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Abstract

The rise of research into shared mobility systems re�ects emerging challenges, such as rising

urbanization rates, tra�c congestion, oil prices and environmental concerns. The opera-

tions research community has turned towards more sharable and sustainable systems of

transportation. Although shared mobility comes with many bene�ts, it has some challenges

that are restricting its widespread adoption. More research is thus needed towards de-

veloping new shared mobility systems so that a better use of the available transportation

assets can be obtained. This thesis aims at developing e�cient models and optimization

approaches for synchronizing people and freight �ows in an urban environment. As such,

the following research questions are addressed throughout the thesis:

Q1: What are the variants of shared mobility systems and how to optimize them?

Q2: How can people trips be synchronized and what gains can this synchronization yields?

Q3: How can people and freight �ows be combined and what impacts uncertainty can have

on such systems?

First, we review di�erent variants of the shared mobility problem where either (i) travel-

ers share their rides, or(ii) the transportation of passengers and freight is combined. We

then classify these variants according to their models, solution approaches and application

context and we provide a comprehensive overview of the recently published papers and case

studies. Based on this review, we identify two shared mobility problems, which we study

further in this thesis. Second, we study a ridesharing problem where individually-owned

and on-demand autonomous vehicles (AVs) are used for transporting passengers and a set

of meeting points is used for synchronizing their trips. We develop a two-phase method

(a pre-processing algorithm and a matching optimization problem) for assessing the shar-

ing potential of di�erent AV ownership models, and we evaluate them on a case study for

New York City. Then, we present a model that integrates freight deliveries to scheduled

lines for people transportation where passengers demand, and thus the available capacity

for transporting freight, is assumed to be stochastic. We model this problem as a two-stage

stochastic problem and we provide a MIP formulation and a sample average approximation

(SAA) method along with an Adaptive Large Neighborhood Search (ALNS) algorithm to

solve it. We then analyze the proposed approach as well as the impacts of stochastic passen-

gers demand on such integrated system on a computational study. Finally, we summarize

the key �ndings, highlight the main challenges facing shared mobility systems, and suggest

potential directions for future research.

Keywords: urban mobility, synchronization, passenger and freight transportation, rideshar-

ing, autonomous vehicles, optimization, uncertainty, heuristic approaches.





Résumé

Avec l'augmentation progressive de la population dans les grandes villes, comme Paris, nous

prévoyons d'ici 2050 une augmentation de 50% du tra�c routier. En considérant les em-

bouteillages et la pollution que cette augmentation va générer, on voit clairement la nécessité

de nouveaux systèmes de mobilité plus durables, comme le covoiturage, ou plus générale-

ment toute la mobilité partagée. En parlant de mobilité partagée, ce n'est pas seulement le

partage de trajets de personnes qui ont le même itinéraire au même temps, elle inclut aussi

les marchandises. Cette thèse aborde le dé� de la synchronisation des �ux de passagers et de

marchandises dans les systèmes de mobilité urbaine et elle vise à développer des méthodes

d'optimisation pour que cette synchronisation dans la mobilité partagée soit réalisable. Plus

précisément, elle aborde les questions de recherche suivantes:

Q1: Quelles sont les variantes des systèmes de mobilité partagée et comment les optimiser?

Q2: Comment synchroniser les déplacements de personnes et quels gains cette synchronisa-

tion peut-elle générer?

Q3: Comment combiner les �ux de passagers et de fret et quels sont les e�ets de l'incertitude

sur ces systèmes?

Dans un premier temps, nous étudions les di�érentes variantes des systèmes de mobilité

partagée et nous les classi�ons en fonction de leurs modèles, caractéristiques, approches de

résolution et contextes d'application. En nous basant sur cette revue de littérature, nous

identi�ons deux problèmes de mobilité partagée, que nous considérons en détails dans cette

thèse et nous développons des méthodes d'optimisation pour les résoudre. Pour synchro-

niser les �ux de passagers, nous étudions un modèle de covoiturage en utilisant les véhicules

autonomes, personnels et partagés, et des points de rencontre où la synchronisation entre

passagers peut avoir lieu. Pour cela, une méthode heuristique en deux phases est proposée

et une étude de cas sur la ville de New York est présentée. Ensuite, nous développons un

modèle d'optimisation qui combine les �ux de passagers et de marchandises dans une zone

urbaine. Le but de ce modèle est d'utiliser les capacités disponibles sur une ligne de trans-

port �xe pour transporter les passagers et des robots transportant des petits colis à leurs

destinations �nales en considérant que la demande de passagers est stochastique. Les résul-

tats obtenus montrent que les solutions proposées par ces deux modèles peuvent conduire à

une meilleure utilisation des systèmes de transport dans les régions urbaines.

Mots-clés: mobilité urbaine, synchronisation, transport de passagers et de marchandises,

covoiturage, véhicules autonomes, optimisation, incertitude, méthodes heuristiques.
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Chapter 1

Introduction

The aim of this chapter is to introduce the research context of the thesis, the motivation

behind it, and the key research questions addressed. The main challenges that are limiting

the deployment of new urban mobility services are investigated and the potential bene�ts of

shared mobility concepts are highlighted. The chapter also introduces the research project

where the thesis takes place along with the industrial partners. Finally, an overview of

the thesis, introducing the objective and the main contribution of each chapter, is given.
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1.1 Motivation and research context

Since the birth of the �rst civilized community, a set of basic human activities has

emerged. In order to ful�ll these activities, the need for transportation has arose and

evolved over the years. Transportation can be de�ned as the continuous movement of

people and goods from one place to another. This movement, which was mainly based on

human or animal-powered transport, has witnessed a major breakthrough especially after

the industrial revolution in the second half of the 18th century. With the invention of steam

engines, rail transport, and aerial transport some years later, new ways for transporting

both people and goods have emerged. These inventions provided more e�cient and reliable

means of transportation and, at the same time, played an essential role in the development

of modern societies. With the opportunities that were generated by these inventions, a

large portion of the world's population has been gradually moving from rural to urban areas

resulting in very high urbanization rates nowadays.

(a) Urban passengers demand by mode (b) Urban freight road activity

Figure 1.1: Urban passenger and freight demand - 2050 projection (OECD,
2017)

This considerably growing population in urban areas, which is expected to represent

more than 70% of the world's population by 2050 (United Nations, 2017), is also associated

with a swift growth in people demand for goods and transportation. According to OECD,

2017, the demand for urban travel will grow, with up to 95% in 2050 compared to that

of 2015, reaching more than 50 000 billion passenger-kilometres in that year (Figure 1.1a).

Relatively, mobility by car will continue to grow leading to more cars driving on already

congested roads. The demand for freight, represented by vehicle-kilometres in Figure 1.1b,

is also expected to increase yielding additional loads to road tra�c in urban areas. In

addition to tra�c issues, the emissions from road transport, both freight and passenger,

will lead to increasingly in�ated levels of pollution in big cities. Indeed, as cities become

more populated, the daily demand for goods and transportation, and thusCO2 emissions,

increases giving rise to many challenges that need to be faced by local authorities and

transport operators. Besides increasing demand for transport, the technological advances

and innovations represent another important factor which is generating both opportunities

and challenges for transportation systems (Savelsbergh and Van Woensel, 2016). These
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innovations have the potential to enhance the transportation service provided, but might

require new regulations and infrastructures to adapt their deployment.

That said, an increasing amount of research has been directed towards either improving

the existing transportation systems or introducing new, and more sustainable, ones that

can answer to the rising challenges while taking into account the economical, social, and

environmental concerns. These new systems must, on the one hand, provide a more e�-

cient choice of transport mode that can adapt new technologies and services and, on the

other hand, limit emissions and energy consumption. One of these innovative ideas is to

synchronize people and freight transportation �ows, referred to asshared mobility, so that

their demands are met using less transportation resources. The concept of shared mobility

refers to the shared use of available transportation resources (Laporte et al., 2015). With

the emergence of many new shared mobility services (e.g. Vélib, Autolib and others), shared

mobility has attracted the attention of the operations research community in recent years.

This is due to the set of bene�ts that can be obtained from applying this sharing concept

in real-life transportation systems.

Figure 1.2: Main categories of shared mobility systems

As the concept of shared mobility contains a wide variety of systems, we propose to

classify these systems in two main categories (Figure 1.2). In the �rst category, we consider

shared mobility systems where people, with similar itineraries and time schedules, share

their daily trips so that their travel costs are reduced. On the other hand, shared mobility

systems in the second category are those where the transportation of passengers and freight

is combined. In both cases, the synchronization of di�erent transportation streams is a

critical task that need to be addressed carefully in order to achieve the intended service

performance. The aim of this thesis is thus to study shared mobility systems whether

they are referred to people sharing their daily trips or to combining people and freight

transportation. More precisely, we address the following research objective:
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Research objective: Develop e�cient models and optimization approaches for syn-

chronizing people and freight �ows in urban mobility systems.

