powders were performed on 

a Bruker Avance III spectrometer with a 9.4-T wide bore superconducting magnet. The 

spectrometer operated at 79.51 MHz for 
29

Si. Samples were placed in a 3.2 mm rotor in 

diameter for spinning at magic angle.  

TGA analysis on the grafted y-alumina powders was conducted by a coupled DSC/TGA 

2960 from TA Instruments at a heating rate of 10°C/minute under nitrogen atmosphere. 

In all cases a run from room temperature up to 700°C was performed and around 11 mg 

of sample was used.  

Nitrogen sorption studies were conducted on ungrafted and grafted y-alumina powders 

by a Micromeritics Instruments ASAP-2020. The BET method was used to calculate the 

constant (c) and specific surface areas in the pressure range of P/P0 = 0.05 – 0.35 at 77 K. 

Prior to each measurement, the sample was degassed at 200°C for 12 hours.  

Water contact angle data using the sessile drop method were collected on grafted y-

alumina membranes by a QCM Optical Contact Angle instrument.  

Permeation tests on the grafted y-alumina membranes were carried out at room 

temperature using a dead-end high pressure cell made from stainless steel. Membranes 

to be tested were soaked in the organic solvent for 12 hours prior to each experiment for 

preconditioning. The cell was filled with feed solution and helium was used to pressurize 

the cell. Permeate fluxes were obtained by measuring the weight of the collected 



131 

 

permeate as a function of time. All measurements were performed on three different 

membrane samples and two measurements per sample.  

Rejection tests were performed on the grafted y-alumina membranes using the same 

stainless steel dead-end pressure cell. 8000 ppm Sudan Black in hexane or ethanol was 

used as feed. The feed solution was constantly stirred at a speed of 500 rpm to prevent 

concentration polarization on the membrane surface. The rejection tests were 

performed until an equilibrium retention value was reached. Here also the 

measurements were performed on three different membrane samples of each 

composition with two measurements per sample. Sudan Black concentrations in the feed 

and permeate solution were analyzed using a Perkin-Elmer 12 UV-Vis 

Spectrophotometer. The rejection (R in %) was calculated by the following equation: R = 

(1-Cp/Cf) x 100%, where Cp and Cf are the solute concentrations in permeate and feed, 

respectively. Between each rejection test the membranes were rinsed with the previous 

solvent and subsequently three times ultrasonically cleaned in fresh ethanol 10 minutes 

at room temperature. After this ultrasonic treatment the membranes were dried in a 

vacuum oven under nitrogen for 24 hours at 80°C. After cooling to room temperature, 

the membranes were soaked for 24 hours in the solvent to be tested. In order to check 

whether any concentration polarization occurs, the solvent permeation of blank feeds 

(pure solvents without solutes) and those with Sudan Black solute were compared using 

a similar set-up.  

6.3. Results and Discussion 

6.3.1. Chemical Reaction Background 

In previous work (8-9), chemical grafting was carried out using two consecutive steps, in 

which a silane linking agent was first grafted onto the pore wall, using a vapour phase 

deposition method and then reacted with oligomers. In this work, a different strategy 

was utilized, in which the organics were silylated first and then grafted onto the ceramic 

pore wall.  
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The grafting reaction between the silylated PEG and the surface hydroxyls proceeds by 

hydrolysis of the alkoxy groups upon reaching the hydroxyl groups of the membrane 

surface, followed by a condensation reaction, resulting in a stable covalent Al-O-Si bond 

between the oxide surfaces and the PEG (17-18). In this reaction, moisture from the 

substrate acts as a catalyst for the hydrolysis (17-18). For the silanes to access the 

hydroxyl groups on the membrane surface, no more than 2 or 3 monolayers of water 

should exist on the substrate surface (17).  In order to limit the amount of moisture 

present, the substrate was stored under nitrogen atmosphere prior to grafting and dried 

toluene was used as solvent for the grafting reaction. The grafting reaction between the 

surface hydroxyls and the silylated PEG is depicted in Figure 6.3. The hydroxyl groups on 

the -alumina surface act as the active sites for the grafting reaction. The grafting was 

done under reflux to remove side products such as water and alcohols from the reaction 

medium and to shift the reaction equilibrium to the product side. 

 

 

Figure 6.3. Schematic representation of ideal grafting reaction between the surface hydroxyls of the y-alumina 

substrate and silylated PEG grafting agents 

For compounds E to H, the silylated PEG with ureido groups, the oxygen from the ureido 

group can form a hydrogen bond with the amide from the adjacent ureido group. This 

results in the formation of ribbon type aggregates by self assembling, which could 

potentially promote a higher grafting density. For compound A to D, the  non-ureido 

functionalized PEGs, a random statistical displacement of grafting agents on the pore 

wall is expected. Figure 6.4 illustrates the grafting mechanism by the non-self-assembling 

(Figure 6.4a) versus the self-assembling silylated ureido PEG grafting agents (Figure 

6.4b). 
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Figure 6.4. Schematic representation of the grafting mechanism by (a) the non-self-assembling silylated PEG grafting 

agents (from compounds A-D) versus (b) the self-assembling silylated ureido PEG grafting agents  (from compounds E-

H).   

The type of grafting agent may affect the grafting density and the chemical structure of 

the grafted organosilanes (19-25). The characterization strategy for the chemical 

structure is summarized in Figure 6.5. In addition to the grafting reaction between the 

silylated PEG and the -Al2O3 powder, the silanol groups can also react with adjacent 

silanols, resulting in a siloxane network through the formation of the covalent Si-O-Si 
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bond (19, 21, 25) through the following condensation reaction: -Si-OH + Si-OH  -Si-O-

Si- + H2O. The importance of the formation of the Si-O-Si bond than that of Si-O-Al bonds 

was semi-quantitatively investigated by FTIR.  

Depending on the amount of alkoxy groups per PEG molecule, who can form a covalent 

Si-O-Al bond with the y-Al2O3 surface, several different possible configurations exist, 

namely D
1
 and D

2
 for compounds A to D (Figure 6.5a), and T

1
, T

2
, and T

3
 for compounds E 

to H (Figure 6.5b).  The ratio of each D and T structure after grafting by each type of 

grafting agent was investigated by 
29

Si-NMR.  

 The grafting efficiency, i.e. the mole ratio of grafted PEG versus the available surface 

hydroxyls on the surface of y-alumina per nm
2
 were analyzed by TGA. Here the 

decomposed mass was related to the presence of organics in the sample (after 

subtracting the mass loss due to the absorbed water), while the weight, remaining after 

the TGA measurement, was related to the presence of inorganics in the sample. 

 

Figure 6.5. The characterization strategy employed in this work to study the grafting nature of different types of PEG 

grafting agents  
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6.3.2.  FTIR Analysis of grafting performance and the presence of self-condensation 

The presence or dissappearance of transmittance peaks in the FTIR spectra for the 

grafted, compared with the ungrafted powder, is an indication whether the grafting 

reaction has occured. Figure 6.6 shows the IR spectra of the unmodified (Figure 6.6a) and 

of one type of the grafted -Al2O3 powders, namely compound E (silylated ureido PEG 

with n = 10, Figure 6.6b). For all types of grafted powders the IR spectra are more or less 

identical with the one given in Figure 6.6b. In Figure 6.6a and b, the absorption band at 

800 cm
-1

 is attributed to the Al-O stretching (26).  In the grafted y-Al2O3 spectra  the 

bands at 1060 cm
-1

 and 1092 cm
-1

 can be attributed to the formation of covalent Si-O-Al 

and Si-O-Si bonds respectively (27-29). In Figure 6.6b, the bands at 1241, 1355, 1452, 

1557, 1636, and 2876 cm
-1

 indicate the presence of PEG (26). The band at 1241 cm
-1

 is 

ascribed to the wagging of Si(CH2), while the bands at 1355 cm
-1

 and 1452 cm
-1

 are 

attributed to the wagging of C-CH2 and the bending of CH2 of the grafted PEG (26). The 

two maxima at 1557 and 1636 cm
-1

 are ascribed to the bending of N-H of the ureido 

groups (26). The band at 2876 cm
-1

 is caused by the asymmetric stretching of -CH2- of the 

grafted PEG (26). The FTIR analysis indicated that the grafting reaction has occured for 

the grafted -Al2O3 powder. 

 

Figure 6.6. FTIR Transmittance Spectra of a) unmodified and b) grafted -Al2O3 powder grafted with compound E 

(silylated ureido PEG with n = 10) 
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During the grafting reaction between the silanated PEG and the -Al2O3 powder, the 

hydrolyzable alkoxy groups that do not form Si-O-Al bonds with the inorganic surface 

hydroxyl groups may self-condense with the adjacent silanols  through the reaction: -Si-

OH + Si-OH  -Si-O-Si- + H2O forming a covalent Si-O-Si bond. The degree of self-

condensation for each type of grafting agent can be semi-quantitatively analyzed by 

comparing the ratio of the Si – O absorbance peak at 1092 cm
-1

 versus the Al –O 

absorbance band at 800 cm
-1

. The band at 800 cm
-1

 is associated with the maximum IR 

absorbance due to the Al-O vibrations of the y-alumina, while the band at 1092 cm
-1

 is 

associated with the maximum IR absorbance due to the Si-O-Si vibrations of amorphous 

silica (27-29). It is assumed that the band at 1092 cm
-1

 is only due to the Si-O-Si 

vibrations. Table 6.1 shows the ratio ISi-O/ IAl-O of the Si-O and Al-O IR band intensities 

representing the importance of self-condensation among the hydrolyzable groups during 

grafting. The band intensities are the average of three FTIR spectra taken for each 

grafted sample type.  

