A. Shigematsu, T. Yamada, and H. Kitagawa, Wide Control of Proton Conductivity in Porous Coordination Polymers, J. Am. Chem. Soc, vol.133, pp.2034-2036, 2011.

W. E. Ayrton and J. Perry, Ice as an Electrolyte. -Second Communication, Proc. Phys. Soc. London, vol.2, pp.171-182, 1875.

M. Warshay and P. R. Prokopius, The fuel cell in space: yesterday, today and tomorrow, J. Power Sources, vol.29, pp.193-200, 1990.

P. Knauth, M. L. Di, and . Vona, Solid state proton conductors : properties and applications in fuel cells, 2012.

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev, vol.104, pp.4245-4270, 2004.

D. Umeyama, S. Horike, M. Inukai, T. Itakura, and S. Kitagawa, Inherent Proton Conduction in a 2D Coordination Framework, J. Am. Chem. Soc, vol.134, pp.12780-12785, 2012.

V. G. Ponomareva, K. A. Kovalenko, A. P. Chupakhin, D. N. Dybtsev, E. S. Shutova et al., Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation, J. Am. Chem. Soc, vol.134, pp.15640-15643, 2012.

S. S. Nagarkar, S. M. Unni, A. Sharma, S. Kurungot, and S. K. Ghosh, Two-in-One: Inherent Anhydrous and Water-Assisted High Proton Conduction in a 3D Metal-Organic Framework, Angew. Chemie Int. Ed, vol.53, pp.2638-2642, 2014.

C. Ponce-de-león, A. Frías-ferrer, J. González-garcía, D. A. Szánto, and F. C. Walsh, Redox flow cells for energy conversion, J. Power Sources, vol.160, pp.716-732, 2006.

P. Alotto, M. Guarnieri, and F. Moro, Redox flow batteries for the storage of renewable energy: A review, Renew. Sustain. Energy Rev, vol.29, pp.325-335, 2014.

M. Skyllas-kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, Progress in Flow Battery Research and Development, J. Electrochem. Soc, vol.158, p.55, 2011.

Z. He, Z. Li, Z. Zhou, F. Tu, Y. Jiang et al., Improved performance of vanadium redox battery using methylsulfonic acid solution as supporting electrolyte, J. Renew. Sustain. Energy, vol.5, p.23130, 2013.

E. Sum, M. Rychcik, and M. , Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, J. Power Sources, vol.16, pp.80082-80085, 1985.

H. Vafiadis and M. Skyllas-kazacos, Evaluation of membranes for the novel vanadium bromine redox flow cell, J. Memb. Sci, vol.279, pp.394-402, 2006.

C. Menictas and M. Skyllas-kazacos, Performance of vanadium-oxygen redox fuel cell, J. Appl. Electrochem, vol.41, pp.1223-1232, 2011.

H. Prifti, A. Parasuraman, S. Winardi, T. M. Lim, and M. Skyllas-kazacos, Membranes for Redox Flow Battery Applications, Membranes (Basel), vol.2, pp.275-306, 2012.

C. Bae and E. P. ,

R. A. Roberts,

. Dryfe, Chromium redox couples for application to redox flow batteries, Electrochim. Acta, vol.48, pp.279-287, 2002.

M. Skyllas-kazacos, G. Kazacos, G. Poon, and H. Verseema, Recent advances with UNSW vanadiumbased redox flow batteries, Int. J. Energy Res, vol.34, pp.182-189, 2010.

M. Skyllas-kazacos, Novel vanadium chloride/polyhalide redox flow battery, J. Power Sources, vol.124, pp.299-302, 2003.

F. Xue, Y. Wang, W. Wang, and X. Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery, Electrochim. Acta, vol.53, pp.6636-6642, 2008.

J. Xi, Z. Wu, X. Qiu, and L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery, J. Power Sources, vol.166, pp.531-536, 2007.

X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu et al., Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions, J. Memb. Sci, vol.341, pp.149-154, 2009.

Q. Luo, H. Zhang, J. Chen, P. Qian, and Y. Zhai, Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Memb. Sci, vol.311, pp.98-103, 2008.

J. Zeng, C. Jiang, Y. Wang, J. Chen, S. Zhu et al., Studies on polypyrrole modified nafion membrane for vanadium redox flow battery, vol.10, pp.372-375, 2008.

S. C. Chieng, M. Kazacos, and M. Skyllas-kazacos, Modification of Daramic, microporous separator, for redox flow battery applications, J. Memb. Sci, vol.75, pp.80008-80016, 1992.

X. Li, H. Zhang, Z. Mai, H. Zhang, and I. Vankelecom, Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci, vol.4, p.1147, 2011.

D. Chen, S. Wang, M. Xiao, and Y. Meng, Synthesis and characterization of novel sulfonated poly(arylene thioether) ionomers for vanadiumredox flow battery applications, Energy Environ. Sci, vol.3, pp.622-628, 2010.

Z. Xu, I. Michos, X. Wang, R. Yang, X. Gu et al., A zeolite ion exchange membrane for redox flow batteries, Chem. Commun, vol.50, p.2416, 2014.

A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick et al., Redox flow batteries: a review, J. Appl. Electrochem, vol.41, pp.1137-1164, 2011.

N. Yamazoe and Y. Shimizu, Humidity sensors: Principles and applications, Sensors and Actuators, vol.10, issue.86, pp.80055-80060, 1986.

E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments, Sensors Actuators B Chem, vol.23, pp.135-156, 1995.

Z. Chen and C. Lu, Humidity Sensors: A Review of Materials and Mechanisms, Sens. Lett, vol.3, pp.274-295, 2005.

H. Farahani, R. Wagiran, and M. Hamidon, Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review, Sensors, vol.14, pp.7881-7939, 2014.

S. Achmann, G. Hagen, J. Kita, I. Malkowsky, C. Kiener et al., Metal-Organic Frameworks for Sensing Applications in the Gas Phase, Sensors, vol.9, pp.1574-1589, 2009.

A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, and N. Osman, Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors, vol.14, pp.16343-16422, 2014.

A. Potier, D. J. Jones, J. Roziere, P. Colomban, A. Novak et al.,

A. Andersen, G. Clearfield, M. Alberti, G. Casciola, C. Pourcelly et al., Proton conductors, 1992.

G. Alberti, Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. III. Preparation and characterization of ?-zirconium sulfoaryl phosphonates, Solid State Ionics, vol.84, pp.83011-83017, 1996.

A. S. Amir-al-ahmed, S. M. Sultan, and . Zaidi, Sulfonated Poly(Ether Ether Ketone) (SPEEK): A Promising Membrane Material for Polymer Electrolyte Fuel Cell, in: Ion Exch, pp.437-451, 2012.

M. Bozkurt, K. D. Ise, W. H. Kreuer, G. Meyer, and . Wegner, Proton-conducting polymer electrolytes based on phosphoric acid, Solid State Ionics, vol.125, pp.225-233, 1999.

R. He, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Memb. Sci, vol.226, pp.169-184, 2003.

B. Bauer, D. J. Jones, J. Rozière, L. Tchicaya, G. Alberti et al., Electrochemical characterisation of sulfonated polyetherketone membranes, J. New Mater. Electrochem. Syst, vol.3, pp.93-98, 2000.

G. Alberti and M. Casciola, Solid state protonic conductors, present main applications and future prospects, Solid State Ionics, vol.145, pp.3-16, 2001.

A. Jankowska, A. Zalewska, A. Skalska, A. Ostrowski, and S. Kowalak, Proton conductivity of imidazole entrapped in microporous molecular sieves, Chem. Commun, vol.53, pp.2475-2478, 2017.

S. T. Günday, A. Bozkurt, W. H. Meyer, and G. Wegner, Effects of different acid functional groups on proton conductivity of polymer-1,2,4-triazole blends, J. Polym. Sci. Part B Polym. Phys, vol.44, pp.3315-3322, 2006.

J. Dailly and M. Marrony, BCY-based proton conducting ceramic cell: 1000 h of long term testing in fuel cell application, J. Power Sources, vol.240, pp.323-327, 2013.

Y. Yoo and N. Lim, Performance and stability of proton conducting solid oxide fuel cells based on yttriumdoped barium cerate-zirconate thin-film electrolyte, J. Power Sources, vol.229, pp.48-57, 2013.

A. Magrasó, Transport number measurements and fuel cell testing of undoped and Mo-substituted lanthanum tungstate, J. Power Sources, vol.240, pp.583-588, 2013.

C. Solís, V. B. Vert, M. Balaguer, S. Escolástico, S. Roitsch et al., Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells, ChemSusChem, vol.5, pp.2155-2158, 2012.

K. Kreuer, Proton Conductivity: Materials and Applications, vol.8, pp.610-641, 1996.

A. Donnadio, M. Nocchetti, F. Costantino, M. Taddei, M. Casciola et al., A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties, Inorg. Chem, vol.53, pp.13220-13226, 2014.

J. C. Badot, A. Fourrier-lamer, N. Baffier, and P. Colomban, Phase transitions and dielectric relaxations in superionic protonic conductor HUP (H3OUO2PO4.3H2O) in the broad frequency range, pp.10-12
URL : https://hal.archives-ouvertes.fr/jpa-00210559

. Hz, J. Phys, vol.48, pp.1325-1336, 1987.

S. Hara, S. Takano, and M. Miyayama, Proton-Conducting Properties and Microstructure of Hydrated Tin Dioxide and Hydrated Zirconia, J. Phys. Chem. B, vol.108, pp.5634-5639, 2004.

J. Bielecki, S. F. Parker, D. Ekanayake, S. M. Rahman, L. Börjesson et al., Short-range structure of the brownmillerite-type oxide Ba 2 In 2 O 5 and its hydrated proton-conducting form BaInO 3 H, J. Mater. Chem. A, vol.2, pp.16915-16924, 2014.

S. Sachdeva, J. A. Turner, J. L. Horan, and A. M. Herring, The Use of Heteropoly Acids in Proton Exchange Fuel Cells, Fuel Cells Hydrog. Storage, pp.115-168, 2011.

K. G. Frase, G. C. Farrington, and J. O. Thomas, Proton Transport in the ?/?" -Aluminas, Annu. Rev. Mater. Sci, vol.14, pp.279-295, 1984.

G. C. Farrington and J. L. Briant, Hydronium beta? alumina: A fast proton conductor, Mater. Res. Bull, vol.13, pp.763-773, 1978.

A. Donnadio, M. Nocchetti, F. Costantino, M. Taddei, M. Casciola et al., A layered mixed zirconium phosphate/phosphonate with exposed carboxylic and phosphonic groups: Xray powder structure and proton conductivity properties, Inorg. Chem, vol.53, pp.13220-13226, 2014.

W. Hogarth, S. Muir, A. Whittaker, J. Dinizdacosta, J. Drennan et al., Proton conduction mechanism and the stability of sol-gel titanium phosphates, Solid State Ionics, vol.177, pp.3389-3394, 2007.

E. Rodr??uez-castellón, J. Jiménez-jiménez, A. Jiménez-lópez, P. Maireles-torres, J. Ramos-barrado et al.,

J. Jones and . Rozière, Proton conductivity of mesoporous MCM type of zirconium and titanium phosphates, Solid State Ionics, vol.125, pp.407-410, 1999.

G. Alberti, M. Bracardi, and M. Casciola, Ionic conduction of ?-titanium phosphate in hydrogen and alkali metal salt forms?, Solid State Ionics, vol.7, pp.90055-90063, 1982.

G. Alberti and M. Casciola, Layered metalIV phosphonates, a large class of inorgano-organic proton conductors, Solid State Ionics, vol.97, pp.177-186, 1997.

G. Alberti, U. Costantino, M. Casciola, S. Ferroni, L. Massinelli et al., Preparation, characterization and proton conductivity of titanium phosphate sulfophenylphosphonate, Solid State Ionics, vol.145, pp.249-255, 2001.

G. Alberti, M. Casciola, S. Cavalaglio, and R. Vivani, Proton conductivity of mesoporous zirconium phosphate pyrophosphate, Solid State Ionics, vol.125, pp.91-97, 1999.

J. M. Troup and A. Clearfield, Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of .alpha.-zirconium phosphate, Inorg. Chem, vol.16, pp.3311-3314, 1977.

