,

C. Barrios-estrada, M. Rostro-alanis, J. De, A. L. Parra, M. P. Belleville et al., Potentialities of active membranes with immobilized laccase for Bisphenol A degradation, Int. J. Biol. Macromol, vol.108, pp.837-844, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674744

R. Barra-caracciolo, A. Topp, E. Grenni, and P. , Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal, vol.106, pp.25-36, 2015.

C. Barrios-estrada, M. De-jesús-rostro-alanis, B. D. Muñoz-gutiérrez, H. M. Iqbal, S. Kannan et al., Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation -A review, Sci. Total Environ, vol.612, pp.1516-1531, 2018.

C. Barrios-estrada, M. Rostro-alanis, J. De, A. L. Parra, M. P. Belleville et al., Potentialities of active membranes with immobilized laccase for Bisphenol A degradation, Int. J. Biol. Macromol, vol.108, pp.837-844, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674744

H. Cabana, J. L. Jiwan, R. Rozenberg, V. Elisashvili, M. Penninckx et al., Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona, Chemosphere, vol.67, pp.770-778, 2007.

A. I. Cañas and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv, vol.28, pp.694-705, 2010.

C. Cruz-morató, D. Lucas, M. Llorca, S. Rodriguez-mozaz, M. Gorga et al., Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds, Sci. Total Environ, vol.493, pp.365-376, 2014.

M. De-cazes, M. P. Belleville, E. Petit, M. Llorca, S. Rodríguez-mozaz et al., Design and optimization of an enzymatic membrane reactor for tetracycline degradation, Catal. Today, vol.236, pp.146-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687215

P. Demarche, C. Junghanns, R. R. Nair, and S. N. Agathos, Harnessing the power of enzymes for environmental stewardship, Biotechnol. Adv, vol.30, pp.933-953, 2012.

C. A. Gasser, E. M. Ammann, P. Shahgaldian, and P. F. Corvini, Laccases to take on the challenge of emerging organic contaminants in wastewater, Appl. Microbiol. Biotechnol, vol.98, pp.9931-9952, 2014.

P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle et al., Laccases: a never-ending story, Cell. Mol. life Sci. C, vol.67, pp.369-385, 2010.

A. Gogoi, P. Mazumder, V. Kumar, G. G. Chaminda, A. Kyoungjin et al., Occurrence and fate of emerging contaminants in water environment : A review, 2018.

, Groundw. Sustain. Dev, vol.6, pp.169-180

C. Ji, J. Hou, and V. Chen, Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration, J. Memb. Sci, vol.520, pp.869-880, 2016.

X. Jin, X. Yu, G. Zhu, Z. Zheng, F. Feng et al., Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation, Sci. Rep, vol.6, pp.1-7, 2016.

V. V. Kumar and H. Cabana, Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals, Bioresour. Technol, vol.200, pp.81-89, 2016.

Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, pp.619-641, 2014.

M. Salazar-lópez, M. Rostro-alanis, J. De, C. Castillo-zacarías, A. L. Parra-guardado et al., Pre-treatment of penicillin formulation effluent by advanced oxidation processes, J. Hazard. Mater, vol.112, pp.105-113, 2004.

B. Ashe, L. N. Nguyen, F. I. Hai, D. J. Lee, J. P. Van-de-merwe et al., Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity, Int. Biodeterior. Biodegrad, vol.113, pp.169-176, 2016.

M. Auriol, Y. Filali-meknassi, C. D. Adams, R. D. Tyagi, T. Noguerol et al., Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: Efficiency of horseradish peroxidase and laccase from Trametes versicolor, Chemosphere, vol.70, pp.445-452, 2008.

D. Avisar, Y. Lester, and D. Ronen, Sulfamethoxazole contamination of a deep phreatic aquifer, Sci. Total Environ, vol.407, pp.4278-4282, 2009.

F. Ay and F. Kargi, Advanced oxidation of amoxicillin by Fenton's reagent treatment, J. Hazard. Mater, vol.179, pp.622-627, 2010.

T. Aydemir and S. Güler, Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal, Nanomedicine Biotechnol, vol.43, pp.425-432, 2015.

M. O. Barbosa, N. F. Moreira, A. R. Ribeiro, and M. F. Pereira, Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495, Water Res, vol.94, pp.257-279, 2016.

A. Barra-caracciolo, E. Topp, and P. Grenni, Pharmaceuticals in the environment: Biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal, vol.106, pp.25-36, 2015.

C. Barrios-estrada, M. De-jesús-rostro-alanis, B. D. Muñoz-gutiérrez, H. M. Iqbal, S. Kannan et al., Emergent contaminants: Endocrine disruptors and their laccaseassisted degradation -A review, Sci. Total Environ, vol.612, pp.1516-1531, 2018.

D. Becker, S. Varela-della-giustina, S. Rodriguez-mozaz, R. Schoevaart, D. Barceló et al., Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase -Degradation of compounds does not always eliminate toxicity, Bioresour. Technol, vol.219, pp.500-509, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01678005

S. K. Behera, H. W. Kim, J. E. Oh, and H. S. Park, Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea, Sci. Total Environ, vol.409, pp.4351-4360, 2011.

M. Bernhard, J. Müller, and T. P. Knepper, Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment, Water Res, vol.40, pp.3419-3428, 2006.

A. Blanquez, F. Guillen, J. Rodriguez, M. E. Arias, and M. Hernandez, The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae, World J. Microbiol. Biotechnol, vol.32, pp.1-8, 2016.

D. Borikar, M. Mohseni, and S. Jasim, Evaluations of conventional, ozone and UV/H2O2 for removal of emerging contaminants and THM-FPS, Water Qual. Res. J. Canada, vol.50, pp.140-151, 2015.

K. Brijwani, A. Rigdon, and P. V. Vadlani, Fungal Laccases: Production, Function, and Applications in Food Processing, Enzyme Res, vol.2010, pp.1-10, 2010.

Q. Bu, B. Wang, J. Huang, S. Deng, and G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater, vol.262, pp.189-211, 2013.

H. Cabana, C. Alexandre, S. N. Agathos, and J. P. Jones, Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals, Bioresour. Technol, vol.100, pp.3447-3458, 2009.

H. Cabana, J. L. Jiwan, R. Rozenberg, V. Elisashvili, M. Penninckx et al., Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona, Chemosphere, vol.67, pp.770-778, 2007.

S. Camarero and D. Ibarra, Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes, Appl. Environ. Microbiol, vol.71, pp.1775-1784, 2005.

A. I. Cañas and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv, vol.28, pp.694-705, 2010.

S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor et al., Efficient immobilization of industrial biocatalysts: criteria and constrains for the selection of organic polymeric carriers and immobilization methods, Chem. Soc. Rev, vol.42, pp.6262-6276, 2013.

L. Cao, L. Langen, . Van, and R. A. Sheldon, Immobilised enzymes: carrier-bound or carrier-free?, Curr. Opin. Biotechnol, vol.14, pp.387-394, 2003.

O. Cars, S. Mölstad, and A. Melander, Variation in antibiotic use in the European Union, Lancet, vol.357, pp.4972-4974, 2001.

I. T. Carvalho and L. Santos, Antibiotics in the aquatic environments : A review of the European scenario, Environ. Int, vol.94, pp.736-757, 2016.

S. Castiglioni, R. Fanelli, D. Calamari, R. Bagnati, and E. Zuccato, Methodological approaches for studying pharmaceuticals in the environment by comparing predicted and measured concentrations in River Po, Italy. Regul. Toxicol. Pharmacol, vol.39, pp.25-32, 2004.

M. D. Celiz, S. Pérez, D. Barceló, and D. S. Aga, Trace analysis of polar pharmaceuticals in wastewater by LC-MS-MS: Comparison of membrane bioreactor and activated sludge systems, J. Chromatogr. Sci, vol.47, pp.19-25, 2009.

K. J. Choi, S. G. Kim, and S. H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater, vol.151, pp.38-43, 2008.

M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger et al., Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res, vol.39, pp.4797-4807, 2005.

M. Clara, B. Strenn, and N. Kreuzinger, Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration, Water Res, vol.38, pp.947-954, 2004.

