M. Peiyan, F. Zhengyi, and Y. , The nano pulverization of traditional Chinese medicine Liuwei Dihuang, Mat. Sci, vol.21, pp.105-108, 2006.

M. Jose-yacaman, L. Rendon, and . Arenas, Maya blue paint: An ancient nanostructured material, Science, vol.273, pp.223-225, 1996.

G. Padeletti and P. Fermo, How the masters in Umbria, Italy, generated and used nanoparticles in art fabrication during the Renaissance period, Applied Physics A: Materials Science & Processing, vol.76, pp.515-525, 2003.

I. Freestone, N. Meeks, M. Sax, and C. Higgitt, The Lycurgus Cup -A Roman nanotechnology, Gold Bulletin, vol.40, pp.270-277, 2007.

M. Reibold, Materials: Carbon nanotubes in an ancient Damascus sabre, Nature, vol.444, pp.286-286, 2006.

R. P. Feynman, There is Plenty of Room at the Bottom (transcript talk). Engineering and Science. Transcripted talk, 1960.

H. W. Kroto, J. R. Heath, S. C. O'brien, R. F. Curl, R. E. Smalley et al., Nature, vol.318, pp.162-163, 1985.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors Fifth Edition, 2009.

C. H. Olk and J. P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes. en, Journal of Materials Research, vol.9, pp.259-262, 1994.

R. Vajtai, , 2013.

J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, en. Carbon, vol.44, pp.1624-1652, 2006.

C. Guiderdoni, The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties, en. Carbon, vol.58, pp.185-197, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869492

K. Ahmad and W. Pan, Microstructure-toughening relation in alumina based multiwall carbon nanotube ceramic composites. en, Journal of the European Ceramic Society, vol.35, pp.663-671, 2015.

T. Chen, Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. en, Nanoscale, vol.3, pp.546-556, 2011.

V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. en, Chem. Soc. Rev, vol.43, pp.744-764, 2014.

D. M. Webster, P. Sundaram, and M. E. Byrne, Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics

, European Journal of Pharmaceutics and Biopharmaceutics, vol.84, pp.1-20, 2013.

Y. Yang, Advances in self-assembled chitosan nanomaterials for drug delivery. en, Biotechnology Advances, vol.32, pp.1301-1316, 2014.

S. Goenka, V. Sant, and S. Sant, Graphene-based nanomaterials for drug delivery and tissue engineering. en, Journal of Controlled Release, vol.173, pp.75-88, 2014.

M. Pumera, Graphene-based nanomaterials for energy storage, en. Energy Environ. Sci, vol.4, pp.668-674, 2011.

E. Callini, Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. en. International, Journal of Hydrogen Energy, vol.41, pp.14404-14428, 2016.

X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. en, Nanoscale, vol.3, p.839, 2011.

L. Wang, M. Quadir, and K. Aguey-zinsou, Ni coated LiH nanoparticles for reversible hydrogen storage, en. International Journal of Hydrogen Energy, vol.41, pp.6376-6386, 2016.

W. Liu and K. Aguey-zinsou, Synthesis of highly dispersed nanosized LaNi5 on carbon: Revisiting particle size effects on hydrogen storage properties. en, International Journal of Hydrogen Energy, vol.41, pp.14429-14436, 2016.

P. R. Krauss and S. Y. Chou, Nano-compact disks with 400 Gbit/in2 storage density fabricated using nanoimprint lithography and read with proximal probe, en. Applied Physics Letters, vol.71, pp.3174-3176, 1997.

T. Georgiou, Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics, Nat Nano, vol.8, pp.100-103, 2013.

G. Lee, Flexible and Transparent MoS 2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. en, ACS Nano, vol.7, pp.7931-7936, 2013.

S. Jang, S. Kim, M. L. Geier, M. C. Hersam, and A. Dodabalapur, Inkjet printed carbon nanotubes in short channel field effect transistors: influence of nanotube distortion and gate insulator interface modification, Flexible and Printed Electronics, vol.1, p.35001, 2016.

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes. en, ACS Applied Materials & Interfaces, vol.8, pp.5571-5579, 2016.