W. H. Hogarth, J. C. Diniz-da-costa, J. Drennan, G. Q. Max, and ). Lu, Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications, J. Mater. Chem, vol.15, pp.754-758, 2005.

A. E. Palmqvist, Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions, Curr. Opin. Colloid Interface Sci, vol.8, pp.145-155, 2003.

P. Knauth, M. L. Di, and . Vona, Proton Mobility in Hydrated Acidic Polymers: Consequences for Optimization of Proton Conductivity, ECS Trans, vol.50, pp.1037-1044, 2013.

J. W. Phair and S. P. Badwal, Review of proton conductors for hydrogen separation, Ionics (Kiel), vol.12, pp.103-115, 2006.

S. M. Haile, D. A. Boysen, C. R. Chisholm, and R. B. Merle, Solid acids as fuel cell electrolytes, Nature, vol.410, pp.910-913, 2001.

F. Zhang, L. Dong, J. Qin, W. Guan, J. Liu et al., Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks, J. Am. Chem. Soc, vol.139, pp.6183-6189, 2017.

J. Tritt-goc, I. Jankowska, K. Pogorzelec-glaser, R. Pankiewicz, and P. ?awniczak, Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties, and conductivity, Cellulose, vol.25, pp.281-291, 2018.

G. Scharfenberger, W. H. Meyer, G. Wegner, M. Schuster, K. Kreuer et al., Anhydrous Polymeric Proton Conductors Based on Imidazole Functionalized Polysiloxane, Fuel Cells, issue.6, pp.237-250, 2006.

S. R. Batten, N. R. Champness, X. Chen, J. Garcia-martinez, S. Kitagawa et al., Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013), vol.85, pp.1715-1724, 2013.

P. Z. Moghadam, A. Li, S. B. Wiggin, A. Tao, A. G. Maloney et al., Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future, Chem. Mater, vol.29, pp.2618-2625, 2017.

X. Meng, H. Wang, S. Song, and H. Zhang, Proton-conducting crystalline porous materials, Chem. Soc. Rev, vol.46, pp.464-480, 2017.

R. J. Kuppler, D. J. Timmons, Q. Fang, J. Li, T. A. Makal et al., Potential applications of metal-organic frameworks, Coord. Chem. Rev, vol.253, pp.3042-3066, 2009.

H. Furukawa, K. E. Cordova, M. O'keeffe, and O. M. Yaghi, The chemistry and applications of metalorganic frameworks, Science, p.341, 2013.

M. F. De-lange, K. J. Verouden, T. J. Vlugt, J. Gascon, and F. Kapteijn, Adsorption-Driven Heat Pumps: The Potential of Metal-Organic Frameworks, Chem. Rev, vol.115, pp.12205-12250, 2015.

N. C. Burtch, H. Jasuja, and K. S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks, Chem. Rev, vol.114, pp.10575-10612, 2014.

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable Metal-Organic Frameworks: Design, Synthesis, and Applications, vol.1704303, p.1704303, 2018.

T. Devic and C. Serre, High valence 3p and transition metal based MOFs, Chem. Soc. Rev, vol.43, pp.6097-6115, 2014.

G. Maurin, C. Serre, A. Cooper, and G. Férey, The new age of MOFs and of their porous-related solids, Chem. Soc. Rev, vol.46, pp.3104-3107, 2017.

A. Shigematsu, T. Yamada, and H. Kitagawa, Wide Control of Proton Conductivity in Porous Coordination Polymers, J. Am. Chem. Soc, vol.133, pp.2034-2036, 2011.

J. M. Taylor, K. W. Dawson, and G. K. Shimizu, A Water-Stable Metal-Organic Framework with Highly Acidic Pores for Proton-Conducting Applications, J. Am. Chem. Soc, vol.135, pp.1193-1196, 2013.

M. Bazaga-garcía, R. M. Colodrero, M. Papadaki, P. Garczarek, J. Zo? et al., Guest Molecule-Responsive Functional Calcium Phosphonate Frameworks for Tuned Proton Conductivity, J. Am. Chem. Soc, vol.136, pp.5731-5739, 2014.

P. Ramaswamy, N. E. Wong, B. S. Gelfand, and G. K. Shimizu, A Water Stable Magnesium MOF That Conducts Protons over 10 -2 S cm -1, J. Am. Chem. Soc, vol.137, pp.7640-7643, 2015.

W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo et al., Superprotonic Conductivity of a UiO-66 Framework Functionalized with Sulfonic Acid Groups by Facile Postsynthetic Oxidation, Angew. Chemie Int. Ed, vol.54, pp.5142-5146, 2015.

F. Yang, H. Huang, X. Wang, F. Li, Y. Gong et al., Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses, vol.15, pp.5827-5833, 2015.

D. D. Borges, S. Devautour-vinot, H. Jobic, J. Ollivier, F. Nouar et al., Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight, Angew. Chemie -Int. Ed, vol.55, pp.3919-3924, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341744

P. G. Mileo, S. Devautour-vinot, G. Mouchaham, F. Faucher, N. Guillou et al., Proton-Conducting Phenolate-Based Zr Metal-Organic Framework: A Joint ExperimentalModeling Investigation, J. Phys. Chem. C, vol.120, pp.24503-24510, 2016.

F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang et al., A flexible metalorganic framework with a high density of sulfonic acid sites for proton conduction, Nat. Energy, vol.2, pp.877-883, 2017.

Z. Hassanzadeh-fard, N. E. Wong, C. D. Malliakas, P. Ramaswamy, J. M. Taylor et al., Superprotonic Phase Change to a Robust Phosphonate Metal-Organic Framework, Chem. Mater, vol.30, pp.314-318, 2018.

J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski et al., Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework, Nat. Chem, vol.1, pp.705-710, 2009.

D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, and S. Kitagawa, Confinement of mobile histamine in coordination nanochannels for fast proton transfer, Angew. Chemie -Int. Ed, vol.50, pp.11706-11709, 2011.

D. N. Dybtsev, V. G. Ponomareva, S. B. Aliev, A. P. Chupakhin, M. R. Gallyamov et al., High Proton Conductivity and Spectroscopic Investigations of Metal-Organic Framework Materials Impregnated by Strong Acids, vol.6, pp.5161-5167, 2014.

S. Kim, B. Joarder, J. A. Hurd, J. Zhang, K. W. Dawson et al., Achieving Superprotonic Conduction in Metal-Organic Frameworks through Iterative Design Advances, J. Am. Chem. Soc, vol.140, pp.1077-1082, 2018.

T. N. Tu, N. Q. Phan, T. T. Vu, H. L. Nguyen, K. E. Cordova et al., High proton conductivity at low relative humidity in an anionic Fe-based metal-organic framework, J. Mater. Chem. A, vol.4, pp.3638-3641, 2016.

B. Joarder, J. Lin, Z. Romero, and G. K. Shimizu, Single Crystal Proton Conduction Study of a Metal Organic Framework of Modest Water Stability, J. Am. Chem. Soc, vol.139, pp.7176-7179, 2017.

S. M. Elahi, S. Chand, W. Deng, A. Pal, and M. C. Das, Polycarboxylate-Templated Coordination Polymers: Role of Templates for Superprotonic Conductivities of up to 10 ?1 S cm ?1, Angew. Chemie Int. Ed, vol.57, pp.6662-6666, 2018.

C. Dey, T. Kundu, and R. Banerjee, Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material, Chem. Commun, vol.48, pp.266-268, 2012.

S. S. Bao, K. Otsubo, J. M. Taylor, Z. Jiang, L. M. Zheng et al., Enhancing proton conduction in 2D Co-La coordination frameworks by solid-state phase transition, J. Am. Chem. Soc, vol.136, pp.9292-9295, 2014.

S. Horike, W. Chen, T. Itakura, M. Inukai, D. Umeyama et al., Order-to-disorder structural transformation of a coordination polymer and its influence on proton conduction, Chem. Commun, vol.50, pp.10241-10243, 2014.

J. M. Taylor, T. Komatsu, S. Dekura, K. Otsubo, M. Takata et al., The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal-Organic Framework, J. Am. Chem. Soc, vol.137, pp.11498-11506, 2015.

F. Paesani, Molecular mechanisms of water-mediated proton transport in MIL-53 metal-organic frameworks, J. Phys. Chem. C, vol.117, pp.19508-19516, 2013.

E. Eisbein, J. Joswig, and G. Seifert, Proton Conduction in a MIL-53(Al) Metal-Organic Framework: Confinement versus Host/Guest Interaction, J. Phys. Chem. C, vol.118, pp.13035-13041, 2014.

N. Planas, J. E. Mondloch, S. Tussupbayev, J. Borycz, L. Gagliardi et al., Defining the Proton Topology of the Zr 6 -Based Metal-Organic Framework NU-1000, J. Phys. Chem. Lett, vol.5, pp.3716-3723, 2014.

M. Liu, L. Chen, S. Lewis, S. Y. Chong, M. A. Little et al., Three-dimensional protonic conductivity in porous organic cage solids, Nat. Commun, vol.7, p.12750, 2016.

S. S. Park, A. J. Rieth, C. H. Hendon, and M. Dinc?, Selective Vapor Pressure Dependent Proton Transport in a Metal-Organic Framework with Two Distinct Hydrophilic Pores, J. Am. Chem. Soc, vol.140, pp.2016-2019, 2018.

E. Eisbein, J. Joswig, and G. Seifert, Enhanced proton-transfer activity in imidazole@MIL-53(Al) systems revealed by molecular-dynamics simulations, Microporous Mesoporous Mater, vol.216, pp.36-41, 2015.

T. Grancha, J. Ferrando-soria, J. Cano, P. Amorós, B. Seoane et al., Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF, Chem. Mater, vol.28, pp.4608-4615, 2016.

S. Biswas, J. Chakraborty, V. Singh, S. P. Parmar, N. Bera et al., Channel-Assisted Proton Conduction Behavior in Hydroxyl-Rich Lanthanide-Based Magnetic Metal-Organic Frameworks, Inorg. Chem, vol.56, pp.4956-4965, 2017.

S. Ling and B. Slater, Dynamic acidity in defective UiO-66, Chem. Sci, vol.7, pp.4706-4712, 2016.

S. Sanda, S. Biswas, and S. Konar, Study of Proton Conductivity of a 2D Flexible MOF and a 1D Coordination Polymer at Higher Temperature, Inorg. Chem, vol.54, pp.1218-1222, 2015.

D. Gui, X. Dai, Z. Tao, T. Zheng, X. Wang et al., Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity, J. Am. Chem. Soc, vol.140, pp.6146-6155, 2018.

P. Ramaswamy, N. E. Wong, and G. K. Shimizu, MOFs as proton conductors -challenges and opportunities, Chem. Soc. Rev, vol.43, pp.5913-5932, 2014.

A. Li, Q. Gao, J. Xu, and X. Bu, Proton-conductive metal-organic frameworks: Recent advances and perspectives, Coord. Chem. Rev, vol.344, pp.54-82, 2017.

H. Luo, L. Te-ren, W. H. Ning, S. X. Liu, J. L. Liu et al., Robust Crystalline Hybrid Solid with Multiple Channels Showing High Anhydrous Proton Conductivity and a Wide Performance Temperature Range, Adv. Mater, vol.28, pp.1663-1667, 2016.

S. Khatua, A. K. Bar, J. A. Sheikh, A. Clearfield, and S. Konar, Achieving Amphibious Superprotonic Conductivity in a Cu I Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation, Chem. -A Eur, J, vol.24, pp.872-880, 2018.

M. Inukai, S. Horike, T. Itakura, R. Shinozaki, N. Ogiwara et al., Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application, J. Am. Chem. Soc, vol.138, pp.8505-8511, 2016.

H. Chen, S. Han, R. Liu, T. Chen, K. Bi et al., High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metalorganic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion, J. Power Sources, vol.376, pp.168-176, 2018.

L. Chen, B. Wu, H. Zhao, L. Long, and L. Zheng, High temperature ionic conduction mediated by ionic liquid incorporated within the metal-organic framework UiO-67(Zr), Inorg. Chem. Commun, vol.81, pp.1-4, 2017.

D. Umeyama, S. Horike, M. Inukai, and S. Kitagawa, Integration of Intrinsic Proton Conduction and GuestAccessible Nanospace into a Coordination Polymer, J. Am. Chem. Soc, vol.135, pp.11345-11350, 2013.

