, Ti 2p (c), P 2p (d) and O 1s (e) for all LCGTP glass-ceramics under study. Spectrum line of C1s (f) for the C-C component resulting from adventitious carbon is also shown as a control. Note that intensities on the y-axis have been normalized to emphasize signal shapes rather than absolute intensities. Dashed lines represent BE peaks of LAGTP, Figure 5.30 -High-resolution XPS spectra of Cr 2p (a)

M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources, vol.195, pp.7904-7929, 2010.

J. B. Goodenough and P. Singh, Review-Solid Electrolytes in Rechargeable Electrochemical Cells, J. Electrochem. Soc, vol.162, pp.2387-2392, 2015.

K. B. Oldham, J. C. Myland, and A. M. Bond, Electrochemical Science and Technology, 2011.

V. V. Kharton, Solid State Electrochemistry I, 2009.

M. R. Palacín, Recent advances in rechargeable battery materials: a chemist's perspective, Chem. Soc. Rev, vol.38, p.2565, 2009.

R. G. Linford and S. Hackwood, Physical techniques for the study of solid electrolytes, Chem. Rev, vol.81, pp.327-364, 1981.

D. K. Gosser, Cyclic voltammetry: Simulation and analysis of reaction mechanisms, 1993.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second, 2001.

J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glassforming liquids, Proc. Natl. Acad. Sci, vol.106, pp.19780-19784, 2009.

J. C. Bachman, S. Muy, A. Grimaud, H. Chang, N. Pour et al., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction, Chem. Rev, vol.116, pp.140-162, 2016.

E. A. Smart and L. E. Moore, Solid State Chemistry: An Introduction, Third Edit, 2005.

P. G. Bruce, A. R. West, J. B. Goodenough, J. L. Souquet, D. F. Shriver et al., , 1997.

D. R. Kingery and W. David,

H. K. Bowen and . Uhlmann, , 1976.

A. R. West, Solid State Chemistry and its Applications, 2014.

R. A. Huggins, Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review, Ionics (Kiel), vol.8, pp.300-313, 2002.

T. Takahashi and O. Yamamoto, The Ag/Ag3SI/I2 solid-electrolyte cell, Electrochim. Acta, vol.11, pp.779-789, 1966.

E. Robinel, A. Kone, M. J. Duclot, and J. L. Souquet, Silver sulfide based glasses, J. Non. Cryst. Solids, vol.57, issue.83, pp.90408-90416, 1983.

C. Lee, P. K. Dutta, R. Ramamoorthy, and S. A. Akbar, Mixed Ionic and Electronic Conduction in Li3PO4 Electrolyte for a CO2 Gas Sensor, J. Electrochem. Soc, vol.153, p.4, 2006.

J. B. Wagner and C. Wagner, Electrical Conductivity Measurements on Cuprous Halides, J. Chem. Phys, vol.26, pp.1597-1601, 1957.

C. Wagner, Investigations on Silver Sulfide, J. Chem. Phys, vol.21, pp.1819-1827, 1953.

E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy, 2005.

M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, 2008.

X. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells, 2010.

V. F. Lvovich, Impedance Spectroscopy, 2012.

J. T. Irvine, D. C. Sinclair, and A. R. West, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater, vol.2, pp.132-138, 1990.

G. A. Mabbott, An introduction to cyclic voltammetry, J. Chem. Educ, vol.60, p.697, 1983.

T. Saito and Y. ,

. Kikuchi, Voltammetry: Theory, types and applications, 2014.

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future, Mater. Today, vol.18, pp.252-264, 2015.

Y. Zhao, Y. Ding, Y. Li, L. Peng, H. R. Byon et al., A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage, Chem. Soc. Rev, vol.44, pp.7968-7996, 2015.

B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, vol.195, pp.2419-2430, 2010.

M. M. Thackeray, C. Wolverton, and E. D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci, vol.5, p.7854, 2012.

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.

G. Jeong, Y. Kim, H. Kim, Y. Kim, and H. Sohn, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci, vol.4, 1986.

J. W. Fergus, Ceramic and polymeric solid electrolytes for lithium-ion batteries, J. Power Sources, vol.195, pp.4554-4569, 2010.

P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, vol.180, pp.911-916, 2009.

C. Cao, Z. Li, X. Wang, X. Zhao, and W. Han, Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries, Front. Energy Res, vol.2, p.25, 2014.

K. Takada, Progress and prospective of solid-state lithium batteries, Acta Mater, vol.61, pp.759-770, 2013.

M. Tatsumisago and A. Hayashi, Superionic glasses and glass-ceramics in the Li2S-P2S5 system for all-solid-state lithium secondary batteries, Solid State Ionics, vol.225, pp.342-345, 2012.