F. F. Vidor, T. Meyers, G. I. Wirth, and U. Hilleringmann, ZnO nanoparticle thin-film transistors on flexible substrate using spray-coating technique, en. Microelectronic Engineering, vol.159, pp.155-158, 2016.

V. Datsyuk, Double-walled carbon nanotube dispersion via surfactant substitution. en, Journal of Materials Chemistry, vol.19, p.2729, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01339359

S. Utsumi, RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with, NaDDBS. en. Journal of Colloid and Interface Science, vol.308, pp.276-284, 2007.

E. K. Hobbie, Self-Assembly of Ordered Nanowires in Biological Suspensions of Single-Wall Carbon Nanotubes. en, ACS Nano, vol.3, pp.189-196, 2009.

F. Ernst, T. Heek, A. Setaro, R. Haag, and S. Reich, Functional Surfactants for Carbon Nanotubes: Effects of Design. en, The Journal of Physical Chemistry C, vol.117, pp.1157-1162, 2013.

C. Graf, Surface Functionalization of Silica Nanoparticles Supports Colloidal Stability in Physiological Media and Facilitates Internalization in Cells. en, Langmuir, vol.28, pp.7598-7613, 2012.

X. Ding, J. Zhao, Y. Liu, H. Zhang, and Z. Wang, Silica nanoparticles encapsulated by polystyrene via surface grafting and in situ emulsion polymerization. en, Materials Letters, vol.58, pp.3126-3130, 2004.

G. Viswanathan, Single-step in situ synthesis of polymer-grafted single-wall nanotube composites, Journal of the American Chemical Society, vol.125, pp.9258-9259, 2003.

J. Xiong, D. Zhou, Z. Zheng, X. Yang, and X. Wang, Fabrication and distribution characteristics of polyurethane/single-walled carbon nanotube composite with anisotropic structure, en. Polymer, vol.47, pp.1763-1766, 2006.

Y. He, Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature. en, Polymer Bulletin, vol.71, pp.2465-2485, 2014.

K. Wang, N. Li, K. Ren, Q. Zhang, and Q. Fu, Exploring interfacial enhancement in polystyrene/multiwalled carbon nanotube monofilament induced by stretching. en, Composites Part A: Applied Science and Manufacturing, vol.61, pp.84-90, 2014.

A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Enhanced Gas Sensing by Individual SnO 2 Nanowires and Nanobelts Functionalized with Pd Catalyst Particles. en, Nano Letters, vol.5, pp.667-673, 2005.

M. Del-carmen-giménez-lópez, Encapsulation of singlemolecule magnets in carbon nanotubes, Nature Communications, vol.2, p.407, 2011.

, Consumer Products ? Topics ? Nanotechnology Project, 2017.

. Afsset, Les nanomatériaux : effets sur la santé de l'homme et sur l'environnement Avis, 2006.

, Protecting children's health in a changing environment, Declaration, 2010.

. Anses, Enjeux et mise à jour des connaissances Avis, 2014.

S. M. Hankin, Specific advice on fulfilling information requirements for nanomaterials under REACH (RIP-oN 2)-Final project report tech. rep, 2011.

R. A. Aitken, Specific Advice on Exposure Assessment and Hazard/Risk Characterisation for Nanomaterials under REACH (RIP-oN 3)-Final Project Report tech. rep, 2011.

D. K. Ellsworth, D. Verhulst, T. M. Spitler, and B. J. Sabacky, Titanium nanoparticles move to the marketplace. Chemical innovation 30, pp.30-35, 2000.

A. Wold, Photocatalytic properties of titanium dioxide (TiO2), Chemistry of Materials, vol.5, pp.280-283, 1993.

S. Bettini, Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon, Scientific Reports, vol.7, p.40373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508951

A. Weir, P. Westerhoff, L. Fabricius, K. Hristovski, and N. Von-goetz, Titanium Dioxide Nanoparticles in Food and Personal Care Products, en. Environmental Science & Technology, vol.46, pp.2242-2250, 2012.

A. Dussert, E. Gooris, and J. Hemmerle, Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum, International journal of cosmetic science, vol.19, pp.119-129, 1997.

N. Sadrieh, Lack of Significant Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano-and Submicron-Size TiO2 Particles. en, Toxicological Sciences, vol.115, pp.156-166, 2010.