Y. Wei, X. Hu, Z. Han, X. Dong, S. Zang et al., Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor, J. Am. Chem. Soc, vol.139, pp.3505-3512, 2017.

S. S. Nagarkar, S. Horike, T. Itakura, B. L. Ouay, A. Demessence et al., Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal, Angew. Chemie Int. Ed, vol.56, pp.4976-4981, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01522708

Y. Ye, X. Wu, Z. Yao, L. Wu, Z. Cai et al., Metal-organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125°C, J. Mater. Chem. A, vol.4, pp.4062-4070, 2016.

S. Horike, D. Umeyama, M. Inukai, T. Itakura, and S. Kitagawa, Coordination-Network-Based Ionic Plastic Crystal for Anhydrous Proton Conductivity, J. Am. Chem. Soc, vol.134, pp.7612-7615, 2012.

M. Inukai, S. Horike, W. Chen, D. Umeyama, T. Itakura et al., Template-directed proton conduction pathways in a coordination framework, J. Mater. Chem. A, vol.2, pp.10404-10409, 2014.

X. Sun, W. Deng, H. Chen, H. Han, J. M. Taylor et al., A Metal-Organic Framework Impregnated with a Binary Ionic Liquid for Safe Proton Conduction above 100 °C, Chem. -A Eur, J, vol.23, pp.1248-1252, 2017.

H. Luo, M. Wang, J. Zhang, Z. Tian, Y. Zou et al., Open-Framework Chalcogenide Showing Both Intrinsic Anhydrous and Water-Assisted High Proton Conductivity, ACS Appl. Mater. Interfaces, vol.10, pp.2619-2627, 2018.

X. Li, L. Dong, S. Li, G. Xu, J. Liu et al., Synergistic Conductivity Effect in a Proton Sources-Coupled Metal-Organic Framework, ACS Energy Lett, vol.2, pp.2313-2318, 2017.

Q. G. Zhai, C. Mao, X. Zhao, Q. Lin, F. Bu et al., Cooperative Crystallization of Heterometallic Indium-Chromium Metal-Organic Polyhedra and Their Fast Proton Conductivity, Angew. Chemie -Int. Ed, vol.54, pp.7886-7890, 2015.

N. T. Nguyen, H. Furukawa, F. Gándara, C. A. Trickett, H. M. Jeong et al., Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity, J. Am. Chem. Soc, vol.137, pp.15394-15397, 2015.

W. Chen, J. Wang, L. Zhao, W. Dai, Z. Li et al., Enhancing proton conductivity of a highly water stable 3D Sr(II) metal-organic framework by exposure to aqua-ammonia vapor, J. Alloys Compd, vol.750, pp.895-901, 2018.

X. Liang, B. Li, M. Wang, J. Wang, R. Liu et al., Effective Approach to Promoting the Proton Conductivity of Metal-Organic Frameworks by Exposure to Aqua-Ammonia Vapor, ACS Appl. Mater. Interfaces, vol.9, pp.25082-25086, 2017.

H. Wu, F. Yang, X. Lv, B. Wang, Y. Zhang et al., A stable porphyrinic metalorganic framework pore-functionalized by high-density carboxylic groups for proton conduction, J. Mater. Chem. A, vol.5, pp.14525-14529, 2017.

X. Wang, Y. Wang, M. A. Silver, D. Gui, Z. Bai et al., Superprotonic conduction through one-dimensional ordered alkali metal ion chains in a lanthanideorganic framework, Chem. Commun, vol.54, pp.4429-4432, 2018.

W. J. Phang, W. R. Lee, K. Yoo, D. W. Ryu, B. Kim et al., pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material, Angew. Chemie Int. Ed, vol.53, pp.8383-8387, 2014.

S. Kim, K. W. Dawson, B. S. Gelfand, J. M. Taylor, and G. K. Shimizu, Enhancing Proton Conduction in a Metal-Organic Framework by Isomorphous Ligand Replacement, J. Am. Chem. Soc, vol.135, pp.963-966, 2013.

P. G. Mileo, K. Adil, L. Davis, A. Cadiau, Y. Belmabkhout et al., Achieving Superprotonic Conduction with a 2D Fluorinated Metal-Organic Framework, J. Am. Chem. Soc, vol.140, pp.13156-13160, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913706

Y. Ye, W. Guo, L. Wang, Z. Li, Z. Song et al., Straightforward Loading of Imidazole Molecules into Metal-Organic Framework for High Proton Conduction, J. Am. Chem. Soc, vol.139, pp.15604-15607, 2017.

M. V. Nguyen, T. H. Lo, L. C. Luu, H. T. Nguyen, and T. N. Tu, Enhancing proton conductivity in a metal-organic framework at T > 80 °C by an anchoring strategy, J. Mater. Chem. A, vol.6, pp.1816-1821, 2018.

Y. H. Han, Y. Ye, C. Tian, Z. Zhang, S. W. Du et al., High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter, J. Mater. Chem. A, vol.4, pp.18742-18746, 2016.

S. Shalini, S. Aggarwal, S. K. Singh, M. Dutt, T. G. Ajithkumar et al., 10000-Fold Enhancement in Proton Conduction by Doping of Cesium Ions in a Proton-Conducting Zwitterionic Metal-Organic Framework, Eur. J. Inorg. Chem, pp.4382-4386, 2016.

X. Lai, Y. Liu, G. Yang, S. Liu, Z. Shi et al., Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal-organic framework, J. Mater. Chem. A, vol.5, pp.9611-9617, 2017.

L. Qin, Y. Z. Yu, P. Q. Liao, W. Xue, Z. Zheng et al., Molecular Water Pipe": A Giant Tubular Cluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation, Adv. Mater, vol.28, pp.10772-10779, 2016.

X. Zhao, C. Mao, X. Bu, and P. Feng, Direct Observation of Two Types of Proton Conduction Tunnels Coexisting in a New Porous Indium-Organic Framework, Chem. Mater, vol.26, pp.2492-2495, 2014.

M. Wei, J. Fu, Y. Wang, Y. Zhang, H. Zang et al., Highly tuneable proton-conducting coordination polymers derived from a sulfonate-based ligand, CrystEngComm, vol.19, pp.7050-7056, 2017.

Q. Gao, X. L. Wang, J. Xu, and X. H. Bu, The First Demonstration of the Gyroid in a Polyoxometalate-Based Open Framework with High Proton Conductivity, Chem. -A Eur, J, vol.22, pp.9082-9086, 2016.

H. Matsui and M. Tadokoro, Proton conduction through the nanochannel water in weak-acidic nanoporous crystals [Cu2(phen)2(AcO)2(H2O)2][Al(OH)6Mo6O18]M+(nH2O) (M+= H+, Li+, Na+, K+), Solid State Ionics, vol.285, pp.165-169, 2016.

X. Meng, M. Wei, H. Wang, H. Zang, and Z. Zhou, Multifunctional luminescent Zn( <scp>ii</scp> )-based metal-organic framework for high proton-conductivity and detection of Cr 3+ ions in the presence of mixed metal ions, Dalt. Trans, vol.47, pp.1383-1387, 2018.

L. Zou, S. Yao, J. Zhao, D. Li, G. Li et al., Enhancing Proton Conductivity in a 3D MetalOrganic Framework by the Cooperation of Guest [Me 2 NH 2 ] + Cations, Water Molecules, and Host Carboxylates, Cryst. Growth Des, vol.17, pp.3556-3561, 2017.

M. Sadakiyo, T. Yamada, and H. Kitagawa, Rational Designs for Highly Proton-Conductive Metal?Organic Frameworks, J. Am. Chem. Soc, vol.131, pp.9906-9907, 2009.

R. M. Colodrero, P. Olivera-pastor, E. R. Losilla, M. A. Aranda, L. Leon-reina et al., Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks, Dalt. Trans, p.4045, 2012.

K. Wang, X. Qi, Z. Wang, R. Wang, J. Sun et al., Situ Encapsulation of Imidazolium Proton Carriers in Anionic Open Frameworks Leads the Way to Proton-Conducting Materials, Eur. J. Inorg. Chem, pp.2295-2300, 2017.

H. Luo, M. Wang, S. Liu, C. Xue, Z. Tian et al., Proton Conductance of a Superior Water-Stable Metal-Organic Framework and Its Composite Membrane with Poly(vinylidene fluoride), Inorg. Chem, vol.56, pp.4169-4175, 2017.

J. M. Taylor, S. Dekura, R. Ikeda, and H. Kitagawa, Defect control to enhance proton conductivity in a metal-organic framework, Chem. Mater, vol.27, pp.2286-2289, 2015.

J. M. Taylor, K. W. Dawson, and G. K. Shimizu, A water-stable metal-organic framework with highly acidic pores for proton-conducting applications, J. Am. Chem. Soc, vol.135, pp.1193-1196, 2013.

N. E. Wong, P. Ramaswamy, A. S. Lee, B. S. Gelfand, K. J. Bladek et al., Tuning Intrinsic and Extrinsic Proton Conduction in Metal-Organic Frameworks by the Lanthanide Contraction, J. Am. Chem. Soc, vol.139, pp.14676-14683, 2017.

T. H. Lo, M. V. Nguyen, and T. N. Tu, An anchoring strategy leads to enhanced proton conductivity in a new metal-organic framework, Inorg. Chem. Front, vol.4, pp.1509-1516, 2017.

M. Bazaga-garcía, M. Papadaki, R. M. Colodrero, P. Olivera-pastor, E. R. Losilla et al., Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways, Chem. Mater, vol.27, pp.424-435, 2015.

Y. G. Huang, S. Q. Wu, W. H. Deng, G. Xu, F. L. Hu et al., Selective CO2Capture and High Proton Conductivity of a Functional Star-of-David Catenane Metal-Organic Framework, Adv. Mater, vol.29, pp.1-6, 2017.

J. Wang, Y. Wang, M. Wei, H. Tan, Y. Wang et al., Inorganic open framework based on lanthanide ions and polyoxometalates with high proton conductivity, Inorg. Chem. Front, vol.5, pp.1213-1217, 2018.

J. Miao, Y. Liu, Q. Tang, D. He, G. Yang et al., Proton conductive watery channels constructed by Anderson polyanions and lanthanide coordination cations, Dalt. Trans, vol.43, pp.14749-14755, 2014.

R. Liu, L. Zhao, W. Dai, C. Yang, X. Liang et al., A Comparative Investigation of Proton Conductivities for Two Metal?Organic Frameworks under Water and Aqua-Ammonia Vapors, Inorg. Chem, vol.57, pp.1474-1482, 2018.

S. Uchida, R. Hosono, R. Eguchi, R. Kawahara, R. Osuga et al., Proton conduction in alkali metal ion-exchanged porous ionic crystals, Phys. Chem. Chem. Phys, vol.19, pp.29077-29083, 2017.

G. Xu, K. Otsubo, T. Yamada, S. Sakaida, and H. Kitagawa, Superprotonic Conductivity in a Highly Oriented Crystalline Metal-Organic Framework Nanofilm, J. Am. Chem. Soc, vol.135, pp.7438-7441, 2013.

T. Panda, T. Kundu, and R. Banerjee, Self-assembled one dimensional functionalized metal-organic nanotubes (MONTs) for proton conduction, Chem. Commun, vol.48, pp.5464-5466, 2012.

K. Zhang, X. Xie, H. Li, J. Gao, L. Nie et al., Highly Water-Stable Lanthanide-Oxalate MOFs with Remarkable Proton Conductivity and Tunable Luminescence, vol.29, p.1701804, 2017.

T. Panda, T. Kundu, and R. Banerjee, Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks, Chem. Commun, vol.49, pp.6197-6199, 2013.

J. Shi, K. Wang, J. Li, H. Zeng, Q. Zhang et al., Exploration of new water stable proton-conducting materials in an amino acid-templated metal phosphate system, Dalt. Trans, vol.47, pp.654-658, 2018.

S. Khatua, A. Kumar, S. Bar, and . Konar, Tuning Proton Conductivity by Interstitial Guest Change in SizeAdjustable Nanopores of a Cu I -MOF: A Potential Platform for Versatile Proton Carriers, Chem. -A Eur, J, vol.22, pp.16277-16285, 2016.