In order to achieve the aforementioned objective, a set of research questions are identi�ed

and addressed in the corresponding chapters of the thesis. The research questions are

formulated as follows:

Research question 1: What are the di�erent variants of shared mobility systems and

what methods are used to optimize them?

Research question 2: How can people trips be synchronized in a ridesharing system

with autonomous vehicles and what gains can this synchronization yield?

Research question 3: How can people and freight �ows be combined and what are

the impacts of stochastic passenger demands on planning such a combined system?

A more detailed overview on how these research questions are addressed in each one of

the chapters is given in Section 1.3.

1.2 The Anthropolis research chair

This thesis is conducted as part of the Anthropolis research chair which is a research

project that aims at developing human-centered approaches for urban mobility. The An-

thropolis chair was established in 2015 thanks to the collaboration between the Institute for

Technological Research SystemX (IRT-SystemX) and the Industrial Engineering Laboratory

(LGI) of Ecole CentraleSupélec.

In addition, the Anthropolis chair is partially funded by �ve industrial partners which

are: ALSTOM, ENGIE, Renault Group, RATP and SNCF. These partners are important

actors of urban mobility in the greater Paris region. On their route towards an urban

mobility transformation that meets the evolving transportation needs of inhabitants and

the emerging technological advances, the industrial partners have several challenges that

need to be considered. This justi�es the industrial interest in the Anthropolis chair which

aims to give a better understanding of these challenges and suggest solutions that can help

the partners in the development of future urban mobility systems. For example, the future

deployment of autonomous mobility services and their implication for people transportation

as well as last-mile deliveries is one of the major points of industrial interest that we consider

in this thesis (as we will see in the following chapters).

The research carried out within the Anthropolis chair can be summarized in three main

research topics. These are:

ˆ Topic 1 : User research, a traveler-centered approach of urban mobility issues.

ˆ Topic 2 : Disruptive technologies and innovation, a technological watch of urban

mobility.
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ˆ Topic 3 : Impact assessment, a measure of the impact of new solutions on business

models and urban systems.

As part of the third research topic (Topic 3 ), this thesis aims at being a bridge between

the industrial needs and the real-life application of new shared mobility systems in urban

areas. This is done by (i) bringing insights that can help the industrial partners to tackle

the increasing demand for transportation and innovation challenges in their future shared

mobility systems, and (ii) developing new tools (i.e. models and optimization approaches)

to operate them e�ciently.

1.3 Overview of the thesis

In chapter 2, we review di�erent variants of the shared mobility problem in which either

(i) travelers share their rides for the sake of reducing travel costs, usually called ridesharing

problem, or (ii) passengers and freight transportation �ows are combined. These involve

real-time shared mobility systems, shared autonomous mobility and crowd-sourced logistics.

We classify these variants according to their models, features, solution approaches and

application context. We observe that although their application contexts might be di�erent,

these variants can share similar modeling features, formulations and solution approaches.

We then provide a comprehensive overview of the recently published papers and case studies

and we summarize their di�erent models, features and objectives. Based on this review, we

identify two shared mobility problems, which we study further in this thesis, and we develop

models and optimization approaches for solving them.

In chapter 3, we study a ridesharing system where individually-owned and on-demand

autonomous vehicles (AVs) are used for serving passengers and the concept of meeting points

is used for synchronizing their trips. We then develop a two-phase method (a pre-processing

algorithm and a matching optimization problem) for assessing the sharing potential of di�er-

ent AV ownership models and we evaluate their matching rates and potentially saved vehicle

kilometers. We analyze these ownership and sharing scenarios on a case study for New York

City. The results demonstrate that sharing AV trips has the potential of increasing the

system-wide matching rate as well as saving up to 23% of the overall traveled distance.

In chapter 4, we present a system that integrates freight deliveries to a scheduled line for

people transportation where the aim is to use the underused capacity to transport freight

simultaneously with passengers. We assume passenger demand, and thus the number of

available places for transporting freight, to be stochastic. We then model this problem as

a two-stage stochastic problem and we provide a MIP formulation and a sample average

approximation (SAA) method along with an Adaptive Large Neighborhood Search (ALNS)

algorithm to solve the stochastic optimization problem. In addition, we perform a com-

putational study to evaluate the proposed approach as well as the impacts of stochastic
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passengers demand on such integrated system. The results show that the proposed heuris-

tic approach can return solutions that are within 0.6% of the optimal solutions. The analysis

also revealed that an average of 3.3% extra costs can be observed when stochastic passengers

demand is realized which re�ect the e�ect of uncertainty on the total transportation costs.

In chapter 5, we summarize the key �ndings and contributions of the thesis, highlight the

main challenges facing shared mobility systems, and suggest potential directions for future

research.

To help clarity, Table 1.1 summarizes the overview of the thesis. Column �Context�

indicates the considered research context, �Methodology� gives the type of algorithm used

to solve the considered problem, �Stochastic� indicates whether uncertainty is considered in

the problem, and �nally �Research questions� indicates which speci�c research questions is

addressed in the corresponding chapter.

Chapter Context Methodology Research questions
1 2 3

2 Survey - X - -
3 People Preprocessing algo. & matching problem - X -
4 People & freight ALNS within SAA - - X

Table 1.1: Overview of the thesis

The chapters of the thesis are based on the following papers:

Chapter 2: A. Mourad, J. Puchinger and C. Chu, A survey of models and algorithms

for optimizing shared mobility, Transportation Research Part B, 2019.

https://doi.org/10.1016/j.trb.2019.02.003.

Chapter 3: A. Mourad, J. Puchinger and C. Chu, Owning or sharing autonomous ve-

hicles: comparing di�erent ownership and usage scenarios, Minor revision in European

Transport Research Reviews, 2019

Chapter 4: A. Mourad, J. Puchinger, T. Van Woensel, Integrating autonomous deliv-

ery service into a passenger transportation system, Submitted to International Journal of

Production Research, 2019

In addition, the di�erent elements of the research conducted in this thesis are presented

in the following conferences:

A. Mourad, J. Puchinger, C. Chu. Privately owned autonomous vehicles in a ride-sharing

application. 18ème Conférence annuelle de la Société Française de Recherche Opérationnelle

et d'Aide à la Décision (ROADEF), 2017, Metz, France.

A. Mourad, J. Puchinger, C. Chu. Owning or sharing autonomous vehicles: compar-

ing di�erent ownership and usage scenarios. Vehicle Routing and Logistics optimization

(VeRoLog), 2017, Amsterdam, Netherlands.
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A. Mourad, J. Puchinger, T. Van Woensel. Combining people and freight �ows using

a scheduled transportation line with stochastic passenger demands. 20ème Conférence an-

nuelle de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF),

2019, Le Havre, France.

A. Mourad, J. Puchinger, T. Van Woensel. Combining people and freight �ows using

a scheduled transportation line with stochastic passenger demands. 7th INFORMS Trans-

portation Science and Logistics Society Workshop (TSL), 2019, Vienna, Austria.

O. Al Maghraoui, R. Vosooghi, A. Mourad, J. Kamel, J. Puchinger, F. Vallet, B. Yannou.

Shared Autonomous Vehicle Services and User's Taste Variation: A Survey and Model

Applications. 22nd EURO Working Group on Transportation Meeting (EWGT), 2019,

Barcelona, Spain.
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Chapter 2

Shared mobility systems

The rise of research into shared mobility systems re�ects emerging challenges, such as rising

tra�c congestion, rising oil prices and rising environmental concern. The operations research

community has turned towards more sharable and sustainable systems of transportation.

Shared mobility systems can be collapsed into two main streams: those where people share

rides and those where parcel transportation and people transportation are combined. This

chapter sets out to review recent research in this area, including di�erent optimization

approaches, and to provide guidelines and promising directions for future research. It makes

a distinction between prearranged and real-time problem settings and their methods of

solution, and also gives an overview of real-case applications relevant to the research area.
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2.1 Introduction

The concept of shared mobility has gained popularity in recent years, attracting atten-

tion from the operations research community, especially after the world of transportation

witnessed a mini-revolution with the launch of shared mobility services like Vélib, Autolib,

Zipcar, Car2Go and others. Emerging challenges, such as growing levels of tra�c congestion

and limited oil supplies with their increasing prices, together with the rising environmental

concerns have pushed research towards more sharable and sustainable systems of trans-

portation. Applying this sharing concept in real-life transportation systems is expected to

a�ord a set of potential bene�ts, whether for people sharing their daily trips or for combined

passenger and freight transportation.