D. B. Warheit, T. R. Webb, K. L. Reed, S. Frerichs, and C. M. Sayes, Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface properties, en. Toxicology, vol.230, pp.90-104, 2007.

J. Wang, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. en, Toxicology Letters, vol.168, pp.176-185, 2007.

E. Bermudez, Pulmonary Responses of Mice, Rats, and Hamsters to Subchronic Inhalation of Ultrafine Titanium Dioxide Particles, Toxicological Sciences, vol.77, pp.347-357, 2004.

P. U. Jani, D. E. Mccarthy, and A. T. Florence, Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration, International Journal of Pharmaceutics, vol.105, pp.157-168, 1994.

T. C. Long, N. Saleh, R. D. Tilton, G. V. Lowry, and B. Veronesi, Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2): Implications for Nanoparticle Neurotoxicity ?, en. Environmental Science & Technology, vol.40, pp.4346-4352, 2006.

K. Hund-rinke and M. Simon, Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids (8 pp), en. Environmental Science and Pollution Research -International, vol.13, pp.225-232, 2006.

A. Dubey, M. Goswami, K. Yadav, and D. Chaudhary, Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line. en, PLOS ONE, vol.10, p.127493, 2015.

W. F. Vevers and A. N. Jha, Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro, en. Ecotoxicology, vol.17, pp.410-420, 2008.

E. Fabian, Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. en, Archives of Toxicology, vol.82, pp.151-157, 2008.

R. J. Miller, Impacts of Metal Oxide Nanoparticles on Marine Phytoplankton, en. Environmental Science & Technology, vol.44, pp.7329-7334, 2010.

J. Gurr, A. S. Wang, C. Chen, and K. Jan, Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. en, Toxicology, vol.213, pp.66-73, 2005.

L. Renwick, Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types, en. Occupational and Environmental Medicine, vol.61, pp.442-447, 2004.

V. H. Grassian, P. T. O'shaughnessy, A. Adamcakova-dodd, J. M. Pettibone, and P. S. Thorne, Inhalation Exposure Study of Titanium Dioxide Nanoparticles with a Primary Particle Size of 2 to 5 nm. en, Environmental Health Perspectives, vol.115, pp.397-402, 2006.

D. B. Warheit, Pulmonary Instillation Studies with Nanoscale TiO2 Rods and Dots in Rats: Toxicity Is not Dependent upon Particle Size and Surface Area. en, Toxicological Sciences, vol.91, pp.227-236, 2006.

C. M. Sayes, Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicity and Inflammatory Response Study with Human Dermal Fibroblasts and Human Lung Epithelial Cells. en, Toxicological Sciences, vol.92, pp.174-185, 2006.

L. K. Braydich-stolle, Crystal structure mediates mode of cell death in TiO2 nanotoxicity. en, Journal of Nanoparticle Research, vol.11, p.1361

A. Jorio, G. C. Dresselhaus, and . Nanotubes, Advanced Topics in the Synthesis, Structure, Properties and Applications, 2001.

S. Iijima, Helical microtubules of graphitic carbon, nature, vol.354, p.56, 1991.

D. Bethune, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, pp.605-607, 1993.

S. Lijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.364, p.737, 1993.

J. W. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, p.59, 1998.

T. W. Odom, H. Jin-lin, P. Kim, and C. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, vol.391, p.62, 1998.

S. Berber, Y. Kwon, and D. Tománek, Unusually high thermal conductivity of carbon nanotubes, Physical review letters, vol.84, p.4613, 2000.

M. Monthioux, Springer handbook of nanotechnology, pp.43-112, 2007.

J. Charlier and J. Michenaud, Energetics of multilayered carbon tubules, Physical review letters, vol.70, p.1858, 1993.

R. Saito, R. Matsuo, T. Kimura, . Dresselhaus, and M. Dresselhaus, Anomalous potential barrier of double-wall carbon nanotube, Chemical Physics Letters, vol.348, pp.187-193, 2001.

P. Houdy, M. Lahmani, and F. Marano, , 2011.

N. Karousis, N. Tagmatarchis, and D. Tasis, Current Progress on the Chemical Modification of Carbon Nanotubes. en, Chemical Reviews, vol.110, pp.5366-5397, 2010.