H. Claus, Laccases: Structure, reactions, distribution, Micron, vol.35, pp.93-96, 2004.

A. Conesa, P. J. Punt, and C. A. Van-den-hondel, Fungal peroxidases: molecular aspects and applications, J. Biotechnol, vol.93, pp.394-401, 2002.

R. O. Cristóvão, S. C. Silvério, A. P. Tavares, A. I. Brígida, J. M. Loureiro et al., Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization, World J. Microbiol. Biotechnol, vol.28, pp.2827-2838, 2012.

Y. Dai, J. Yao, Y. Song, S. Wang, and Y. Yuan, Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes, Environ. Sci. Nano, vol.3, pp.857-868, 2016.

S. Datta, L. R. Christena, and Y. R. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech, vol.3, pp.1-9, 2013.

E. De-bel, C. Janssen, S. De-smet, H. Van-langenhove, and J. Dewulf, Sonolysis of ciprofloxacin in aqueous solution: Influence of operational parameters, Ultrason. Sonochem, vol.18, pp.184-189, 2011.

M. De-cazes, R. Abejón, M. P. Belleville, and J. Sanchez-marcano, Membrane bioprocesses for pharmaceutical micropollutant removal from waters. Membranes (Basel), vol.4, pp.692-729, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687544

M. De-cazes, M. P. Belleville, E. Petit, M. Llorca, S. Rodríguez-mozaz et al., Design and optimization of an enzymatic membrane reactor for tetracycline degradation, Catal. Today, vol.236, pp.146-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687215

P. Demarche, C. Junghanns, R. R. Nair, and S. N. Agathos, Harnessing the power of enzymes for environmental stewardship, Biotechnol. Adv, vol.30, pp.933-953, 2012.

H. Ding, Y. Wu, B. Zou, Q. Lou, W. Zhang et al., Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccasemediated oxidation coupled with soil adsorption, J. Hazard. Mater, vol.307, pp.350-358, 2016.

J. C. Santos, O. Barbosa, C. Ortiz, A. Berenguer-murcia, R. C. Rodriguez et al., Importance of the Support Properties for Immobilization or Purification of Enzymes, ChemCatChem, vol.7, pp.2413-2432, 2015.

J. E. Drewes, D. .. Sedlak, S. Snyder, and E. Dickenson, Development of Indicators and Surrogates for Chemical Contaminant Removal during Wastewater Treatment and Reclamation-Final Report, WateReuse Foundation, 2008.

N. Durán, M. A. Rosa, A. D'annibale, and L. Gianfreda, Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme Microb. Technol, vol.31, pp.907-931, 2002.

A. J. Ebele, M. A. Abdallah, and S. Harrad, Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment, Emerg. Contam, vol.3, pp.1-16, 2017.

I. Ebert, J. Bachmann, U. Kuhnen, A. Kuster, C. Kussatz et al., TOXICITY OF THE FLUOROQUINOLONE ANTIBIOTICS ENROFLOXACIN AND CIPROFLOXACIN TO PHOTOAUTOTROPHIC AQUATIC ORGANISMS, Environ. Toxicol. Chem, vol.30, pp.2786-2792, 2011.

G. Eibes, G. Debernardi, G. Feijoo, M. T. Moreira, and J. M. Lema, Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase, Biodegradation, vol.22, pp.539-550, 2011.

M. Fernández-fernández, M. Á. Sanromán, and D. Moldes, Recent developments and applications of immobilized laccase, Biotechnol. Adv, vol.31, pp.1808-1825, 2013.

C. C. Fortes, A. L. Daniel-da-silva, A. M. Xavier, and A. P. Tavares, Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions, Chem. Eng. Process. Process Intensif, vol.117, pp.1-8, 2017.

S. O. Ganiyu, E. D. Van-hullebusch, M. Cretin, G. Esposito, and M. A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review, Sep. Purif. Technol, vol.156, pp.891-914, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276098

N. Gao, C. X. Liu, Q. M. Xu, J. S. Cheng, and Y. J. Yuan, Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus, Chemosphere, vol.195, pp.146-155, 2018.

C. A. Gasser, E. M. Ammann, P. Shahgaldian, and P. F. Corvini, Laccases to take on the challenge of emerging organic contaminants in wastewater, Appl. Microbiol. Biotechnol, vol.98, pp.9931-9952, 2014.

M. Gavrilescu, K. Demnerova, J. Aamand, S. Agathos, and F. Fava, Emerging pollutants in the environment : present and future challenges in biomonitoring , ecological risks and bioremediation, New Biotchnology, vol.32, pp.147-156, 2015.

P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle et al., Laccases: a neverending story, Cell. Mol. life Sci. C, vol.67, pp.369-385, 2010.

J. Gibs, H. A. Heckathorn, M. T. Meyer, F. R. Klapinski, M. Alebus et al., Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in Northern New Jersey, Sci. Total Environ. 458, vol.460, pp.107-116, 2008.

J. K. Glenn, M. A. Morgan, M. B. Mayfield, M. Kuwahara, and M. H. Gold, An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium, Biochem. Biophys. Res. Commun, vol.114, pp.90672-90673, 1983.

A. Göbel, C. S. Mcardell, A. Joss, H. Siegrist, and W. Giger, Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies, Sci. Total Environ, vol.372, pp.361-371, 2007.

A. Gogoi, P. Mazumder, V. Kumar, G. G. Chaminda, A. Kyoungjin et al., Occurrence and fate of emerging contaminants in water environment : A review, Groundw. Sustain. Dev, vol.6, pp.169-180, 2018.

E. M. Golet, I. Xifra, H. Siegrist, A. C. Alder, and W. Giger, Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil, Environ. Sci. Technol, vol.37, pp.3243-3249, 2003.

A. Gonzalez-martinez, A. Rodriguez-sanchez, M. V. Martinez-toledo, M. Garcia-ruiz, E. Hontoria et al., Effect of ciprofloxacin antibiotic on the partialnitritation process and bacterial community structure of a submerged bio filter, Sci. Total Environ, pp.276-287, 2014.

M. Gonzalez-pleiter, S. Gonzalo, I. Rodea-palomares, F. Leganes, R. Rosal et al., Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment, Water Res, vol.47, pp.2050-2064, 2013.

I. Gozlan, A. Rotstein, and D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment, Chemosphere, vol.91, pp.985-992, 2013.

C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-wah-chung, G. Vanot et al., From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review, Water Res, vol.111, pp.297-317, 2017.

P. Grenni, V. Ancona, and A. Barra-caracciolo, Ecological effects of antibiotics on natural ecosystems : A review, Microchem. J, vol.136, pp.25-39, 2018.

P. Guerra, M. Kim, A. Shah, M. Alaee, and S. A. Smyth, Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes, Sci. Total Environ. 473, vol.474, pp.235-243, 2014.

X. L. Guo, Z. W. Zhu, and H. L. Li, Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium, J. Mol. Liq, vol.198, pp.169-172, 2014.

B. Halling-sorensen, S. N. Nielsen, P. F. Lanzky, F. Ingerslev, H. C. Holten-lutzhoft et al., Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment -A review, Chemosphere, vol.36, pp.357-393, 1998.

K. E. Hammel and D. Cullen, Role of fungal peroxidases in biological ligninolysis, Curr. Opin. Plant Biol, vol.11, pp.349-355, 2008.

T. Hata, H. Shintate, S. Kawai, H. Okamura, and T. Nishida, Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole, J. Hazard. Mater, vol.181, pp.1175-1178, 2010.

T. Heberer, Occurrence , fate , and removal of pharmaceutical residues in the aquatic environment : a review of recent research data, Toxicol. Lett, vol.131, pp.41-44, 2002.

T. Heberer, K. Reddersen, and A. Mechlinski, From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas, Water Sci. Technol, vol.46, pp.81-88, 2002.

K. Hernandez and R. Fernandez-lafuente, Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance, Enzyme Microb. Technol, vol.48, pp.107-122, 2011.

V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices -A review, J. Environ. Manage, vol.92, pp.2304-2347, 2011.

E. Jahangiri, S. Reichelt, I. Thomas, K. Hausmann, D. Schlosser et al., Electron BeamInduced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications, 2014.

C. Ji, J. Hou, and V. Chen, Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration, J. Memb. Sci, vol.520, pp.869-880, 2016.

C. Ji, J. Hou, K. Wang, Y. Zhang, and V. Chen, Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor, J. Memb. Sci, vol.502, pp.11-20, 2016.