Shared mobility comes with many bene�ts, such as decreasing congestion and pollution

levels and reducing transportation costs for both people and goods, but it also has challenges

that are holding back widespread adoption. Furuhata et al., 2013 identi�ed three major

challenges for agencies providing shared rides to passengers. These are: designing attractive

mechanisms, proper ride arrangement, and building trust among unknown passengers in

online systems. Thus, in order to be adopted more widely, a shared mobility service should

be easy to establish and provide a safe, e�cient and economical trip. As such, it should be

able to compete with the immediate access to door-to-door transportation that private cars

provide (Agatz et al., 2012).

Another important aspect is the emergence of autonomous mobility services and their

potential application to existing shared mobility systems. Fully autonomous vehicles are

expected to reduce traveling costs and provide a safer and more comfortable and sustainable

mode of transportation (Meyer et al., 2017). If those assumptions translate to reality,

autonomous vehicles will dramatically change the urban landscape, and if they can be used

as a shared transportation service, they could reshape the future of shared mobility systems

(Chen et al., 2016b).

From a logistics system perspective, swiftly-growing urbanization rates, and conse-

quently the potential change in people's demands for goods in urban areas, justify the

need to develop new urban logistics systems. These new systems should ensure e�cient

urban mobility, not just for people, but for goods as well (Fatnassi et al., 2015). Thus,

much of the recent research has focused on increasing the sustainability of mobility systems.

Projects have focused on improving existing transportation systems and service quality and

designing new systems that can o�er a more sustainable and ecological approach and thus

contend with rising urban challenges. One innovative idea is to combine individual freight

and passenger transportation streams in an urban area, prompting e�orts to study the e�-

ciency gains made when people and goods share rides and identify the potential challenges

facing this combination.

The increasing need for new technologies and services that support the development of
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sustainable and innovative shared mobility systems is coupled with the need to develop new

operations research models and optimization approaches. An increasing amount of research

is thus directed towards building new models and methods that can e�ciently operate these

systems. Reviewing the literature on shared mobility systems for passenger transporta-

tion, Furuhata et al., 2013 surveyed the existing ridesharing systems and identi�ed their

key challenges. The paper also classi�ed these systems according to their di�erent features,

matching search strategies, pricing methods and target demand segments. Agatz et al., 2012

surveyed the di�erent operations research models that allow travelers (drivers and riders) to

be matched in real-time, and reviewed the optimization challenges that arise in such real-

time systems and the methods used to operate them. A more recent survey by Molenbruch

et al., 2017 reviewed the literature on demand-responsive ridesharing systems, called dial-a-

ride problems (DARPs). The authors introduce a taxonomy classifying the reviewed papers

according to their real-time characteristics, service design, and solution methods. Similarly,

Ho et al., 2018 presented an up-to-date review of recent studies on dial-a-ride problems

(DARPs) with their di�erent variants and solution methodologies. Moreover, the paper

introduced references to benchmark instances, investigates their application areas, and sug-

gests directions for future research. City logistics is a major �eld of innovation in freight

transportation, so the rising importance of sharing aspects in last mile distribution makes it

equally important to investigate the latest developments in city logistics. Savelsbergh and

Van Woensel, 2016 reviewed the most recent trends and challenges in city logistics and iden-

ti�ed opportunities for research. Sampaio Oliveira et al., 2017 studied the crowd-sourcing

logistics model, which aims to use available capacity on trips already taking place, called

the crowd, to deliver goods in urban areas. The paper reviewed the latest developments

in crowd logistics along with their di�erent features, applications, deployment issues and

impacts on city logistics.

Whereas these reviews on shared mobility have focused on either people or freight trans-

portation considering one variant of the problem (dynamic ridesharing systems and carpool-

ing services (Agatz et al., 2012; Furuhata et al., 2013), DARPs (Molenbruch et al., 2017; Ho

et al., 2018), city logistics (Savelsbergh and Van Woensel, 2016), crowd-logistics (Sampaio

Oliveira et al., 2017) and other variants), here we review di�erent variants of the shared mo-

bility problem for both people and goods. We thus focus on shared mobility systems where

(i) travelers share their rides to reduce travel costs, usually calledridesharing systems, or

where (ii) passenger and freight transportation are combined. We �nd that although the

di�erent variants can share similar modeling features, formulations and solution approaches,

their context of application varies. For example, A DARP-based formulation can be used to

model both types of shared mobility systems, but some of its features can vary depending

on the context in which it is applied. We thus study these variants according to their mod-

eling choices, de�ning features and solution methods, and we identify their common and

varying characteristics. This survey brings several key contributions:(1) a comprehensive
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overview of recent papers on shared mobility for transportation of people and goods,(2) an

extensive study of the di�erent variants of the problem based on their application contexts,

models, features and solution approaches,(3) an overview of the latest trends in research

on real-time shared mobility systems, shared autonomous mobility and crowd-based logis-

tics, (4) a tabulated overview for each section summarizing the reviewed papers and their

problem characteristics and solution methods, and(5) a review of recent shared mobility

case studies analyzed and classi�ed according to their scope and the approaches used.

This chapter is organized as follows. In section 2.2, we present the di�erent variants of

the shared mobility problem, study their di�erent features and modeling approaches, and

explain how we build on them. In section 2.3, we focus on mobility systems that allow

people to share their rides, including those with real-time settings and those that consider

shared autonomous vehicles. In section 2.4, we investigate the latest developments in city

logistics and go on to review the integrated passenger and freight transportation problem

with its solution methods and applications. This review of the literature on ridesharing

and combined systems is split into two separate sections to facilitate the organization of the

survey and help readers easily identify the parts of the literature that interest them most.

In addition, each section comes with a set of case studies on the relevant shared mobility

topics. Finally, in section 2.5, we summarize the key �ndings and suggest directions for

future research.

2.2 Shared mobility problems

In this section, the di�erent variants of shared mobility systems are reviewed and clas-

si�ed according to their application context (section 2.2.1). Then, an extensive review of

their modeling features (section 2.2.2), objectives (section 2.2.3) and solution approaches

(2.2.4) is provided.

2.2.1 Background

As introduced earlier, the concept of shared mobility applies not just to people trans-

portation but also to combined people and freight transportation to make better use of

available transportation resources. The literature has introduced a number of variants of

the shared mobility problem for people and freight transportation (Figure 2.1). Shared

mobility systems for people transportation aim to minimize the number of vacant seats in

vehicles in order to reduce the number of used vehicles, and thus tra�c congestion and

pollution. This can be achieved using a number of concepts, such as;ridesharing , car-

pooling , vanpooling , car-sharing , dial-a-ride and others. Ridesharing allows people

with similar itineraries and time schedules to share a vehicle for a trip so that each person's

travel costs (i.e. fuel, toll, parking expenses, etc.) are reduced (Furuhata et al., 2013).

Based on this de�nition, we use the term "ridesharing" throughout the thesis to represent
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Figure 2.1: Shared mobility - Problem variants

this category of systems in which people share their rides. The idea of ridesharing has many

bene�ts including reducing travel cost and time, decreasing fuel and energy consumption, al-

leviating tra�c congestion and thus reducing air pollution. There are several variants of the

ridesharing problem, most of which develop e�cient mobility systems that allow travelers to

share their trips and thus enhance their travel experience (Agatz et al., 2012). Planning for

rideshared trips can be categorized into 'prearranged', or 'static' ridesharing, and 'dynamic'

ridesharing. In prearranged ridesharing , travelers' demand (drivers and riders) is known

beforehand (i.e. travelers' origins, destinations, and departure and arrival times are given

in advance) and can thus be used to plan their shared trips. Such prearranged services are

mainly used for planning regular commuter trips as well as shared long-distance trips (e.g.

inter-city trips). However, long-distance trips generally have more �exible time schedules

than commuting trips. Dynamic ridesharing focuses on matching drivers and riders on-

the-�y. In other words, new drivers, o�ering rides, and riders, requesting rides, can enter

and leave the system at any time, and the system then tries to match their trips at short

notice (or even en-route). In their review of dynamic ridesharing systems, Agatz et al.,

2012 focused on the optimization problem of e�ciently matching drivers and passengers.

This ride-matching problem has two steps. First, it determines e�cient vehicle routes, and

then it assigns passengers to those vehicles taking into consideration the con�icting objec-

tives of maximizing the number of matched travelers and minimizing the operation cost and

passenger inconvenience (these real-time systems are further explored in section 2.3.2).

One variant of the ridesharing problem is called the carpooling problem.Carpooling
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was �rst introduced by large companies in an e�ort to encourage their employees to pick

up colleagues while driving to/from work. The idea was to minimize the number of cars

traveling to their sites every day (Baldacci et al., 2004). Carpooling is generally used for

commuting but has become increasingly popular for longer one-o� journeys. The carpooling

problem aims to determine the subsets of travelers that will share the same trip and the paths

these shared trips should follow in order to maximize sharing and minimize travel costs.