M. Wei, P. Zhuang, H. Li, and Y. Yang, Crystal Structures and Conductivities of Two OrganicInorganic Hybrid Complexes Based on Poly-Keggin-Anion Chains, Eur. J. Inorg. Chem, pp.1473-1478, 2011.

Y. Gao, R. Broersen, W. Hageman, N. Yan, M. C. Mittelmeijer-hazeleger et al., High proton conductivity in cyanide-bridged metal-organic frameworks: understanding the role of water, J. Mater. Chem. A, vol.3, pp.22347-22352, 2015.

X. Wang, T. Qin, S. S. Bao, Y. C. Zhang, X. Shen et al., Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ions, J. Mater. Chem. A, vol.4, pp.16484-16489, 2016.

S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi et al., High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering, J. Am. Chem. Soc, vol.132, pp.6620-6621, 2010.

X. Wang, X. Duan, C. Kong, and M. Wei, A complex based on a decorated Keggin-type cluster from Cu(II) and 4,4?-dimethyl-2,2?-bipyridine: synthesis, structure and proton conductivity, J. Coord. Chem, vol.69, pp.779-787, 2016.

S. Sen, N. N. Nair, T. Yamada, H. Kitagawa, and P. K. Bharadwaj, High Proton Conductivity by a MetalOrganic Framework Incorporating Zn 8 O Clusters with Aligned Imidazolium Groups Decorating the Channels, J. Am. Chem. Soc, vol.134, pp.19432-19437, 2012.

T. Yamada and T. Nankawa, High Proton Conductivity of Zinc Oxalate Coordination Polymers Mediated by a Hydrogen Bond with Pyridinium, Inorg. Chem, vol.55, pp.8267-8270, 2016.

Q. Tang, Y. Liu, S. Liu, D. He, J. Miao et al., High Proton Conduction at above 100 °C Mediated by Hydrogen Bonding in a Lanthanide Metal-Organic Framework, J. Am. Chem. Soc, vol.136, pp.12444-12449, 2014.

T. He, Y. Z. Zhang, H. Wu, X. J. Kong, X. M. Liu et al., Functionalized Base-Stable Metal-Organic Frameworks for Selective CO2 Adsorption and Proton Conduction, ChemPhysChem, vol.18, pp.3245-3252, 2017.

X. Y. Dong, R. Wang, J. Li, S. Q. Zang, H. W. Hou et al., A tetranuclear Cu4(?3-OH)2-based metal-organic framework (MOF) with sulfonate-carboxylate ligands for proton conduction, Chem. Commun, vol.49, pp.10590-10592, 2013.

M. Mon, J. Vallejo, J. Pasán, O. Fabelo, C. Train et al., A novel oxalate-based three-dimensional coordination polymer showing magnetic ordering and high proton conductivity, Dalt. Trans, vol.46, pp.15130-15137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765691

J. Zhang, H. Bai, Q. Ren, H. Luo, X. Ren et al., Extra Water-and Acid-Stable MOF-801 with High Proton Conductivity and Its Composite Membrane for Proton-Exchange Membrane, ACS Appl. Mater. Interfaces, 2018.

H. R. Zhao, C. Xue, C. P. Li, K. M. Zhang, H. Luo et al., A Two-Dimensional Inorganic-Organic Hybrid Solid of Manganese(II) Hydrogenophosphate Showing High Proton Conductivity at Room Temperature, Inorg. Chem, vol.55, pp.8971-8975, 2016.

R. M. Colodrero, P. Olivera-pastor, E. R. Losilla, D. Hernández-alonso, M. A. Aranda et al., High proton conductivity in a flexible, cross-linked, ultramicroporous magnesium tetraphosphonate hybrid framework, Inorg. Chem, vol.51, pp.7689-7698, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01830105

Z. Sun, S. Yu, L. Zhao, J. Wang, Z. Li et al., A Highly Stable Two-Dimensional Copper(II) Organic Framework for Proton Conduction and Ammonia Impedance Sensing, Chem. -A Eur, J, vol.24, pp.10829-10839, 2018.

J. Li, X. Cao, Y. Wang, S. Zhang, D. Du et al., The Enhancement on Proton Conductivity of Stable Polyoxometalate-Based Coordination Polymers by the Synergistic Effect of MultiProton Units, Chem. -A Eur, J, vol.22, pp.9299-9304, 2016.

R. Li, S. Wang, X. Chen, J. Lu, Z. Fu et al., Highly Anisotropic and Water Molecule-Dependent Proton Conductivity in a 2D Homochiral Copper(II) Metal-Organic Framework, Chem. Mater, vol.29, pp.2321-2331, 2017.

W. Xing, H. Li, X. Dong, and S. Zang, Robust multifunctional Zr-based metal-organic polyhedra for high proton conductivity and selective CO 2 capture, J. Mater. Chem. A, vol.6, 2018.

T. Yamada, M. Sadakiyo, and H. Kitagawa, High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate, J. Am. Chem. Soc, vol.131, pp.3144-3145, 2009.

S. Liu, C. Cao, F. Yang, M. Yu, S. Yao et al., High Proton Conduction in Two Co II and Mn II Anionic Metal-Organic Frameworks Derived from 1,3,5-Benzenetricarboxylic Acid, Cryst. Growth Des, vol.16, pp.6776-6780, 2016.

L. J. Zhou, W. H. Deng, Y. L. Wang, G. Xu, S. G. Yin et al., Lanthanide-Potassium Biphenyl-3,3?-disulfonyl-4,4?-dicarboxylate Frameworks: Gas Sorption, Proton Conductivity, and Luminescent Sensing of Metal Ions, Inorg. Chem, vol.55, pp.6271-6277, 2016.

E. Pardo, C. Train, G. Gontard, K. Boubekeur, O. Fabelo et al., High proton conduction in a chiral ferromagnetic metal-organic quartz-like framework, J. Am. Chem. Soc, vol.133, pp.15328-15331, 2011.

B. Liu, H. Zang, H. Tan, Y. Wang, and Y. Li, Engineering the proton conductivity of metalorganic hybrid materials by varying the coordination mode of the ligand, CrystEngComm, vol.18, pp.3300-3305, 2016.

S. S. Bao, N. Z. Li, J. M. Taylor, Y. Shen, H. Kitagawa et al., Co-Ca Phosphonate Showing Humidity-Sensitive Single Crystal to Single Crystal Structural Transformation and Tunable Proton Conduction Properties, Chem. Mater, vol.27, pp.8116-8125, 2015.

M. Taddei, A. Donnadio, F. Costantino, R. Vivani, and M. Casciola, Synthesis, crystal structure, and proton conductivity of one-dimensional, two-dimensional, and three-dimensional zirconium phosphonates based on glyphosate and glyphosine, Inorg. Chem, vol.52, pp.12131-12139, 2013.

S. Bhattacharya, A. J. Bhattacharyya, and S. Natarajan, High proton mobility, solvent induced single crystal to single crystal structural transformation, and related studies on a family of compounds formed from Mn<inf>3</inf> Oxo-clusters, Inorg. Chem, vol.54, pp.1254-1271, 2015.

X. Meng, S. Y. Song, X. Z. Song, M. Zhu, S. N. Zhao et al., A tetranuclear copper cluster-based MOF with sulfonate-carboxylate ligands exhibiting high proton conduction properties, Chem. Commun, vol.51, pp.8150-8152, 2015.

W. Wang, Q. Gao, A. Li, Y. Jia, S. Zhang et al., A coordination compound featuring a supramolecular hydrogen-bonding network for proton conduction, Chinese Chem. Lett, vol.29, pp.336-338, 2018.

S. Pili, S. P. Argent, C. G. Morris, P. Rought, V. Garc??a-sakai et al., Schr??der, Proton Conduction in a PhosphonateBased Metal-Organic Framework Mediated by Intrinsic "free Diffusion inside a Sphere, J. Am. Chem. Soc, vol.138, pp.6352-6355, 2016.

D. Matoga, M. Oszajca, and M. Molenda, Ground to conduct: mechanochemical synthesis of a metalorganic framework with high proton conductivity, Chem. Commun, vol.51, pp.7637-7640, 2015.

P. Ramaswamy, R. Matsuda, W. Kosaka, G. Akiyama, H. J. Jeon et al., Highly proton conductive nanoporous coordination polymers with sulfonic acid groups on the pore surface, Chem. Commun, vol.50, pp.1144-1146, 2014.

R. M. Colodrero, K. E. Papathanasiou, N. Stavgianoudaki, P. Olivera-pastor, E. R. Losilla et al., Multifunctional luminescent and proton-conducting lanthanide carboxyphosphonate open-framework hybrids exhibiting crystalline-to-amorphous-to-crystalline transformations, Chem. Mater, vol.24, pp.3780-3792, 2012.

R. A. Agarwal, High proton-conduction in a three-dimensional microporous coordination polymer of Mn(II), Inorg. Chem. Commun, vol.70, pp.115-117, 2016.

S. Bhattacharya, M. Gnanavel, A. J. Bhattacharyya, and S. Natarajan, Organization of Mn-clusters in pcu and bcu networks: Synthesis, structure, and properties, vol.14, pp.310-325, 2014.

X. Dong, X. Hu, H. Yao, S. Zang, H. Hou et al., Organic Frameworks Based on 2,2?,6,6?-Tetracarboxybiphenyl for Proton Conduction, Alkaline Earth Metal, vol.53, pp.12050-12057, 2014.

G. J. Cao, J. D. Liu, T. T. Zhuang, X. H. Cai, and S. T. Zheng, A polyoxometalate-organic supramolecular nanotube with high chemical stability and proton-conducting properties, Chem. Commun, vol.51, pp.2048-2051, 2015.

M. Sadakiyo, H. Okawa, A. Shigematsu, M. Ohba, T. Yamada et al., Promotion of lowhumidity proton conduction by controlling hydrophilicity in layered metal-organic frameworks, J. Am. Chem. Soc, vol.134, pp.5472-5475, 2012.

S. Begum, Z. Wang, A. Donnadio, F. Costantino, M. Casciola et al., Water-Mediated proton conduction in a robust triazolyl phosphonate metal-organic framework with hydrophilic nanochannels, Chem. -A Eur, J, vol.20, pp.8862-8866, 2014.

S. Yang, P. Sun, Y. Yuan, C. Zhang, and Q. Wang, High proton conduction behavior in 12-connected 3D porous lanthanide-organic frameworks and their polymer composites, CrystEngComm, vol.20, pp.3066-3073, 2018.

X. Dong, R. Wang, J. Wang, S. Zang, and T. C. Mak, Highly selective Fe 3+ sensing and proton conduction in a water-stable sulfonate-carboxylate Tb-organic-framework, J. Mater. Chem. A, vol.3, pp.641-647, 2015.

M. Wei, X. Wang, and X. Duan, Crystal Structures and Proton Conductivities of a MOF and Two POM-MOF Composites Based on Cu II Ions and 2,2?-Bipyridyl-3,3?-dicarboxylic Acid, Chem. -A Eur. J, vol.19, pp.1607-1616, 2013.

S. S. Bao, Y. X. Wu, N. Z. Li, and L. M. Zheng, Proton Conductivities Manipulated by the Counter-Anions in 2D Co-Ca Coordination Frameworks, Eur. J. Inorg. Chem, pp.4476-4482, 2016.

R. M. Colodrero, G. K. Angeli, M. Bazaga-garcia, P. Olivera-pastor, D. Villemin et al., Structural variability in multifunctional metal xylenediaminetetraphosphonate hybrids, Inorg. Chem, vol.52, pp.8770-8783, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01830082

C. Kong, X. Duan, J. Lai, and M. Wei, Syntheses, Structures and Proton Conductivities of Two Complexes Based on Decorated Keggin-Type Clusters, J. Clust. Sci, vol.28, pp.1407-1420, 2017.

G. Zhang and H. Fei, Missing metal-linker connectivities in a 3-D robust sulfonate-based metal-organic framework for enhanced proton conductivity, Chem. Commun, vol.53, pp.4156-4159, 2017.

A. Mallick, T. Kundu, and R. Banerjee, Correlation between coordinated water content and proton conductivity in Ca-BTC-based metal-organic frameworks, Chem. Commun, vol.48, pp.8829-8831, 2012.