C. Ji, L. N. Nguyen, J. Hou, F. I. Hai, and V. Chen, Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol, vol.178, pp.215-223, 2017.

A. Jos, G. Repetto, J. C. Rios, M. J. Hazen, M. L. Molero et al., Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints, Toxicol. Vitr, vol.17, pp.525-532, 2003.

A. Joss, S. Zabczynski, A. Göbel, B. Hoffmann, D. Löffler et al., Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme, Water Res, vol.40, pp.1686-1696, 2006.

Y. J. Jung, W. G. Kim, Y. Yoon, J. Kang, Y. M. Hong et al., Removal of amoxicillin by UV and UV/H2O2 processes, Sci. Total Environ, vol.420, pp.160-167, 2012.

D. Kanakaraju, B. D. Glass, and M. Oelgemoller, Advanced oxidation process-mediated removal of pharmaceuticals from water : A review, J. Environ. Manage, vol.219, pp.189-207, 2018.

J. Karam and J. A. Nicell, Potential Applications of Enzymes in Waste Treatment, Chem. Tech. Biotechnol, vol.69, p.69, 1997.

B. Kasprzyk-hordern, R. M. Dinsdale, and A. J. Guwy, The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Walles, UK. Water Res, vol.42, pp.3498-3518, 2008.

J. Kim, S. Park, and D. Kim, Heterologous expression of a tannic acid-inducible laccase3 of Cryphonectria parasitica in Saccharomyces cerevisiae, BMC Biotechnol, vol.10, 2010.

M. Kim, P. Guerra, A. Shah, M. Parsa, M. Alaee et al., Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant, Water Sci. Technol, vol.69, pp.2221-2229, 2014.

Y. Kim and J. A. Nicell, Laccase-catalysed oxidation of aqueous triclosan, J. Chem. Technol, 2006.

Y. Lee, S. G. Zimmermann, A. T. Kieu, and U. Von-gunten, Ferrate (Fe(VI)) application for municipal wastewater treatment: A novel process for simultaneous micropollutant oxidation and phosphate removal, Environ. Sci. Technol, vol.43, pp.3831-3838, 2009.

W. C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut, vol.187, pp.193-201, 2014.

R. H. Lindberg, M. Ostman, U. Olofsson, R. Grabic, and J. Fick, Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system, vol.58, pp.221-229, 2014.

Y. Liu, Z. Zeng, G. Zeng, L. Tang, Y. Pang et al., Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds, Bioresour. Technol, vol.115, pp.21-26, 2012.

L. Lloret, G. Eibes, G. Feijoo, M. T. Moreira, and J. M. Lema, Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports, J. Biotechnol, vol.162, pp.404-406, 2012.

L. Lloret, G. Eibes, T. A. Lú-chau, M. T. Moreira, G. Feijoo et al., Laccase-catalyzed degradation of anti-inflammatories and estrogens, Biochem. Eng. J, vol.51, pp.124-131, 2010.

L. Lonappan, T. Rouissi, M. A. Laadila, S. K. Brar, L. Hernandez-galan et al., Agro-industrial-Produced Laccase for Degradation of Diclofenac and Identification of Transformation Products, ACS Sustain. Chem. Eng, vol.5, pp.5772-5781, 2017.

R. Loos, G. Locoro, S. Comero, S. Contini, D. Schwesig et al., Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water, Water Res, vol.44, pp.4115-4126, 2010.

R. López-serna, A. Jurado, E. Vázquez-suñé, J. Carrera, M. Petrovic et al., Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environ. Pollut, vol.174, pp.305-315, 2013.

E. Magner, Immobilisation of enzymes on mesoporous silicate materials, Chem. Soc. Rev, vol.42, pp.6213-6222, 2013.

R. Mailler, J. Gasperi, Y. Coquet, S. Deshayes, S. Zedek et al., Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents, Water Res, vol.72, pp.315-330, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01103115

J. A. Majeau, S. K. Brar, and R. D. Tyagi, Laccases for removal of recalcitrant and emerging pollutants, Bioresour. Technol, vol.101, pp.2331-2350, 2010.

J. Margot, P. J. Copin, U. Von-gunten, D. A. Barry, and C. Holliger, Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects, Biochem. Eng. J, vol.103, pp.47-59, 2015.

J. Margot, S. Lochmatter, D. A. Barry, and C. Holliger, Role of ammonia-oxidizing bacteria in micropollutant removal from wastewater with aerobic granular sludge, Water Sci. Technol, vol.73, pp.564-575, 2015.

J. Margot, J. Maillard, L. Rossi, D. A. Barry, and C. Holliger, Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase, N. Biotechnol, vol.30, pp.803-813, 2013.

L. Martin-diaz, S. Franzellitti, S. Buratti, P. Valbonesi, A. Capuzzo et al., Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis, Aquat. Toxicol, vol.94, pp.177-185, 2009.

A. Matilainen, M. Vepsäläinen, and M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: A review, Adv. Colloid Interface Sci, vol.159, pp.189-197, 2010.

C. F. Melo and M. Dezotti, Evaluation of a horseradish peroxidase-catalyzed process for triclosan removal and antibacterial activity reduction, J. Chem. Technol. Biotechnol, vol.88, pp.930-936, 2013.

T. Mester and M. Tien, Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants, Int. Biodeterior. Biodegrad, vol.46, pp.71-79, 2000.

I. Michael, L. Rizzo, C. S. Mcardell, C. M. Manaia, C. Merlin et al., Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res, vol.7, pp.957-995, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01507503

T. B. Minh, H. W. Leung, I. H. Loi, W. H. Chan, M. K. So et al., Antibiotics in the Hong Kong metropolitan area: Ubiquitous distribution and fate in Victoria Harbour, Mar. Pollut. Bull, vol.58, pp.1052-1062, 2009.

N. R. Mohamad, N. H. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip, vol.29, pp.205-220, 2015.

M. Mohammadi, M. A. As'habi, P. Salehi, M. Yousefi, M. Nazari et al., Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds, Int. J. Biol. Macromol, vol.109, pp.443-447, 2018.

A. Morse and A. Jackson, Fate of amoxicillin in two water reclamation systems, Water. Air. Soil Pollut, vol.157, pp.117-132, 2004.

K. Murugesan, Y. Y. Chang, Y. M. Kim, J. R. Jeon, E. J. Kim et al., Enhanced transformation of triclosan by laccase in the presence of redox mediators, Water Res, vol.44, pp.298-308, 2010.

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Biotransformation of Carbamazepine by Laccase-Mediator System: Kinetics, by-products and toxicity assessment, Process Biochem, vol.67, pp.147-154, 2018.

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes, Environ. Pollut, vol.234, pp.190-213, 2018.

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine, Sci. Total Environ. 584, vol.585, pp.393-401, 2017.

T. Nakayama and T. Amachi, Fungal peroxidase: its structure, function, and application, J. Mol. Catal. B Enzym, vol.6, pp.119-121, 1999.

K. K. Navada and A. Kulal, Enzymatic degradation of chloramphenicol by laccase from Trametes hirsuta and comparison among mediators, Int. Biodeterior. Biodegrad, vol.138, pp.63-69, 2019.

L. N. Nguyen, F. I. Hai, A. Dosseto, C. Richardson, W. E. Price et al., Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor, Bioresour. Technol, vol.210, pp.108-116, 2016.

L. N. Nguyen, F. I. Hai, J. Kang, F. D. Leusch, F. Roddick et al., Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: Effect of mediator type and concentration, J. Taiwan Inst. Chem. Eng, vol.45, pp.1855-1862, 2014.

L. N. Nguyen, F. I. Hai, W. E. Price, F. D. Leusch, F. Roddick et al., The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor, Bioresour. Technol, vol.167, pp.169-177, 2014.

G. S. Nyanhongo, G. Gübitz, P. Sukyai, C. Leitner, D. Haltrich et al., Oxidoreductases from Trametes spp. in biotechnology: A wealth of catalytic activity, Food Technol. Biotechnol, vol.45, pp.250-268, 2007.

S. Ortiz-de-garcia, G. Pinto-pinto, P. García-encina, and R. Irusta-mata, Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain, Sci. Total Environ, vol.444, pp.451-465, 2013.