In order to increase the �exibility of carpooling services, which are usually prearranged,

the concept of �exible carpooling has been introduced (Shaheen et al., 2016).Flexible

carpooling , also called casual carpooling or slugging, is a semi-organized service in which

destination, meeting point and departure times are all known in advance among potential

participants. The main di�erence is that rideshares are formed spontaneously at the meeting

point on a �rst-come �rst-served basis (Chan and Shaheen, 2012). This enhanced �exibility

opened the door to deploying new carpooling services, not only for daily commutes but for

long-distance trips as well (see SlugLines, SmartSlug and KangaRide for example). Along

similar lines, Kaan and Olinick, 2013 consider thevanpooling problem with its optimization

models and solution algorithms. In this problem, commuters in the vanpool drive to an

intermediate location, called a park-and-ride location, and then take a van and ride together

to the target destination. Car/vanpooling, which can be operated on daily or long-term

bases (Wol�er Calvo et al., 2004), provide regular and cost e�cient means of transportation,

they do not accommodate unexpected changes of schedule. By contrast, thedial-a-ride

(DARP) provides shared trips between any origin and destination in response to advanced

passenger requests within a speci�c area (see Molenbruch et al., 2017; Ho et al., 2018 for

recent review). The DARP models a demand-responsive transportation mode in which

the aim is to de�ne a set of routes in order to satisfy passenger requests at minimized

costs (Masson et al., 2014; Ritzinger et al., 2016). Each request consists of transporting a

passenger from his/her origin location to his/her destination location where passengers with

similar route and time preferences can share the same vehicle as long as there is capacity.

As such, solving the DARP is about minimizing the total travel distance, and thereby travel

time, while respecting rider-speci�ed time restrictions and any vehicle restriction constraints

(more problem features and objectives are discussed in sections 2.2.2 and 2.2.3 respectively).

These demand-responsive systems often focus on providing service to people with reduced

mobility (e.g. elderly, handicapped etc.). The main di�erence between a DARP and a

dynamic ridesharing problem is that a driver in the DARP can provide service to a wide set

of passengers, as the drivers in this case are part of the service, and thus have less restrictions

regarding route and time. In contrast, a driver in a dynamic ridesharing context can only

provide service to passengers with similar route and time schedules to the driver (Gu et al.,

2016). In other words, in DARP, all drivers are professional and typically operate out of one

or more depots, whereas in dynamic ridesharing each driver is often an individual who has a

speci�c origin and destination and may have preferences to be considered (like a maximum
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detour time, maximum number of stops, etc.).

Another variant of the ridesharing problem is the shared-taxi problem introduced by

Hosni et al., 2014 as a multi-vehicle dynamic DARP. In the shared-taxi problem, passen-

gers indicate their desired pickup and drop-o� locations, their earliest/latest acceptable

pickup/drop-o� time, and a maximum trip time. Solving the shared-taxi problem aims to

optimally assign passengers to taxis and determine the optimal route for each taxi, which

means this problem shares the same characteristics, such as demand-responsiveness, as the

DARP. However, the main di�erence is that most shared-taxi services aim to minimize the

response time to passenger requests whereas dial-a-ride systems aim to minimize vehicle

operating cost by reducing the number of vehicles used to serve given passenger demands

(Jung et al., 2016). When considering ridesharing variants, it is important to di�erentiate

ridesharing from carsharing, which is a di�erent concept.Carsharing is a car rental service

in which people who are interested in making only occasional use of a vehicle can rent cars

for short periods of time (Agatz et al., 2012). Although carsharing shares the aim of reducing

car usage and increasing mobility with ridesharing, the optimization challenges that arise

in both systems are di�erent. Those challenges include, determining depot locations and

assigning and redistributing vehicles among these depots. Although the carsharing concept

allows people to occasionally use a network of vehicles for short periods of time, they do

not necessarily share their trips with other travelers, which rules carsharing systems outside

the scope of this review. Here we use the di�erent variants of ridesharing introduced so far

to classify recent studies on shared mobility systems for people transportation (see section

2.3).

On the other hand, combining passenger and freight �ows has the potential to improve

the performance of existing transportation services as their needs can be satis�ed with

fewer resources (Trentini et al., 2015). In this kind ofcombined delivery system, spare

capacity in public transport systems can be used for retail store replenishment, or taxis

can move or deliver freight when carrying a passenger or during idle time. In an integrated

system, when transporting freight, we need to decide whether to use a pure freight or people

transportation network or a combination of the two (Savelsbergh and Van Woensel, 2016).

This choice depends on the origin location, destination, and due time of freight. In this

chapter, the focus is on systems in which people and freight transportation are combined.

Li et al., 2014 introduced theshare-a-ride problem (SARP) in which people and parcels

are handled in an integrated way by the same taxi network. In this problem, a number of

taxis drive around in an urban area to serve passenger requests but can also deliver some

freight (parcels), from their origins to their �nal destinations, as long as these deliveries

do not add signi�cant extra time to their passengers' trips. Further, Ghilas et al., 2016c

explored an integrated solution for simultaneous passenger and freight transportation so

that fewer vehicles are required. In their problem, a set of pickup and delivery vehicles

is used to serve a set of parcel delivery requests where a part of the delivery process is
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carried out on a scheduled passenger transportation service. Trentini et al., 2015 introduced

another integrated system in which goods are transported in city buses, which have some

spare capacity, from a distribution center to a set of bus stops before they can be delivered

to �nal customers by a �eet of near-zero emissions city freighters.

Increasing interest in such combined systems has led to the concept of crowd-sourced

delivery. Crowd-sourcing allows activities that were traditionally performed by a certain

agent or company to be outsourced to a large pool of individuals (Goetting and Han-

dover, 2016), which aligns it to the concept ofsharing economy. Crowd-sourced delivery,

or crowd-shipping , is based on sharing excess and underused assets, which here trans-

lates as using excess capacity on journeys already taking place in order to make deliveries.

As such, crowd-sourced delivery could revolutionize delivery by increasing operational e�-

ciency and reducing transportation costs. The problem of combining passenger and freight

transportation shares many features with the ridesharing problem where only passengers

are considered. However, it has some complicating features as well, such as transfers, syn-

chronization, capacity constraints, multiple echelons, etc. (Savelsbergh and Van Woensel,

2016). The key to successfully combining passenger and freight transportation is to ensure

there is no signi�cant negative e�ect on people when goods are transported or delivered

during their journey. We explore and discuss these combined systems in section 2.4.

Variant Goods
trans-
port

On-
demand

Daily
com-
mute

Long-
distance

Pre-
arranged

Real-
time

Carpooling X X
Flexible Carpooling X X X X
Vanpooling X X
Prearranged Ridesharing X X X
Long-distance Rideshar-
ing

X X

Dynamic Ridesharing X X
DARP X X X X
Shared-Taxi X X
Combined Delivery X X X
Share-a-Ride Problem X X X
Crowd-sourcing X X X X

Table 2.1: Shared mobility variants for people transportation - Di�erent
characteristics

Table 2.1 gives a roll-up summary of the di�erent variants of recent shared mobility prob-

lems. Below we give a more detailed analysis of these variants and the modeling approaches

and optimization methods commonly used.
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2.2.2 Modeling and features

In the shared mobility problem, a set of transportation requests, representing passengers

or passengers-plus-goods, need to go from their origins to their destinations while satisfying

certain criteria and respecting certain service speci�cations. The service provider receives

these di�erent requests and then arranges with its available transportation resources (vehi-

cles, car parks, drivers etc.) for the delivery process. This planning of shared trips is one

of the main tasks in shared mobility. In this problem, the service is shared in the sense

that multiple requests might be serviced using the same resource (e.g. vehicle) at the same

time. In order to establish this shared service, a set of features and constraints should be

considered. Shared mobility problems are usually modeled using di�erent vehicle routing

problem (VRP) formulations that represent these features as a set of additional constraints

characterizing each variant of the problem. Many of these features can be found in both

ridesharing systems and systems combining passenger and freight transportation, but other

features can relate to either ridesharing systems or combined systems, but not both. In

the following, we summarize the di�erent types of features and constraints reported in the

literature for the shared mobility problem. Furthermore, we identify problem variants that

consider each type of constraint discussed in order to get a clear picture of these variants

and their common and di�erent characteristics.

Routing constraints (RC) :

In shared mobility systems, every request needs to be transported from its origin to its

destination, and the origin location has to be visited �rst. This feature applies to both

passengers and goods but can have some variations. For example, in some ridesharing ap-

plications, a passenger can be picked up or dropped o� at an intermediate location, usually

calledmeeting point, which can lead to shorter detours (Stiglic et al., 2016a). Another exam-

ple is found in multi-echelon transportation systems where goods are transported through a

scheduled line to a public transport station and then delivered by vehicle to their �nal des-

tination (Ghilas et al., 2016b). While most models insist that each transportation request

is served by one vehicle at most (as in Hosni et al., 2014 for a shared-taxi problem and Li

et al., 2014 for a multi-echelon combined system), some models allow these requests to be

transferred using multiple vehicles (as in Herbawi and Weber, 2011 for a dynamic multi-hop

ride-sharing problem and Masson et al., 2014 for a DARP with transfers).