 

Table 6.1. Ratio of the Si-O versus Al-O IR bands (ISi-O/ IAl-O) as an indication of the degree of self-condensation among 

the hydrolyzable groups of the grafting agents. 

 

Type 

Si – O band intensity  

at 1092 cm
-1

 

ISi-O  

Al –O band intensity  

at 800 cm
-1

 

IAl-O 

ISi-O/ IAl-O 

A 0.020 ± 0.003 0.305 ± 0.012 0.066 ± 0.005 

B 0.033 ± 0.003 0.328 ± 0.013 0.100 ± 0.008 

C 0.027 ± 0.003 0.300 ± 0.012 0.089 ± 0.007 

D 0.032 ± 0.003 0.319 ± 0.013 0.101 ± 0.008 

E 0.026 ± 0.003 0.298 ± 0.012 0.088 ± 0.007 

F 0.016 ± 0.003 0.298 ± 0.012 0.053 ± 0.004 

G 0.034 ± 0.002 0.318 ± 0.013 0.107 ± 0.008 

H 0.105 ± 0.004 0.386 ± 0.015 0.271 ± 0.021 

 

Table 6.1 showed that self-condensation has occurred for all types of grafting agents. 

These results indicated that for most of the grafting agents studied (A to G) self-

condensation (the formation of Si-O-Si bonds) is of the same order. Only a higher degree 

of self-condensation was observed for grafting agent H. From these results it can be 
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deduced that in most cases there is a comparable degree of resistance for the formation 

of Si-O-Si bonds regardless of the chain length of the grafting agents. 

6.3.3. Structural configurations of the grafted moiety 

The influence of the type of grafting agent on the number of alkoxy groups per PEG 

molecule that reacted with the surface hydroxyls was further investigated by 
29

Si-NMR 

analysis. If there are two hydrolysable alkoxy groups in addition to the Si atom (=Si(OR)2), 

the grafting agent is called to have a D structure. If there are three hydrolysable alkoxy 

groups next to the Si atom (–Si(OR)3) the grafting agent is considered as a T structure. In 

this work, the grafting agents A - D are having the D structure, while the grafting agents E 

- H are having the T structure.  

In Figure 6.7 
29

Si-NMR spectra of y-Al2O3 powders grafted with the compounds A-H are 

given. The peak(s) appearing in the 
29

Si-NMR spectra are used to indicate the number of 

oxygen atoms directly bonded  to a Si atom which in itself is bonded to the y-Al2O3 

surface. If one silanol out of two is attached to the y-Al2O3 surface, a D
1
 annotation is 

used. If both silanols are attached to the y-Al2O3 surface, a D
2
 annotation is used. A 

chemical shift in the range of -10 to -13 ppm is generally assigned to a D
1
 structure and 

respectively in the range of -20 to -23 ppm to a D
2
 structure (30-31). A similar annotation 

also applies for the T structure, except that there are three possibilities for the T 

structure (T
1
, T

2
, and T

3
). The chemical shifts in the range of -50 to -45 ppm is commonly 

ascribed to indicate a T
1
 structure, -55 ppm to -60 ppm to a T

2
 structure and -70 to -61 

ppm for a T
3
 structure (32). The 

29
Si-NMR results for all types of grafting agents are given 

in Figure 6.7.  
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Figure 6.7. 
29

Si CP NMR spectra of the grafted y-Al2O3 powder with grafting agents (a) A to (h) H 

 

In Figure 6.7 (a to d), there are two peaks identified in the D
1
 and D

2
 region indicating 

that both types of the D structure are present for the grafted y-Al2O3 by compounds A - 
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D. The peak area ratios for D
1
 and D

2
 configurations for powders grafted by grafting 

agents A - D are shown in Table 6.2. 

Table 6.2. Relative peak area values for D
1
 and D

2
 configurations of the 

29
Si NMR spectra for the powders grafted by 

grafting agent A - D 

Type of Grafting Agent D
1
 (%) D

2
 (%) 

A 50 ± 2 50 ± 2 

B 50 ± 2 50 ± 2 

C 50 ± 2 50 ± 2 

D          70 ± 2 30 ± 2 

 

From Table 6.2, it was found that the peak area ratios for the D
1
 and D

2
 for powders 

grafted with A to C are similar, while a higher percentage of D
1
 structure is found for the 

powder grafted with D. This indicates that for the grafted powders A, B and C with a 

similar number of alkoxy functional groups but different chain length, the chain length of 

the grafting agent does not influence the ratio of the D
1
 and D

2
 configurations. For 

compound D a higher percentage of the grafting agent is bonded with only one siloxane 

group to the y-alumina surface. This lower degree of bonding of the siloxane groups for 

grafting agent D can be attributed to the difference in the number of silica alkoxide 

groups present in the grafting agent D (3 groups) in comparison with A – C (6 groups; see 

Figure 6.1). 

The relative peak area values for samples grafted with grafting agents E - H are given in 

Table 6.3. 

Table 6.3. Relative peak areas for the three configurations for samples grafted with grafting agent E - H 

Type of Grafting Agent T
1
 (%) T

2
 (%) T

3
 (%) 

E 7 ± 1 66 ± 3 27 ± 1 

F 25 ± 1 37 ± 1 38 ± 2 

G 28 ± 1 7 ± 1 65 ± 3 

H 25 ± 1 50 ± 2 25 ± 1 

 

In Figure 6.7 (e  to h), all 3 different types of T structures are present for all grafted y-

Al2O3
 
powders. For powders grafted with E till G (Table 6.3) a trend can be seen that by 
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increasing the molecular weight of the grafting agent the percentage of the T
3
 structure 

becomes higher, accompanied by a lower percentage of the T
2
 structure. This indicates 

that the higher the molecular weight of the grafting agents, the more the T
2
 structure 

converts to a T
3
 structure. At a higher molecular weight or larger chain length of the 

grafting agent the distance between one PEG to the adjacent PEG becomes larger due to 

the higher molecular size. As a result, it may preserve the availability of the surface 

hydroxyls for reaction with the said grafting molecules rather than reacting with the 

adjacent PEG.  

A different trend was observed for the grafting performance of  compound  H  compared 

with  E-G (see Table 6.3). This is attributed to the difference in the number of silica 

alkoxide and ureido groups for grafting agent H if compared with the other compounds 

(see Figure 6.1).  

The 
29

Si-NMR analysis showed that for y-alumina powder grafted by ureido PEG, the 

chain length of the grafting agents influence the structural configuration. For y-alumina 

powder grafted by non-ureido PEG, the chain length of the grafting agents does not 

seem to affect the structural configuration. Moreover, the number of the alkoxy groups 

also affect the structural configuration of the grafted moiety. 

6.3.4. Grafting density 

TGA analysis was used to obtain information about the grafting density. The TGA results 

of the y-Al2O3 powders grafted with compounds A to H are shown in Figure 6.8. Two 

weight loss regions along the temperature axis can be observed. In the first region (20 to 

100 C) initial weight losses (up to 1%) were observed. These initial weight losses can be 

attributed to the evaporation of adsorbed molecular water from the samples. In the 

second region, starting from 200°C, significant weight losses were observed. These 

weight losses can be attributed to the thermal decomposition of the organic groups from 

the samples. Above 500°C or in some cases above 600 to 700°C, no more significant 

weight losses were observed. The remaining weight (85-95%) observed at 700°C 

represents the inorganic groups (silica and y-Al2O3) present in the samples.  
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Figure 6.8. TGA results of y-Al2O3 powders grafted by grafting agents A to H 

By evaluating the degree of mass loss and the remaining mass in Figure 6.8, the grafting 

efficiency (Geff) can be calculated. Detailed information and calculations is provided in 

Table 6.4.  

Table 6.4. Grafting efficiencies Geff (10
-6

 mol/g) of y-Al2O3 powder grafted by compounds A to H  

ID M1 M2  

 

weight loss 

organics 

(%)* 

weight loss 

organics 

(mg)* 

# moles 

grafted PEG 

(10
-6

 mol) ** 

WInorganics 

(mg) *** 

M3 mass of  

y-Al2O3 

 (mg)**** 

Geff 

 

A 733 629 5.6 ± 0.2 0.63 ± 0.03 1.00 ± 0.04 10.41 ± 0.42 104 10.30 ± 0.41 97 ± 4 

B 933 829 5.4 ± 0.2 0.57 ± 0.02 0.69 ± 0.03 9.63 ± 0.39 104 9.56 ± 0.38 72 ± 3 

C 1803 1699 8.5 ± 0.3 1.38 ± 0.06 0.81 ± 0.03 14.77 ± 0.59 104 14.69 ± 0.59 55 ± 2 

D 2170 2121 8.3 ± 0.3 0.86 ± 0.03 0.41 ± 0.02 9.36 ± 0.37 49 9.34 ± 0.37 44 ± 2 

E 786 723 8.5 ± 0.3 0.95 ± 0.04 1.32 ± 0.05 10.15 ± 0.41 63 10.06 ± 0.40 131 ± 5 

F 1009 947 6.4 ± 0.3 0.83 ± 0.03 0.88 ± 0.04 11.99 ± 0.48 62 11.93 ± 0.48 73 ± 3 

G 2240 2174 10.3 ± 0.4 1.06 ± 0.04 0.49 ± 0.02 9.12 ± 0.36 66 9.09 ± 0.36 54 ± 2 

H 2037 1917 12.5 ± 0.5 1.46 ± 0.06 0.76 ± 0.03 10.02 ± 0.40 120 9.93 ± 0.40 77 ± 3 

 

M1: Molecular weight of the grafted PEG molecules (A-H) 

M2: Molecular weight of the organic parts of the grafted PEG molecules (organic parts: e.g. C, H, O,N) 

M3: Molecular weight of the inorganic parts of the grafted PEG molecules  

Geff: Grafting efficiency = (# moles grafted PEG)/(mass of y-Al2O3) (10
-6

 mol/g)  
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*The weight loss in the second weight loss region, starting from 200°C (see Figure 6.8), can be ascribed to 

the decomposition of the organic groups of the grafted PEG.  