A. L. Parra-guardado, M. Belleville, M. Rostro-alanis, J. De, R. Parra-saldivar et al., Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study, Process Biochem, vol.78, pp.123-131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02050871

S. K. Patel, V. C. Kalia, J. H. Choi, J. R. Haw, I. W. Kim et al., Immobilization of Laccase on SiO2 Nanocarriers Omproves Its Stability and Reusability, J. Microbiol. Biotechnol, vol.24, pp.639-647, 2014.

C. Pezzella, M. E. Russo, A. Marzocchella, P. Salatino, and G. Sannia, Immobilization of a pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation, Biomed Res. Int, pp.1-11, 2014.

P. Hoa, P. T. Managaki, S. Nakada, N. Takada, H. Shimizu et al., Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam, Sci. Total Environ, vol.409, pp.2894-2901, 2011.

J. Polak and A. Jarosz-wilkolazka, Fungal laccases as green catalysts for dye synthesis, Process Biochem, vol.47, pp.1295-1307, 2012.

A. Prieto, M. Möder, R. Rodil, L. Adrian, and E. Marco-urrea, Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products, Bioresour. Technol, vol.102, pp.10987-10995, 2011.

E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Res, vol.43, pp.2419-2430, 2009.

B. Quinn, F. Gagné, and C. Blaise, The effects of pharmaceuticals on the regeneration of the cnidarian, Hydra attenuata, Sci. Total Environ, vol.402, pp.62-69, 2008.

J. Radjenovi?, M. Petrovi?, and D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res, vol.43, pp.831-841, 2009.

J. Radjenovi?, M. Petrovi?, F. Ventura, and D. Barceló, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res, vol.42, pp.3601-3610, 2008.

K. Rahmani, M. A. Faramarzi, A. H. Mahvi, M. Gholami, A. Esrafili et al., Elimination and detoxification of sulfathiazole and sulfamethoxazole assisted by laccase immobilized on porous silica beads, Int. Biodeterior. Biodegrad, vol.97, pp.107-114, 2015.

L. I. Ramírez-cavazos, C. Junghanns, N. Ornelas-soto, D. L. Cárdenas-chávez, C. Hernández-luna et al., Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals, J. Mol. Catal. B Enzym, vol.108, pp.32-42, 2014.

S. Riva, Laccases: blue enzymes for green chemistry, Trends Biotechnol, vol.24, pp.219-226, 2006.

J. Rivera-utrilla, M. Sánchez-polo, M. Á. Ferro-garcía, G. Prados-joya, and R. Ocampo-pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, vol.93, pp.1268-1287, 2013.

L. Rizzo, A. Fiorentino, M. Grassi, D. Attanasio, and M. Guida, Advanced treatment of urban wastewater by sand filtration and graphene adsorption for wastewater reuse: Effect on a mixture of pharmaceuticals and toxicity, J. Environ. Chem. Eng, vol.3, pp.122-128, 2015.

D. Rochefort, L. Kouisni, and K. Gendron, Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules, J. Electroanal. Chem, vol.617, pp.53-63, 2008.

M. Rodriguez-delgado and N. Ornelas-soto, Laccases: A Blue Enzyme for Greener Alternative Technologies in the Detection and Treatment of Emerging Pollutants, Green Technologies and Environmental Sustainability, pp.45-65, 2017.

M. Rodríguez-delgado, C. Orona-navar, R. García-morales, C. Hernandez-luna, R. Parra et al., Biotransformation kinetics of pharmaceutical and industrial micropollutants in groundwaters by a laccase cocktail from Pycnoporus sanguineus CS43 fungi, Int. Biodeterior. Biodegrad, vol.108, pp.34-41, 2016.

C. E. Rodríguez-rodríguez, J. García-galán, M. Blánquez, P. Díaz-cruz, M. S. Barceló et al., Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole, J. Hazard. Mater, vol.213, issue.214, pp.347-354, 2012.

H. R. Rogers, Sources, behaviour and fate of organic contaminants during sewage treatment and in sewage sludges, Sci. Total Environ, vol.185, issue.96, pp.5039-5044, 1996.

R. Rosal, A. Rodr?guez, J. A. Perdigon-melon, A. Petre, E. Garcia-calvo et al., Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation, Water Res, vol.44, pp.578-588, 2010.

N. Santhanam, J. M. Vivanco, S. R. Decker, and K. F. Reardon, Expression of industrially relevant laccases: Prokaryotic style, Trends Biotechnol, vol.29, pp.480-489, 2011.

P. Sathishkumar, J. C. Chae, A. R. Unnithan, T. Palvannan, H. Y. Kim et al., Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac, Enzyme Microb. Technol, vol.51, pp.113-118, 2012.

B. Shao, Z. Liu, G. Zeng, Y. Liu, X. Yang et al., Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, J. Hazard. Mater, vol.362, pp.318-326, 2019.

R. A. Sheldon, Enzyme immobilization: The quest for optimum performance, Adv. Synth. Catal, vol.349, pp.1289-1307, 2007.

R. A. Sheldon and S. Van-pelt, Enzyme immobilisation in biocatalysis: Why, what and how, Chem. Soc. Rev, vol.42, pp.6223-6235, 2013.

S. A. Snyder, S. Adham, A. M. Redding, F. S. Cannon, J. Decarolis et al., Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals, Desalination, vol.202, pp.156-181, 2007.

P. E. Stackelberg, J. Gibs, E. T. Furlong, M. T. Meyer, S. D. Zaugg et al., Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds, Sci. Total Environ, vol.377, pp.255-272, 2007.

L. F. Stadlmair, T. Letzel, J. E. Drewes, and J. Grassmann, Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection, Chemosphere, vol.205, pp.649-661, 2018.

L. F. Stadlmair, T. Letzel, J. E. Drewes, and J. Graßmann, Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes, Chemosphere, vol.174, pp.466-477, 2017.

D. W. Wong, Structure and Action Mechanism of Ligninolytic Enzymes. Appl. Biochem. Biotechnol, vol.157, pp.174-209, 2009.

R. Xu, Q. Zhou, F. Li, and B. Zhang, Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal, Chem. Eng. J, vol.222, pp.321-329, 2013.

G. C. Yang and P. Tang, Removal of phthalates and pharmaceuticals from municipal wastewater by graphene adsorption process, Water Sci. Technol, vol.73, pp.2268-2274, 2016.

J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye et al., Degradation of tetracycline by immobilized laccase and the proposed transformation pathway, J. Hazard. Mater, vol.322, pp.525-531, 2017.

S. Yang, F. I. Hai, L. D. Nghiem, W. E. Price, F. Roddick et al., Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review, Bioresour. Technol, vol.141, pp.97-108, 2013.

Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon, and Y. F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Sci. Total Environ, pp.303-320, 2017.

A. Yousefi-ahmadipour, M. Bozorgi-koshalshahi, M. Mogharabi, M. Amini, M. Ghazi-khansari et al., Laccase-catalyzed treatment of ketoconazole, identification of biotransformed metabolites, determination of kinetic parameters, and evaluation of microtoxicity, J. Mol. Catal. B Enzym, vol.133, pp.77-84, 2016.

Z. Yu, S. Peldszus, and P. M. Huck, Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound-Naproxen, carbamazepine and nonylphenol-on activated carbon, Water Res, vol.42, pp.2873-2882, 2008.

J. Zdarta, A. S. Meyer, T. Jesionowski, and M. Pinelo, A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility, vol.8, pp.1-27, 2018.

J. Zdarta, A. S. Meyer, T. Jesionowski, and M. Pinelo, Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Adv. Colloid Interface Sci, vol.258, pp.1-20, 2018.

A. Zenker, M. R. Cicero, F. Prestinaci, P. Bottoni, and M. Carere, Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment, J. Environ. Manage, vol.133, pp.378-387, 2014.

G. Zhang, S. Ji, and B. Xi, Feasibility study of treatment of amoxillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis, Desalination, vol.196, pp.32-42, 2006.

Y. Zhang and S. Geißen, In vitro degradation of carbamazepine and diclofenac by crude lignin peroxidase, J. Hazard. Mater, vol.176, pp.1089-1092, 2010.

Y. Zhang, C. F. Marrs, C. Simon, and C. Xi, Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp, Sci. Total Environ, vol.407, pp.3702-3706, 2009.

