J. Zarzycki, Les verres et l'état vitreux, 1982.

W. H. Zachariasen, The atomic arrangement in glass, Journal of the American Chemical Society, vol.54, issue.10, pp.3841-3851, 1932.

J. Barton and C. Guillemet, Le verre -Science et technologie, 2005.

J. M. Haussonne, Traité des Matériaux. Céramiques et verres: Principes et techniques d'élaboration, 2005.

A. K. Varshneya, Fundamentals of Inorganic Glasses, 1994.

C. M. Schramm, B. Dejong, and V. E. Parziale, Si-29 magic angle spinning nmr-study on local silicon environments in amorphous and crystalline lithium silicates, Journal of the American Chemical Society, vol.106, issue.16, pp.4396-4402, 1984.

R. Dupree and D. Holland, Glass and Glass Ceramics, vol.1, 1989.

H. Maekawa, The structural groups of alkali silicate-glasses determined from Si-29 MAS-NMR, Journal of Non-Crystalline Solids, vol.127, issue.1, pp.53-64, 1991.

T. Maehara, Proceeding congrès ICG Strasbourg, 2007.

T. Yano, S. Shibata, and T. Maehara, Structural equilibria in silicate glass melts investigated by Raman spectroscopy, Journal of the American Ceramic Society, vol.89, issue.1, pp.89-95, 2006.

B. E. Warren, Summary of work on atomic arrangement in glass, J. Am. Ceram. Soc, vol.24, issue.8, pp.256-261, 1941.

G. N. Greaves, EXAFS and the structure of glass, J. Non-Cryst. Solids, vol.71, issue.1-3, pp.203-217, 1985.

Y. H. Yun and P. J. Bray, Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2, Journal of Non-Crystalline Solids, vol.27, issue.3, pp.363-380, 1978.

W. Lowenstein, The distribution of aluminium in the tetrahedra of silicates and aluminates, American Mineralogist, vol.39, pp.92-96, 1954.

G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites, 1987.

G. Engelhardt, Structural studies of calcium aluminosilicate glasses by highresolution solid-state Si-29 and Al-27 magic angle spinning nuclear magneticresonance. Physics and Chemistry of Glasses, vol.26, pp.157-165, 1985.

D. E. Day and G. E. Rindone, Properties of Soda Aluminosilicate Glasses: I, Refractive Index, Density, Molar Refractivity, and Infrared Absorption Spectra, Journal of the American Ceramic Society, vol.45, issue.10, pp.489-496

J. F. Mcdowell and G. H. Beall, Immiscibility and crystallization in Al2O3-SiO2 glasses, Journal of the American Ceramic Society, vol.52, pp.17-25, 1969.

A. Monteiro, Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment, Références bibliographiques 1, vol.448, pp.8-19, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157467

J. A. Dean and N. A. Lange, Handbook of chemistry, 1999.

J. F. Brown, D. Clark, and W. W. Elliott, The thermal decomposition of the alumina trihydrate, gibbsite, Journal of the Chemical Society, vol.13, issue.0, pp.84-88

R. W. Berg, D. H. Kerridge, and P. H. Larsen, NaNO2 + NaNO3 Phase Diagram: New Data from DSC and Raman Spectroscopy, vol.51, pp.34-39, 2005.

O. Abe, T. Utsunomiya, and Y. Hoshino, The reaction of ternary mixtures of sodium nitrate, diboron trioxide and silica, Journal of Thermal Analysis and Calorimetry, vol.27, issue.1, pp.103-111, 1983.

P. Burtin, Transformation des alumines de transition en alumine alpha. Influence d'éléments étrangers sur la stabilité des alumines, 1985.
URL : https://hal.archives-ouvertes.fr/tel-00845793

, Communication to the Editor: The Thermal Decomposition of NaNO3, The Journal of Physical Chemistry, vol.60, issue.2, pp.256-256, 1956.