ܩܧܲ�݀݁ݐ݂ܽݎ݃�ݏ݈݁݋͓݉** ൌ�ܹ݈ݏݏ݋ ݏܿ݅݊ܽ݃ݎ݋� ��ʹܯ�   

***The remaining weight observed at 700°C (see Figure 6.8) represents the inorganic groups (silica and y-

Al2O3) present in the samples (= WInorganics) 

�y-Al2O3ൌ݂݋�ݏݏܽ݉**** ݏܿ݅݊ܽ݃ݎ݋ܹ݊݅� െ�͓݉ܯ�ݔ�ܩܧܲ�݀݁ݐ݂ܽݎ݃�ݏ݈݁݋͵ 

 

The y-Al2O3 powders grafted by compounds A to C (the silylated PEG without ureido 

groups and similar number of alkoxy groups) showed that the grafting density decreases 

with increasing chain length of the grafting agents. For a fair comparison, the grafting 

agent D was not included since this compound has a different number of alkoxy groups 

compared to grafting agents A to C. For the y-Al2O3 powder grafted by compounds E to G 

(the silylated PEG with a similar number of ureido and alkoxy groups), the grafting 

density also decreases with increasing chain length of the grafting agents. The grafting 

agent H was not included here either as it has a different number of alkoxy and ureido 

groups compared to grafting agents E to G. The TGA analysis showed that the chain 

length of the grafting agents affects the grafting density. This can be explained by the 

difference in  steric hindrance, as present during grafting, for grafting agents with 

different chain lengths. The highest grafting density in this work is obtained by grafting 

agent E, which is the silylated ureido PEG having the shortest chain length (n=10). The 

chain length of the grafting agents is not the only factor affecting the grafting density. 

Compared to the grafting agent A, also with n = 10 and an identical number and position 

of the alkoxy groups, the only difference is existence of the ureido groups in compound 

E. The self assembling, which takes place for compound E (see Figure 6.4b) has a positive 

influence on the grafting density. 

6.3.5.  Surface characteristics of the grafted powders 

BET analysis were used to obtain information as whether the surface wettability of the y-

alumina powder has changed after being grafted. The BET constant (c) is useful to 

indicate the hydrophilicity of the material. The BET constant (c) is related to the energy 

of adsorption in the first adsorbed layer and its value shows the magnitude of the 

adsorbent/adsorbate interactions. The more hydrophilic the material, the higher the  

BET constant (c) due to the stronger interaction of the powder with the adsorbed 
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nitrogen (33). Table 6.5 shows the BET specific surface area and the BET constant (c) 

values of ungrafted and grafted y-Al2O3 powders.  

Table 6.5. BET specific surface area and the BET C constant of ungrafted and grafted y-Al2O3 powders by grafting 

agents A - H 

Sample 

BET constant 

 

Specific 

Surface Area 

(m
2
/g) 

Unmodified 125.5 ± 1.4 84.4 ± 0.9 

A 33.8 ± 0.4 44.5 ± 0.5 

B 37.9 ± 0.4 35.0 ± 0.4 

C 37.7 ± 0.4 31.6 ± 0.3 

D 37.0 ± 0.4 31.6 ± 0.3 

E 40.9 ± 0.5 38.7 ± 0.4 

F 41.7 ± 0.5 42.8 ± 0.5 

G 45.8 ± 0.5 42.6 ± 0.5 

H 35.6 ± 0.4 30.7 ± 0.3 

 

It can be seen from Table 6.5 that the specific surface area of the y-Al2O3 powder 

decreases significantly after grafting. The lower BET constant (c) of the grafted powders 

versus that of the ungrafted suggested a weaker interaction between the nitrogen 

molecules and the sample surface due to the lower polarity of the polyethylene glycol as 

compared to that of the surface hydroxyl (OH-) groups. The BET analysis showed that the 

surface wettability of the y-alumina powder has changed after grafting, while there is 

only a slight difference in wettability between the differenct grafting agents used.   

6.3.6. Filtration performance of the grafted membranes 

Based on the TGA analysis given in Table 6.1, the grafting agent E was chosen to be used 

as the grafting agent for the y-alumina membranes, since it provides the highest grafting 

density.  

Water contact angles were taken from the ungrafted and grafted membranes to 

investigate the membrane surface property after grafting (Table 6.6). The contact angle 

measurements were taken at 5 different points on the flat membrane surface and the 

average values were used. The negligible standard deviation shows that the grafting 

reaction occurred homogeneously throughout the membrane surface. 
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Table 6.6. Water Contact Angles ( ) 

 Ungrafted 

-Al2O3 membranes 

Grafted  

-Al2O3 membranes 

Water Contact Angle ( ) 0 37.7 ± 0.7 

 

For the unmodified gamma-alumina membrane, the water droplet immediately wetted 

the membrane surface. A corresponding water contact angle of 0° is therefore assumed, 

which is attributed to the hydrophilic characteristic of the -Al2O3 membrane due to 

natural presence of hydroxyl (OH-) groups on the ceramic surface as well as the presence 

of the meso pores. After grafting, a relatively higher contact angle was observed. The 

higher contact angle observed might be attributed to the less polarity of the ethylene 

glycol groups causing a weaker interaction of the membrane surface with the water 

molecules. This observation is in agreement with the BET analysis on inorganic particles 

in which less hydrophilicity was observed after grafting with PEG (see Table 6.5). It is also 

worthwhile to mention that there are many other factors that can contribute to the 

higher contact angle observed, such as the nanotextures of the grafted moieties, the 

molecular orientation and/or the grafting density of the grafted moieties. The relative 

change in the water contact angle of the grafted membranes compared to that of native 

membranes may suggest that the surface characteristics of the y-Al2O3 has changed after 

grafting. 

The permeability tests using pure ethanol and hexane were conducted on the grafted -

Al2O3 membranes. Ethanol and hexane were chosen as probe solvents since their 

sorption tendency with regard to PEG differ dramatically (34). First of all, the 

permeability of grafted membranes was investigated as a function of the applied 

pressure. Figure 6.9 shows the permeability test results of hexane and ethanol through 

the grafted membranes at 20 C as a function of Trans Membrane Pressure (TMP). 
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Figure 6.9. Fluxes (J) of pure ethanol and pure hexane at 20 C through the grafted -Al2O3 membranes grafted by the 

grafting agent E as a function of Trans Membrane Pressure (TMP) 

 

A linear relationship between flux and TMP was observed showing no sign of 

compaction. This indicates the absence of shear-flow induced behaviour in the applied 

pressure range studied as was also observed in (8-9, 11) for PDMS grafted y-Al2O3 

membranes. 

Table 6.7 shows the pure solvent flux of hexane and ethanol at 10 bars and 20 C through 

the ungrafted and grafted -Al2O3 membranes. The values shown are the average of 

three membrane samples and two measurements for each sample. The low standard 

deviation demonstrated that this method of grafting results in membranes with a high 

reproducibility.  
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Table 6.7. Pure solvent fluxes at 10 bars and 20 C through the ungrafted and grafted -Al2O3 membranes 

Solvent 

 

Flux (L.m
-2

h
-1

) 

Ethanol Hexane 

Ungrafted 36.0 ± 1.1 84.4 ± 2.4 

Grafted 7.8 ± 0.1 37.3 ± 1.2 

 

The flux of hexane as well as of ethanol decreased significantly after grafting (Table 6.7) 

due to the occupation of the membrane pores by the grafted PEG resulting in a more 

closed membrane structure after grafting.   

The plot of pure solvent flux versus TMP/  (according to Hagen-Poiseuille relation) is 

given in Figure 6.10.  