F. Zheng, B. K. Cui, X. J. Wu, G. Meng, H. X. Liu et al., Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes, Int. Biodeterior. Biodegrad, vol.110, pp.69-78, 2016.

P. Zucca and E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms, Molecules, vol.19, pp.14139-14194, 2014.

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes, Environ. Pollut, vol.234, pp.190-213, 2018.

Q. Bu, B. Wang, J. Huang, S. Deng, and G. Yu, Pharmaceuticals and personal care products in the aquatic environment in China: A review, J. Hazard. Mater, vol.262, pp.189-211, 2013.

Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, pp.619-641, 2014.

F. Baquero, J. L. Martínez, and R. Cantón, Antibiotics and antibiotic resistance in water environments, Curr. Opin. Biotechnol, vol.19, pp.260-265, 2008.

N. Voulvoulis, D. Barceló, and P. Verlicchi, Pharmaceutical Residues in Sewage Treatment Works and their Fate in the Receiving Environment, Pharm. Environ, pp.120-179, 2015.

Y. Yang, Y. S. Ok, K. H. Kim, E. E. Kwon, and Y. F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Sci. Total Environ, pp.303-320, 2017.

C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-wah-chung, G. Vanot et al., From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review, Water Res, vol.111, pp.297-317, 2017.

S. Couto and J. L. Herrera, Industrial and biotechnological applications of laccases: A review, Biotechnol. Adv, vol.24, pp.500-513, 2006.

S. Yang, F. I. Hai, L. D. Nghiem, W. E. Price, F. Roddick et al., Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review, Bioresour. Technol, vol.141, pp.97-108, 2013.

M. Fernández-fernández, M. Á. Sanromán, and D. Moldes, Recent developments and applications of immobilized laccase, Biotechnol. Adv, vol.31, pp.1808-1825, 2013.

M. Salazar-lópez, M. De, J. Rostro-alanis, C. Castillo-zacarías, A. L. Parra-guardado et al., Induced Degradation of AnthraquinoneBased Dye by Laccase Produced from Pycnoporus sanguineus (CS43), Water, Air, Soil Pollut, vol.228, p.469, 2017.

M. Mohammadi, M. A. As'habi, P. Salehi, M. Yousefi, M. Nazari et al., Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds, Int. J. Biol. Macromol, vol.109, pp.443-447, 2018.

X. Jin, X. Yu, G. Zhu, Z. Zheng, F. Feng et al., Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation, Sci. Rep, vol.6, pp.1-7, 2016.

C. Ji, J. Hou, and V. Chen, Cross-linked carbon nanotubes-based biocatalytic membranes for micropollutants degradation: Performance, stability, and regeneration, J. Memb. Sci, vol.520, pp.869-880, 2016.

B. Shao, Z. Liu, G. Zeng, Y. Liu, X. Yang et al., Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, J. Hazard. Mater, vol.362, pp.318-326, 2019.

M. De-cazes, M. P. Belleville, E. Petit, M. Llorca, S. Rodríguez-mozaz et al., Design and optimization of an enzymatic membrane reactor for tetracycline degradation, Catal. Today, vol.236, pp.146-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687215

C. Barrios-estrada, M. De, J. Rostro-alanis, A. L. Parra, M. P. Belleville et al., Potentialities of active membranes with immobilized laccase for Bisphenol A degradation, Int. J. Biol. Macromol, vol.108, pp.837-844, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674744

M. Gamallo, Y. Moldes-diz, G. Eibes, G. Feijoo, J. M. Lema et al., Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles, Biocatal. Biotransformation, vol.36, pp.254-264, 2018.

J. Polak and A. Jarosz-wilkolazka, Fungal laccases as green catalysts for dye synthesis, Process Biochem, vol.47, pp.1295-1307, 2012.

C. A. Gasser, E. M. Ammann, P. Shahgaldian, and P. F. Corvini, Laccases to take on the challenge of emerging organic contaminants in wastewater, Appl. Microbiol. Biotechnol, vol.98, pp.9931-9952, 2014.

P. Baiocco, A. M. Barreca, M. Fabbrini, C. Galli, and P. Gentili, Promoting laccase activity towards non-phenolic substrates: a mechanistic investigation with some laccase-mediator systems, Org. Biomol. Chem, vol.1, pp.191-197, 2003.

J. A. Majeau, S. K. Brar, and R. D. Tyagi, Laccases for removal of recalcitrant and emerging pollutants, Bioresour. Technol, vol.101, pp.2331-2350, 2010.

B. Ashe, L. N. Nguyen, F. I. Hai, D. J. Lee, J. P. Van-de-merwe et al., Impacts of redox-mediator type on trace organic contaminants degradation by laccase: Degradation efficiency, laccase stability and effluent toxicity, Int. Biodeterior. Biodegrad, vol.113, pp.169-176, 2016.

S. Kurniawati and J. A. Nicell, Efficacy of mediators for enhancing the laccase-catalyzed oxidation of aqueous phenol, Enzyme Microb. Technol, vol.41, pp.353-361, 2007.

J. Margot, P. J. Copin, U. Von-gunten, D. A. Barry, and C. Holliger, Sulfamethoxazole and isoproturon degradation and detoxification by a laccase-mediator system: Influence of treatment conditions and mechanistic aspects, Biochem. Eng. J, vol.103, pp.47-59, 2015.

S. Camarero and D. Ibarra, Lignin-Derived Compounds as Efficient Laccase Mediators for Decolorization of Different Types of Recalcitrant Dyes, Appl. Environ. Microbiol, vol.71, pp.1775-1784, 2005.

L. F. Stadlmair, T. Letzel, J. E. Drewes, and J. Graßmann, Mass spectrometry based in vitro assay investigations on the transformation of pharmaceutical compounds by oxidative enzymes, Chemosphere, vol.174, pp.466-477, 2017.

L. I. Ramírez-cavazos, C. Junghanns, R. Nair, D. L. Cárdenas-chávez, C. Hernández-luna et al., Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design, J. Zhejiang Univ. Sci. B, vol.15, pp.343-352, 2014.

M. Orlikowska, M. De, J. Rostro-alanis, A. Bujacz, C. Hernández-luna et al., Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus, Int. J. Biol. Macromol, vol.107, pp.1629-1640, 2018.

I. Gozlan, A. Rotstein, and D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment, Chemosphere, vol.91, pp.985-992, 2013.

D. Becker, S. Varela-della-giustina, S. Rodriguez-mozaz, R. Schoevaart, D. Barceló et al., Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase -Degradation of compounds does not always eliminate toxicity, Bioresour. Technol, vol.219, pp.500-509, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01678005

X. L. Guo, Z. W. Zhu, and H. L. Li, Biodegradation of sulfamethoxazole by Phanerochaete chrysosporium, J. Mol. Liq, vol.198, pp.169-172, 2014.

L. N. Nguyen, F. I. Hai, A. Dosseto, C. Richardson, W. E. Price et al., Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor, Bioresour. Technol, vol.210, pp.108-116, 2016.

N. Gao, C. X. Liu, Q. M. Xu, J. S. Cheng, and Y. J. Yuan, Simultaneous removal of ciprofloxacin, norfloxacin, sulfamethoxazole by co-producing oxidative enzymes system of Phanerochaete chrysosporium and Pycnoporus sanguineus, Chemosphere, vol.195, pp.146-155, 2018.

S. S. Weng, K. L. Ku, and H. T. Lai, The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics, Bioresour. Technol, vol.113, pp.259-264, 2012.

H. Ding, Y. Wu, B. Zou, Q. Lou, W. Zhang et al., Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccasemediated oxidation coupled with soil adsorption, J. Hazard. Mater, vol.307, pp.350-358, 2016.

C. Ji, J. Hou, K. Wang, Y. Zhang, and V. Chen, Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor, J. Memb. Sci, vol.502, pp.11-20, 2016.

J. Margot, J. Maillard, L. Rossi, D. A. Barry, and C. Holliger, Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase, N. Biotechnol, vol.30, pp.803-813, 2013.

C. Ji, L. N. Nguyen, J. Hou, F. I. Hai, and V. Chen, Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol, vol.178, pp.215-223, 2017.