G. Adachi, N. Imanaka, and H. Aono, Fast Li Conducting Ceramic Electrolytes, vol.8, pp.127-135, 1996.

Y. Sun, Lithium ion conducting membranes for lithium-air batteries, Nano Energy, vol.2, pp.801-816, 2013.

V. Thangadurai and W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics (Kiel), vol.12, pp.81-92, 2006.

S. Teng, J. Tan, and A. Tiwari, Recent developments in garnet based solid state electrolytes for thin film batteries, Curr. Opin. Solid State Mater. Sci, vol.18, pp.29-38, 2014.

N. Anantharamulu, K. Rao, G. Rambabu, B. Kumar, V. Radha et al., A wide-ranging review on Nasicon type materials, J. Mater. Sci, vol.46, pp.2821-2837, 2011.

Z. Dauter and M. Jaskolski, How to read (and understand) Volume A of International Tables for Crystallography : an introduction for nonspecialists, J. Appl. Crystallogr, vol.43, pp.1150-1171, 2010.

J. Kang, H. Chung, C. Doh, B. Kang, and B. Han, Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte, J. Power Sources, vol.293, pp.11-16, 2015.

H. Eckert and A. C. Martins-rodrigues, Ion-conducting glass-ceramics for energy-storage applications, MRS Bull, vol.42, pp.206-212, 2017.

C. R. Mariappan, M. Gellert, C. Yada, F. Rosciano, and B. Roling, Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li-Al-Ti-P-O-type glass ceramic and a Li 1.5Al0.5Ge1.5P3O12 ceramic, Electrochem. Commun, 2012.

C. R. Mariappan, C. Yada, F. Rosciano, and B. Roling, Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics, J. Power Sources, 2011.

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic conductivity and sinterability of lithium titanium phosphate system, Solid State Ionics, pp.38-42, 1990.

H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, J. Electrochem. Soc, vol.137, pp.1023-1027, 1990.

M. Cretin and P. Fabry, Comparative study of lithium ion conductors in the system Li1+xAlxA2?xIV (PO4)3 with AIV=Ti or Ge and 0?x?0·7 for use as Li+ sensitive membranes, J. Eur. Ceram. Soc, vol.19, pp.2931-2940, 1999.

T. ?alkus, M. Barre, E. Ke?ionis, O. Kazakevi?ius, . Bohnke et al., Solid State Ionics, vol.225, pp.615-619, 2012.

H. Morimoto, H. Awano, J. Terashima, Y. Shindo, S. Nakanishi et al., Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell, J. Power Sources, 2013.

E. D. Zanotto, A Bright Future for Glass-Ceramics, Am. Ceram. Soc. Bull, vol.89, pp.19-27, 2010.

R. H. Doremus, Glass Science, vol.122, p.36, 1975.

A. M. Cruz, E. B. Ferreira, and A. C. Rodrigues, Controlled crystallization and ionic conductivity of a nanostructured LiAlGePO4 glass-ceramic, J. Non. Cryst. Solids, vol.355, pp.2295-2301, 2009.

J. L. Narváez-semanate and A. C. Rodrigues, Microstructure and ionic conductivity of Li1+xAlxTi2?x(PO4)3 NASICON glass-ceramics, Solid State Ionics, vol.181, pp.1197-1204, 2010.

X. Xu, Z. Wen, X. Wu, X. Yang, and Z. Gu, Lithium Ion-Conducting Glass?Ceramics of Li1.5Al 0.5Ge1.5(PO4)3 -xLi2O (x=0.0-0.20) with Good Electrical and Electrochemical Properties, J. Am. Ceram. Soc, vol.90, pp.2802-2806, 2007.

S. Ujiie, A. Hayashi, and M. Tatsumisago, Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes, vol.211, pp.42-45, 2012.

J. Lee, T. Kim, S. Baek, Y. Aihara, Y. Park et al., High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction, Solid State Ionics, vol.258, pp.13-17, 2014.

N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno et al., A lithium superionic conductor, Nat. Mater, vol.10, pp.682-686, 2011.

M. Illbeigi, A. Fazlali, M. Kazazi, and A. H. Mohammadi, Effect of simultaneous addition of aluminum and chromium on the lithium ionic conductivity of LiGe2(PO4)3 NASICON-type glass-ceramics, Solid State Ionics, vol.289, pp.180-187, 2016.

M. Tatsumisago, Glassy materials based on Li2S for all-solid-state lithium secondary batteries, Solid State Ionics, vol.175, pp.13-18, 2004.

Y. Sun, K. Suzuki, K. Hara, S. Hori, T. Yano et al., Oxygen substitution effects in Li10GeP2S12 solid electrolyte, J. Power Sources, vol.324, pp.798-803, 2016.

I. Tarhouchi, V. Viallet, P. Vinatier, and M. Ménétrier, Electrochemical characterization of Li10SnP2S12 : An electrolyte or a negative electrode for solid state Li-ion batteries?, Solid State Ionics, vol.296, pp.18-25, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01370993

J. H. Kennedy and F. Chen, Preparation of silver sulfide iodide, J. Inorg. Nucl. Chem, vol.32, pp.695-697, 1970.

P. K. Gupta, D. R. Cassar, and E. D. Zanotto, On the variation of the maximum crystal nucleation rate temperature with glass transition temperature, J. Non. Cryst. Solids, vol.442, pp.34-39, 2016.