 

Figure 6.10. Fluxes (J) versus the TMP/  (according to Hagen-Poiseuille relation) of pure ethanol and pure hexane at 20 C 

through the grafted -Al2O3 membranes grafted by the grafting agent E  

For the PEG grafted ceramic membranes, the viscosity corrected flux for ethanol is lower 

than that for hexane (Figure 6.10). This is in constrast with the result of the hydrophobic 

PDMS grafted ceramic membranes, in which a higher viscosity corrected flux was found 
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for polar solvents like isopropanol than for nonpolar solvents such as hexane [13]. This 

opposite behavior can be explained by the different sorption behavior of the grafted 

PDMS versus that of the grafted PEG. In contrast to PDMS, a more dramatic swelling 

occurs for PEG in the presence of ethanol than for hexane(34), instead of the other way 

around. A higher sorption of ethanol in PEG for the PEG grafted -Al2O3 membranes 

causes a stronger reduction of the membrane permeable volume for the permeation of 

ethanol, while the reduction is less for the permeation of hexane. As a result, a more 

closed membrane structure is realized for the PEG grafted membranes in the presence of 

ethanol than that of hexane.  The more closed structure of the PEG grafted membranes 

in the presence of ethanol is further investigated by performing Sudan Black rejection 

tests. Table 6.8 shows the rejection results of Sudan Black in ethanol and in hexane 

through the grafted -Al2O3 membranes at 20 C and 10 bars at 50% recovery. 

Table 6.8. Rejection data of Sudan Black in pure hexane and ethanol through grafted -Al2O3 membranes at 20 C and 

10 bars 

Solvent Types Flux (lmh) Rejection (%) 

Hexane 37.3 ± 1.5 54 ± 1 

Ethanol 7.8 ± 0.3 89 ± 1 

 

No significant differences between the flux of pure solvent and solvent with 8000 ppm of 

Sudan Black was observed. This indicated that concentration polarization does not occur. 

From the results as given in Table 6.8 it can be seen that the rejection of Sudan Black in 

ethanol is higher than that in hexane. The solute rejection results are in agreement with 

the results of the permeability tests, meaning a trade-off between membrane 

permeability and rejection was observed. The higher rejection of Sudan Black in the 

presence of a polar solvent than that of nonpolar solvent is in contrast with the rejection 

behavior when using PDMS grafted -Al2O3 membranes (12). The differences in viscosity 

corrected flux (Figure 6.10) and solute rejection (Table 6.8) of the PEG grafted ceramic 

membranes in the presence of ethanol compared to hexane can be explained by the 

different sorption tendency of the grafted PEG in different types of solvent affecting the 

membrane effective pore size.  
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6.4. Conclusion 

A grafting method of a mesoporous -alumina layer, supported on macro porous -

alumina, by  polyethylene glycol (PEG) is presented. The grafting nature of y-alumina 

with different grafting agents, having different molecular weights, numbers of alkoxy 

groups and numbers of ureido groups were investigated by means of FTIR, TGA, 
29

Si-

NMR and BET using inorganic particles as surrogate surfaces. FTIR analysis indicated that 

the grafting reaction has occured for the grafted -Al2O3 powder. The degree of self-

condensation is about the same for most of the grafting agents as analyzed from FTIR 

spectra. 
29

Si-NMR analysis showed that for the ureido PEG, the chain length of the 

grafting agents influences the structural configuration of the grafted moiety, i.e. the 

number of the Si-O-Al bond per PEG molecules. For PEG without ureido functionality, no 

significant influence of the chain length of the grafting agents on the structural 

configuration of the grafted moiety was observed. The chemical structure of the grafting 

agents  such as the number of hydrolyzable groups also influences the structural 

configuration of the grafted moiety. TGA analysis showed that an increased grafting 

density was observed with a decreasing chain length of the grafting agents for grafting 

agents having similar numbers of alkoxy and ureido groups. Contact angle measurements 

and solvent permeability tests of the ungrafted and grafted -Al2O3 membranes show 

that the membrane properties changed after grafting. A higher contact angle, but still in 

the hydrophilic region, was observed after grafting. A lower solvent permeation of both 

ethanol and hexane was observed due to the presence of the grafted moiety inside the 

membranes, reducing the membrane pore diameter. The permeability behavior with 

respect to different types of permeating solvent (polar and nonpolar) show a lower 

permeability of ethanol than hexane, accompanied by a  higher selectivity of Sudan Black 

in ethanol than in hexane. This effect is explained by the difference in solvent sorption in 

the grafted moiety for different types of the permeating solvents. 
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Supporting Information for Chapter 6 

The preparations of the ureido PEG grafting agents (compounds E to H) were as follows: 

Compound E. To a stirred solution of 75 mg (0.15 mmol) of amine terminated poly ethylene 

glycol dissolved in 5.0 mL of acetonitrile, 39.4 L (39 mg, 0.15 mmol) of isocyanate 

triethoxysilane was added. The mixture was stirred and refluxed for 24 hours at 76 C (the 

boiling point of acetonitrile). The product (112.9 mg, 0.15 mmol) was recovered by rotary 

evaporator in the form of yellowish gel. 
1
H NMR (300 MHz, DMSO-d6) :  (ppm) = 0,542-

0,478 (t, 2H, SiCH2); 1,438 (m, 2H, CH2);  2,956 (q, 2H, CH2); 3,155-3,122 (t, 2H, CH2); 3,237 (s, 

3H, OCH3); 3,320 (q, 6H, CH2); 3,510 (s, 30H, CH2 PEG); 3,740 (t,2H, CH2); 5,881 (s, 1H, urea); 

6,024 (s, 1H, urea). 

Compound F. To a stirred solution of 112.5 mg (0.15 mmol) of amine terminated poly 

ethylene glycol dissolved in 5.0 mL of acetonitrile, 39.4 L (39 mg, 0.15 mmol) of isocyanate 

triethoxysilane was added. The mixture was heated to reflux for 24 hours. The product (150 

mg, 0.15 mmol) was recovered by rotary evaporator in the form of yellowish gel. 
1
H NMR 

(300 MHz, DMSO-d6):  (ppm) = 0,628-0,573 (t, 2H, SiCH2); 1,176-1,119 (m, 2H, CH2); 2,961-

2,896 (q, 2H, CH2); 3,241 (s, 3H, OCH3); 3,310 (q, 6H, CH2); 3,446-3,413 (t, 2H, CH2); 3,511 (s, 

60H, CH2 PEG); 4,566-4.530 (t, 2H, CH2); 5,763 (t, 2H, urea). 

Compound G. To a stirred solution of 300 mg (0.15 mmol) of amine terminated poly ethylene 

glycol dissolved in 5.0 mL of acetonitrile, 39.4 L (39 mg, 0.15 mmol) of isocyanate 

triethoxysilane was added. The mixture was heated to reflux for 24 hours. The product 

(335.61 mg, 0.15 mmol) was recovered by rotary evaporator in the form of yellowish gel. 
1
H 

NMR (300 MHz, DMSO-d6):  (ppm) = 0,501 (t, 2H, SiCH2); 1,172-1,120 (m, 2H, CH2); 2,968 

(q, 2H, CH2); 3,241 (s, 3H, OCH3); 3,315 (q, 6H, CH2); 3,446-3,413 (t, 2H, CH2); 3,501 (s, 60H, 

CH2 PEG); 4,501 (t, 2H, CH2); 5,821 (t, 2H, urea). 

Compound H. To a stirred solution of 225 mg (0.15 mmol) of amine terminated poly ethylene 

glycol dissolved in 5.0 mL of acetonitrile, 78.8 L (78 mg, 0.30 mmol) of isocyanate 

triethoxysilane was added. The mixture was heated to reflux for 24 hours. The product 

(299.81 mg, 0.15 mmol) was recovered by rotary evaporator in the form of yellowish gel. 
1
H 

NMR (300 MHz, DMSO-d6):  (ppm) = 0,542-0,486 (t, 4H, SiCH2); 1,173-1,127 (t, 18H, CH3); 
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1,632-1,543 (q, 4H, CH2); 3,519 (s, 69H, CH2 PEG); 3,780-3,710 (quin, 8H, CH2); 5,802-5,703 

(2t, 4H, urea). 
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7.1. Reflections 

Organic Solvent Nanofiltration (OSN) is a potential technology to perform solvent 

recovery. Solvent nanofiltration consumes less energy than evaporation and distillation, 

enabling it as a potential economic and energy-efficient solution for solvent recovery in 

various industries (1). For this application, a chemically stable membrane that can endure 

continuous exposure towards organic solvents is required.  This thesis deals with the 

grafting of ceramic membranes with organic moieties for solvent resistant nanofiltration 

and studying of their solvent and solute transport. Different grafting methods were 

employed in Chapter 2, 5, and 6 and its effect on the membrane performance were 

assessed. Moreover, in Chapter 6 a more detailed investigation of the effect of different 

properties of grafting agents on the grafting performance was presented. The transport 

of these membranes for SRNF application were studied in Chapter 3 and 4, 5 and 6, and a 

model was deducted from the observed permeability and selectivity to describe the 

membrane transport behavior.  

7.1.1. Grafting as a method to prepare a robust chemically stable SRNF membrane 

In Chapter 2, a method of grafting a mesoporous -alumina layer, supported on macro 

porous -alumina, with 3-mercaptopropyltriethoxysilane (MPTES) as linking agent and 

subsequently with Monovinyl terminated polydimethylsiloxane (PDMS) as polymer 

grafted to this linker was presented. A two-step grafting was employed in which 

organosilanes were grafted first to the pore wall of the y-alumina and then PDMS was 

grafted to the silanes. This method results in stable covalent bonds between the PDMS, 

MPTES, and -alumina as analyzed by FTIR and chemical stability tests. The resulting 

membranes have a rejection of 64% in toluene using Sudan Black as the probe solutes. 