M. Sadakiyo, T. Yamada, and H. Kitagawa, Proton Conductivity Control by Ion Substitution in a Highly Proton-Conductive Metal-Organic Framework, J. Am. Chem. Soc, vol.136, pp.13166-13169, 2014.

S. Goswami, S. Biswas, and S. Konar, Concomitant spin-canted antiferromagnetic ordering and proton conduction in homometallic and homoleptic coordination polymers, Dalt. Trans, vol.44, pp.3949-3953, 2015.

M. Wei, L. Chen, and X. Duan, A porous Cu(II)-MOF containing, vol.67, pp.2809-2819, 2014.

F. Costantino, A. Donnadio, and M. Casciola, Survey on the phase transitions and their effect on the ionexchange and on the proton-conduction properties of a flexible and robust Zr phosphonate coordination polymer, Inorg. Chem, vol.51, pp.6992-7000, 2012.

H. O-?-kawa, A. Shigematsu, M. Sadakiyo, T. Miyagawa, K. Yoneda et al., -hydroxypropyl)ammonium) Exhibiting Coexistent Ferromagnetism and Proton Conduction, J. Am. Chem. Soc, vol.131, issue.3, pp.13516-13522, 2009.

J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan et al., Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal?Organic Framework, J. Am. Chem. Soc, vol.132, pp.14055-14057, 2010.

R. M. Colodrero, K. E. Papathanasiou, N. Stavgianoudaki, P. Olivera-pastor, E. R. Losilla et al., Multifunctional Luminescent and Proton-Conducting Lanthanide Ti7(HPO4)6(PO4)6.C3N2H12, Chem. Mater, vol.14, pp.1555-1563, 2002.

C. Serre, F. Taulelle, and G. Ferey, Rational design of porous titanophosphates, Chem. Commun, p.2755, 2003.

K. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology, vol.104, pp.4637-4678, 2004.

W. L. Jorgensen, Monte carlo results for hydrogen bond distributions in liquid water11Quantum and statistical mechanical studies of liquids, 9, Chem. Phys. Lett, vol.70, pp.85344-85353, 1980.

J. D. Smith, Energetics of Hydrogen Bond Network Rearrangements in Liquid Water, Science, vol.306, pp.851-853, 2004.

L. H. Lee, Fundamentals of Adhesion, 1991.

T. Steinel, J. B. Asbury, J. Zheng, and M. D. Fayer, Watching Hydrogen Bonds Break: A Transient Absorption Study of Water, J. Phys. Chem. A, vol.108, pp.10957-10964, 2004.

V. P. Voloshin and Y. I. Naberukhin, Proper and improper hydrogen bonds in liquid water, J. Struct. Chem, vol.57, pp.497-506, 2016.

K. Kreuer, On the complexity of proton conduction phenomena, Solid State Ionics, pp.149-160, 2000.

K. Kreuer, A. Rabenau, W. Weppner, and V. Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors, Angew. Chemie Int. Ed. English, vol.21, pp.208-209, 1982.

C. J. De-grotthuss, Sur la Décomposition de l'Eau et des Corps qu'Elle Tient en Dissolution à l'Aide de l'Electricité Galvanique, Ann. Chim. Phys, vol.58, pp.54-74, 1806.

T. Ueki and M. Watanabe, Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities, vol.41, pp.3739-3749, 2008.

T. Ogawa, T. Aonuma, T. Tamaki, H. Ohashi, H. Ushiyama et al., The proton conduction mechanism in a material consisting of packed acids, Chem. Sci, vol.5, pp.4878-4887, 2014.

Y. S. Tse, C. Knight, and G. A. Voth, An analysis of hydrated proton diffusion in ab initio molecular dynamics, J. Chem. Phys, vol.142, p.14104, 2015.

M. E. Tuckerman, On the Quantum Nature of the Shared Proton in Hydrogen Bonds, Science, vol.275, pp.817-820, 1997.

N. Agmon, The Grotthuss mechanism, Chem. Phys. Lett, vol.244, issue.95, p.905, 1995.

O. Markovitch, H. Chen, S. Izvekov, F. Paesani, G. A. Voth et al., Special pair dance and partner selection: Elementary steps in proton transport in liquid water, J. Phys. Chem. B, vol.112, pp.9456-9466, 2008.

D. Marx, Proton transfer 200 years after Von Grotthuss: Insights from ab initio simulations, pp.1849-1870, 2006.

W. Tatara, M. J. Wójcik, J. Lindgren, and M. Probst, Theoretical Study of Structures, Energies, and Vibrational Spectra of the Imidazole?Imidazolium System, J. Phys. Chem. A, vol.107, pp.7827-7831, 2003.

F. Toda, K. Tanaka, C. Foces-foces, A. L. Llamas-saiz, H. Limbach et al.,

C. Claramunt, J. López, and . Elguero, Intermolecular proton transfer in host-guest crystals: the case of pyrazole included in 1,1-di(2,4-dimethylphenyl)but-2-yn-1-ol, an X-ray and solid-state 13 C/ 15 N NMR study, J. Chem. Soc., Chem. Commun, pp.1139-1142, 1993.

L. Vil?iauskas, M. E. Tuckerman, G. Bester, S. J. Paddison, and K. Kreuer, The mechanism of proton conduction in phosphoric acid, Nat. Chem, vol.4, pp.461-466, 2012.

L. Vilciauskas, S. J. Paddison, and K. Kreuer, Ab Initio Modeling of Proton Transfer in Phosphoric Acid Clusters, J. Phys. Chem. A, vol.113, pp.9193-9201, 2009.

K. D. Kreuer, Perovskite Oxide for Solid Oxide Fuel Cells, 2009.

D. B. Boman, D. C. Hoysall, D. G. Pahinkar, M. J. Ponkala, and S. Garimella, Screening of working pairs for adsorption heat pumps based on thermodynamic and transport characteristics, Appl. Therm. Eng, vol.123, pp.422-434, 2017.

L. F. Cabeza, A. Solé, and C. Barreneche, Review on sorption materials and technologies for heat pumps and thermal energy storage, Renew. Energy, vol.110, pp.3-39, 2017.

F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications, Appl. Therm. Eng, vol.18, pp.715-729, 1998.

H. Demir, M. Mobedi, and S. Ülkü, A review on adsorption heat pump: Problems and solutions, Renew. Sustain. Energy Rev, vol.12, pp.2381-2403, 2008.

F. Jeremias, D. Fröhlich, C. Janiak, and S. K. Henninger, Water and methanol adsorption on MOFs for cycling heat transformation processes, New J. Chem, vol.38, p.1846, 2014.

M. F. De-lange, B. L. Van-velzen, C. P. Ottevanger, K. J. Verouden, L. C. Lin et al., Metal-Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids, Langmuir, vol.31, pp.12783-12796, 2015.

D. Saha and S. Deng, Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177, J. Colloid Interface Sci, vol.348, pp.615-620, 2010.

I. Spanopoulos, P. Xydias, C. D. Malliakas, and P. N. Trikalitis, A Straight Forward Route for the Development of Metal-Organic Frameworks Functionalized with Aromatic ?OH Groups: Synthesis, Characterization, and Gas, Inorg. Chem, vol.52, pp.855-862, 2013.

C. Petit, S. Wrabetz, and T. J. Bandosz, Microcalorimetric insight into the analysis of the reactive adsorption of ammonia on Cu-MOF and its composite with graphite oxide, J. Mater. Chem, vol.22, p.21443, 2012.

D. Fröhlich, E. Pantatosaki, P. D. Kolokathis, K. Markey, H. Reinsch et al., Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure-property relationships, J. Mater. Chem. A, vol.4, pp.11859-11869, 2016.

Y. I. Aristov, Challenging offers of material science for adsorption heat transformation: A review, Appl. Therm. Eng, vol.50, pp.1610-1618, 2013.

F. Jeremias, A. Khutia, S. K. Henninger, and C. Janiak, MIL-100(Al, Fe) as water adsorbents for heat transformation purposes-a promising application, J. Mater. Chem, vol.22, pp.10148-10151, 2012.

L. W. Wang, R. Z. Wang, and R. G. Oliveira, A review on adsorption working pairs for refrigeration, Renew. Sustain. Energy Rev, vol.13, pp.518-534, 2009.

Y. Tashiro, M. Kubo, Y. Katsumi, T. Meguro, and K. Komeya, Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system, J. Mater. Sci, vol.39, pp.1315-1319, 2004.

P. Payra, P. K. Dutta, R. Singh, R. F. Lobo, C. R. Catlow et al., , 2003.

T. F. Degnan, Applications of zeolites in petroleum refing, Top. Catal, vol.13, pp.349-356, 2000.

Z. Tamainot-telto, S. J. Metcalf, R. E. Critoph, Y. Zhong, and R. Thorpe, Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping, Int. J. Refrig, vol.32, pp.1212-1229, 2009.

R. Z. Wang, J. P. Jia, Y. H. Zhu, Y. Teng, J. Y. Wu et al., Study on a New Solid Absorption Refrigeration Pair: Active Carbon Fiber-Methanol, J. Sol. Energy Eng, vol.119, p.214, 1997.

Y. Hamamoto, K. C. Alam, B. B. Saha, S. Koyama, A. Akisawa et al., Study on adsorption refrigeration cycle utilizing activated carbon fibers. Part 1. Adsorption characteristics, Int. J. Refrig, vol.29, pp.305-314, 2006.

I. I. El-sharkawy, K. Kuwahara, B. B. Saha, S. Koyama, and K. C. Ng, Experimental investigation of activated carbon fibers/ethanol pairs for adsorption cooling system application, Appl. Therm. Eng, vol.26, pp.859-865, 2006.

I. I. El-sharkawy, B. B. Saha, S. Koyama, J. He, K. C. Ng et al., Experimental investigation on activated carbon-ethanol pair for solar powered adsorption cooling applications, Int. J. Refrig, vol.31, pp.1407-1413, 2008.

H. Reinsch, M. A. Van-der-veen, B. Gil, B. Marszalek, T. Verbiest et al., Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs, vol.25, pp.17-26, 2013.

D. Fröhlich, S. K. Henninger, and C. Janiak, Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H, Dalt. Trans, vol.43, pp.15300-15304, 2014.

A. Cadiau, J. S. Lee, D. Borges, P. Fabry, T. Devic et al., Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation, Adv. Mater, vol.27, pp.4775-4780, 2015.

B. Bozbiyik, T. Van-assche, J. Lannoeye, D. E. De-vos, G. V. Baron et al., Stepped water isotherm and breakthrough curves on aluminium fumarate metal-organic framework: experimental and modelling study, Adsorption, vol.23, pp.185-192, 2017.

E. Elsayed, R. Al-dadah, S. Mahmoud, A. Elsayed, and P. A. Anderson, Aluminium fumarate and CPO-27(Ni) MOFs: Characterization and thermodynamic analysis for adsorption heat pump applications, Appl. Therm. Eng, vol.99, pp.802-812, 2016.

E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. Van-de-voorde et al., The Structure of the Aluminum Fumarate Metal-Organic Framework A520, Angew. Chemie Int. Ed, vol.54, pp.3664-3668, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01840200

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration, Chem. -A Eur, J, vol.10, pp.1373-1382, 2004.

F. Jeremias, D. Fröhlich, C. Janiak, and S. K. Henninger, Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF, vol.4, pp.24073-24082, 2014.

B. Saccoccia, A. M. Bohnsack, N. W. Waggoner, K. H. Cho, J. S. Lee et al., Separation of P-Divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis, Angew. Chemie -Int. Ed, vol.54, pp.5394-5398, 2015.

S. Wang, J. S. Lee, M. Wahiduzzaman, J. Park, M. Muschi et al., A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration, Nat. Energy, pp.1-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01931221

M. Dan-hardi, C. Serre, T. Frot, L. Rozes, G. Maurin et al., A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate, J. Am. Chem. Soc, vol.131, pp.10857-10859, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00474847

M. Sohail, Y. Yun, E. Lee, S. K. Kim, K. Cho et al., Synthesis of Highly Crystalline NH 2 -MIL-125 (Ti) with S-Shaped Water Isotherms for Adsorption Heat Transformation, Cryst. Growth Des, vol.17, pp.1208-1213, 2017.