L. Lloret, G. Eibes, T. A. Lú-chau, M. T. Moreira, G. Feijoo et al., Laccase-catalyzed degradation of anti-inflammatories and estrogens, Biochem. Eng. J, vol.51, pp.124-131, 2010.

L. I. Ramírez-cavazos, C. Junghanns, N. Ornelas-soto, D. L. Cárdenas-chávez, C. Hernández-luna et al., Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential role in degradation of endocrine disrupting chemicals, J. Mol. Catal. B Enzym, vol.108, pp.32-42, 2014.

K. Murugesan, Y. Y. Chang, Y. M. Kim, J. R. Jeon, E. J. Kim et al., Enhanced transformation of triclosan by laccase in the presence of redox mediators, Water Res, vol.44, pp.298-308, 2010.

S. Camarero, A. I. Cañas, P. Nousiainen, E. Record, A. Lomascolo et al., Hydroxycinnamic Acids As Natural Mediators for Laccase Oxidation of Recalcitrant Compounds, vol.42, pp.6703-6709, 2008.

A. I. Cañas, M. Alcalde, F. Plou, M. J. Martínez, Á. T. Martínez et al., Transformation of polycyclic aromatic hydrocarbons by laccase is strongly enhanced by phenolic compounds present in soil, Environ. Sci. Technol, vol.41, pp.2964-2971, 2007.

J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye et al., Degradation of tetracycline by immobilized laccase and the proposed transformation pathway, J. Hazard. Mater, vol.322, pp.525-531, 2017.

G. Cantarella, C. Galli, and P. Gentili, Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase/mediator systems: Catalytic or stoichiometric procedures, J. Mol. Catal. B Enzym, vol.22, pp.135-144, 2003.

A. I. Cañas and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv, vol.28, pp.694-705, 2010.

R. Bourbonnais, D. Leech, and M. G. Paice, Electrochemical analysis of the interactions of laccase mediators with lignin model compounds, Biochim. Biophys. Acta, vol.1379, pp.381-390, 1998.

A. Prieto, M. Möder, R. Rodil, L. Adrian, and E. Marco-urrea, Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products, Bioresour. Technol, vol.102, pp.10987-10995, 2011.

L. Shi, F. Ma, Y. Han, X. Zhang, and H. Yu, Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators, J. Hazard. Mater, vol.279, pp.203-211, 2014.

A. Blanquez, F. Guillen, J. Rodriguez, M. E. Arias, and M. Hernandez, The degradation of two fluoroquinolone based antimicrobials by SilA, an alkaline laccase from Streptomyces ipomoeae, World J. Microbiol. Biotechnol, vol.32, pp.1-8, 2016.

L. N. Nguyen, J. P. Van-de-merwe, F. I. Hai, F. D. Leusch, J. Kang et al., Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity, Bioresour. Technol, vol.200, pp.477-484, 2016.

C. Torres-duarte, S. Aguila, R. Vazquez-duhalt, ;. Kim, E. Chang et al., Syringaldehyde a true laccase mediator: Comments on the Letter to the Editor from Jeon, Chemosphere, vol.85, pp.1761-1762, 2011.

L. N. Nguyen, F. I. Hai, W. E. Price, F. D. Leusch, F. Roddick et al., The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor, Bioresour. Technol, vol.167, pp.169-177, 2014.

M. De-cazes, M. Belleville, E. Petit, M. Salomo, S. Bayer et al., Erythromycin degradation by esterase (EreB) in enzymatic membrane reactors, Biochem. Eng. J, vol.114, pp.70-78, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01688038

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Biotransformation of Carbamazepine by Laccase-Mediator System: Kinetics, by-products and toxicity assessment, Process Biochem, vol.67, pp.147-154, 2018.

M. A. Al-omar, Ciprofloxacin: Physical Profile, Profiles Drug Subst. Excipients Relat. Methodol, vol.31, pp.163-178, 2005.

T. M. Anh, S. V. Dzyadevych, A. P. Soldatkin, N. Duc-chien, N. Jaffrezic-renault et al., Development of tyrosinase biosensor based on pH-sensitive field-effect transistors for phenols determination in water solutions, Talanta, vol.56, issue.01, pp.611-618, 2002.

O. Barbosa, R. Torres, C. Ortiz, Á. Berenguer-murcia, R. C. Rodrigues et al., Heterofunctional supports in enzyme immobilization: From traditional immobilization protocols to opportunities in tuning enzyme properties, Biomacromolecules, vol.14, pp.2433-2462, 2013.

C. Barrios-estrada, M. Rostro-alanis, J. De, A. L. Parra, M. P. Belleville et al., Potentialities of active membranes with immobilized laccase for Bisphenol A degradation, Int. J. Biol. Macromol, vol.108, pp.837-844, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01674744

D. Becker, S. Varela-della-giustina, S. Rodriguez-mozaz, R. Schoevaart, D. Barceló et al., Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase -Degradation of compounds does not always eliminate toxicity, Bioresour. Technol, vol.219, pp.500-509, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01678005

H. Cabana, C. Alexandre, S. N. Agathos, and J. P. Jones, Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals, Bioresour. Technol, vol.100, pp.3447-3458, 2009.

A. I. Cañas and S. Camarero, Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes, Biotechnol. Adv, vol.28, pp.694-705, 2010.

S. Cantone, V. Ferrario, L. Corici, C. Ebert, D. Fattor et al., Efficient immobilization of industrial biocatalysts: criteria and constrains for the selection of organic polymeric carriers and immobilization methods, Chem. Soc. Rev, vol.42, pp.6262-6276, 2013.

M. D. Celiz, S. Pérez, D. Barceló, and D. S. Aga, Trace analysis of polar pharmaceuticals in wastewater by LC-MS-MS: Comparison of membrane bioreactor and activated sludge systems, 2009.

, J. Chromatogr. Sci, vol.47, pp.19-25

M. De-cazes, M. P. Belleville, E. Petit, M. Llorca, S. Rodríguez-mozaz et al., Design and optimization of an enzymatic membrane reactor for tetracycline degradation, Catal. Today, vol.236, pp.146-152, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687215

A. G. Destaye, C. K. Lin, and C. K. Lee, Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles, ACS Appl. Mater. Interfaces, vol.5, pp.4745-4752, 2013.

H. Ding, Y. Wu, B. Zou, Q. Lou, W. Zhang et al., Simultaneous removal and degradation characteristics of sulfonamide, tetracycline, and quinolone antibiotics by laccasemediated oxidation coupled with soil adsorption, J. Hazard. Mater, vol.307, pp.350-358, 2016.

M. Fernández-fernández, M. Á. Sanromán, and D. Moldes, Recent developments and applications of immobilized laccase, Biotechnol. Adv, vol.31, pp.1808-1825, 2013.

A. Fillat, J. F. Colom, and T. Vidal, A new approach to the biobleaching of flax pulp with laccase using natural mediators, Bioresour. Technol, vol.101, pp.4104-4110, 2010.

C. C. Fortes, A. L. Daniel-da-silva, A. M. Xavier, and A. P. Tavares, Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions, Chem. Eng. Process. Process Intensif, vol.117, pp.1-8, 2017.

M. Gamallo, Y. Moldes-diz, G. Eibes, G. Feijoo, J. M. Lema et al., Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles, Biocatal. Biotransformation, vol.36, pp.254-264, 2018.

C. Grandclément, I. Seyssiecq, A. Piram, P. Wong-wah-chung, G. Vanot et al., From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review, Water Res, vol.111, pp.297-317, 2017.

T. Hata, H. Shintate, S. Kawai, H. Okamura, and T. Nishida, Elimination of carbamazepine by repeated treatment with laccase in the presence of 1-hydroxybenzotriazole, J. Hazard. Mater, vol.181, pp.1175-1178, 2010.

T. Heberer, Occurrence , fate , and removal of pharmaceutical residues in the aquatic environment : a review of recent research data, Toxicol. Lett, vol.131, pp.41-44, 2002.

C. Ji, J. Hou, and V. Chen, Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration, J. Memb. Sci, vol.520, pp.869-880, 2016.

C. Ji, J. Hou, K. Wang, Y. Zhang, and V. Chen, Biocatalytic degradation of carbamazepine with immobilized laccase-mediator membrane hybrid reactor, J. Memb. Sci, vol.502, pp.11-20, 2016.