In Chapter 2, PDMS was grafted to the ceramic mesoporous substrate without additional 

covalent coupling for growing of the organic chain from the pore wall, while in Chapter 5 

a reaction between PDMS molecules and a coupling agent was used in order to result in 

grafted organic network inside the pores. In Chapter 5, the grafting of mesoporous -

alumina membranes with hydride terminated polydimethylsiloxanes is described. 

Vinyltriethoxysilane is used as linking agent and tetrakis (vinyldimethylsiloxy)silane as 
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coupling agent, in order to generate a membrane for solvent nanofiltration. The use of 

coupling agent during grafting promotes formation of grafted organic network which 

results in a smaller membrane pores after grafting if compared to the results given in (2) 

and Chapter 2. This is proven by the fact PDMS-grafted membranes as described in 

Chapter 5 resulted in a rejection of 95% for Sudan Black in toluene as the probe solutes, 

while for the non-cross-linked system a Sudan Black in toluene rejection of only 65 % was 

observed. 

In Chapters 2 and 5, chemical grafting was carried out in two consecutive steps, where a 

silane linking agent was first grafted onto the pore wall, using a vapour phase deposition 

method and then reacted with oligomers. In Chapter 6, a different strategy was utilized, 

in which the organics were silylated first and then grafted to the ceramic pore wall using 

solution phase deposition method. The latter method was used for the grafting of a 

mesoporous -alumina layer, supported on a macro porous -alumina, with several types 

of silane terminated polyethylene glycol as to result in a hydrophilic chemically and 

thermally stable membrane for SRNF. The membranes resulted have a rejection of 89% 

for Sudan Black in ethanol as the probe solutes. 

All methods result in permanent modification of y-alumina membranes. A summary of 

SRNF results of grafted membranes, described in this thesis, are presented in Table 7.1. 

 

Table 7.1. Summary of OSN results of grafted membranes, described in this thesis 

-Alumina 

Membranes 

grafted with: 

Ch. 

no. 

Contact 

Angle (°) 
Toluene Isopropanol Ethanol Hexane 

F * R ** F * R ** F * R ** F * R ** 

PDMS  3,4 95 ± 1 23.7 ± 1.0 65 ± 1 7.6 ± 0.2 35 ± 1   87.1 ± 2.7 88 ± 1 

Coupled PDMS  5 108 ± 1 12.7 ± 0.3 95 ± 1 4.0 ± 0.1 80 ± 1     

PEG  6 38 ± 1     7.8 ± 0.3 89 ± 1 37.3 ± 1.5 54 ± 1 

 * F: Flux (L.m
-2

.h
-1

) at trans-membrane pressure of 10 bar 

** R: Retention (in %) of Sudan Black at 50% recovery 

 

The transport behavior of grafted membranes was studied in Chapter 3 and 4 for PDMS 

grafted ceramic membranes and Chapter 6 for PEG grafted ceramic membranes. From the 

transport study, it is found that the PDMS grafting of y-alumina membranes is more 
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suitable for nonpolar solvent application, while the PEG grafting of y-alumina membranes 

is rather appropriate for polar solvent application.   

7.1.2. Grafting as a method to alter the membrane surface polarity 

Each type of grafted membranes exhibit a certain water contact angle that can be used as 

an indication of the membrane surface properties (see Table 7.1). As shown in Chapters 2 

and 5, grafting of y-alumina by PDMS results in a water contact angle value of 95 and 108 

degrees respectively, while the grafting of y-alumina by PDMS as described in (2) results 

in water contact angle values in range from 91 to 97 degrees. This shows that the water 

contact angle for membranes grafted by PDMS falls in the same range, while a 

significantly different water contact angle was found for PEG grafted membranes. This 

may indicate that the membrane surface character is heavily affected by the wettability 

of the grafted material.  

In Chapter 6, BET is a simple tool to obtain an indication of surface polarity. BET analysis 

on several types of PEG grafted y-alumina powders showed a change in the BET constant 

(c)  for the grafted powder if compared to the value of an unmodified y-alumina powder. 

Another important point to be mentioned is that the BET constant (c) does not differ 

significantly regardless of the different types of the PEG grafting agents, i.e. different 

number of hydrolyzable groups, different number of ureido functionality groups and 

different molecular weights. The BET constant (c) is related to the energy of adsorption in 

the first adsorbed layer and its value shows the magnitude of the adsorbent/adsorbate 

interactions. The more hydrophilic the material, the higher the BET constant (c) due to 

the stronger interaction of the powder with the adsorbed nitrogen (3). A lower BET 

constant (c) of the grafted powders versus that of the ungrafted were observed due to 

the lower polarity of the PEG as compared to that of the surface hydroxyl (OH-) groups 

causing a weaker interaction between the nitrogen molecules and the grafted powder.  

7.1.3. Homogeneity of grafting 

Contact angle measurements were taken from 5 different points on the flat membrane 

surfaces and averaged for each grafted membrane, as described in this thesis. The 
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negligible standard deviation shows that grafting has occurred homogeneously over the 

membrane surface. From SEM-EDX analyses, it is observed that the grafting occurs 

throughout the y-alumina layer with an observed thickness of about 3 m. 

7.1.4. Grafting as a method to increase the membrane selectivity  

Permeability and rejection tests of the ungrafted and grafted -Al2O3 membranes show 

that the grafting influences the membrane selectivity. It is shown that grafting 

significantly resulted in a decrease in flux and an increase in the membrane selectivity  

compared to those of the unmodified y-alumina. The lower permeability is attributed to 

the occupation of the membrane pores by the grafted moiety resulting in a more closed 

membrane structure after grafting.  

7.1.5. Chemical and thermal stability of grafted -Al2O3 

Chemical stability tests were performed by soaking the grafted membranes for several 

days in a variety of solvents at elevated temperatures, while the thermal stability of the 

membranes in air was studied by TGA. The results as described in Chapter 2, showed no 

degradation of the PDMS grafted y-alumina membranes after tests in toluene for 6 days 

at room temperature and at elevated temperatures (up to 90 ûC). The couple PDMS 

grafted -Al2O3 systems, as described in Chapter 5 were studied by TGA. It was shown 

that these materials are stable up to 300ûC, after which the degradation of organic 

component takes place. The results in Chapter 6 show that the PEG grafted y-alumina 

membranes are thermally stable up to 250-300ûC. This showed that the grafting methods, 

described in this thesis, result in thermally and chemically stable membranes for potential 

use as chemical and thermal stable organic solvent nanofiltration membranes.  

7.1.6. Influences of the types of the grafting agents on the grafting results 

The nature of the grafting agents such as the number of the hydrolyzable groups can 

affect the grafting results. Self-condensation has occurred for all types of grafting agents 

and in most cases a comparable degree of self-condensation was observed. For the PEG 

with ureido functionality, as described in Chapter 6, the chain length of the grafting agent 

influences the number of alkoxy groups per PEG molecule that reacted with the surface 
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hydroxyls. The larger the chain length, the more alkoxy groups per PEG molecules that 

react with the surface hydroxyls of the membrane.  For non-ureido PEG, the chain length 

of the grafting agents does not affect the number of alkoxy groups per PEG molecule that 

reacted with the surface hydroxyls. For all types of grafting agents, the grafting density 

decreases with increasing chain length of the grafting agents. This can be explained by the 

difference in steric hindrance, as present during grafting, for grafting agents with 

different chain lengths.  

7.1.7. Transport behavior of organically grafted ceramic membranes 

Detailed knowledge of major parameters influencing the solvent and solute transport of 

grafted ceramic membranes is very important in order to predict their permeation 

behavior for various solvent-solute systems. 

In Chapter 3, the solvent permeation behavior of PDMS grafted y-Al2O3 membranes were 

studied. A positive linear relationship between membrane permeability and applied 

pressure is found. No compaction or shear flow-induced behavior was observed during 

solvent transport through the grafted membranes at trans-membrane pressures up to 20 

bars.  Shear-rate induced behaviorwas described as a condition in which the membrane is 

experiencing a more open membrane structure due to the movement of the grafted 

moieties in the direction of the feed flow, resulting in an exponential increase in the 

membrane permeability towards the trans-membrane pressure. This was not observed 

for the grafted membranes prepared in this thesis. The smaller pore size of the ceramic 

porous support (5 nm) used in this work which might provide higher confinement 

towards the shear rate effect than for macroporous ceramic supports (410 nm)(4). 

Selecting -alumina with a pore size as small as possible but sufficiently large to graft a 

(small) polymer on the pore walls in order to have the largest benefit of the rigid 

character of a ceramic membrane system is necessary to prevent the shear-rate induced 

behavior.   

The solvent permeability in polymer grafted ceramic membranes is described by 

incorporating solvent sorption terms into the Hagen-Poiseuille equation. Two grafted 

alumina membranes were examined, using PDMS molecules with different chain lengths. 
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The results show that the flux differences can be described by incorporating sorption and 

viscosity differences between the solvents. This provides an initial way to predict the 

performance of grafted porous membranes for solvent filtration.  