E. El-shereafy, Mechanism of thermal decomposition and ?-pyrolysis of aluminum nitrate nonahydrate, Journal of Radioanalytical and Nuclear Chemistry, vol.237, issue.1, pp.183-186, 1998.

L. Candela and D. D. Perlmutter, Kinetics of boehmite formation by thermal decomposition of gibbsite Industrial & Engineering Chemistry Research, vol.31, pp.694-700, 1992.

K. Consani, Simple amorphous salts: Spectra and glass transition temperatures, The Journal of Chemical Physics, vol.74, issue.9, pp.4774-4779, 1981.

R. C. Hoffman, A. Laskin, and B. J. Finlayson-pitts, Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols, Journal of Aerosol Science, vol.35, issue.7, pp.869-887, 2004.

J. Rouquerol, F. Rouquerol, and M. Ganteaume, Thermal decomposition of gibbsite under low pressures: I. Formation of the boehmitic phase, Journal of Catalysis, vol.36, issue.1, pp.99-110, 1975.

B. Dimitrios, Process for production of monohydrate alumina from supersaturated aluminate solutions, 1998.

H. Dislich, Sol-Gel -Science, Processes and Products Journal of Non-Crystalline Solids, vol.80, issue.1-3, pp.115-121, 1986.

F. Abbattista, Surface characterization of amorphous alumina and its crystallization products, Journal of Catalysis, vol.117, issue.1, pp.42-51, 1989.

, Chapitre 4 : Etude des calcinats 227

G. Gutiérrez and B. Johansson, Molecular dynamics study of structural properties of amorphous Al2O3, Physical Review B, vol.65, issue.10, pp.104-202, 2002.

S. Cava, Structural characterization of phase transition of Al2O3 nanopowders obtained by polymeric precursor method. Materials Chemistry and Physics, vol.103, pp.394-399, 2007.

G. K. Chuah, S. Jaenicke, and T. H. Xu, The effect of digestion on the surface area and porosity of alumina, Microporous and Mesoporous Materials, vol.37, issue.3, pp.345-353, 2000.

A. Monteiro, Étude des mécanismes de réactivité chimique des précurseurs lors de l'élaboration d'un verre de confinement de déchet de haute activité : de l'expérimentation à la modélisation, 2012.

R. C. Devries and W. L. Roth, Critical evaluation of the literature data on beta alumina and related phases: I. Phase equilibria and characterization of beta alumina phases, Journal of American Ceramic Society, vol.52, issue.7, pp.364-369, 1969.

E. Yazhenskikh, K. Hack, and M. Müller, Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags Part 2: Alkali oxide-alumina systems, Calphad, vol.30, issue.4, pp.397-404, 2006.

N. Weber and A. F. Venero, Revision of the phase diagram NaAlO2-Al2O3, Journal of American Ceramic Society, vol.49, issue.4, pp.491-492, 1970.

E. F. Osborn and A. Muan, Plate 4: The system Na2O-Al2O3-SiO2. Phase Equilibrium Diagrams for Ceramists, Journal of the American Ceramic Society, 1960.

J. F. Schairer and N. L. Bowen, American Journal of Science, vol.254, issue.3, pp.129-195, 1956.

K. T. Jacob, K. Swaminathan, and O. M. Sreedharan, Potentiometric determination of activities in the two-phase fields of the system Na2O-(?)Al2O3. Electrochimica Acta, vol.36, pp.791-798, 1991.

C. W. Bale and E. Bélisle, Fact-Web suite of interactive programs

M. S. Beletskii and Y. G. Saksonov, X-Ray Diffraction Studies of Polymorphic Transformations in Sodium Aluminate, Russian Journal of Inorganic Chemistry, vol.4, pp.441-442

B. K. Hodnett and J. B. Moffat, Application of temperature-programmed desorption to the study of heteropoly compounds: Desorption of water and pyridine, Journal of Catalysis, vol.88, issue.2, pp.253-263, 1984.