F. Jeremias, V. Lozan, S. K. Henninger, and C. Janiak, Programming MOFs for water sorption: aminofunctionalized MIL-125 and UiO-66 for heat transformation and heat storage applications, Dalt. Trans, vol.42, p.15967, 2013.

P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi et al., High Uptakes of CO 2 and CH 4 in Mesoporous -100 and MIL-101, Langmuir, vol.24, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01373900

P. Horcajada, S. Surblé, C. Serre, D. Hong, Y. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun, vol.100, pp.2820-2822, 2007.

A. Vimont, J. Goupil, J. Lavalley, M. Daturi, S. Surblé et al., Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate, J. Am. Chem. Soc, vol.128, pp.3218-3227, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022796

H. Furukawa, F. Gándara, Y. Zhang, J. Jiang, W. L. Queen et al., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials, J. Am. Chem. Soc, vol.136, pp.4369-4381, 2014.

J. Choi, L. Lin, and J. C. Grossman, Role of Structural Defects in the Water Adsorption Properties of MOF-801, J. Phys. Chem. C, vol.122, pp.5545-5552, 2018.

D. Borges, P. Normand, A. Permiakova, R. Babarao, N. Heymans et al., Gas Adsorption and Separation by the Al-Based Metal-Organic Framework MIL-160, J. Phys. Chem. C, vol.121, pp.26822-26832, 2017.

J. S. Lee, J. W. Yoon, P. G. Mileo, K. H. Cho, J. Park et al., The porous metal-organic framework CUK-1 for heat allocation: toward green applications of natural refrigerant water, J. Mater. Chem. A, 2018.

L. G. Gordeeva, M. V. Solovyeva, and Y. I. Aristov, NH2 -MIL-125 as a promising material for adsorptive heat transformation and storage, Energy, vol.100, pp.18-24, 2016.

M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, 2010.

T. Vlugt, J. Van-der-eerden, and M. Dijkstra, Introduction to Molecular Simulation and Statistical Thermodynamics, Computer (Long. Beach. Calif), 2009.

K. Sharp and F. Matschinsky, Translation of Ludwig Boltzmann's Paper "On the Relationship between the Second Fundamental Theorem of the Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for Thermal Equilibrium, Entropy [Internet], vol.17, pp.1971-2009, 2015.

D. Frenkel, B. Smit, and M. A. Ratner, Understanding Molecular Simulation: From Algorithms to Applications, Phys. Today, vol.50, pp.66-66, 1997.

J. I. Siepmann and D. Frenkel, Configurational bias Monte Carlo: a new sampling scheme for flexible chains, Mol. Phys. [Internet], vol.75, pp.59-70, 1992.

B. Widom, Some Topics in the Theory of Fluids, J. Chem. Phys. [Internet], vol.39, pp.2808-2812, 1963.

P. Ungerer, B. Tavitian, and A. Boutin, Applications of Molecular Simulation in the Oil and Gas: Monte Carlo Methods. Paris: Editions Technip, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00107880

O. J. Hehmeyer, G. Arya, and A. Z. Panagiotopoulos, Monte Carlo simulation and molecular theory of tethered polyelectrolytes, J. Chem. Phys. [Internet], vol.126, p.244902, 2007.

Q. Yang, A. D. Wiersum, and H. Jobic, Understanding the Thermodynamic and Kinetic Behavior of the CO 2 /CH 4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach, J. Phys. Chem. C [Internet], vol.115, pp.13768-13774, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607895

J. Rouquerol, F. Rouquerol, and K. Sing, Adsorption by Powders and Porous Solids, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01915758

G. Maurin, P. L. Llewellyn, and R. G. Bell, Adsorption Mechanism of Carbon Dioxide in Faujasites: Grand Canonical Monte Carlo Simulations and Microcalorimetry Measurements, J. Phys. Chem. B [Internet], vol.109, pp.16084-16091, 2005.

G. Maurin, S. Bourrelly, and P. L. Llewellyn, Simulation of the adsorption properties of CH4 in faujasites up to high pressure: Comparison with microcalorimetry, Microporous Mesoporous Mater, vol.89, pp.96-102, 2006.

P. L. Llewellyn and G. Maurin, Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials, vol.8, pp.283-302, 2005.

L. Verlet, Computer, Experiments" on Classical Fluids. I. Thermodynamical Properties of LennardJones Molecules. Phys. Rev. [Internet], vol.159, pp.98-103, 1967.

D. Levesque and L. Verlet, Molecular dynamics and time reversibility, J. Stat. Phys. [Internet], vol.72, pp.519-537, 1993.

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 1988.

P. Schofield, Computer simulation studies of the liquid state, Comput. Phys. Commun. [Internet], vol.5, pp.17-23, 1973.

D. Beeman, Some multistep methods for use in molecular dynamics calculations, J. Comput. Phys. [Internet], vol.20, pp.130-139, 1976.

W. C. Swope, H. C. Andersen, and P. H. Berens, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters, J. Chem. Phys. [Internet], vol.76, pp.637-649, 1982.

J. Sanchez, Molecular simulations in microporous materials: adsorption and separation. University Pablo de Olavide, 2010.

J. Ryckaert, G. Ciccotti, and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys. [Internet], vol.23, pp.327-341, 1977.

H. C. Andersen, Rattle: A "velocity" version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys. [Internet], vol.52, pp.24-34, 1983.

K. Hermansson, G. C. Lie, and E. Clementi, On velocity scaling in molecular dynamics simulations, J. Comput. Chem. [Internet], vol.9, pp.200-203, 1988.

H. C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. [Internet], vol.72, pp.2384-2393, 1980.

H. Berendsen, J. Postma, and W. F. Van-gunsteren, Molecular dynamics with coupling to an external bath, J. Chem. Phys. [Internet], vol.81, pp.3684-3690, 1984.

P. Turq, F. Lantelme, and H. L. Friedman, Brownian dynamics: Its application to ionic solutions, J. Chem. Phys. [Internet], vol.66, pp.3039-3044, 1977.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys, vol.52, pp.255-268, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. [Internet], vol.81, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A [Internet], vol.31, pp.1695-1697, 1985.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. [Internet], vol.52, pp.7182-7190, 1981.

H. Jobic and D. N. Theodorou, Quasi-elastic neutron scattering and molecular dynamics simulation as complementary techniques for studying diffusion in zeolites, Microporous Mesoporous Mater, vol.102, pp.21-50, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184572

J. A. Greathouse, R. T. Cygan, and J. T. Fredrich, Molecular Dynamics Simulation of Diffusion and Electrical Conductivity in Montmorillonite Interlayers, J. Phys. Chem. C [Internet], vol.120, pp.1640-1649, 2016.

I. V. Volgin, S. V. Larin, and E. Abad, Molecular Dynamics Simulations of Fullerene Diffusion in Polymer Melts, Macromolecules, vol.50, pp.2207-2218, 2017.

S. E. Feller and A. D. Mackerell, An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids, J. Phys. Chem. B [Internet], vol.104, pp.7510-7515, 2000.

W. L. Jorgensen and J. Tirado-rives, Potential energy functions for atomic-level simulations of water and organic and biomolecular systems, Proc. Natl. Acad. Sci, vol.102, pp.6665-6670, 2005.

?. Erkoç, Empirical many-body potential energy functions used in computer simulations of condensed matter properties, Phys. Rep. [Internet], vol.278, pp.79-105, 1997.

W. L. Jorgensen, J. Chandrasekhar, and J. D. Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. [Internet], vol.79, pp.926-935, 1983.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P, J. Chem. Phys, vol.123, p.234505, 2005.

H. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. [Internet], vol.91, pp.6269-6271, 1987.

S. W. Rick, A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums, J. Chem. Phys. [Internet], vol.120, pp.6085-6093, 2004.

H. A. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Ann. Phys. [Internet], vol.248, pp.127-136, 1881.

R. A. Buckingham, The Classical Equation of State of Gaseous Helium, Neon and Argon, Proc. R. Soc. A Math. Phys. Eng. Sci. [Internet], vol.168, pp.264-283, 1938.

L. Chen, C. A. Morrison, and T. Düren, Improving Predictions of Gas Adsorption in Metal-Organic Frameworks with Coordinatively Unsaturated Metal Sites: Model Potentials, ab initio Parameterization, and GCMC Simulations, J. Phys. Chem. C [Internet], vol.116, pp.18899-18909, 2012.

J. W. Yoon, H. Chang, and S. Lee, Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites, Nat. Mater. [Internet], vol.16, pp.526-531, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01840154

M. B. Sweatman and N. Quirke, Characterization of Porous Materials by Gas Adsorption at Ambient Temperatures and High Pressure, J. Phys. Chem. B [Internet], vol.105, pp.1403-1411, 2001.

A. G. De-rocco and J. O. Halford, Intermolecular Potentials of Argon, Methane, and Ethane, J. Chem. Phys. [Internet], vol.28, pp.1152-1154, 1958.

P. P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. [Internet], vol.369, pp.253-287, 1921.

G. Vitale, C. F. Mellot, and L. M. Bull, Neutron Diffraction and Computational Study of Zeolite NaX: Influence of SIII' Cations on Its Complex with Benzene, J. Phys. Chem. B [Internet], vol.101, pp.4559-4564, 1997.

G. Maurin, P. Senet, and S. Devautour, Combining the Monte Carlo Technique with 29 SI NMR Spectroscopy: Simulations of Cation Locations in Zeolites with Various Si/Al Ratios, J. Phys. Chem. B [Internet], vol.105, pp.9157-9161, 2001.

L. Vanduyfhuys, S. Rogge, and J. Wieme, Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals, Nat. Commun. [Internet], vol.9, p.204, 2018.

R. E. Franklin, Crystallite Growth in Graphitizing and Non-Graphitizing Carbons, Proc. R. Soc. A Math. Phys. Eng. Sci. [Internet], vol.209, pp.196-218, 1951.

J. P. Olivier, Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data, Carbon N. Y, vol.36, pp.1469-1472, 1998.

J. S. Mcdonald-wharry, M. Manley-harris, and K. L. Pickering, Reviewing, Combining, and Updating the Models for the Nanostructure of Non-Graphitizing Carbons Produced from Oxygen-Containing Precursors, Energy & Fuels [Internet], vol.30, pp.7811-7826, 2016.

A. Rappé, C. Casewit, and K. Colwell, UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc, vol.114, pp.10024-10035, 1992.

S. L. Mayo, B. D. Olafson, W. Iii, and G. , DREIDING: A Generic Force Field for Molecular Simulations, J. Phys. Chem, vol.101, pp.8897-8909, 1990.

W. L. Jorgensen, D. S. Maxwell, and J. Tirado-rives, Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc. [Internet], vol.118, pp.11225-11236, 1996.

G. Maurin, P. Llewellyn, and T. Poyet, Influence of Extra-Framework Cations on the Adsorption Properties of X-Faujasite Systems: Microcalorimetry and Molecular Simulations, J. Phys. Chem. B [Internet], vol.109, pp.125-129, 2005.

P. Demontis, G. B. Suffritti, and A. Tilocca, Diffusion and vibrational relaxation of a diatomic molecule in the pore network of a pure silica zeolite: A molecular dynamics study, J. Chem. Phys. [Internet], vol.105, pp.5586-5594, 1996.

J. Ndjaka, G. Zwanenburg, and B. Smit, Molecular simulations of adsorption isotherms of small alkanes in FER-, TON-, MTW-and DON-type zeolites, Microporous Mesoporous Mater, vol.68, pp.37-43, 2004.

A. K. Rappe and W. A. Goddard, Charge equilibration for molecular dynamics simulations, J. Phys. Chem. [Internet], vol.95, pp.3358-3363, 1991.

J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges, Tetrahedron [Internet], vol.36, pp.3219-3228, 1980.

R. S. Mulliken, Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I, J. Chem. Phys. [Internet], vol.23, pp.1833-1840, 1955.

H. Heinz and U. W. Suter, Atomic Charges for Classical Simulations of Polar Systems, J. Phys. Chem. B [Internet], vol.108, pp.18341-18352, 2004.

C. M. Breneman and K. B. Wiberg, Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis, J. Comput. Chem. [Internet], vol.11, pp.361-373, 1990.