Furthermore, in demand-responsive transportation systems (including DARP and shared-

taxi systems) and many logistics systems in which a �eet of vehicles is located at speci�c

locations (depots) and ready for service, there is an additional constraint imposed on the

route each vehicle will follow: each vehicle should return to one of the depots when its trip

is �nished. In some simpli�ed problem settings, a vehicle might have to return to the same

depot from which it started its trip. Moreover, any shared mobility model must ensure each

vehicle reaches and leaves a corresponding location (request origin or destination, depot,
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intermediate meeting point or a public transport station). This constraint ensures conser-

vation of �ow, and is very common in shared mobility problems. In some combined systems,

passenger requests are given higher priority when building routes to serve both passengers

and goods (Li et al., 2014). The routes are �rst constructed based on passenger requests,

then freight requests are only inserted when passenger trips are not signi�cantly a�ected.

Routing constraints are usually considered hard constraints, because violating them might

lead to detached vehicle routes or a request being picked up but not delivered to destination.

Thus, these constraints need to be strictly respected when modeling and solving a shared

mobility problem.

Time constraints (TC) :

Besides indicating where a transportation request needs to be picked up and where it

should be transported to, a shared trip must also indicate when this process can take place.

This is usually done by associating atime window with each transportation request, whether

for a passenger or freight. In ridesharing systems, this time window is usually given by each

passenger indicating the earliest departure time from his/her origin and the latest arrival

time at his/her destination. Thus, in order for a passenger to participate in a shared trip,

he/she should be picked up at origin and dropped o� at destination within the time window

he/she has speci�ed (Stiglic et al., 2016a). Like passenger requests, freight delivery requests

may also be associated with a time window. In some cases, two time windows are used to

represent these time restrictions: a pickup time window, indicating when a request should

be picked up, and a drop-o� time window, indicating when it should be delivered (Ghilas

et al., 2016c).

In addition, there could be added restrictions on the duration of the shared trips. In

most ridesharing systems, a set of drivers, o�ering rides, and riders, looking for rides, are

matched to share their trips. In order to accommodate the riders, the driver might have

to make a detour from his original itinerary and make some extra stops (Furuhata et al.,

2013). The length of this potential detour depends on how far the driver is willing to extend

his/her trip time. Moreover, if drivers have su�cient time �exibility, they might provide

rides to multiple riders simultaneously. Of course, pick-up and drop-o� of several riders

in a single trip adds layers of complexity to the planning decisions (Agatz et al., 2011).

Thus, a successful ridesharing respects the departure and arrival times for all participants,

as well as the maximum detour time for the driver. In DARP-like systems, drivers are

employed by the service provider (like in shared-taxi services), and thus have no preferences

in terms of departure, arrival and detour times. In such systems, other time restrictions

might be considered, such as: maximum working hours for drivers, a maximum response

time for processing a passenger request, and the maximum service time for vehicles, which

is usually related to recharging and maintenance operations (Li et al., 2014). Most of the

previous scheduling constraints also apply to combined systems transporting passengers
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and goods through the same network. One di�erence is that in combined systems, every

participant speci�es a trip excess time which indicates his/her readiness to extend the trip

in order to pick up and deliver some goods (Li et al., 2016a). Thus, successful integration

of passengers and goods in a shared trip should respect the maximum extra time that

participating passengers are ready to accept.

Unlike routing constraints, time constraints, also called scheduling constraints, are con-

sidered soft constraints, because violating them might not detach vehicle routes or intercept

the �ow, but may result in passengers or freight arriving late to their destinations, especially

in real-world conditions. Violating these constraints may thus be allowed if it increases the

likelihood of �nding a solution, but discouraged through a penalty cost.

Capacity constraints (CC) :

A capacity constraint is a factor that prevents a shared transportation resource from

being overused. In ridesharing systems, a capacity constraint limits the number of pas-

sengers sharing the same vehicle at the same time to the number of vacant seats in that

vehicle (Santos and Xavier, 2015). Besides limiting the maximum number of passengers,

many vanpooling systems also require a minimum number of passengers to form a vanpool

for a shared trip (Kaan and Olinick, 2013). Number of participants in a shared vanpooling

trip must therefore be within these two limits. In logistics systems, a capacity constraint

ensures that the volume of goods to be transported does not exceed the available space pro-

vided by the transportation service (Savelsbergh and Van Woensel, 2016). This constraint

holds valid whether goods are transported using a �eet of vehicles (Li et al., 2014), public

transport (Behiri et al., 2018) or any other transportation service. In addition, in integrated

models where passengers and goods are transported together, constraints on both capacities

may need to be considered. This is because most of the reviewed literature assumes that

passengers and goods are transported in separate compartments (Ghilas et al., 2016a). In

an uncertain environment, where passenger or freight demand is stochastic, these capacity

constraints might be violated, and should thus be treated using stochastic approaches.

Cost constraints (OC) :

In some problem settings, a ridesharing participant may specify a maximum travel cost

that he/she is willing to pay for the shared trip, and should thus be matched to shared trips

that stay under the maximum amount speci�ed. Furthermore, in order to attract more

participants, travel costs in ridesharing systems should be competitive with other modes

of transportation. A good example can be found in vanpooling systems where passengers

are only assigned to vanpools that are cheaper than their current commuting costs (Kaan

and Olinick, 2013). However, integrating goods delivery with passenger trips that already

take place could decrease travel costs for participants and transportation costs for goods

(Crainic and Montreuil, 2016). Even if passengers would have longer detours when freight
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delivery is added to their trip, they would still get lower travel cost than if no deliveries are

added. However, the bulk of research on these combined systems does not consider travel

and transportation cost as a feature or constraint in the system but more as an objective

to be minimized given its importance for service operators (as we will see in Section 2.2.3).

Synchronization constraints (SC) :

Many recent research papers have focused on studying di�erent synchronization con-

straints in shared mobility problems. An extensive review by Drexl, 2012 identi�ed �ve

di�erent types of synchronization constraints for VRPs. The �rst type of synchronization

constraint, called task synchronization , is required when multiple transportation units

are capable of serving a task (i.e. a transportation request). In other words, a task synchro-

nization constraint ensures that each request (passenger or freight) is served exactly once

by one or more vehicles (Fink et al., 2018). Furthermore, when the operations performed

by di�erent transportation units need to be coordinated in terms of space and time,oper-

ation synchronization is required. In other words, a schedule for a vehicle in a shared

mobility system should be built to take into account the schedules of other vehicles, so

their schedules need to be synchronized. Logistics systems o�er good examples of when

operation synchronization is needed: for example, a system where two di�erent vehicles

arrive at di�erent customer locations, one delivering the product and the other carrying the

crew to install it (Hojabri et al., 2018), or a system in which multiple vehicles cooperate in

order to transport one big-size cargo (Hu and Wei, 2018). Another type of synchronization

constraints is calledmovement synchronization . In some ridesharing systems where pas-

sengers are allowed to transfer from one vehicle to another on the way to their destination,

the arrival and departure of vehicles to and from transfer points need to be synchronized

(see Masson et al., 2014 for an example). Another example is found in multi-echelon sys-

tems where goods are transported with passengers through a scheduled transport line after

being collected by a �eet of vehicles. Such systems also need to ensure synchronization

between requests and the collecting vehicles, and between requests and the scheduled line

departures (Ghilas et al., 2016b). Load synchronization ensures that the right amount

of load is collected and delivered to a customer, or in other words, no load is lost when

transferred between di�erent transportation units. This is the case when deliveries are done

using two distinct �eets of vehicles where a request is transferred from one vehicle to an-

other at satellite locations before it can be delivered to a customer (Grangier et al., 2016).

The same load synchronization constraint is needed when deliveries are transferred between

pickup and delivery vehicles and a public transport line in a multi-echelon transportation

system. Finally, resource synchronization ensures that the use of resources common to

di�erent transportation units is limited to availability (Drexl, 2012). Number of drivers,

vehicle �eet size, available parking slots, vacant seats for riders to share, and the available

space and capacity in transportation units in both ridesharing and combined systems are
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all examples of limited resources whose use needs to be synchronized. Xiang et al., 2006

considered a DARP with passenger-driver and passenger-vehicle compatibility constraints.

They classi�ed passengers into di�erent levels, and ruled that vehicles could only accommo-

date passengers of corresponding levels, i.e. a passenger can only use a vehicle of the same

or higher level. As a rule, modeling synchronization constraints yields more complex and

non-linear mathematical formulations (e.g. implications) which need to be handled using

linearization techniques. However, these constraints are important for modeling realistic

settings and, from an algorithmic perspective, can be used to decompose hard problems

(e.g. they can be used as coupling constraints in a column generation based approach; see

Fink et al., 2018).