Y. G. Petrosyan, E. V. Tkachenko, and V. M. Zhukovskii, Phase diagrams of the systems Na2MoO4-MMoO4 (M is Ca, vol.11, pp.1381-1384, 1975.

M. Misono, Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten, Catalysis Reviews-Science and Engineering, vol.29, issue.2-3, pp.269-321, 1987.

, Chapitre 4 : Etude des calcinats 228

S. F. West and L. F. Audrieth, Differential thermal analysis of some heteropoly acids of molybdenum and tungsten, Journal of Physical Chemistry, vol.59, issue.10, pp.1069-1072, 1955.

M. Fournier, Polyoxometalates catalyst materials -x-ray thermal-stability study of phosphorus-containing heteropolyacids H3+XPM12-XVXO40.13-14H2O (M = MO,W -X = 0-1), vol.2, pp.971-978, 1992.

J. Grynberg, Mécanismes physiques et chimiques mis en jeu lors de la fusion du mélange SiO2-Na2CO3, 2012.

I. Barin, Thermochemical data of pure substances, 1989.

O. K. Knacke, O. , and H. K. , Thermochemical properties of inorganic substances, 1991.

S. Mathur, Structural and optical properties of NdAlO3 nanocrystals embedded in an Al2O3 matrix, Chemistry of Materials, vol.14, issue.2, pp.568-582, 2002.

W. W. Wendlandt, The thermolysis of the rare earth and other metal nitrates

, Analytica Chimica Acta, vol.15, pp.435-439, 1956.

C. P. Van-vuuren and C. A. Strydom, The thermal decomposition of neodymium nitrate, Thermochimica Acta, vol.104, issue.0, pp.293-298, 1986.

S. S. Batsanov, Optical properties of the oxides of rare earth metals 2. Polythermal study of Nd2O3, Journal of Structural Chemistry, vol.6, issue.1, pp.47-53, 1965.

Y. H. Zhang and A. Navrotsky, Thermochemistry of rare-earth aluminate and aluminosilicate glasses, Journal of Non-Crystalline Solids, vol.341, issue.1-3, pp.141-151, 2004.

, Références bibliographiques

H. Scholze and . Le-verre, Nature, structure et propriétés, 1980.

G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites, 1987.

I. Bardez, Etude des caractéristiques structurales et des propriétés de verres riches en terres rares destinés au confinement des produits de fission et éléments à vie longue, 2004.

W. Haller, Metastable Immiscibility Surface in the System Na2O-B2O3-SiO2, Journal of the American Ceramic Society, vol.53, issue.1, pp.34-39, 1970.

Y. G. Petrosyan, E. V. Tkachenko, and V. M. Zhukovskii, Phase diagrams of the systems Na2MoO4-MMoO4 (M is Ca, vol.11, pp.1381-1384, 1975.

S. Bordier, Modélisation thermodynamique des phases insolubles dans les verres nucléaires. Application à la vitrification du molybdène et des produits de fission platinoïdes, 2015.

J. Grynberg, Importance of the Atmosphere on the Mechanisms and Kinetics of Reactions Between Silica and Solid Sodium Carbonate, International Journal of Applied Glass Science, vol.6, issue.4, pp.428-437, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01144103

J. F. Brown, D. Clark, and W. W. Elliott, The thermal decomposition of the alumina trihydrate, gibbsite, Journal of the Chemical Society, vol.13, issue.0, pp.84-88

C. N. Fenner, The stability relations of the silica minerals, American Journal of Science, vol.36, pp.331-384, 1913.

S. J. Stevens, R. J. Hand, and J. H. Sharp, Polymorphism of silica, Journal of Materials Science, vol.32, issue.11, pp.2929-2935, 1997.

W. J. Dell, P. J. Bray, and S. Z. Xiao, 11 B NMR studies and structural modeling of Na2O-B2O3-SiO2 glasses of high soda content, Journal of Non-Crystalline Solids, vol.58, issue.1, pp.1-16, 1983.