C. Ji, L. N. Nguyen, J. Hou, F. I. Hai, and V. Chen, Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol, vol.178, pp.215-223, 2017.

D. S. Jiang, S. Y. Long, J. Huang, H. Y. Xiao, and J. Y. Zhou, Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres, Biochem. Eng. J, vol.25, pp.15-23, 2005.

A. Karczmarczyk, A. Celebanska, W. Nogala, V. Sashuk, O. Chernyaeva et al., Electrocatalytic glucose oxidation at gold and gold-carbon nanoparticulate film prepared from oppositely charged nanoparticles, Electrochim. Acta, vol.117, pp.211-216, 2014.

Y. Kim and J. A. Nicell, Laccase-catalysed oxidation of aqueous triclosan, J. Chem. Technol. Biotechnol, vol.81, pp.1344-1352, 2006.

V. Lettera, C. Pezzella, P. Cicatiello, A. Piscitelli, V. G. Giacobelli et al., Efficient immobilization of a fungal laccase and its exploitation in fruit juice clarification, Food Chem, vol.196, pp.1272-1278, 2015.

L. Lloret, G. Eibes, G. Feijoo, M. T. Moreira, and J. M. Lema, Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports, J. Biotechnol, vol.162, pp.404-406, 2012.

L. Lloret, G. Eibes, T. A. Lú-chau, M. T. Moreira, G. Feijoo et al., Laccase-catalyzed degradation of anti-inflammatories and estrogens, Biochem. Eng. J, vol.51, pp.124-131, 2010.

Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai et al., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ, pp.619-641, 2014.

N. Misra, V. Kumar, N. K. Goel, and L. Varshney, Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye, Polymer (Guildf), vol.55, pp.6017-6024, 2014.

N. R. Mohamad, N. H. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip, vol.29, pp.205-220, 2015.

L. N. Nguyen, F. I. Hai, A. Dosseto, C. Richardson, W. E. Price et al., Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor, Bioresour. Technol, vol.210, pp.108-116, 2016.

L. N. Nguyen, F. I. Hai, J. Kang, F. D. Leusch, F. Roddick et al., Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: Effect of mediator type and concentration, J. Taiwan Inst. Chem. Eng, vol.45, pp.1855-1862, 2014.

L. N. Nguyen, J. P. Van-de-merwe, F. I. Hai, F. D. Leusch, J. Kang et al., Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity, Bioresour. Technol, vol.200, pp.477-484, 2016.

E. Niemirycz, J. Nichthauser, M. Staniszewska, G. Na??cz-jawecki, and J. Bola?ek, The Microtox® biological test: Application in toxicity evaluation of surface waters and sediments in Poland, 2007.

, Oceanol. Hydrobiol. Stud, vol.36, pp.151-163

A. L. Parra-guardado, M. Belleville, M. Rostro-alanis, J. De, R. Parra-saldivar et al., Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study, Process Biochem, vol.78, pp.123-131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02050871

S. K. Patel, V. C. Kalia, J. H. Choi, J. R. Haw, I. W. Kim et al., Immobilization of Laccase on SiO2 Nanocarriers Omproves Its Stability and Reusability, J. Microbiol. Biotechnol, vol.24, pp.639-647, 2014.

A. Pyka, M. Babu?ka, and M. Zachariasz, A comparison of theoretical methods of calculation of partition coefficients for selected drugs, Acta Pol. Pharm. -Drug Res, vol.63, pp.159-167, 2006.

L. I. Ramírez-cavazos, C. Junghanns, R. Nair, D. L. Cárdenas-chávez, C. Hernández-luna et al., Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design, J. Zhejiang Univ. Sci. B, vol.15, pp.343-352, 2014.

R. C. Rodrigues, C. Ortiz, Á. Berenguer-murcia, R. Torres, and R. Fernández-lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev, vol.42, pp.6290-6307, 2013.

M. Sari, S. Akgöl, M. Karata?, and A. Denizli, Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads, Ind. Eng. Chem. Res, vol.45, pp.3036-3043, 2006.

B. Shao, Z. Liu, G. Zeng, Y. Liu, X. Yang et al., Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, J. Hazard. Mater, vol.362, pp.318-326, 2019.

R. A. Sheldon and S. Van-pelt, Enzyme immobilisation in biocatalysis: Why, what and how, Chem. Soc. Rev, vol.42, pp.6223-6235, 2013.

G. Songulashvili, G. A. Jimenéz-tobón, C. Jaspers, and M. J. Penninckx, Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants, Fungal Biol, vol.116, pp.883-889, 2012.

D. Spinelli, E. Fatarella, A. Di-michele, and R. Pogni, Immobilization of fungal (Trametes versicolor) laccase onto Amberlite IR-120 H beads: Optimization and characterization, Process Biochem, vol.48, pp.218-223, 2013.

S. Suárez, M. Carballa, F. Omil, and J. M. Lema, How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters?, Rev. Environ. Sci. Biotechnol, vol.7, pp.125-138, 2008.

K. Takacs-novak, M. Jozan, I. Hermecz, and G. Szasz, Lipophilicity of antibacterial fluoroquinolones, Int. J. Pharm, vol.79, pp.89-96, 1992.

A. P. Tavares, C. G. Silva, G. Dra?i?, A. M. Silva, J. M. Loureiro et al., Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies, J. Colloid Interface Sci, vol.454, pp.52-60, 2015.

N. Voulvoulis, D. Barceló, and P. Verlicchi, Pharmaceutical Residues in Sewage Treatment Works and their Fate in the Receiving Environment, in: Pharmaceuticals in the Environment, pp.120-179, 2015.

J. Wang and S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater : A review, J. Environ. Manage, vol.182, pp.620-640, 2016.

Y. Wang, X. Chen, J. Liu, F. He, and R. Wang, Immobilization of laccase by Cu2+chelate affinity interaction on surface-modified magnetic silica particles and its use for the removal of 2,4-dichlorophenol, Environ. Sci. Pollut. Res, vol.20, pp.6222-6231, 2012.

R. Xu, Q. Zhou, F. Li, and B. Zhang, Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal, Chem. Eng. J, vol.222, pp.321-329, 2013.

J. Yang, Y. Lin, X. Yang, T. B. Ng, X. Ye et al., Degradation of tetracycline by immobilized laccase and the proposed transformation pathway, J. Hazard. Mater, vol.322, pp.525-531, 2017.

S. Yang, F. I. Hai, L. D. Nghiem, W. E. Price, F. Roddick et al., Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review, Bioresour. Technol, vol.141, pp.97-108, 2013.

J. Zdarta, A. S. Meyer, T. Jesionowski, and M. Pinelo, Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Adv. Colloid Interface Sci, vol.258, pp.1-20, 2018.

F. Zheng, B. K. Cui, X. J. Wu, G. Meng, H. X. Liu et al., Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes, Int. Biodeterior. Biodegrad, vol.110, pp.69-78, 2016.

M. References-addy, B. Losey, R. Mohseni, E. Zlotnikov, and A. Vasiliev, Adsorption of heavy metal ions on mesoporous silica-modified montmorillonite containing a grafted chelate ligand, Appl. Clay Sci. 59, vol.60, pp.115-120, 2012.

M. Ahn, J. Dec, J. Kim, and J. Bollag, Treatment of 2,4-Dichlorophenol Polluted Soil with Free and Immobilized Laccase, J. Environ. Qual, vol.31, pp.1509-1515, 2002.

N. An, C. H. Zhou, X. Y. Zhuang, D. S. Tong, and W. H. Yu, Immobilization of enzymes on clay minerals for biocatalysts and biosensors, Appl. Clay Sci, vol.114, pp.283-296, 2015.

T. Aydemir and S. Güler, Characterization and immobilization of Trametes versicolor laccase on magnetic chitosan-clay composite beads for phenol removal, Nanomedicine Biotechnol, vol.43, pp.425-432, 2015.

M. Bizi, Stability and flocculation of nanosilica by conventional organic polymer, Nat. Sci, vol.4, pp.372-385, 2012.

H. Cabana, C. Alexandre, S. N. Agathos, and J. P. Jones, Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals, Bioresour. Technol, vol.100, pp.3447-3458, 2009.

P. Champagne and J. A. Ramsay, Reactive blue 19 decolouration by laccase immobilized on silica beads, Appl. Microbiol. Biotechnol, vol.77, pp.819-823, 2007.