Y. Chen, Light Control of Charge Transfer and Excitonic Transitions in a Carbon Nanotube/Porphyrin Hybrid. en, Advanced Materials, vol.29, p.1605745, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01505016

L. Tao, G. Chen, G. Mantovani, S. York, and D. M. Haddleton, Modification of multi-wall carbon nanotube surfaces with poly(amidoamine) dendrons: Synthesis and metal templating, en. Chemical Communications, vol.4949, 2006.

H. Gul, W. Lu, P. Xu, J. Xing, and J. Chen, Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking, Nanotechnology, vol.21, p.155101, 2010.

P. Singh, Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding, en. Journal of Materials Chemistry, vol.21, p.4850, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00605151

J. L. Delgado, The first synthesis of a conjugated hybrid of C60-fullerene and a single-wall carbon nanotube. en, Carbon, vol.45, pp.2250-2252, 2007.

Y. Lin, F. Lu, Y. Tu, and Z. Ren, Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. en, Nano Letters, vol.4, pp.191-195, 2004.

G. Sánchez-pomales, L. Santiago-rodríguez, and C. R. Cabrera, DNAfunctionalized carbon nanotubes for biosensing applications, Journal of nanoscience and nanotechnology, vol.9, pp.2175-2188, 2009.

M. X. Pulikkathara, O. V. Kuznetsov, and V. N. Khabashesku, Sidewall Covalent Functionalization of Single Wall Carbon Nanotubes Through Reactions of Fluoronanotubes with Urea, Guanidine, and Thiourea. en, Chemistry of Materials, vol.20, pp.2685-2695, 2008.

E. Mickelson, Fluorination of single-wall carbon nanotubes, Chemical physics letters, vol.296, pp.188-194, 1998.

M. Liu, Y. Yang, T. Zhu, and Z. Liu, Chemical modification of singlewalled carbon nanotubes with peroxytrifluoroacetic acid, en. Carbon, vol.43, pp.1470-1478, 2005.

L. G. Bulusheva, Thermal Behavior of Fluorinated Double-Walled Carbon Nanotubes. en, Chemistry of Materials, vol.18, pp.4967-4971, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00824737

L. G. Bulusheva, Stability of Fluorinated Double-Walled Carbon Nanotubes Produced by Different Fluorination Techniques. en, Chemistry of Materials, vol.22, pp.4197-4203, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00848930

C. Gaillard, Carbon Nanotubes Carrying Cell-Adhesion Peptides do not Interfere with Neuronal Functionality. en, Advanced Materials, vol.21, pp.2903-2908, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432915

C. Samorì, Enhanced anticancer activity of multi-walled carbon nanotube-methotrexate conjugates using cleavable linkers. en, Chem. Commun, vol.46, pp.1494-1496, 2010.

M. Benincasa, Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes. en, ACS Nano, vol.5, pp.199-208, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00557093

N. Zydziak, B. Yameen, and C. Barner-kowollik, Diels-Alder reactions for carbon material synthesis and surface functionalization. en, Polymer Chemistry, vol.4, p.4072, 2013.

P. Luksirikul, B. Ballesteros, G. Tobias, M. G. Moloney, and M. L. Green, Sidewall functionalisation of carbon nanotubes by addition of diarylcarbene derivatives. en, Journal of Materials Chemistry, vol.21, p.19080, 2011.

C. Gao, H. He, L. Zhou, X. Zheng, and Y. Zhang, Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry. en, Chemistry of Materials, vol.21, pp.360-370, 2009.

S. K. Yadav, PDMS/MWCNT nanocomposite actuators using silicone functionalized multiwalled carbon nanotubes via nitrene chemistry. en, Journal of Materials Chemistry C, vol.1, p.5463, 2013.

C. A. Dyke and J. M. Tour, Overcoming the Insolubility of Carbon Nanotubes Through High Degrees of Sidewall Functionalization, en. Chemistry -A European Journal, vol.10, pp.812-817, 2004.

B. K. Price, J. L. Hudson, and J. M. Tour, Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids. en, Journal of the American Chemical Society, vol.127, pp.14867-14870, 2005.