2.2.3 Objective functions

Most objectives that shared mobility problems aim to optimize can be classi�ed into

two main categories;operational objectives andquality-related objectives. Operational

objectives are usually about optimizing system-wide operating costs, such as minimizing

vehicle miles and transportation time, maximizing the number of serviced requests, mini-

mizing the number of required vehicles, and others. Quality-related objectives are about

enhancing the quality of service provided. For example, minimizing total passenger ride or

waiting time might yield a better performance from the passenger perspective but not from

a system-wide perspective. Furthermore, minimizing system-wide travel time does not nec-

essarily mean shorter travel times for every passenger. This di�erence betweencollective

and individual perspectives in shared mobility systems justi�es the need for methods that

consider both operational and quality-related objectives. A good example can be found

in Kalczynski and Miklas-Kalczynska, 2018 where a decentralized approach takes carpool

participant preferences into account while maintaining the same system-wide savings that

can be obtained in centralized approaches.

Much of the research on shared mobility is focused on optimizing a single operational ob-

jective, but there are papers that consider multiple-objective systems combining operational

with quality-related objectives. In single objective systems, service quality considerations

are represented as constraints in the model to ensure a minimum service level (Molenbruch

et al., 2017). In other words, a set of constraints limiting passenger extra ride times, caused

by deviations from their original routes, are added when optimizing the system. Likewise,

most of ridesharing research has focused minimizing the system-wide travel distance (vehi-

cle miles) or total travel time. For example, in Wol�er Calvo et al., 2004, the system-wide

travel time in a carpooling system is minimized with an added penalty cost for unserved

requests. In a dynamic environment, where transportation demand is revealed in real-time,

satisfying full demand may not be attainable, in which case it becomes pertinent to max-

imize the number of served requests as it extends the reach of the transportation service

(Berbeglia et al., 2012). Some studies have considered maximizing the total pro�t obtained
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from the ridesharing system (see Hosni et al., 2014 for a shared-taxi problem and Parragh

et al., 2015 for a DARP) or minimizing the total cost of operating it (see Kaan and Olinick,

2013 for a vanpooling problem and Braekers et al., 2016 for a DARP). Moreover, some more

problem-speci�c objectives have been considered in the literature, such as; minimizing the

number of required vehicles (Guerriero et al., 2013), minimizing vehicle emissions (Atahran

et al., 2014), maximizing passenger occupancy rate (Garaix et al., 2011), minimizing sta�

workload (Lim et al., 2017), and maximizing system reliability (Pimenta et al., 2017). Most

studies on combined crowd-sourced systems have focused on either maximizing the pro�t

obtained by integrating passenger and freight �ows (Li et al., 2014) or minimizing the oper-

ational cost of these systems (Ghilas et al., 2016c), but there have been e�orts to consider

additional objectives, such as minimizing the number of vehicles required to operate the

system (Trentini et al., 2015) and minimizing the total wait time of demands before being

serviced (Behiri et al., 2018). The recent shared mobility studies listed in Table 2.2 and 2.5

have been classi�ed using these di�erent objectives.

As mentioned above,multi-objective systems consider a combination of two or more of

the above-listed single objectives. Solving multi-objective problems requires di�erent meth-

ods to those employed for solving single-objective problems. The literature identi�es three

main techniques for dealing with multi-objective problems. The �rst, and most popular ap-

proach is to aggregate the di�erent objectives into aweighted-sum objective with di�erent

measures. In this approach, a weight has to be de�ned for each of the combined objectives.

As such, the relative importance of each objective needs to be quanti�able and well-de�ned.

A good example can be found in Kirchler and Wol�er Calvo, 2013 who used an aggregated

objective function combining six di�erent objectives: minimizing routing cost, excess ride

time, passenger waiting time, route durations, early arrival times at pickup and delivery

nodes, and number of unserved requests. Another example of a weighted-sum objective can

be found in Lehuédé et al., 2014. One drawback of the weighted-sum approach is that it

might not be able to �nd the full set of non-dominated solutions for optimization problems

in which some variables are constrained to be integers (i.e. non-convex optimization prob-

lems). In addition to weighted-sum approach, some papers consider ahierarchical , also

called lexicographical , objective function. In this approach, the di�erent objectives are

ordered according to their importance, and �rst the main objective is optimized to generate

a set of solutions, then a secondary objective is optimized whenever two solutions with the

same quality, in terms of the main objective, are obtained. Stiglic et al., 2016a considered

a ridesharing system with a lexicographic objective function. First, the system generates

solutions that maximize the number of matched participants and then the secondary objec-

tive is used to select solutions that maximize the distance savings (see also Schilde et al.,

2014). This approach is therefore e�cient in problems where the di�erent objectives can

be classi�ed into main and secondary objectives. Finally, the third approach for dealing

with multi-objective problems is to obtain the set of non-dominated solutions in terms of
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the di�erent criteria, called Pareto frontier (Paquette et al., 2013). The main advantage

of this approach is that it helps decision makers analyze the relations between the di�erent

objectives, as it provides all the possible optimal solutions. However, this approach might

not be applicable for dynamic shared mobility systems where decisions need to be taken in

relatively short time frames, as it requires obtaining the full set of optimal solutions and a

human being to select the best solution among them (Molenbruch et al., 2017).

2.2.4 Computational complexity and solution approaches

As mentioned above, the shared mobility problem is a generalization of the vehicle

routing problem (VRP) and is NP-hard in general. In addition, simpli�ed variants of the

problem (e.g. with a single-driver single-rider setting, single pickup and dropo� or a single-

objective function) are still NP-hard (Gu et al., 2016). Furthermore, solving these problems

becomes more complex when they have dynamic settings and stochastic input data. Thus,

both exact and heuristic solution approaches have been introduced in the literature. Due

to the complexity of shared mobility problems, most studies have focused on developing

approximation and heuristic approaches for solving them. That said, a number of studies

have developed exact methods for solving simpli�ed variants of the problem. These ex-

act methods are usually used to solve static problem variants with deterministic data, e.g.

a column generation-based method for the carpooling problem (Baldacci et al., 2004), a

branch-and-cut algorithm for a multi-vehicle static DARP (Cordeau and Laporte, 2007), a

two phase method for generating optimal matches in a static ride-sharing problem (Stiglic

et al., 2016a), and a branch-and-price algorithm for a crowd-sourced system with a sched-

uled line for transporting passengers and goods (Ghilas et al., 2016c). However, solving

these static variants becomes more complex when complicating features are added to the

system, such as allowing passenger transfers, integrating public transport, and considering

vehicle/driver compatibility. To deal with these complex features, a number of heuristic

approaches have been introduced, such as a local search strategy for a static DARP with

complex constraints (Xiang et al., 2006), an Adaptive Large Neighborhood Search (ALNS)

heuristic for the DARP with transfers (Masson et al., 2014), a constraint-based Large Neigh-

borhood Search (Jain and V. Hentenryck, 2011), an integrated column generation in a Large

Neighborhood Search (Parragh and Schmid, 2013) for a static DARP, a Lagrangian decom-

position heuristic for the static shared-taxi problem (Hosni et al., 2014), and another ALNS

approach for the crowd-sourced delivery system with scheduled line (Ghilas et al., 2016b).

Nevertheless, even these heuristic algorithms often have large computation times limiting

the size of instances on which they can be tested, which consequently also limits their

usability for large-scale and dynamic systems which need to be re-optimized at regular

intervals as new transportation requests enter the system. As a result, heuristic approaches

need to be improved so that good-quality solutions can be obtained in short computational

times. In order to clarify how a heuristic approach can be improved to handle dynamic
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problem settings, we take the ALNS heuristic as an example. In a classical ALNS-based

method, a set of insertion and removal operators are used to enhance a current solution.

Thus, at each iteration, one insertion operator and one removal operator are selected and

applied to the current solution seeking an improvement. This process continues until an

acceptable solution is found or a maximum number of iterations is reached. In order to

minimize the number of required iterations, and thus the computation time, the classical

ALNS can be improved by adding a score to each operator (Masmoudi et al., 2016). If using

one operator, whether it is an insertion or removal operator, brings an improvement to the

current solution, then the score of the operator used will be increased. The probability of

using this operator in the next iterations will thus be higher, and so an acceptable solution

would be reached in a shorter time.