G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol, vol.97, pp.1061-1085, 2006.

S. Datta, L. R. Christena, and Y. R. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech, vol.3, pp.1-9, 2013.

F. Debaste, G. Songulashvili, and M. J. Penninckx, The potential of Cerrena unicolor laccase immobilized on mesoporous silica beads for removal of organic micropollutants in wastewaters, 2014.

. W. Desalin and . Treat, , vol.52, pp.2344-2347

J. C. Santos, O. Barbosa, C. Ortiz, A. Berenguer-murcia, R. C. Rodriguez et al., Importance of the Support Properties for Immobilization or Purification of Enzymes, ChemCatChem, vol.7, pp.2413-2432, 2015.

C. C. Fortes, A. L. Daniel-da-silva, A. M. Xavier, and A. P. Tavares, Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions, Chem. Eng. Process. Process Intensif, vol.117, pp.1-8, 2017.

C. García-delgado, E. Eymar, R. Camacho-arévalo, M. Petruccioli, S. Crognale et al., Degradation of tetracyclines and sulfonamides by stevensite-and biochar-immobilized laccase systems and impact on residual antibiotic activity, J. Chem. Technol. Biotechnol, vol.93, pp.3394-3409, 2018.

C. A. Gasser, E. M. Ammann, P. Shahgaldian, and P. F. Corvini, Laccases to take on the challenge of emerging organic contaminants in wastewater, Appl. Microbiol. Biotechnol, vol.98, pp.9931-9952, 2014.

L. Gianfreda and J. Bollag, Effect of Soils on the Behavior of Immobilized Enzymes, Soil Sci. Soc. Am. J, vol.58, pp.1672-1681, 1994.

E. M. Golet, I. Xifra, H. Siegrist, A. C. Alder, and W. Giger, Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil, Environ. Sci. Technol, vol.37, pp.3243-3249, 2003.

A. G. Grigoras, Catalase immobilization-A review, Biochem. Eng. J, vol.117, pp.1-20, 2017.

Z. Guo, S. Bai, and Y. Sun, Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres, Enzyme Microb. Technol, vol.32, pp.51-57, 2003.

C. Ji, J. Hou, and V. Chen, Cross-linked carbon nanotubes-based biocatalytic membranes for micro-pollutants degradation: Performance, stability, and regeneration, J. Memb. Sci, vol.520, pp.869-880, 2016.

C. Ji, L. N. Nguyen, J. Hou, F. I. Hai, and V. Chen, Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation, Sep. Purif. Technol, vol.178, pp.215-223, 2017.

Y. Jiang, C. Guo, H. Xia, I. Mahmood, C. Liu et al., Magnetic nanoparticles supported ionic liquids for lipase immobilization: Enzyme activity in catalyzing esterification, J. Mol. Catal. B Enzym, vol.58, pp.103-109, 2009.

X. Jin, X. Yu, G. Zhu, Z. Zheng, F. Feng et al., Conditions Optimizing and Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide Degradation, Sci. Rep, vol.6, pp.1-7, 2016.

B. C. Kim, J. Lee, W. Um, J. Kim, J. Joo et al., Magnetic mesoporous materials for removal of environmental wastes, J. Hazard. Mater, vol.192, pp.1140-1147, 2011.

V. V. Kumar and H. Cabana, Towards high potential magnetic biocatalysts for on-demand elimination of pharmaceuticals, Bioresour. Technol, vol.200, pp.81-89, 2016.

F. Li, Y. Jiang, M. Xia, M. Sun, B. Xue et al., A high-stability silica-clay composite: Synthesis, characterization and combination with TiO2 as a novel photocatalyst for Azo dye, J. Hazard. Mater, vol.165, pp.1219-1223, 2009.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, The folin by oliver, J. Biol. Chem, vol.193, pp.265-275, 1951.

I. Michael, L. Rizzo, C. S. Mcardell, C. M. Manaia, C. Merlin et al., Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review, Water Res, vol.7, pp.957-995, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01507503

N. Misra, V. Kumar, N. K. Goel, and L. Varshney, Laccase immobilization on radiation synthesized epoxy functionalized polyethersulfone beads and their application for degradation of acid dye, Polymer (Guildf), vol.55, pp.6017-6024, 2014.

M. T. Moreira, Y. Moldes-diz, S. Feijoo, G. Eibes, J. M. Lema et al., Formulation of Laccase Nanobiocatalysts Based on Ionic and Covalent Interactions for the Enhanced Oxidation of Phenolic Compounds, Appl. Sci, vol.7, pp.1-11, 2017.

M. Naghdi, M. Taheran, S. K. Brar, A. Kermanshahi-pour, M. Verma et al., Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine, Sci. Total Environ. 584, vol.585, pp.393-401, 2017.

L. N. Nguyen, F. I. Hai, A. Dosseto, C. Richardson, W. E. Price et al., Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor, Bioresour. Technol, vol.210, pp.108-116, 2016.

A. L. Parra-guardado, M. Belleville, M. Rostro-alanis, J. De, R. Parra-saldivar et al., Effect of redox mediators in pharmaceuticals degradation by laccase: A comparative study, Process Biochem, vol.78, pp.123-131, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02050871

S. K. Patel, V. C. Kalia, J. H. Choi, J. R. Haw, I. W. Kim et al., Immobilization of Laccase on SiO2 Nanocarriers Omproves Its Stability and Reusability, J. Microbiol. Biotechnol, vol.24, pp.639-647, 2014.

C. Pezzella, M. E. Russo, A. Marzocchella, P. Salatino, and G. Sannia, Immobilization of a pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation, Biomed Res. Int, pp.1-11, 2014.

P. Sathishkumar, J. C. Chae, A. R. Unnithan, T. Palvannan, H. Y. Kim et al., Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: Highly stable, reusable, and efficacious for the transformation of diclofenac, Enzyme Microb. Technol, vol.51, pp.113-118, 2012.

B. Shao, Z. Liu, G. Zeng, Y. Liu, X. Yang et al., Immobilization of laccase on hollow mesoporous carbon nanospheres: Noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal, J. Hazard. Mater, vol.362, pp.318-326, 2019.

R. A. Sheldon, Enzyme immobilization: The quest for optimum performance, Adv. Synth. Catal, vol.349, pp.1289-1307, 2007.

R. A. Sheldon and S. Van-pelt, Enzyme immobilisation in biocatalysis: Why, what and how, Chem. Soc. Rev, vol.42, pp.6223-6235, 2013.

S. Shen, S. Tu, and R. W. Taylor, Interactions of enzymes with clays and applications in bioremediation, SSSA Book Series, pp.795-817, 2002.

Y. Wen, Y. Liang, C. Shen, H. Wang, D. Fu et al., Synergistic removal of dyes by Myrothecium verrucaria immobilization on a chitosan-Fe membrane, RSC Adv, vol.5, pp.68200-68208, 2015.

S. Yang, F. I. Hai, L. D. Nghiem, W. E. Price, F. Roddick et al., Understanding the factors controlling the removal of trace organic contaminants by white-rot fungi and their lignin modifying enzymes: A critical review, Bioresour. Technol, vol.141, pp.97-108, 2013.

X. Yang, G. Tian, N. Jiang, and B. Su, Immobilization technology: a sustainable solution for biofuel cell design, Energy Environ. Sci, vol.5, pp.5540-5563, 2012.

J. Zdarta, A. S. Meyer, T. Jesionowski, and M. Pinelo, Developments in support materials for immobilization of oxidoreductases: A comprehensive review, Adv. Colloid Interface Sci, vol.258, pp.1-20, 2018.

J. Zdarta, A. S. Meyer, T. Jesionowski, and M. Pinelo, A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility, vol.8, pp.1-27, 2018.

F. Zheng, B. K. Cui, X. J. Wu, G. Meng, H. X. Liu et al., Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes, Int. Biodeterior. Biodegrad, vol.110, pp.69-78, 2016.

A. Zille, T. Tzanov, G. M. Gübitz, and A. Cavaco-paulo, Immobilized laccase for decolourization of Reactive Black 5 dyeing effluent, Biotechnol. Lett, vol.25, pp.1473-1477, 2003.

P. Zucca and E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms, Molecules, vol.19, pp.14139-14194, 2014.