In Chapter 4 the solute rejection of PDMS grafted -alumina membranes was described 

for different solvent-solute pairs. In contrary to what is observed for pure  PDMS SRNF 

membranes, higher rejections were found for PDMS grafted membranes in the presence 

of nonpolar solvents like toluene than those in polar solvents such as isopropanol. This 

signifies that the solvent transport of PDMS grafted in a confined (ceramic) matrix is 

different than that of unconfined PDMS membranes. The rejection data were compared 

with the calculated values from three rejection models based on the size-exclusion 

mechanism, namely the Ferry, the Verniory, and the steric hindrance pore model using 

pore diameter information from the N2 physisoprtion measurement when no solvent is 

present.  A dependency of the membrane rejection rate with the solute diameter versus 

pore diameter ratio suggests that the solute transport is following the size based 

exclusion mechanism. By comparing the experimental data with the calculated rejection 

value by using rejection models, it can be deduced that the membrane pore geometry 

changes as a result of the membrane-solvent interaction. Moreover, the ability of one 

component to create a hydrogen bond with others are important in determining the 

nanofiltration performance of the grafted membranes. Finally the effect of the applied 

pressure on the membrane rejection behavior was studied as well for Sudan Black in 

different solvents showing an increase rejection with increasing trans-membrane 

pressures. 

In Chapter 6, the permeability behavior was described of PEG grafted y-alumina 

membranes with respect to different types of permeating solvent (polar and nonpolar). A 

linear relationship between flux and TMP was observed showing no sign of compaction. 

This indicates the absence of shear-flow induced behaviour in the applied pressure range 

studied, as was also observed for PDMS grafted y-Al2O3 membranes. The permeability 

with respect to different types of permeating solvent (polar and nonpolar) show a lower 

permeability of ethanol than hexane, accompanied by a  higher selectivity of Sudan Black 

in ethanol than in hexane. Here also this effect is explained by the difference in solvent 
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sorption of the grafted moiety for different types of permeating solvents. In contrast to 

PDMS, a more dramatic solvent sorption occurs for PEG in the presence of ethanol than 

for hexane (5). Thus, a stronger reduction in the membrane permeable volume is realized 

in the presence of ethanol than hexane, causing a more closed membrane structure in 

the presence of ethanol for PEG grafted y-alumina membranes. While for PDMS grafted y-

alumina membranes, a more closed membrane structure occurs in the presence of 

hexane than ethanol. 

7.2. Future Perspectives on Grafting Methods 

It has been shown that grafting can be used to modify the membrane surface properties 

as well as the membrane performance with regard to permeability and selectivity. From 

the membrane preparation point of view, the selection of grafting agents can still be 

optimized in order to reach a desired selectivity range for targeted applications. Proper 

selection of grafting agents should consider factors like the size of the grafting agents in 

relation with the pore diameter of the inorganic porous substrate, the grafting density 

that can be achieved with the selected grafting agents, as well as the sorption behavior of 

the grafted moiety in the targeted solvent.  

In Chapter 6, it is reported that the number of the alkoxy groups, the chain length of the 

grafting agent, and the number of ureido functionality can influence the grafting nature. 

This type of information can be used by making the selection of grafting agents in order 

to result in tailor-made membranes for a desired application.  The use of grafting agents 

with larger chain length can result in a smaller membrane pore diameter of the grafted 

membranes. However,  the chain length of the grafting agents is not the only factor 

affecting the pore size of the grafted membranes. Grafting density also influences the 

membrane pore diameter of the grafted membranes. Large chain lengths of grafting 

agents often result in a lower grafting density. 

The membrane selectivity will be reduced when the permeating solvent is less strongly 

sorbed in the grafted moiety. Thus, it is important to match the grafted material with the 

targeted applications. This made grafted ceramic membranes powerful for tailor-made 

applications. 
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In Chapter 5, an interesting method was presented to increase the membrane selectivity 

by creating a grafted PDMS network inside the membrane pores. However, optimization 

of the selection of coupling agent and chain length of the grafting agent is still missing. 

Optimization in this field can be useful for creating a grafted ceramic membrane with a 

targeted selectivity range. 

All membranes in this thesis were prepared by a “grafting to” mechanism. In order to 

improve the membrane selectivity, a “grafting-from” mechanism, in which polymerization 

was initiated in-situ from a reactive sites on the silylated y-alumina, can be an interesting 

method as well. Another way to graft organic moiety to inorganic substrates other than 

by organosilanes can be further investigated, e.g. via Grignard reaction between the 

surface hydroxyls and grafting agents to form a covalent Si-P-Al bond(6). 

7.3. Future perspectives for transport study of grafted membranes 

7.3.1. Theoretical calculations of sorption value 

In Chapter 2 sorption experiments were carried out in order to determine the sorption 

value of a grafted material in different types of solvents. Theoretical calculation of the 

sorption value is one of the strategies that can be implemented to establish an online 

system for prediction of fluxes and reduces the number of experiments needed for 

prediction of fluxes. To date, theories for prediction of sorption value have not been 

found in the scientific literature.  

7.3.2. Membrane-solute interaction 

In Chapter 4 the study of solute rejection is emphasized on the role of membrane-solvent 

interaction in the rejection of solutes. The role of solvent-solute and solute-solute 

interaction was discussed from the aspect of hydrogen bonding that can occur between 

these components. The role of the membrane-solute interaction was assumed to be 

negligible between the dye and the grafted material. Further investigation on the role of 

the membrane-solute interaction, can lead to a better understanding of the role of 

membrane-solute interaction in the solute rejection behavior of grafted ceramic 

membranes. 
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Solvent Resistant Nanofiltration (SRNF) is a potential technology to recover organic solvents 

in chemical processes. For this application, a chemically stable membrane that can endure 

continuous exposure towards organic solvents is required. This thesis deals with the 

preparation of chemically stable nanofiltration (NF) membranes through grafting of porous 

ceramic substrates with organic molecules and the study of their solvent and solute 

transport properties.  

In Chapter 1, a literature review is given on  grafting techniques as well as studies on solvent 

and solute transport in SRNF . 

In Chapter 2, grafting of mesoporous -alumina membranes with monovinyl terminated 

polydimethylsiloxane (PDMS), using 3-mercaptopropyltriethoxysilane (MPTES) as a linking 

agent, was described. The grafting performance of the organic moieties on -alumina 

powders was studied by FTIR. The results indicated that grafting reactions were successfully 

carried out. Contact angle measurements and solvent permeability tests were used to 

characterize the membrane properties. A water contact angle of 95° was observed after 

grafting, demonstrating the presence of a hydrophobic membrane surface. The toluene 

permeability of the membrane was reduced after grafting due to the presence of the 

grafted moiety inside the membranes, reducing the membrane pore diameter. No 

degradation of the membrane material was observed after chemical stability tests in 

toluene for 6 days at room temperature and at elevated temperatures (up to 90ûC).  

In Chapter 3, permeability studies of several polar and apolar solvents are given for ceramic 

membranes grafted with a relative short or long PDMS chain (n=10 and n=39).  The solvent 

transport through these membranes could be described using a pore-flow model by 

incorporating solvent sorption terms into the Hagen-Poiseuille equation. Solvent sorption 

was measured "ex situ" using a pure PDMS phase. It is found that the membrane permeable 

volume reduces if a solvent is strongly swelling. This provides an initial way to predict the 

performance of grafted ceramic membranes for solvent nanofiltration. 

In Chapter 4, the solute rejection of PDMS grafted -alumina membranes were described for 

different solvent-solute pairs. In contrast to the behavior of pure PDMS polymeric 
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membranes, higher rejections were found for apolar solvents, like toluene, than for polar 

solvents, such as isopropanol. It is suggested that the transport of solute is following a size-

based exclusion mechanism as the solute rejection is related to the ratio solute 

diameter/pore diameter (dc/dp). The Ferry, Verniory and Steric Hindrance Pore (SHP) size-

exclusion models were applied to predict the membrane rejection using, as first 

approximation, the pore diameter of a grafted membrane when no solvent was present. 

Rejections were studied of  polystyrene (PS), polyethylene glycol (PEG) and dyes with 

different molecular sizes. For the dye solutes in isopropanol, the experimental rejection data 

are in the range of the predicted rejection as based on all three models, by applying a apore 

diameter of the membranes, determined when no solvent was present. This is an indication 

that polar solvents, like isopropanol, do not significantly swell the PDMS in its confined, 

ceramic environment. No further conclusion can be drawn as the interactions between the 

dyes and the grafted moiety as well as between the dyes and isopropanol must be 

investigated further, as these effects may mask eventual contributions of membrane-

solvent interactions on membrane selectivity. 

The calculated  rejections of the dyes in toluene, by using the three solute transport models 

were much lower than experimentally observed if  the membrane  pore diameter was used 

as determined when no solvent is present.  This is an indication of a more closed pore 

structure for the membranes in toluene than in isopropanol, caused by a strong swelling of 

PDMS in the apolar solvent, toluene. 

For solutes with identical size, the rejection in toluene of PS is lower than that of the dyes. A 

solvent-solute interaction may increase the flexibility of PS, resulting in a decrease in solute 

rejection. Based on the experimental rejection data, the diameter of the PS is calculated to 

be 0.7-0.9 of its hydrodynamic diameter, assuming that the rejection of PS as well as the 

dyes are following the Ferry model and that for the dyes no solvent-solute interaction exists. 