C. Ménard-moyon, C. Fabbro, M. Prato, and A. Bianco, One-Pot Triple Functionalization of Carbon Nanotubes. en. Chemistry -A, European Journal, vol.17, pp.3222-3227, 2011.

Y. Baek, Label-free detection of DNA hybridization using pyrene-functionalized single-walled carbon nanotubes: effect of chemical structures of pyrene molecules on DNA sensing performance, Journal of nanoscience and nanotechnology, vol.11, pp.4210-4216, 2011.

P. Salice, A. Gambarin, N. Daldosso, F. Mancin, and E. Menna, Noncovalent Interaction between Single-Walled Carbon Nanotubes and Pyrene-Functionalized Gold Nanoparticles in Water-Soluble Nanohybrids. en, The Journal of Physical Chemistry C, vol.118, pp.27028-27038, 2014.

Q. Liu, Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. en, Nano Letters, vol.9, pp.1007-1010, 2009.

M. F. Serag, Functional Platform for Controlled Subcellular Distribution of Carbon Nanotubes. en, ACS Nano, vol.5, pp.9264-9270, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00634247

Z. Liu, X. Sun, N. Nakayama-ratchford, and H. Dai, Supramolecular Chemistry on Water-Soluble Carbon Nanotubes for Drug Loading and Delivery. en, ACS Nano, vol.1, pp.50-56, 2007.

Z. Liu, Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. en, Angewandte Chemie International Edition, vol.48, pp.7668-7672, 2009.

Z. Tian, Supramolecular assembly and antitumor activity of multiwalled carbon nanotube-camptothecin complexes, Journal of nanoscience and nanotechnology, vol.11, pp.953-958, 2011.

Y. Guo, In vivo Imaging and Drug Storage by Quantum-DotConjugated Carbon Nanotubes. en. Advanced Functional Materials, vol.18, pp.2489-2497, 2008.

C. Ehli, Interactions in Single Wall Carbon Nanotubes/Pyrene/Porphyrin Nanohybrids. en, Journal of the American Chemical Society, vol.128, pp.11222-11231, 2006.

C. Iancu, Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin. en, International Journal of Nanomedicine, vol.129, 2011.

H. Chen, F. Xi, X. Gao, Z. Chen, and X. Lin, Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction. en, Analytical Biochemistry, vol.403, pp.36-42, 2010.

X. Pang, P. Imin, I. Zhitomirsky, and A. Adronov, Amperometric Detection of Glucose Using a Conjugated Polyelectrolyte Complex with Single-Walled Carbon Nanotubes. en, Macromolecules, vol.43, pp.10376-10381, 2010.

M. Zheng, DNA-assisted dispersion and separation of carbon nanotubes, Nature Materials, vol.2, pp.338-342, 2003.

W. Cheung, F. Pontoriero, O. Taratula, A. M. Chen, and H. He, DNA and carbon nanotubes as medicine. en, Advanced Drug Delivery Reviews, vol.62, pp.633-649, 2010.

V. Neves, Design of double-walled carbon nanotubes for biomedical applications, Nanotechnology, vol.23, p.365102, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00858588

D. A. Britz and A. N. Khlobystov, Noncovalent interactions of molecules with single walled carbon nanotubes. en, Chemical Society Reviews, vol.35, p.637, 2006.

M. Arlt, Delivery of carboplatin by carbon-based nanocontainers mediates increased cancer cell death, Nanotechnology, vol.21, 2010.

R. P. Feazell, N. Nakayama-ratchford, H. Dai, and S. J. Lippard, Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design. en, Journal of the American Chemical Society, vol.129, pp.8438-8439, 2007.

V. Sanz, Chloroquine-enhanced gene delivery mediated by carbon nanotubes. en, Carbon, vol.49, pp.5348-5358, 2011.

R. Li, Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells, en. Carbon, vol.49, pp.1797-1805, 2011.

R. Marega, Functionalized Fe-Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds for Magnetization of Cancer Cells. en, Advanced Functional Materials, vol.23, pp.3173-3184, 2013.