B. C. Bunker, Multinuclear Nuclear-Magnetic-Resonance and Raman Investigation of Sodium Borosilicate Glass Structures. Physics and Chemistry of Glasses, vol.31, pp.30-41, 1990.

L. S. Du and J. F. Stebbins, Network connectivity in aluminoborosilicate glasses: A high-resolution B-11, Al-27 and O-17 NMR study, Journal of Non-Crystalline Solids, vol.351, pp.3508-3520, 2005.

W. Du, Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR, Journal of Materials Science, vol.35, pp.4865-4871, 2000.

H. Yamashita, Nuclear magnetic resonance studies of 0.139MO (or M'2O) ? 0.673SiO2 ? (0.188 -x)Al2O3 ? xB2O3, vol.331, pp.128-136, 2003.

G. El-damrawi, 11 B, 29 Si and 27 Al nuclear magnetic resonance studies of Na2O-Al2O3-B2O3-SiO2 glasses. Physics and Chemistry of Glasses, vol.34, pp.52-57, 1993.

Y. H. Yun and P. J. Bray, Nuclear magnetic resonance studies of the glasses in the system Na2O-B2O3-SiO2, Journal of Non-Crystalline Solids, vol.27, issue.3, pp.363-380, 1978.

D. Caurant, Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses, Journal of the American Ceramic Society, vol.90, issue.3, pp.774-783, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00326968

M. Magnin, Etude des processus de démixtion et de cristallisation au sein de liquides fondus borosilicatés riches en oxyde de molybdène, 2009.

R. J. Short, Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions, Journal of Nuclear Materials, vol.340, pp.179-186, 2005.

N. Sawaguchi, T. Yokokawa, K. Kawamura, K. Mo, and . Xafs, Na2O-K2O-SiO2 glasses. Physics and Chemistry of Glasses, vol.37, pp.13-18, 1996.

G. Calas, Structural role of molybdenum in nuclear glasses: an EXAFS study, Journal of Nuclear Materials, vol.322, issue.1, pp.15-20, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00085114

F. Farges, Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum, Canadian Mineralogist, vol.44, pp.731-753, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00128452

D. Caurant, Structural investigations of borosilicate glasses containing MoO3 by MAS NMR and Raman spectroscopies, Journal of Nuclear Materials, vol.396, issue.1, pp.94-101, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539978

N. Chouard, Structure, stabilité thermique et résistance sous irradiation externe de verres aluminoborosilicatés riches en terres rares et en molybdène, 2011.

A. Ledieu, Leaching of borosilicate glasses, I. Experiments. Journal of NonCrystalline Solids, vol.343, issue.1-3, pp.3-12, 2004.

R. Pokorny, Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch, Journal of Nuclear Materials, pp.230-235, 2013.

A. Noyes and W. Whitney, The rate of solution of solid substances in their own solutions, Journal of the American Ceramic Society, vol.19, p.930, 1897.

P. Hrma, Conversion of batch to molten glass, II: Dissolution of quartz particles, Journal of Non-Crystalline Solids, vol.357, issue.3, pp.820-828, 2011.

M. Cable and J. R. Frade, The diffusion-controlled dissolution of spheres, Journal of Materials Science, vol.22, issue.5, pp.1894-1900, 1987.

Y. Zhang, D. Walker, and C. E. Lesher, Diffusive crystal dissolution. Contributions to Mineralogy and Petrology, vol.102, pp.492-513, 1989.

S. Schuller, Elaboration des verres nucléaires. Dossier de synthèse présenté pour l'obtention de l'Habilitation à Diriger les Recherches, 2014.

A. Fluegel, Glass viscosity calculation based on a global statistical modeling approach, Glass Technol. : Europ. J. Glass Sci. Technol, vol.48, issue.1, pp.13-30, 2007.