The rejection of PEG in isopropanol as a function of dc/dp is lower than that of dyes with 

identical solute size dc. This lower rejection of PEG in isopropanol can be attributed to a 

solute-solvent interaction. The formation of hydrogen bridges between the PEG solutes and 

isopropanol may increase the flexibility of PEG, resulting in a decrease in solute rejection. 
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Based on the experimental rejection data the diameter of the PEG is calculated to be 0.3-0.4 

its hydrodynamic diameter, assuming that the rejection of PEG is following the Ferry model.   

At a given dc/dp value, the rejection of PEG in toluene is higher than that of the dyes. A 

strong solute-solute interaction of the hydrophilic PEG solutes in the presence of apolar 

solvents like toluene may cause the formation of large PEG clusters resulting in actual PEG 

solute sizes larger than that of a calculated single PEG solute. Based on the experimental 

rejection data the diameter of the PEG clusters in toluene may reach 1.6-2 times that of a 

single PEG solute, assuming that the rejection of PEG follows the same size-exclusion 

mechanism as that of the dyes.  

In Chapter 5, grafting of mesoporous -alumina membranes with hydride terminated 

polydimethylsiloxane is described.  Vinyltriethoxysilane is used as linking agent and 

tetrakis(vinyldimethylsiloxy)silane as a coupling agent, to couple the grafted moiety forming 

a polymer network inside the ceramic pores during grafting. Grafting performance of the 

organic moieties on -alumina powders was analyzed by FTIR and TGA. The results indicate 

that grafting reactions were successfully carried out. SEM-EDX and contact angle analysis on 

the graftesd membranes showed that grafting occurs throughout the y-alumina layer and 

that the resulting membrane surface had a water contact angle of 108°. The use of coupling 

agents results in a higher selectivity for nanofiltration of solvents, but at the cost of solvent 

permeability, when compared with PDMS-grafted alumina membranes where no coupling 

was applied.  

In Chapter 6, a grafting method of a mesoporous -alumina layer, supported on macro 

porous -alumina, by  polyethylene glycol (PEG) is presented. The grafting nature of y-

alumina with PEG grafting agents, having different molecular weights, numbers of alkoxy 

groups and numbers of ureido groups were investigated by means of FTIR, TGA, 
29

Si-NMR 

and BET using y-alumina inorganic particles as surrogate membrane surfaces. FTIR analysis 

indicated that the grafting reaction has occured on the -alumina powders. The degree of 

self-condensation is about the same for most of the grafting agents as analyzed from FTIR. 

29
Si-NMR analysis showed that for the ureido PEG, the chain length of the grafting agents 

influences the number of the Si-O-Al bonds per PEG molecule. For PEG without ureido 

functionality, no significant influence of the chain length of the grafting agents on the 
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structural configuration of the grafted moiety was observed. The number of hydrolyzable 

groups influences the structural configuration of the grafted moiety. TGA analysis showed 

that an increased grafting density was observed with a decreasing chain length of the 

grafting agents for grafting agents having similar numbers of alkoxy and ureido groups. After 

grafting the ceramic membranes, a higher water contact angle, but still in the hydrophilic 

region, was observed. A lower solvent permeation of both ethanol and hexane after grafting 

was observed due to the presence of the grafted moiety inside the membranes, reducing 

the membrane pore diameter. The permeability with respect to different types of 

permeating solvents (polar and anpolar) show a lower permeability for ethanol than for 

hexane, accompanied by a  higher selectivity of Sudan Black in ethanol than in hexane. This 

effect is explained by the difference in solvent sorption in the grafted moiety for different 

types of permeating solvents. 

Finally, in Chapter 7  the main results and conclusions as reported in this thesis are 

summarized, while suggestions are given for future research in the field organically-

modified ceramic membranes to be applied in SRNF, such as theoretical study of sorption 

phenomenon and study of interaction between membrane and solutes. 
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De ontwikkelingen in oplosmiddel resistente nanofiltratie (ORNF) bieden interessante 

mogelijkheden voor het terugwinnen van organische oplosmiddelen in o.a. de chemische en 

farmaceutische industrie. Voor het toepassen van deze technologie zijn chemisch stabiele 

membranen noodzakelijk, die bestand zijn tegen continue blootstelling aan oplosmiddelen. 

Het onderzoek, zoals beschreven in dit proefschrift, behandelt de fabricage van chemisch 

stabiele nanofiltratie membranen door het functionaliseren of “graften” van poreuze 

keramische materialen met organische moleculen. Daarnaast wordt ingegaan op het 

transport van verschillende oplosmiddelen door deze membranen en het filtratie gedrag 

van vaste deeltjes, waarbij transportmodellen worden geëvalueerd.   

In Hoofdstuk 1 wordt een literatuuroverzicht gegeven van verschillende graft technieken en 

transportmodellen, die toegepast worden in ORNF   

Hoofdstuk 2 beschrijft het graften van meso-poreuze (5 nm) -alumina membranen met 

PDMS met een monovinyl eindgroep, waarbij 3-mercaptopropyltriethoxysilaan (MPTES) 

gebruikt wordt als ‘verbindingsstuk’ tussen -alumina en PDMS. De mate van graften van 

deze organische moleculen aan -alumina poeders is bestudeerd met FTIR. De resultaten 

tonen aan dat de graft reacties succesvol zijn uitgevoerd. Contacthoek en permeabiliteit 

metingen zijn uitgevoerd om de membraan eigenschappen vast te leggen. Een water 

contacthoek van 95 ° is gemeten, wat een aanwijzing is dat we te maken hebben met een 

hydrofoob membraan oppervlak. De permeabiliteit van tolueen door dit membraan neemt 

af nadat het is gegraft met een organische groep, wat aantoont dat de poriegrootte van het 

membraan is afgenomen. Dit membraan vertoont een goede (chemische) stabiliteit na 

filtratie testen in tolueen van 6 dagen en behandelingen in  tolueen bij verhoogde 

temperaturen (tot 90 ûC) 

In Hoofdstuk 3 worden studies beschreven van de permeabiliteit van verschillende polaire 

en apolaire oplosmiddelen voor keramische membranen die gegraft zijn met PDMS met een 

relatieve korte of lange ketenlengte (n=10 en n=39). Het transport van oplosmiddelen door 

deze membranen kan beschreven worden door gebruik te maken van het porie-doorstroom 

(“pore-flow”) model door een sorptie term van het gebruikte oplosmiddel in te voeren in de 
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Hagen-Poiseuille vergelijking. Aangetoond is dat het beschikbare porie volume voor 

oplosmiddel transport sterk afneemt als het oplosmiddel een sterke sorptie met het PDMS 

vertoont, waardoor het PDMS een grote zwelling vertoont. Door gebruik te maken van deze 

vinding kan een eerste indicatie gegeven worden om het gedrag van gegrafte keramische 

membranen te voorspellen bij nanofiltratie van organische oplosmiddelen. 

In Hoofdstuk 4 wordt het filtratie gedrag beschreven van PDMS-gegrafte -alumina van 

verschillende oplosmiddel-deeltjes mengsels. In tegenstelling tot 100 % polymere PDMS 

membranen wordt een hogere retentie voor vaste deeltjes gevonden in apolarie 

oplosmiddelen, zoals tolueen, dan in polaire oplosmiddelen als isopropanol. Er wordt 

aangenomen dat het transport van vaste deeltjes door deze membranen bepaald wordt 

door de grootte van de deeltjes en is daarom gerelateerd met de deeltjes/porie diameter 

verhouding (dc/dp). De Ferry, Verniory en “Steric Hindrance Pore” (SHP) modellen worden 

toegepast om een uitspraak te doen over het retentie gedrag van de membranen. Voor de 

poriediameter is als eerste benadering aangenomen, dat deze gelijk is aan de poriediameter 

van een gegraft poreus -alumina systeem indien geen oplosmiddel aanwezig is. Als vaste 

stof deeltje zijn polystyreen (PS), polyethyleen glycol (PEG) en kleurstoffen (dyes) met 

verschillende molecuul groottes gebruikt. Voor de dyes in isopropanol komen de 

experimenteel gevonden retentie waarden overeen met waarden, zoals voorspeld door de 

drie retentie modellen, met gebruik making van de membraan porie diameter, bepaald in 

het geval dat er geen oplosmiddel aanwezig is. Dit is een aanwijzing dat bij polaire 

oplosmiddelen, zoals isopropanol, het PDMS niet significant zwelt als het ingesloten is in 

een star, keramisch, systeem. Op het ogenblik kunnen nog geen verdere conclusies uit deze 

resultaten getrokken worden omdat bij de analyse geen rekening is gehouden met 

interacties tussen deeltjes en oplosmiddel en tussen deeltjes en het gegrafte organisch 

molecuul. Deze interacties kunnen een eventuele bijdrage van membraan-oplosmiddel 

interacties aan de selectiviteit maskeren. 

De volgens de transportmodellen berekende retenties van dyes in tolueen zijn veel lager 

dan de experimenteel gevonden waarden, bij gebruik making van de membraan porie 

diameter, zoals bepaald bij afwezigheid van oplosmiddel. Dit is een aanwijzing dat hetzelfde 

membraan een kleinere (effectieve) poriediameter heeft in tolueen dan in isopropanol, wat 

veroorzaakt wordt door het sterker zwellen van PDMS in het apolaire oplosmiddel tolueen. 
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Voor PS deeltjes met dezelfde grootte als de dyes is de retentie in tolueen veel lager. Een 

interactie tussen de PS deeltjes en het oplosmiddel (tolueen) kan leiden tot een verhoogde 

flexibiliteit, wat resulteert in een afname van de retentie. Een PS deeltjesgrootte, welke 

gelijk is aan 0.7-0.9 van de hydrodynamische diameter is berekend, aannemende dat de 

retenties van de PS en dye deeltjes het Ferry model volgen en dat er bij de dyes geen 

aantoonbare interactie is met het oplosmiddel. 