L. Alvarez, High-pressure behavior of polyiodides confined into single-walled carbon nanotubes: A Raman study, en. Physical Review B, vol.82, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00534900

M. Chorro, 1D-confinement of polyiodides inside single-wall carbon nanotubes, en. Carbon, vol.52, pp.100-108, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00808165

L. Alvarez, Charge Transfer Evidence between Carbon Nanotubes and Encapsulated Conjugated Oligomers. en, The Journal of Physical Chemistry C, vol.115, pp.11898-11905, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00960683

Y. Almadori, Chromophore Ordering by Confinement into Carbon Nanotubes. en, The Journal of Physical Chemistry C, vol.118, pp.19462-19468, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01078525

L. Alvarez, One-Dimensional Molecular Crystal of Phthalocyanine Confined into Single-Walled Carbon Nanotubes. en, The Journal of Physical Chemistry C, vol.119, pp.5203-5210, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01123545

L. Alvarez, Supramolecular organization of pi-conjugated molecules monitored by single-walled carbon nanotubes, Journal of Nanophotonics, vol.10, pp.12514-012514, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01104084

A. Belhboub, Enhancing the Infrared Response of Carbon Nanotubes From Oligo-Quaterthiophene Interactions. en, The Journal of Physical Chemistry C, vol.120, pp.28802-28807, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421543

D. Pantarotto, J. Briand, M. Prato, and A. Bianco, Translocation of bioactive peptides across cell membranes by carbon nanotubesElectronic supplementary information (ESI) available: details of the synthesis and characterization, cell culture, TEM, epifluorescence and confocal microscopy images of CNTs 1, 2 and fluorescein, en. Chemical Communications, p.16, 2004.

D. A. Heller, S. Baik, T. E. Eurell, and M. S. Strano, Single-walled carbon nanotube spectroscopy in live cells: towards long-term labels and optical sensors, Advanced Materials, vol.17, pp.2793-2799, 2005.

K. Kostarelos, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nature Nanotechnology, vol.2, pp.108-113, 2007.

H. Jin, D. A. Heller, and M. S. Strano, Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3

, Cells. en. Nano Letters, vol.8, pp.1577-1585, 2008.

C. P. Firme and P. R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems, Nanomedicine: Nanotechnology, Biology and Medicine, vol.6, pp.245-256, 2010.

L. Lacerda, Dynamic Imaging of Functionalized Multi-Walled Carbon Nanotube Systemic Circulation and Urinary Excretion, en. Advanced Materials, vol.20, pp.225-230, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311842

F. A. Murphy, Length-Dependent Retention of Carbon Nanotubes in the Pleural Space of Mice Initiates Sustained Inflammation and Progressive Fibrosis on the Parietal Pleura. en, The American Journal of Pathology, vol.178, pp.2587-2600, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00605097

L. Yan, F. Zhao, S. Li, Z. Hu, and Y. Zhao, Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. en, Nanoscale, vol.3, pp.362-382, 2011.

G. Jia, Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene

M. F. Serag, Trafficking and Subcellular Localization of Multiwalled Carbon Nanotubes in Plant Cells. en, ACS Nano, vol.5, pp.493-499, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00557073

P. Cherukuri, S. M. Bachilo, S. H. Litovsky, and R. B. Weisman, NearInfrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells. en, Journal of the American Chemical Society, vol.126, pp.15638-15639, 2004.

T. K. Leeuw, Single-Walled Carbon Nanotubes in the Intact Organism: Near-IR Imaging and Biocompatibility Studies in Drosophila. en, Nano Letters, vol.7, pp.2650-2654, 2007.

J. T. Robinson, High performance in vivo near-IR (>1 µm) imaging and photothermal cancer therapy with carbon nanotubes. en, Nano Research, vol.3, pp.779-793, 2010.

V. Neves, Uptake and Release of Double-Walled Carbon Nanotubes by Mammalian Cells. en, Advanced Functional Materials, vol.20, pp.3272-3279, 2010.

R. Wang, Cytotoxicity Screening of Single-Walled Carbon Nanotubes: Detection and Removal of Cytotoxic Contaminants from Carboxylated Carbon Nanotubes. en, Molecular Pharmaceutics, vol.8, pp.1351-1361, 2011.

H. Kataura, Optical properties of single-wall carbon nanotubes, Synthetic metals, vol.103, pp.2555-2558, 1999.

E. Wild and K. C. Jones, Novel Method for the Direct Visualization of in Vivo Nanomaterials and Chemical Interactions in, Plants. en. Environmental Science & Technology, vol.43, pp.5290-5294, 2009.