M. Chaplin, Water Models, 2018.

H. W. Horn, W. C. Swope, and J. W. Pitera, Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. [Internet], vol.120, pp.9665-9678, 2004.

M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. [Internet], vol.389, pp.457-484, 1927.

K. Capelle, A bird's-eye view of density-functional theory, Brazilian J. Phys. [Internet], vol.36, pp.1318-1343, 2006.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev, vol.136, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. [Internet], vol.140, pp.1133-1138, 1965.

J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for manyelectron systems, Phys. Rev. B [Internet], vol.23, pp.5048-5079, 1981.

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B [Internet], vol.45, pp.13244-13249, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. [Internet], vol.77, pp.3865-3868, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.3865, 1996.

, Phys. Rev. Lett. [Internet], vol.78, p.1396, 1997.

P. J. Stephens, F. J. Devlin, and C. F. Chabalowski, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem. [Internet], vol.98, pp.11623-11627, 1994.

G. D. Mahan, Homogeneous Electron Gas. Many-Particle Phys

M. A. Boston and U. S. Springer, , pp.295-374, 2000.

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. [Internet], vol.58, pp.1200-1211, 1980.

J. P. Perdew, J. A. Chevary, and S. H. Vosko, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B [Internet], vol.46, pp.6671-6687, 1992.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B [Internet], vol.37, pp.785-789, 1988.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, pp.3098-3100, 1988.

J. P. Perdew, M. Ernzerhof, and K. Burke, Rationale for mixing exact exchange with density functional approximations, J. Chem. Phys. [Internet], vol.105, pp.9982-9985, 1996.

K. Kim and K. D. Jordan, Comparison of Density Functional and MP2 Calculations on the Water Monomer and Dimer, J. Phys. Chem. [Internet], vol.98, pp.10089-10094, 1994.

S. Grimme, Density functional theory with London dispersion corrections, Wiley Interdiscip. Rev. Comput. Mol. Sci, vol.1, pp.211-228, 2011.

G. A. Dilabio and A. Otero-de-la-roza, Noncovalent interactions in density functional theory, Rev. Comput. Chem, vol.29, pp.1-97, 2016.

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. [Internet], vol.25, pp.1463-1473, 2004.

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. [Internet], vol.27, pp.1787-1799, 2006.

P. Jurec?ka, J. ?erný, and P. Hobza, Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations, J. Comput. Chem. [Internet], vol.28, pp.555-569, 2007.

F. Ortmann, F. Bechstedt, and W. G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures, Phys. Rev. B [Internet], vol.73, p.205101, 2006.

S. Grimme, A. J. Ehrlich, and S. , A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. [Internet], vol.132, p.154104, 2010.

A. Tkatchenko and M. Scheffler, Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data, Phys. Rev. Lett. [Internet], vol.102, p.73005, 2009.

M. Fischer, J. Gomes, and J. M. , Computational approaches to study adsorption in MOFs with unsaturated metal sites, Mol. Simul. [Internet], vol.40, pp.537-556, 2014.

E. Haldoupis, J. Borycz, and H. Shi, Ab Initio Derived Force Fields for Predicting CO 2 Adsorption and Accessibility of Metal Sites in the Metal-Organic Frameworks, J. Phys. Chem. C [Internet], vol.119, pp.16058-16071, 2015.

C. Campbell, C. A. Ferreiro-rangel, and M. Fischer, A transferable model for adsorption in mofs with unsaturated metal sites, J. Phys. Chem. C, vol.121, pp.441-458, 2017.

M. Williams, P. A. Schwarz, and B. E. Law, Numerical Optimization, Glob. Chang. Biol. Springer, 2006.

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys. [Internet], vol.83, pp.735-746, 1985.

R. Bader, Atoms in Molecules. Encycl. Comput. Chem

U. K. Chichester, , 2002.

T. A. Manz and D. S. Sholl, Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials, J. Chem. Theory Comput, vol.8, pp.2844-2867, 2012.

A. V. Marenich, S. V. Jerome, and C. J. Cramer, Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases, J. Chem. Theory Comput, vol.8, pp.527-541, 2012.

F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theor. Chim. Acta [Internet], vol.44, pp.129-138, 1977.

S. Hamad, S. Balestra, and R. Bueno-perez, Atomic charges for modeling metal-organic frameworks: Why and how, J. Solid State Chem. [Internet], vol.223, pp.144-151, 2015.

U. C. Singh and P. A. Kollman, An approach to computing electrostatic charges for molecules, J. Comput. Chem. [Internet], vol.5, pp.129-145, 1984.

M. E. Tuckerman, P. J. Ungar, and T. Vonrosenvinge, Ab initio molecular dynamics simulations, J. Phys. Chem, vol.100, pp.12878-12887, 1996.

T. Ikeda, M. Sprik, and K. Terakura, Pressure Effects on Hydrogen Bonding in the Disordered Phase of Solid HBr, Phys. Rev. Lett. [Internet], vol.81, pp.4416-4419, 1998.

E. Ruiz and M. C. Payne, One-Dimensional Intercalation Compound 2 HgS?SnBr2: Ab Initio Electronic Structure Calculations and Molecular Dynamics Simulations. Chem. -A Eur, J. [Internet], vol.4, pp.2485-2492, 1998.

R. J. Meier, G. Van-doremaele, and S. Iarlori, Ab Initio Molecular Dynamics Study of MetalloceneCatalyzed Ethylene Polymerization, J. Am. Chem. Soc, vol.116, pp.7274-7281, 1994.

D. S. Wallace, A. M. Stoneham, and W. Hayes, Theory of defects in conducting polymers. I. Theoretical principles and simple applications, J. Phys. Condens. Matter [Internet], vol.3, pp.3879-3903, 1991.

, /i=22/a=002?key=crossref.438ae562786d4286ec255766be108917

J. Hageman, R. J. Meier, and M. Heinemann, Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics, Macromolecules [Internet], vol.30, pp.5953-5957, 1997.

T. Miyake, T. Ogitsu, and S. Tsuneyuki, Quantum Distributions of Muonium and Hydrogen in Crystalline Silicon, Phys. Rev. Lett. [Internet], vol.81, pp.1873-1876, 1998.

C. Wang and Q. Zhang, Amphoteric charge states and diffusion barriers of hydrogen in GaAs, Phys. Rev. B [Internet], vol.59, pp.4864-4868, 1999.

T. Miyake, T. Ogitsu, and S. Tsuneyuki, First-principles study of the quantum states of muonium and hydrogen in crystalline silicon, Phys. Rev. B [Internet], vol.60, pp.14197-14204, 1999.

R. B. Capaz, L. Assali, and L. C. Kimerling, Mechanism for hydrogen-enhanced oxygen diffusion in silicon, Phys. Rev. B [Internet], vol.59, pp.4898-4900, 1999.

A. Hassanali, M. K. Prakash, and H. Eshet, On the recombination of hydronium and hydroxide ions in water, Proc. Natl. Acad. Sci, vol.108, pp.20410-20415, 2011.

R. Devanathan, N. Idupulapati, and M. D. Baer, Ab Initio Molecular Dynamics Simulation of Proton Hopping in a Model Polymer Membrane, J. Phys. Chem. B [Internet], vol.117, pp.16522-16529, 2013.

H. S. Mei, M. E. Tuckerman, and D. E. Sagnella, Quantum Nuclear ab Initio Molecular Dynamics Study of Water Wires, J. Phys. Chem. B [Internet], vol.102, pp.10446-10458, 1998.

K. Chenoweth, A. Van-duin, and W. A. Goddard, ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation, J. Phys. Chem. A [Internet], vol.112, pp.1040-1053, 2008.

A. Van-duin, A. Strachan, and S. Stewman, ReaxFF SiO Reactive Force Field for Silicon and Silicon Oxide Systems, J. Phys. Chem. A [Internet], vol.107, pp.3803-3811, 2003.

K. D. Nielson, A. Van-duin, and J. Oxgaard, Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes, J. Phys. Chem. A [Internet], vol.109, pp.493-499, 2005.

. Van-duin-a, . Ct, S. Dasgupta, and F. Lorant, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, vol.105, pp.9396-9409, 2001.

Y. Wu, H. Chen, and F. Wang, An Improved Multistate Empirical Valence Bond Model for Aqueous Proton Solvation and Transport ?, J. Phys. Chem. B [Internet], vol.112, pp.467-482, 2008.

A. Warshel and R. M. Weiss, An empirical valence bond approach for comparing reactions in solutions and in enzymes, J. Am. Chem. Soc. [Internet], vol.102, pp.6218-6226, 1980.

D. Marx and J. Hutter, Ab Initio Molecular Dynamics

. Angew, . E. Int, and . Cambridge, , 2009.

C. Raynaud, Dynamique moléculaire ab initio en base locale: principes et applications, 2005.

S. Klein, M. J. Bearpark, and B. R. Smith, Mixed state `on the fly' non-adiabatic dynamics: the role of the conical intersection topology, Chem. Phys. Lett. [Internet], vol.292, pp.259-266, 1998.

M. Garavelli, F. Bernardi, and M. Olivucci, Product Distribution in the Photolysis of s-cis Butadiene: A Dynamics Simulation, J. Phys. Chem. A [Internet], vol.105, pp.11496-11504, 2001.

Y. Choe, E. Tsuchida, and T. Ikeshoji, Nature of proton dynamics in a polymer electrolyte membrane, nafion: a first-principles molecular dynamics study, Phys. Chem. Chem. Phys. [Internet], vol.11, p.3892, 2009.

M. Dal-peraro, P. Ruggerone, and S. Raugei, Investigating biological systems using first principles CarParrinello molecular dynamics simulations, Curr. Opin. Struct. Biol. [Internet], vol.17, pp.149-156, 2007.

M. Schulte and I. Frank, Car-Parrinello simulations of Prussian blue: Structure, dynamics, and electronic properties, J. Phys. Chem. C, vol.115, pp.13560-13565, 2011.

J. R. Macdonald, Impedance spectroscopy, Ann. Biomed. Eng, vol.20, pp.289-305, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00920264

S. Sanda, S. Biswas, and S. Konar, Study of Proton Conductivity of a 2D Flexible MOF and a 1D Coordination Polymer at Higher Temperature, Inorg. Chem, vol.54, pp.1218-1222, 2015.

F. Yang, H. Huang, X. Wang, F. Li, Y. Gong et al., Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses, vol.15, pp.5827-5833, 2015.

K. Park, W. Lin, and F. Paesani, A Refined MS-EVB Model for Proton Transport in Aqueous Environments, J. Phys. Chem. B, vol.116, pp.343-352, 2012.

Y. Wu, H. Chen, F. Wang, F. Paesani, and G. A. Voth, An Improved Multistate Empirical Valence Bond Model for Aqueous Proton Solvation and Transport ?, J. Phys. Chem. B, vol.112, pp.467-482, 2008.

.. C. Van-duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, vol.105, pp.9396-9409, 2001.

F. Paesani, Molecular mechanisms of water-mediated proton transport in MIL-53 metal-organic frameworks, J. Phys. Chem. C, vol.117, pp.19508-19516, 2013.

D. D. Borges, R. Semino, S. Devautour-vinot, H. Jobic, F. Paesani et al., Computational Exploration of the Water Concentration Dependence of the Proton Transport in the Porous UiO-66(Zr)-(CO 2 H) 2 Metal-Organic Framework, Chem. Mater, vol.29, pp.1569-1576, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01504810

D. D. Borges, S. Devautour-vinot, H. Jobic, J. Ollivier, F. Nouar et al., Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight, Angew. Chemie -Int. Ed, vol.55, pp.3919-3924, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341744

M. Liu, L. Chen, S. Lewis, S. Y. Chong, M. A. Little et al., Three-dimensional protonic conductivity in porous organic cage solids, Nat. Commun, vol.7, p.12750, 2016.

F. Zhang, L. Dong, J. Qin, W. Guan, J. Liu et al., Effect of Imidazole Arrangements on Proton-Conductivity in Metal-Organic Frameworks, J. Am. Chem. Soc, vol.139, pp.6183-6189, 2017.

T. Grancha, J. Ferrando-soria, J. Cano, P. Amorós, B. Seoane et al., Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral bioMOF, Chem. Mater, vol.28, pp.4608-4615, 2016.