De retentie van PEG in isopropanol als functie van dc/dp is lager dan die van dyes met 

identieke deeltjesgrootte dc. Dit kan verklaard worden door uit te gaan van een interactie 

tussen het oplosmiddel en het deeltje. De vorming van waterstof bruggen tussen de PEG 

deeltjes en isopropanol kan het PEG flexibeler maken. De berekende diameter van PEG, 

uitgaande van de experimentele retentie waardes, is 0.3-0.4 van de hydrodynamische 

diameter, aannemende dat de PEG retentie volgens het Ferry model verloopt. 

Bij een gegeven dc/dp waarde, is de retentie van PEG in tolueen hoger dan voor de dyes. Een 

sterke interactie tussen het apolaire oplosmiddel en de hydrofiele PEG deeltjes kunnen de 

oorzaak zijn voor de vorming van PEG clusters. De berekende diameter van deze PEG 

clusters is 1.6-2 maal die van een enkel PEG deeltje, aannemende dat de retentie van de 

PEG deeltjes volgens hetzelfde mechanisme verloopt als die van de dyes.  

In Hoofdstuk 5 wordt het graften van meso-poreuze -alumina membranen beschreven met 

een polydimethylsiloxaan (PDMS), welke een hydride als eindgroep heeft. Als ‘linker’ met 

het keramisch membraan wordt vinyltriethoxysilaan gebruikt. In enkele gevallen wordt 

tetrakis(vinyldimethylsiloxy)silaan als “coupling agent” gebruikt om de PDMS moleculen aan 

elkaar te binden. De mate van graften van deze organische moleculen aan -alumina 

poeders is bestudeerd met FTIR en TGA, waarbij is aangetoond dat het graften succesvol is 

verlopen. SEM-EDX en contacthoek bepalingen laten zien dat het graften in de gehele y-

alumina laag heeft plaatsgevonden en dat het membraan oppervlak hydrofoob is met een 

water contacthoek van 108 °. Door gebruik te maken van “coupling agents” wordt een 

membraan verkregen met een hogere selectiviteit voor nanofiltratie, maar dit gaat ten 

koste van de permeabiliteit van het oplosmiddel. 

In Hoofdstuk 6 wordt het graften van meso-poreuze -alumina membranen beschreven met 

polyethyleen glycol (PEG). Het graften van verschillende PEG moleculen is bestudeerd, 
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waarbij het molecuulgewicht zowel als het aantal alkoxide groepen en ureido groepen zijn 

gevarieerd. Met behulp van FTIR, TGA, 
29

Si-NMR and BET analyses aan gegrafte y-alumina 

deeltjes is aangetoond dat de mate van zelf-condensatie voor de meeste systemen identiek 

is en dat voor de ureido PEG moleculen het aantal Si-O-Al bindingen per PEG molecuul 

bepaal wordt door de ketenlengte. TGA toont aan dat een dichtere grafting structuur wordt 

verkregen bij een kleinere lengte van het te graften molecuul. Na het graften van het 

keramisch membraan heeft deze een hogere water contacthoek, maar het membraan is nog 

steeds hydrofiel. De permeabiliteit van het polaire ethanol is lager dan voor het apolaire 

hexaan, wat gecombineerd wordt met een hogere selectiviteit van het Sudan Black dye in 

ethanol dan in hexaan. Dit effect kan verklaard worden door verschillen in sorptie gedrag 

van de oplosmiddelen met het gegrafte PEG 

Tenslotte worden in het afsluitende hoofdstuk 7 de belangrijkste resultaten uit dit 

proefschrift samengevat en worden suggesties gegeven voor verder onderzoek op het 

gebied van keramische membranen, gemodificeerd met organische moleculen, welke 

toepassing kunnen vinden in oplosmiddel resistente nanofiltratie ORNF (Solvent Resistant 

Nanofiltration: SRNF). 
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La nanofiltration (NF) est un procédé applicable à la récupération des solvants organiques. 

Une membrane chimiquement stable est alors requise pour résister aux solvants 

organiques. Cette thèse traite de la préparation de membranes NF chimiquement stables 

par greffage de substrats céramiques mésoporeux et de l’étude de leurs propriétés de 

transport des solvants et des solutés.  

Dans le chapitre 1, l'état de l’art sur les techniques de greffage est présenté ainsi que celui 

sur le comportement au transport des membranes NF résistantes aux solvants. 

Dans les chapitres 2 et 6, des membranes d’ultrafiltration en alumine mésoporeuse sont 

greffées avec des groupements organiques hydrophobes ou hydrophiles. La diminution du 

diamètre des pores permet ainsi d’accéder à la nanofiltration. Au chapitre 5, un agent 

couplant est utilisé pour améliorer l’ancrage de ces groupements dans les pores. Ceci réduit 

cependant la perméabilité aux solvants, en comparaison aux mêmes membranes modifiées 

avec du polydiméthylsilane (PDMS) mais sans agent couplant. Dans le chapitre 6, la capacité 

de greffage de poudres d’alumine est mesurée pour des agents de greffage différant par : la 

masse moléculaire des chaines polyéthylènes glycol (PEG), la nature et le nombre de 

groupements alcoxy terminaux et la présence ou non de fonctions urée. Ces poudres sont 

analysés par thermogravimétrie, spectrométrie RMN du 29Si, spectroscopie FTIR, et 

mesures de surface spécifique. Les densités de greffage estimées varient avec la masse des 

greffons, la présence de fonctions urée, et le nombre de groupements alcoxy hydrolysables. 

Le comportement au transport de membranes greffées est étudié dans les chapitres 3, 4 et 

6. Dans le chapitre 3, pour des membranes greffées avec du PDMS, ce comportement est 

décrit en incorporant des termes relatifs à la sorption des solvants dans l'équation Hagen-

Poiseuille. Une membrane plus fermée est obtenue lorsque le solvant est fortement 

adsorbé dans la couche greffée. Dans le chapitre 4, la validité des modèles de rejet de soluté 

basés sur l'exclusion par la taille est discutée. Une forte influence du diamètre moléculaire 

du soluté et du rapport de ce diamètre avec celui des pores est observée, indiquant que le 

mécanisme d'exclusion par la taille est ici vérifié. Trois modèles de rejet sur la base 
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d'exclusion par la taille, à savoir Ferry, Verniory et SHP, sont testés pour prédire, en 

l’absence de solvant, le rejet des solutés à partir des diamètres de pore mesurés par 

physisorption de diazote. Pour des colorants et des solutés de type PEG dans du toluène, les 

données expérimentales sont bien au-dessus des valeurs prédites par ces modèles. Les 

résultats suggèrent que le diamètre de pore effectif en présence de solvant fortement 

adsorbé tel que le toluène est inférieur à celui en l'absence de solvant, une hypothèse étant 

qu'il n'y a pas d’interactions importantes entre solvant et soluté ou entre le soluté et la 

surface des pores. Cela peut expliquer un rejet plus élevé des solutés dans des solvants non 

polaires comme le toluène que dans des solvants polaires tels que l'isopropanol pour les 

membranes greffées avec du PDMS. Dans le chapitre 6, la perméabilité de membranes 

greffées avec des PEG est étudiée pour différents solvants (polaires ou non polaires). Une 

relation linéaire entre le flux et la pression transmembranaire est observée, comme pour les 

membranes greffées avec du PDMS. Cela indique l'absence de processus induit par des 

effets de cisaillement dans le fluide en écoulement et variant avec la pression 

transmembranaire appliquée. Pour le colorant Noir Soudan, une sélectivité supérieure est 

observée dans l'éthanol que dans l'hexane alors que pour la perméabilité inférieure de 

l'éthanol est inférieure à celle de l'hexane. Ici aussi, ces phénomènes sont expliqués par la 

différence de sorption des solvants dans la couche greffée. 

Les conclusions générales et perspectives de cette étude sont présentées dans le chapitre 7. 
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La nanofiltration (NF), procédé baromembranaire, est applicable pour la récupération des 

solvants. Pour cette application, une membrane chimiquement stable est nécessaire. Cette 

thèse traite de la préparation de membranes NF par greffage organique de substrats 

céramiques poreuses et de l'étude du transport dans ces membranes de solvants et de 

solutés. Une membrane céramique d’ultrafiltration en alumine gamma mésoporeuse est 

greffée avec des groupements organiques hydrophobes ou hydrophiles à de diminuer le 

diamètre des pores de la membrane et d’accéder ainsi à la nanofiltration. L’utilisation d'un 

agent couplant permet d’améliorer l’ancrage des groupements modificateurs de surface à 

l’intérieur des pores de la membrane céramique au détriment d’une  perméabilité aux 

solvants inférieure. Le comportement du transport des solvants dans les membranes 

céramiques greffées peut être décrit en incorporant des termes de sorption du solvant dans 

l'équation de Hagen- Poiseuille. Une membrane plus fermée est obtenue lorsque le solvant 

est fortement adsorbé dans la couche greffée. 
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