For the uncertainty factor, more advanced techniques are needed for solving shared mo-

bility problems with one or more source of uncertainty. This is because a solution obtained

by solving the deterministic version of the problem might not be valid when uncertainty is

revealed. The most common source of uncertainty lies in transportationdemands , where

some of the data on transportation requests is unknown at the moment the shared trips are

planned. This uncertainty might be in request occurrence times or locations (Ghilas et al.,

2016a). Another important aspect is the stochasticity of travel times, as tra�c, accidents,

and other factors make it impossible to know travel times between di�erent locations in

advance (Heilporn et al., 2011). Due to the complexity of this uncertainty, most studies

have not considered any more than one source. However, there has been some research

on integrating multiple sources of uncertainty (e.g. considering stochastic travel times and

delivery locations; Li et al., 2016b). For solving shared mobility problems that involve

uncertainty, the literature has identi�ed two categories of methods. The most common ap-

proach is to make a decision and then minimize the expected (recourse) costs induced by

the consequences of this decision. This approach is calledstochastic programming with

recourse . In the second approach, calledmulti-scenario approach , the expected costs

are estimated by evaluating a solution on a set of di�erent scenarios. In this approach,

heuristic algorithms can be e�ciently used to obtain a solution each time a new scenario

is tested (for more details on stochastic models and their solution approaches, interested

readers are referred to Ritzinger et al., 2016).

2.3 People sharing rides

This section focuses on introducing shared mobility problems for people transportation.

The idea is to, (i) investigate the potential bene�ts and planning aspects (Section 2.3.1),

(ii) review the modeling choices and optimization approaches in real-time settings (Section

2.3.2), and (iii) discuss the potential integration of new automated services in such shared
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systems (Section 2.3.3). We also provide an overview table summarizing the papers reviewed

and their problem characteristics and solution approaches (Table 2.2).

2.3.1 Planning and potential bene�ts

As mentioned above, the increasing demand for passenger transportation has attracted

more research into enhancing the e�ciency and quality of existing public transport systems

and developing new systems that can provide more sustainable solutions (Wol�er Calvo

et al., 2004). Ridesharing is one opportunity to provide a reduced-cost mobility service that

is as �exible as private cars but can also increase occupancy rates and decrease tra�c and

pollution levels (Furuhata et al., 2013).

In a ridesharing system, drivers and riders share the travel costs so that each bene�ts

from the shared ride. Bene�t can be obtained when the travel cost of a shared ride is lower

than the cost of the alternative means of transport (individual car trips, taxis or public

transport). While some users choose to participate in a shared ride to reduce their travel

expenses, others may be motivated by the potential social and environmental bene�ts (Fu-

ruhata et al., 2013). Besides the potential cost savings, ridesharing can also allow drivers to

reduce their travel time because they will be able to take high-occupancy lanes reserved for

vehicles with two or more occupants (Stiglic et al., 2015). Riders, on the other hand, may

appreciate dispensing with the need to drive or own a vehicle. Despite its potential advan-

tages, there are also major obstacles that prevent wider uptake of ridesharing. According to

Furuhata et al., 2013, the two main barriers to wider adoption of ridesharing are coordinat-

ing passenger trips that have similar itineraries and time schedules, and developing e�ective

methods to encourage participation. Limited �exibility in participants' itineraries and time

schedules may result in many of them not �nding a match. Other issues like privacy, safety,

social discomfort and pricing are also challenges for ridesharing systems. For example, a

potential participant may be willing to share rides with colleagues and friends, but not with

complete strangers (Agatz et al., 2012). As such, new methods for arranging the shared

rides need to be developed, and reputation and pro�ling systems for addressing these social

and privacy concerns need to be built.

In order to attract more riders and facilitate matching them in shared rides, we identify

some the concepts in the literature that can help maximize the potential bene�ts of a

ridesharing system. One of those concepts is to consider a set of meeting points where a

shared ride can take place. Thus, a rider might be picked up at his/her origin location or at a

pickup meeting point and dropped o� at his/her destination location or at a drop-o� meeting

point. Meeting points would thus allow drivers to have smaller detours while maintaining a

good-enough quality of service for the riders. Stiglic et al., 2015 investigated bene�ts of using

meeting points in a ridesharing system and found that as they can lead to shorter detours,

meeting points have the potential to increase the system-wide distance savings as well as

the number of participants that can be matched in the system. With the aim of attracting
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more riders, especially from suburban areas, Stiglic et al., 2018 examined the potential

bene�ts of integrating ridesharing and public transport, and found that the two can prove

complementary. While ridesharing can bring passengers from less-densely-populated areas

to public transport, the public transport system allows ridesharing to provide service to

more passengers and reduce drivers' detours. Another concept is to allow riders requesting

a shared ride to transfer between drivers, and thus use more than one driver to reach

his/her �nal destination. Herbawi and Weber, 2011 considered a version of this multi-hop

ridesharing problem in which the transportation network is formed by driver ridesharing

o�ers. Thus, drivers do not deviate from their original itineraries while riders have to

�nd routes that minimize their travel time, costs, and the number of transfers required to

reach their �nal destination. Masson et al., 2014 considered ridesharing settings in which

riders are allowed to transfer between vehicles at intermediate transfer points, and suggested

that these transfers can lead to considerable savings, especially when multiple transfers are

allowed. To guarantee a certain level of service, Lee and Savelsbergh, 2015 investigated the

bene�ts of deploying a number of dedicated drivers to provide service to unmatched riders,

and identi�ed the environments in which dedicated drivers are most bene�cial. When the

number of riders increases to a certain point, the need to deploy a set of dedicated drivers

became essential to maintain an acceptable service level.

2.3.2 Real-time ridesharing

As introduced earlier in section 2.2, a real-time ridesharing system aims to bring travel-

ers together at short notice. Furthermore, a real-time ridesharing system might need to be

re-optimized at regular intervals as more travelers enter or leave the system. In addition,

travelers already en route need to be noti�ed of any change of plan at each time the system

is re-optimized, as their original routes might be updated. This automated process requires

e�cient models and algorithms for matching drivers and riders in very short computation

times. As a result, many recent studies on real-time ridesharing systems have focused on

developing heuristic approaches, as they can provide good-quality solutions in relatively

short computation times. Nevertheless, such systems can also be addressed by enumeration

(exact) algorithms (like branch-and-bound). Due to their brute-force nature, using enumer-

ation algorithms for such real-time systems may require an additional preprocessing e�ort in

order to �t the short computation times needed. Some preprocessing techniques can tighten

travelers' time windows, eliminating unnecessary variables and constraints and identifying

inequalities for narrowing the solution space (Liu et al., 2014). For example, Agatz et al.,

2011 introduced an e�cient rolling horizon approach that can provide high-quality solutions

for dynamic ridesharing systems where drivers and riders continuously enter and leave the

system. In a later survey, Agatz et al., 2012 provided a review of the related operations

research-based models in the academic literature. Here we review the more recent studies

and their solution approaches.
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Huang et al., 2013 proposed a branch-and-bound algorithm and an integer programming

algorithm for solving the problem of large-scale real-time ridesharing, and introduced a

kinetic tree algorithm capable of better scheduling dynamic requests and adjusting routes

on-the-�y. Liu et al., 2014 proposed a branch-and-cut algorithm to solve a realistic DARP

with multiple trips and request types and a heterogeneous �eet of vehicles with con�gurable

capacity and manpower planning. To solve the dynamic ridesharing problem over a full-day

time horizon, Santos and Xavier, 2015 suggested dividing the day into time periods, after

which a deterministic instance of the problem can be generated and solved by a greedy

randomized adaptive search procedure (GRASP). Ma et al., 2015 introduced a dynamic

taxi-sharing system based on a mobile-cloud architecture. In their proposition, the system

�rst uses a search method, based on a spatio-temporal index, to �nd candidate taxis for

every ride request, and then a taxi that satis�es the request with the shortest detour is

selected through a scheduling process. Jung et al., 2016 later suggested applying hybrid-

simulated annealing (HSA) to dynamically assign passenger requests to shared taxis. In

addition, it investigates what type of objective functions and constraints could be employed

to improve the system and prevent excessive passenger detours. Braekers and Kovacs, 2016

proposed di�erent formulations for the DARP with driver consistency (DC-DARP). For

solving this problem, the authors developed a large neighborhood search algorithm that

�nds near-optimal solutions in short computation times. Masmoudi et al., 2017 propose

three metaheuristics for solving the Heterogeneous Dial-a-Ride problem (HDARP). These

are: an improved ALNS-based method, Hybrid Bees Algorithm with Simulated Annealing

(BA-SA), and with Deterministic Annealing (BA-DA). More recently, Masoud et al., 2017

proposed an exact and real-time ride-matching algorithm, and the approach maximizes the

number of served riders while accounting for their travel preferences. The system also aims

to minimize the number of transfers and waiting times for riders, and make their shared

trips more comfortable. As ridesharing participants might not accept the matches proposed

by the service provider on-the-�y, it becomes important to analyze how stable the generated

matches are. For this purpose, Wang et al., 2018 studies the stability of rideshare matches

by providing several mathematical programming methods to generate near-stable matches

in real-time. Their results suggested that taking stability considerations into account comes

with only a small additional cost to the system-wide performance in terms of traveled-

distance savings.