A. Ustione and D. Piston, A simple introduction to multiphoton microscopy. en, Journal of Microscopy, vol.243, pp.221-226, 2011.

F. Lu, Advances in Bioapplications of Carbon Nanotubes. en. Advanced Materials, vol.21, pp.139-152, 2009.

Z. Liu, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer research, vol.68, pp.6652-6660, 2008.

R. Klingeler, S. Hampel, and B. Büchner, Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery, International journal of hyperthermia, vol.24, pp.496-505, 2008.

D. Volder, M. F. Tawfick, S. H. Baughman, R. H. Hart, and A. J. , Carbon nanotubes: present and future commercial applications, science, vol.339, pp.535-539, 2013.

E. Flahaut, M. Durrieu, M. Remy-zolghadri, R. Bareille, and C. Baquey, Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. en, Carbon, vol.44, pp.1093-1099, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00474857

M. Bottini, Multi-walled carbon nanotubes induce T lymphocyte apoptosis. en, Toxicology Letters, vol.160, pp.121-126, 2006.

J. Cheng, E. Flahaut, and S. H. Cheng, Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos, Environmental Toxicology and Chemistry, vol.26, pp.708-716, 2007.

C. Salvador-morales, Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. en, Carbon, vol.45, pp.607-617, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00808254

F. Mouchet, Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. en, Aquatic Toxicology, vol.87, pp.127-137, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01339334

D. Crouzier, Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. en, Toxicology, vol.272, pp.39-45, 2010.

R. Saria, Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. en, Ecotoxicology and Environmental Safety, vol.107, pp.22-29, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01963106

T. Bortolamiol, Nanotubes de carbone biparois : fonctionnalisation et détec-tion in vitro PhD thesis, 2015.

T. Lorne, Competition between covalent and non-covalent grafting of fluorescein isothiocyanate on double-walled carbon nanotubes: A quantitative approach, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01813417

T. Bortolamiol, Double-walled carbon nanotubes: Quantitative purification assessment, balance between purification and degradation and solution filling as an evidence of opening. en, Carbon, vol.78, pp.79-90, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01445549

Y. Lin, In vivo MR/optical imaging for gastrin releasing peptide receptor of prostate cancer tumor using Gd-TTDA-NP-BN-Cy5.5. en, Bioorganic & Medicinal Chemistry, vol.19, pp.1085-1096, 2011.

M. Maether, K. Lapin, A. Muntean, C. Payrastre, and J. Escudier,

, Oligonucleotide Labelling Using a Fluorogenic "Click" Reaction with a Hemicarboxonium Salt. en, Molecules, vol.18, pp.12966-12976, 2013.

N. Obaya, C. Payrastre, and Y. Madaule, Synthesis of new pentacarbon chain streptocyanines (pentamethinium salts), Tetrahedron, vol.57, pp.9137-9147, 2001.

G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 1978.

S. Lovesey, Theory of neutron scattering from condensed matter, 1984.

, Vibrational spectroscopy with neutrons: with applications in chemistry, biology, materials science and catalysis, vol.3, p.61901497, 2005.

L. Koester and A. Steyerl, Springer tracts in modern physics 80, Neutron physics eng, p.2954079, 1977.

A. Ivanov, M. Jimenéz-ruiz, and J. Kulda, IN1-LAGRANGE -the new ILL instrument to explore vibration dynamics of complex materials, Journal of Physics: Conference Series, vol.554, p.12001, 2014.

T. Lorne, E. Flahaut, M. Jimenéz-ruiz, and S. Rols, Understanding the Grafting of fluorescent molecules on double-walled carbon nanotubes, Institut Laue-Langevin (ILL

T. Lorne, E. Flahaut, M. Jimenéz-ruiz, and S. Rols, Understanding the Grafting of fluorescent molecules on double-walled carbon nanotubes, Institut Laue-Langevin (ILL, 2016.

R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules, 1989.

D. S. Sholl and J. A. Steckel, Density functional theory: a practical introduction OCLC: ocn245025462, 2009.

M. Zbiri, Introduction to the density functional formalism and some illustrative applications to magnetism. Ecole thématique de la Société Française de la Neutronique, vol.12, pp.77-104, 2011.