A. W. Hixson and J. H. Crowell, Dependence of reaction velocity upon surface and agitation (I) theorical consideration. Industrial and Engineering Chemistry, vol.23, pp.923-931, 1931.

, Pr et Gd) mettant en évidence la cristallisation de Ca2TR8, Clichés acquis après 5minutes à 900 °C hors du MEB-Environnemental sur des mélanges FNOC57+C-30TRTT (TR=, vol.142, pp.6-8

D. Caurant, Effect of molybdenum on the structure and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses, Journal of the American Ceramic Society, vol.90, issue.3, pp.774-783, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00326968

E. Nicoleau, Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass, Journal of Non-Crystalline Solids, vol.427, pp.120-133, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187789

S. Bordier, Modélisation thermodynamique des phases insolubles dans les verres nucléaires. Application à la vitrification du molybdène et des produits de fission platinoïdes, 2015.

O. Pinet, J. L. Dussossoy, C. David, and C. Fillet, Glass matrices for immobilizing nuclear waste containing molybdenum and phosphorus, J. Nucl. Mat, vol.377, issue.2, pp.307-312, 2008.

B. Luckscheiter and M. Nesovic, Development of glasses for the vitrification of high level liquid waste (HLLW) in a joule heated ceramic melter, Waste Management, vol.16, issue.7, pp.571-578, 1996.

P. Hrma, J. V. Crum, D. J. Bates, P. R. Bredt, L. R. Greenwood et al., Vitrification and testing of a Hanford high-level waste sample. Part 1: Glass fabrication, and chemical and radiochemical analysis, J. Nucl. Mat, vol.345, issue.1, pp.19-30, 2005.

C. P. Kaushik, R. K. Mishra, P. Sengupta, A. Kumar, D. Das et al., Barium borosilicate glass -a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste, J. Nucl. Mat, vol.358, issue.2-3, pp.129-138, 2006.

H. Mitamura, T. Murakami, T. Banba, Y. Kiriyama, H. Kamizono et al., Segregation of the elements of the platinum group in a simulated high-level waste glass, Nuclear and Chemical Waste Management, issue.4, pp.245-251, 1983.

P. Izak, P. Hrma, B. W. Arey, and T. J. Plaisted, Effect of feed melting, temperature history, and minor component addition on spinel crystallization in high-level waste glass, J. Non-Cryst. Solids, vol.289, issue.1-3, pp.17-29, 2001.

R. J. Short, R. J. Hand, and N. C. Hyatt, Molybdenum in Nuclear Waste Glasses-Incorporation and Redox State, Materials Research Society Symposium Proceedings, vol.757, pp.141-146, 2003.

M. Soustelle, Cinétique hétérogène 1 : modélisation des mécanismes, 2006.

I. L. Pegg, H. Gan, K. S. Matlack, Y. Endo, T. Fukui et al., Mitigation of Yellow Phase Formation at the Rokkasho HLW Vitrification Facility . WM-2010 Conference, 2010.

P. B. Rose, D. I. Woodward, M. I. Ojovan, N. C. Hyatt, and W. E. Lee, Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line, J. Non-Cryst. Solids, vol.357, pp.2986-3001, 2011.

R. J. Hand, R. J. Short, S. Morgan, N. C. Hyatt, G. Mobus et al., Molybdenum in glasses containing vitrified nuclear waste, Proc. VII Europeen Society of Glass Technology Conf. Athens Greece, vol.46, pp.121-124, 2004.

N. C. Hyatt, R. J. Short, R. J. Hand, and W. E. Lee, The structural chemistry of molybdenum in model high level nuclear waste glasses, investigated by Mo K-edge X-ray absorption spectroscopy, Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, vol.168, pp.179-190, 2005.

R. J. Short, R. J. Hand, N. C. Hyatt, and G. Mobus, Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions, J. Nucl. Mater, vol.340, issue.2-3, pp.179-186, 2005.