S. Ling and B. Slater, Dynamic acidity in defective UiO-66, Chem. Sci, vol.7, pp.4706-4712, 2016.

E. Eisbein, J. Joswig, and G. Seifert, Proton Conduction in a MIL-53(Al) Metal-Organic Framework: Confinement versus Host/Guest Interaction, J. Phys. Chem. C, vol.118, pp.13035-13041, 2014.

E. Eisbein, J. Joswig, and G. Seifert, Enhanced proton-transfer activity in imidazole@MIL-53(Al) systems revealed by molecular-dynamics simulations, Microporous Mesoporous Mater, vol.216, pp.36-41, 2015.

M. F. De-lange, J. J. Gutiérrez-sevillano, S. Hamad, T. J. Vlugt, S. Calero et al., Understanding Adsorption of Highly Polar Vapors on Mesoporous MIL-100 (Cr) and MIL-101 (Cr): Experiments and Molecular Simulations, J. Phys. Chem. C, vol.117, pp.7613-7622, 2013.

S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, M. Hybrid et al., Phys. Lett. B, vol.195, pp.216-222, 1987.

B. Mehlig, D. W. Heermann, and B. M. Forrest, Hybrid Monte Carlo method for condensed-matter systems, Phys. Rev. B, vol.45, pp.679-685, 1992.

A. Ghoufi and G. Maurin, Hybrid Monte Carlo Simulations Combined with a Phase Mixture Model to Predict the Structural Transitions of a Porous Metal-Organic Framework Material upon Adsorption of Guest Molecules, Society, vol.1, pp.6496-6502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00474409

G. Alberti, A. Grassi, G. M. Lombardo, G. C. Pappalardo, and R. Vivani, Derivation of Force Field Parameters, and Force Field and Quantum Mechanical Studies of Layered ?-and ?-Zirconium Phosphates, Inorg. Chem, vol.38, pp.4249-4255, 1999.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys, vol.52, pp.255-268, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.81, pp.511-519, 1984.

W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, vol.31, pp.1695-1697, 1985.

C. Chen, W. Li, Y. C. Song, L. D. Weng, and N. Zhang, The Effect of Geometrical Criteria on Hydrogen Bonds Analysis in Aqueous Glycerol Solutions, J. Mol. Imaging Dyn, vol.01, pp.1-6, 2011.

M. Matsumoto, Relevance of hydrogen bond definitions in liquid water, J. Chem. Phys, vol.126, p.54503, 2007.

D. Swiatla-wojcik, Evaluation of the criteria of hydrogen bonding in highly associated liquids, Chem. Phys, vol.342, pp.260-266, 2007.

E. Guàrdia, J. Martí, J. A. Padró, L. Saiz, and A. V. Komolkin, Dynamics in hydrogen bonded liquids: water and alcohols, pp.3-17, 2002.

E. Guàrdia, J. Martí, L. García-tarrés, and D. Laria, A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions, J. Mol. Liq, vol.117, pp.63-67, 2005.

R. Semino, J. Martí, E. Guàrdia, and D. Laria, Excess protons in mesoscopic water-acetone nanoclusters, J. Chem. Phys, p.137, 2012.

W. L. Jorgensen, Monte carlo results for hydrogen bond distributions in liquid water11Quantum and statistical mechanical studies of liquids, 9, Chem. Phys. Lett, vol.70, pp.85344-85353, 1980.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 1987.

G. Mouchaham, L. Cooper, N. Guillou, C. Martineau, E. Elkaïm et al., A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs, Angew. Chemie -Int. Ed, vol.54, pp.13297-13301, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416642

F. Salles, S. Bourrelly, H. Jobic, T. Devic, V. Guillerm et al., Molecular Insight into the Adsorption and Diffusion of Water in the Versatile Hydrophilic/Hydrophobic Flexible MIL-53(Cr) MOF, J. Phys. Chem. C, vol.115, pp.10764-10776, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607865

A. Rastogi, A. K. , and S. Suresh, Hydrogen Bond Interactions Between Water Molecules in Bulk Liquid, Near Electrode Surfaces and Around Ions, 2011.

A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, and M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane, Science (80-. ), vol.353, pp.137-140, 2016.

S. Ekambaram, C. Serre, G. Férey, and S. C. Sevov, Hydrothermal Synthesis and Characterization of an Ethylenediamine-Templated Mixed-Valence Titanium Phosphate, Chem. Mater, vol.12, pp.444-449, 2000.

G. Maurin, R. G. Bell, S. Devautour, F. Henn, and J. C. Giuntini, Modeling the Effect of Hydration in Zeolite Na + ?Mordenite, J. Phys. Chem. B, vol.108, pp.3739-3745, 2004.

G. Maurin, P. Llewellyn, T. Poyet, and B. Kuchta, Influence of Extra-Framework Cations on the Adsorption Properties of X-Faujasite Systems: Microcalorimetry and Molecular Simulations, J. Phys. Chem. B, vol.109, pp.125-129, 2005.

P. Demontis, G. B. Suffritti, and A. Tilocca, Diffusion and vibrational relaxation of a diatomic molecule in the pore network of a pure silica zeolite: A molecular dynamics study, J. Chem. Phys, vol.105, pp.5586-5594, 1996.

P. Demontis, J. González, G. B. Suffritti, and A. Tilocca, Statics and Dynamics of Ethane Molecules in AlPO 4 -5: A Molecular Dynamics Simulation Study, J. Am. Chem. Soc, vol.123, pp.5069-5074, 2001.

S. Y. Bhide and S. Yashonath, n -Pentane and Isopentane in One-Dimensional Channels, J. Am. Chem. Soc, vol.125, pp.7425-7434, 2003.

S. Y. Bhide and S. Yashonath, Structure and Dynamics of Benzene in One-Dimensional Channels ?, J. Phys. Chem. B, vol.104, pp.11977-11986, 2000.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, and J. Hermans, Interaction Models for Water in Relation to Protein Hydration, Intermol. Forces, pp.331-342, 1981.

J. Choi, L. Lin, and J. C. Grossman, Role of Structural Defects in the Water Adsorption Properties of MOF-801, J. Phys. Chem. C, vol.122, pp.5545-5552, 2018.

F. Jeremias, A. Khutia, S. K. Henninger, and C. Janiak, MIL-100(Al, Fe) as water adsorbents for heat transformation purposes-a promising application, J. Mater. Chem, vol.22, pp.10148-10151, 2012.

P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel et al., Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater, vol.120, pp.325-330, 2009.

H. Zhang and R. Q. Snurr, Computational Study of Water Adsorption in the Hydrophobic Metal-Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations, J. Phys. Chem. C, vol.121, pp.24000-24010, 2017.

L. Sarkisov, A. Centineo, and S. Brandani, Molecular simulation and experiments of water adsorption in a high surface area activated carbon: Hysteresis, scanning curves and spatial organization of water clusters, Carbon N. Y, vol.118, pp.127-138, 2017.

P. Ghosh, K. C. Kim, and R. Q. Snurr, Modeling Water and Ammonia Adsorption in Hydrophobic MetalOrganic Frameworks: Single Components and Mixtures, J. Phys. Chem. C, vol.118, pp.1102-1110, 2014.

S. Paranthaman, F. Coudert, and A. H. Fuchs, Water adsorption in hydrophobic MOF channels, Phys. Chem. Chem. Phys, vol.12, p.8123, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00548067

A. Di-lella, N. Desbiens, A. Boutin, I. Demachy, P. Ungerer et al., Molecular simulation studies of water physisorption in zeolites, Phys. Chem. Chem. Phys, vol.8, p.5396, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123934

R. F. Cracknell, D. Nicholson, N. G. Parsonage, and H. Evans, Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water, Mol. Phys, vol.71, pp.931-943, 1990.

C. Beauvais, A. Boutin, and A. H. Fuchs, A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite, ChemPhysChem, vol.5, pp.1791-1793, 2004.

R. Q. Snurr, A. T. Bell, and D. N. Theodorou, Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions, J. Phys. Chem, vol.97, pp.13742-13752, 1993.

W. Shi and E. J. Maginn, Continuous fractional component Monte Carlo: An adaptive biasing method for open system atomistic simulations, J. Chem. Theory Comput, vol.3, pp.1451-1463, 2007.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys, vol.123, p.234505, 2005.

C. Vega, J. L. Abascal, and I. Nezbeda, Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice, J. Chem. Phys, vol.125, pp.1-9, 2006.

T. J. Vlugt, E. García-pérez, D. Dubbeldam, S. Ban, and S. Calero, Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions, J. Chem. Theory Comput, vol.4, pp.1107-1118, 2008.

A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, I. et al., UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc, vol.114, pp.10024-10035, 1992.

S. L. Mayo, B. D. Olafson, W. , G. Iii, E. Eb et al., DREIDING: A Generic Force Field for Molecular Simulations, J. Phys. Chem, vol.101, pp.8897-8909, 1990.

H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys, vol.120, pp.9665-9678, 2004.

S. M. Humphrey, J. S. Chang, S. H. Jhung, J. W. Yoon, and P. T. Wood, Porous cobalt(II)-organic frameworks with corrugated walls: Structurally robust gas-sorption materials, Angew. Chemie -Int. Ed, vol.46, pp.272-275, 2007.

B. Saccoccia, A. M. Bohnsack, N. W. Waggoner, K. H. Cho, J. S. Lee et al.,

S. M. Chang and . Humphrey, Separation of P-Divinylbenzene by selective room-temperature adsorption inside Mg-CUK-1 prepared by aqueous microwave synthesis, Angew. Chemie -Int. Ed, vol.54, pp.5394-5398, 2015.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, p.1396, 1996.

B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, p.508, 2005.

B. Delley, From molecules to solids with the DMol 3 approach From molecules to solids with the DMol 3 approach, p.7756, 2014.

C. Campañá, B. Mussard, T. K. Woo, C. Campañá, B. Mussard et al., Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional, J. Chem. Theory Comput, vol.5, pp.2866-2878, 2009.

H. Furukawa, F. Gándara, Y. Zhang, J. Jiang, W. L. Queen et al., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials, J. Am. Chem. Soc, vol.136, pp.4369-4381, 2014.

C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H. Bürgi et al., Definitive Molecular Level Characterization of Defects in UiO-66 Crystals, Angew. Chemie Int. Ed, vol.54, pp.11162-11167, 2015.

S. Ling and B. Slater, Dynamic acidity in defective UiO-66, Chem. Sci, vol.7, pp.4706-4712, 2016.

G. Wißmann, A. Schaate, S. Lilienthal, I. Bremer, A. M. Schneider et al., Modulated synthesis of Zr-fumarate MOF, Microporous Mesoporous Mater, vol.152, pp.64-70, 2012.

A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, I. et al., UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, J. Am. Chem. Soc, vol.114, pp.10024-10035, 1992.

M. V. Solovyeva, L. G. Gordeeva, T. A. Krieger, and Y. I. Aristov, MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption, Energy Convers. Manag, vol.174, pp.356-363, 2018.

M. F. De-lange, K. J. Verouden, T. J. Vlugt, J. Gascon, and F. Kapteijn, Adsorption-Driven Heat Pumps: The Potential of Metal-Organic Frameworks, Chem. Rev, vol.115, pp.12205-12250, 2015.

H. Kim, H. J. Cho, S. Narayanan, S. Yang, H. Furukawa et al., Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and MetalOrganic Frameworks, Sci. Rep, vol.6, p.19097, 2016.

P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi et al., High Uptakes of CO 2 and CH 4 in Mesoporous -100 and MIL-101, Langmuir, vol.24, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01373900

P. Horcajada, S. Surblé, C. Serre, D. Hong, Y. Seo et al., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun, vol.100, pp.2820-2822, 2007.

A. Vimont, J. Goupil, J. Lavalley, M. Daturi, S. Surblé et al., Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate, J. Am. Chem. Soc, vol.128, pp.3218-3227, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022796

D. Systèmes and B. , Materials Studio, 2017.

B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys, vol.113, pp.7756-7764, 2000.

H. Heinz and U. W. Suter, Atomic Charges for Classical Simulations of Polar Systems, J. Phys. Chem. B, vol.108, pp.18341-18352, 2004.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Nardelli et al., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, vol.29, p.465901, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01634887

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, vol.41, pp.7892-7895, 1990.