E. D. Zanotto and M. C. Weinberg, Trends in homogeneous crystal nucleation in oxide glasses, Phys. Chem. Glas, vol.30, pp.186-192, 1989.

M. L. Nascimento, L. A. Souza, E. B. Ferreira, and E. D. Zanotto, Can glass stability parameters infer glass forming ability?, J. Non. Cryst. Solids, vol.351, pp.3296-3308, 2005.

A. A. Cabral, C. Fredericci, and E. D. Zanotto, A test of the Hrubÿ parameter to estimate glass-forming ability, J. Non. Cryst. Solids, vol.219, pp.182-186, 1997.

A. A. Cabral, A. A. Cardoso, and E. D. Zanotto, Glass-forming ability versus stability of silicate glasses. I. Experimental test, J. Non. Cryst. Solids, vol.320, pp.79-85, 2003.

S. M. Abo-naf, M. S. El-amiry, and A. A. , Abdel-Khalek, FT-IR and UV-Vis optical absorption spectra of ?-irradiated calcium phosphate glasses doped with Cr2O3, V2O5 and Fe2O3, Opt. Mater. (Amst), vol.30, pp.900-909, 2008.

H. Shinozaki, S. Nakashima, S. Takahashi, A. Hanada, and Y. Yamamoto, Water resistance of cerium phosphate glasses as studied by in situ high temperature IR microspectroscopy, J. Non. Cryst. Solids, vol.378, pp.55-60, 2013.

C. J. Antony, A. Aatiq, C. Y. Panicker, M. J. Bushiri, H. T. Varghese et al., Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.78, pp.415-419, 2011.

A. Aatiq and M. R. Tigha, Structural and spectroscopic study of NaSbR(PO4)3 (R = Cr, Fe, In) phases, Powder Diffr, vol.28, pp.394-408, 2013.

J. Fu, Superionic conductivity of glass-ceramics in the system Li2O_ Al2O3_TiO2_P2O5, Solid State Ionics, vol.96, pp.195-200, 1997.

X. Xu, Z. Wen, Z. Gu, X. Xu, and Z. Lin, Lithium ion conductive glass ceramics in the system Li1, Solid State Ionics, vol.171, pp.207-213, 2004.

X. Xu, Z. Wen, Z. Gu, X. Xu, and Z. Lin, Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+xCrxGe2?x(PO4)3 system, Electrochem. Commun, vol.6, pp.1233-1237, 2004.

H. Chung and B. Kang, Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium, Solid State Ionics, vol.263, pp.125-130, 2014.

X. Xu, Z. Wen, J. Wu, and X. Yang, Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol-gel method, Solid State Ionics, vol.178, pp.29-34, 2007.

J. S. Thokchom and B. Kumar, The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glassceramic, J. Power Sources, vol.195, pp.2870-2876, 2010.

H. S. Jadhav, M. S. Cho, R. S. Kalubarme, J. S. Lee, K. N. Jung et al., Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics, J. Power Sources, pp.502-508, 2013.

B. Yan, Y. Zhu, F. Pan, J. Liu, and L. Lu, Li1.5Al0.5Ge1.5(PO4)3 Li-ion conductor prepared by melt-quench and low temperature pressing, Solid State Ionics, vol.278, pp.65-68, 2015.

R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, vol.32, pp.751-767, 1976.

P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich et al., Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes, J. Phys. Chem. C, vol.117, pp.21064-21074, 2013.

A. Kone, M. Armand, and J. L. Souquet, Triangular voltammetry study of the electrochemical reactions at a glass-noble metal interface-application for the redox stability range measurements, Electrochim. Acta, vol.27, pp.653-656, 1982.

Y. Zhu, X. He, and Y. Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations, ACS Appl. Mater. Interfaces, vol.7, pp.23685-23693, 2015.

P. Bach, M. Stratmann, I. Valencia-jaime, A. H. Romero, and F. U. Renner, Lithiation and Delithiation Mechanisms of Gold Thin Film Model Anodes for Lithium Ion Batteries: Electrochemical Characterization, Electrochim. Acta, vol.164, pp.81-89, 2015.

A. Aatiq, M. Ménétrier, L. Croguennec, E. Suard, and C. Delmas, On the structure of Li 3Ti2(PO4)3, J. Mater. Chem, vol.12, pp.2971-2978, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00733638

M. Herklotz, F. Scheiba, R. Glaum, E. Mosymow, S. Oswald et al., Electrochemical oxidation of trivalent chromium in a phosphate matrix: Li3Cr2(PO4)3 as cathode material for lithium ion batteries, Electrochim. Acta, vol.139, pp.356-364, 2014.

W. Göpel and J. ,

D. Anderson, M. Frankel, K. Jaehnig, and J. Phillips,

G. Schäfer and . Rocker, Surface defects of TiO2(110): A combined XPS, XAES AND ELS study, Surf. Sci, vol.139, pp.90054-90056, 1984.