H. Li, P. Hrma, J. D. Vienna, M. X. Qian, Y. L. Su et al., Effects of Al2O3, B2O3, Na2O, and SiO2 on nepheline formation in borosilicate glasses: chemical and physical correlations, J. Non-Cryst. Solids, vol.331, issue.1-3, pp.202-216, 2003.

A. Monteiro, S. Schuller, M. J. Toplis, R. Podor, J. Ravaux et al., Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment, J. Nucl. Mater, vol.448, issue.1-3, pp.8-19, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157467

P. Jollivet, S. Gin, and S. Schumacher, Forward dissolution rate of silicate glasses of nuclear interest in clayequilibrated groundwater, Chem. Geol, pp.207-217, 2012.

T. Advocat, P. Jollivet, J. Crovisier, and M. Nero, Long-term alteration mechanism in water for SON68 radioactive borosililcate glass, J. Nucl. Mat, vol.298, pp.55-62, 2001.

A. Monteiro, Étude des mécanismes de réactivité chimique des précurseurs lors de l'élaboration d'un verre de confinement de déchet de haute activité : de l'expérimentation à la modélisation, 2012.

P. Thompson, D. E. Cox, and J. B. Hastings, Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3, J. Applied Crystallography, vol.20, pp.79-83, 1987.

C. Frontera and J. Rodr??uez-carvajal, FullProf as a new tool for flipping ratio analysis, Physica B: Condensed Matter, vol.335, issue.1-4, pp.219-222, 2003.

F. Abbattista, S. Delmastro, G. Gozzelino, D. Mazza, M. Vallino et al., Surface characterization of amorphous alumina and its crystallization products, J. Catalysis, vol.117, issue.1, pp.42-51, 1989.

Y. G. Petrosyan, E. V. Tkachenko, and V. M. Zhukovskii, Phase diagrams of the systems Na2MoO4-MMoO4 (M is Ca, vol.11, pp.1381-1384, 1975.

F. Angeli, T. Charpentier, D. Deligny, and C. Cailleteau, Boron speciation in soda-lime borosilicate glasses containing zirconium, J. Amer. Ceram. Soc, vol.93, issue.9, pp.2693-2714, 2010.

J. Hopf, S. N. Keresit, F. Angeli, T. Charpentier, J. P. Icenhower et al., Glass-water interaction: Effect of high-valence cations on glass structure and chemical durability, Geochim. Cosmochim. Acta, vol.181, pp.54-71, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01287715

W. J. Dell, P. J. Bray, and S. Z. Xiao, 11 B NMR studies and structural modeling of Na2O-B2O3-SiO2 glasses of high soda content, Journal of Non-Crystalline Solids, vol.58, issue.1, pp.1-16, 1983.

B. C. Bunker, Multinuclear Nuclear-Magnetic-Resonance and Raman Investigation of Sodium Borosilicate Glass Structures, Phys. Chem. Glass, vol.31, issue.1, pp.30-41, 1990.

L. S. Du and J. F. Stebbins, Network connectivity in aluminoborosilicate glasses: A high-resolution B-11, Al-27 and O-17 NMR study, J. Non-Cryst. Solids, vol.351, pp.3508-3520, 2005.

W. Du, K. Kuraoka, T. Akai, and T. Yazawa, Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR, J. Mater. Sci, vol.35, issue.19, pp.4865-4871, 2000.

K. Yamashita, K. Inoue, H. Nakajin, T. Inoue, and . Maekawa, Sr and Ba, M' = Na and K) glasses, Nuclear magnetic resonance studies of 0.139MO (or M'2O) ? 0.673SiO2 ? (0.188 -x)Al2O3 ? xB2O3 (M = Mg, vol.331, pp.128-136, 2003.

G. El-damrawi, W. Müller-warmuth, H. Doweidar, and I. A. Gohar, B-11, Si-29 and Al-27 nuclear-magneticresonance studies of Na2O-Al2O3-B2O3-SiO2 glasses, Phys. Chem. Glasses, vol.34, pp.52-57, 1993.