A. A. Maradudin, Theory of lattice dynamics in the harmonic approximation, 1971.

M. T. Dove, Introduction to lattice dynamics, 1993.

M. Dove, Introduction to the theory of lattice dynamics, th?matique de la Soci?t? Fran?aise de la Neutronique, vol.12, pp.123-159, 2011.

D. Hartree, The Wave Mechanics of an Atom with a Non-Coulomb Central Field II: Some Results and Discussion, Proc. Camb. Phil. Soc, vol.24, p.111, 1928.

V. Z. Fock and . Physik, Z. Physik, vol.61, p.795, 1930.

J. C. Slater, A simplification of the Hartree-Fock method, Physical Review, vol.81, p.385, 1951.

L. H. Thomas, The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, vol.23, pp.542-548, 1927.

E. Fermi, A statistical method for determining some properties of the atoms and its application to the theory of the periodic table of elements, Z. Phys, vol.48, pp.73-79, 1928.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Physical review, vol.136, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Physical review, vol.140, p.1133, 1965.

J. P. Perdew, K. Burke, and M. Erzerhof, Generalized Gradiant Approximation Made Simple, Physical Review Letters, vol.77, 1996.

Y. Wang and J. P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling, Physical Review B, vol.44, p.13298, 1991.

J. P. Perdew and Y. Wang, Pair-distribution function and its couplingconstant average for the spin-polarized electron gas, Physical Review B, vol.46, p.12947, 1992.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, vol.37, p.785, 1988.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange. en, The Journal of Chemical Physics, vol.98, p.5648, 1993.

S. Moulder, &. Sobol, and . Bomben, Handbook of X-ray Photoelectron Spectroscopy, 1992.

M. P. Seah and W. A. Dench, Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids, Surface and interface analysis, vol.1, pp.2-11, 1979.

K. Siegbahn, Electron spectroscopy for atoms, molecules, and condensed matter, Physics, vol.63, 1981.

S. Hofmann and X. Auger-, Photoelectron Spectroscopy in Materials Science, 2013.

C. Wagner, NIST Standard Reference Database, vol.20

, BIOVIA Materials Studio, 2016.

E. Agostinelli, Polyamines: fundamental characters in chemistry and biology, Amino Acids, vol.38, pp.393-403, 2010.

M. P. Marques and L. A. Batistadecarvalho, Vibrational spectroscopy studies on linear polyamines, Biochemical Society Transactions, vol.35, pp.374-380, 2007.

J. Dawidowski, F. J. Bermejo, and J. R. Granada, Efficient procedure for the evaluation of multiple scattering and multiphonon corrections in inelastic neutron-scattering experiments, Physical Review B, vol.58, p.706, 1998.

J. Dawidowski, Analysis of multiple scattering and multiphonon contributions in inelastic neutron scattering experiments, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.195, pp.389-399, 2002.

P. Finn and W. L. Jolly, Nitrogen ls binding energies of some azide, dinitrogen, and nitride complexes of transition metals, Inorganic Chemistry, vol.11, pp.1434-1435, 1972.

W. Ren, F. Li, J. Chen, S. Bai, and H. Cheng, Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane, Chemical Physics Letters, vol.359, pp.196-202, 2002.

G. J. Kearley, J. Tomkinson, and J. Penfold, New constraints for normalmode analysis of inelastic neutron-scattering spectra: Application to the HF 2-ion. Zeitschrift für Physik B Condensed Matter 69, pp.63-67, 1987.

J. Tomkinson and G. J. Kearley, Phonon wings in inelastic neutron scattering spectroscopy: The harmonic approximation. en, The Journal of Chemical Physics, vol.91, pp.5164-5169, 1989.

G. J. Kearley, A review of the analysis of molecular vibrations using INS, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.354, pp.53-58, 1995.

J. Tomkinson and G. J. Kearley, The calculation of phonon wing intensities: anisotropic effects, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.354, pp.169-170, 1995.

J. Dawidowski, Method of analysis of multiphonon and multiplescattering effects in inelastic neutron scattering experiments, Applied Physics A: Materials Science & Processing, vol.74, pp.166-168, 2002.