F. Farges, R. Siewert, G. E. Brown, A. Guesdon, and G. Morin, Structural environments around molybdenum in silicate glasses and melts. I. Influence of composition and oxygen fugacity on the local structure of molybdenum, Canadian Mineralogist, vol.44, pp.731-753, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00128452

G. Calas, M. Legrand, L. Galoisy, and D. Ghaleb, Structural role of molybdenum in nuclear glasses: an EXAFS study, J. Nucl. Mater, vol.322, issue.1, pp.15-20, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00085114

D. Caurant, O. Majerus, E. Fadel, A. Quintas, C. Gervais et al., Structural investigation of boroslicate glasses containing MoO3 by NMR and Raman spectroscopies, J. Nucl. Mater, vol.396, pp.94-101, 2010.

D. Caurant, O. Majerus, E. Fadel, A. Quintas, C. Gervais et al., Effect of molybdenum on the strcuture and on the crystallization of SiO2-Na2O-CaO-B2O3 glasses, J. Amer. Ceram. Soc, vol.99, issue.3, pp.774-783, 2007.

E. Nicoleau, S. Schuller, F. Angeli, T. Charpentier, A. Jollivet et al., Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass, J. Non-Cryst. Solids, vol.427, pp.120-133, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01187789

A. Ledieu, F. Devreux, P. Barboux, L. Sicard, and O. Spalla, Leaching of borosilicate glasses. I. Experiments, J. Non-Cryst. Solids, vol.343, issue.1-3, pp.3-12, 2004.

R. Pokorny, J. A. Rice, J. V. Crum, M. J. Schweiger, and P. Hrma, Kinetic model for quartz and spinel dissolution during melting of high-level-waste glass batch, J. Nucl. Mater, vol.443, issue.1-3, pp.230-235, 2013.

A. Noyes and W. Whitney, The rate of solution of solid substances in their own solutions, J. Amer. Ceram. Soc, vol.19, p.930, 1897.

P. Hrma, J. Marcial, K. Swearingen, S. H. Henager, M. J. Schweiger et al., Conversion of batch to molten glass, II: Dissolution of quartz particles, J. Non-Cryst. Solids, vol.357, issue.3, pp.820-828, 2011.

M. Cable and J. R. Frade, The diffusion-controlled dissolution of spheres, J. Mater. Sci, vol.22, pp.1894-1900, 1987.

Y. Zhang, D. Walker, and C. E. Lesher, Diffusive crystal dissolution, Contrib. Mineral. Petrol, vol.102, pp.492-513, 1989.

A. Holzheid, H. Palme, and S. Chakraborty, The activities of NiO, CoO and FeO in silicate melts, Chem Geol, vol.139, pp.21-38, 1997.

H. C. St, S. M. O'neill, and . Eggins, The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts, Chem Geol, vol.186, pp.151-181, 2002.

Y. Liang, F. R. Richter, A. M. Davis, and E. B. Watson, Diffusion in silicate melts: I. Self diffusion in CaOAl2O3-SiO2 at 1500°C and 1GPa, Geochim. Cosmochim. Acta, vol.60, pp.4353-4367, 1996.

J. E. Mungall, Empirical models relating viscosity and tracer diffusion in magmatic silicate melts, Geochim. Cosmochim. Acta, vol.66, pp.125-143, 2002.

D. Turnbull and M. H. Cohen, Crystallization kinetics and glass formation, Modern Aspects of the Vitreous State, 1960.

M. Roskosz, M. J. Toplis, and P. Richet, Experimental determination of crystal growth rates in highly supercooled aluminosilicate liquids: Implications for rate-controlling processes, Am. Miner, vol.90, pp.1146-1156, 2005.

A. , Glass viscosity calculation based on a global statistical modeling approach, Glass Technol. : Europ. J. Glass Sci. Technol, vol.48, issue.1, pp.13-30, 2007.