To conclude, the development of new methods and algorithms for providing good-quality

solutions in short times is at the heart of the real-time ridesharing concept, which is why

we found rising interest from the OR research community to address the optimization issues

in real-time ridesharing systems. In many ridesharing systems, like in major metropolitan

areas, thousands of drivers and riders might be traveling between thousands of di�erent

locations at the same time, thus creating a need for fast optimization approaches that

can match their di�erent trips quickly. Most recent studies have focused on developing
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heuristic approaches that can solve large-scale ridesharing problems in real-time (see Table

2.2) and the door is open for introducing new heuristic techniques. In what follows, we

identify possible directions for future research. First, (i) , as few papers have considered

synchronization aspects in such real-time systems (see Table 2.2), more research should

study these aspects and introduce them in future ridesharing systems. An example would

be to allow �exible driver-to-vehicle assignments and multi-depot settings which require

drivers and vehicles to be synchronized. Second,(ii) , very few papers have considered

cost restrictions when matching travelers in share rides (cost constraints). An interesting

avenue for research would be to focus more on individual traveler bene�ts from ridesharing

beside the system-wide cost considerations. Third,(iii) , decomposition techniques could be

integrated into algorithms for solving multi-objective problems to consider more quality-

related objective functions. This is because most of the reviewed papers have considered a

single operational objective with a minimum service quality level due to complexity aspects

(see Table 2.2). Finally, (iv) for exact approaches, we see three possible techniques to

enhance their performance on responding to real-time system needs. These are: developing

preprocessing techniques that can decrease the enumeration e�ort, decomposing the problem

based on geographic partitioning or time intervals to make the size of the problem to be

solved at each time smaller, and developing faster algorithms for solving the subproblem

in a decomposition-based approach (e.g. branch-and-price, branch-and-cut, and so on)

where most of the computational e�ort is spent on solving the subproblems. That said,

ridesharing systems that can handle requests dynamically are clearly gaining the upper

hand. As new innovations and transport technologies are introduced, we need more research

into responding to traveler needs in future real-time ridesharing systems.

2.3.3 Ridesharing with autonomous vehicles

Autonomous vehicles (AVs), also dubbed driverless, automated or self-driving, are an

emerging technology expected to bring fundamental shifts in people transportation. AVs

are expected to provide a sustainable solution that can enhance road safety levels and tra�c

�ows, reduce fuel consumption, and thus improve passenger mobility in general (Katrakazas

et al., 2015). The potential deployment of autonomous vehicles in tandem with the increas-

ing need for shared mobility services has attracted the attention of the operations research

community, especially now that many large mobility providers (Tesla, Ford, Lyft and others)

have announced plans to deploy new autonomous mobility services (Sparrow and Howard,

2017). Furthermore, recent studies on di�erent cities have concluded that if AVs are shared,

then the number of vehicles needed to provide service to all travelers will signi�cantly de-

crease (Levin et al., 2016). Despite their potential bene�ts, shared autonomous vehicles also

come with security concerns. In other words, if autonomous vehicles do not prove safer than

human-driven vehicles, they might not be legally viable for widespread use (Hevelke and

Nida-Rümelin, 2015). In a study assessing public interest in such new technology, Daziano
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Reference Problem Method Obj. Constraints
RC TC CC OC SC

Char.

Baldacci et al., 2004 Carpooling E D,P X X X X M
Wol�er Calvo et al., 2004 Carpooling H T X X X M
Xiang et al., 2006 DARP H C X X X M
Cordeau and Laporte, 2007 DARP E,H D X X X M
Jain and V. Hentenryck,
2011

DARP H D X X X M

Heilporn et al., 2011 DARP E C X X X M
Garaix et al., 2011 DARP E O X X X X M
Herbawi and Weber, 2012 D. Rideshare H D,T,P X X X X M
Berbeglia et al., 2012 DARP H P X X X M
Kaan and Olinick, 2013 Vanpooling H C X X X X M
Parragh and Schmid, 2013 DARP E,H C X X X M
Huang et al., 2013 D. Rideshare E,H C X X S
Kirchler and Wol�er Calvo,
2013

DARP H C,T,N X X X X M

Masson et al., 2014 DARP H D X X X X M
Lehuédé et al., 2014 DARP H T,N X X X X M
Hosni et al., 2014 Shared-taxi H C X X X X M
Atahran et al., 2014 DARP H V X X X M
Liu et al., 2014 DARP E T X X X M
Stiglic et al., 2015 P. Rideshare E P,D X X X M
Lee and Savelsbergh, 2015 D. Rideshare H C X X X S
Santos and Xavier, 2015 D. Rideshare H P X X X M
Parragh et al., 2015 DARP E,H C X X X M
Ma et al., 2015 Shared-taxi H D X X X X M
Ritzinger et al., 2016 DARP H T X X X M
Jung et al., 2016 Shared-taxi H T,C X X X M
Masmoudi et al., 2016 DARP H C X X X M
Braekers and Kovacs, 2016 DARP E,H C X X X M
Masmoudi et al., 2017 DARP H C X X X M
Masoud et al., 2017 D. Rideshare E P X X X X M
Pimenta et al., 2017 DARP H R X X X M
Alonso-Mora et al., 2017 D. Rideshare E C X X X M
Stiglic et al., 2018 P. Rideshare E P,D X X X X M
Kalczynski and Miklas-
Kalczynska, 2018

Carpooling H D X X X M

Wang et al., 2018 D. Rideshare H D X X X S
Method: E: Exact approach, H : Heuristic approach.
Objectives: D : Min. Travel Distance, T : Min. Travel Time, P: Max. Number of
Participants, C: Min. Operational Cost, V : Min Vehicle Emissions, R : Max. System
Reliability, O: Max. Occupancy Rate, N : Min. Number of Used Vehicles.
Characteristic: S: Single rider per trip, M : Multiple rider per trip.

Table 2.2: Shared mobility - Ridesharing systems
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et al., 2016 derived estimates of how much consumers are willing to pay to let vehicles

drive for them. Their results show that modeling �exible user preferences is an important

determinant of the amount they are willing to pay for automation. Krueger et al., 2016

showed that other service attributes, such as travel cost, travel time and rider waiting time,

might be critical factors for uptake of shared autonomous vehicles (for related studies, see

Bansal and Kockelman, 2016,Yap et al., 2016, Bansal et al., 2016, Zmud and Sener, 2017).

Another concern is the potential increase in vehicle miles traveled due to repositioning trips

performed by shared autonomous vehicles in order to reach new travelers.

Two main AV ownership models are being considered for future transportation systems:

AVs as a public service, or privately-owned AVs. In the case of AVs as a public service, we

consider a �eet of such vehicles at speci�c locations (depots). AVs are invoked from their

stations to satisfy mobility demands in an urban area such that a single AV can serve multiple

demands before going back to a depot. Privately owned AVs cannot just bring their owners

from their homes to their work locations in the morning and bring them back in the evening

while providing ridesharing opportunities to other users, but they can also serve other

users when their owners do not need them (e.g. while they are at work). Although some

companies (Tesla and Ford) have stated plans to sell AVs to consumers, many transportation

companies have either explicitly stated or implicitly implies that they initially plan to use

AVs to provide public transportation services rather than selling individual AVs to private

consumers for personal use (Hyland and Mahmassani, 2017). Given this potential shift from

a society that is heavily reliant on privately-owned vehicles to one in which transportation

services are provided through �eets of vehicles operated by private companies, signi�cant

research is needed to plan such new systems and maximize their e�ciency.

That said, there is a surge of interest in developing new methods for operating au-

tonomous vehicles. Such methods consist of �nding a path between di�erent locations

and determining the safest and most feasible itinerary. Hyland and Mahmassani, 2017 in-

troduced a taxonomy for classifying vehicle �eet management problems to inform future

research on autonomous vehicle �eets. Their paper reviewed the existing categories to clas-

sify scheduling and routing problems, then re�ne some of them as they relate to the AV

�eet problem, and proposed novel taxonomic categories for classifying AV �eet manage-

ment problems. Kümmel et al., 2017 proposed a framework for AVs based on the model of

a family (where the father is provider of physical services, the mother is strategic manager,

and the children are individual AVs). In this decentralized model, vehicles are allowed to

inter-negotiate while the �eet manager can set �eet strategies and pre-allocate vehicles to

locations where increasing demand is expected. In another framework for modeling shared

AVs, Levin et al., 2016 proposed a heuristic for dynamically constructing shared rides using

AVs. The proposed approach consists of a dispatcher that checks whether there is any AV

that is already located or en route to where a travel demand has appeared and then assigns

the AV to carry the longest-waiting traveler. Furthermore, other travelers are allowed to
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join the shared trip if they are traveling to the same or close-enough destination, although

priority remains with the travelers already in the vehicle. Alonso-Mora et al., 2017 proposed

a mathematical model for a large-scale real-time ridesharing system that dynamically �nds

optimal routes for vehicles serving online requests while taking into account their actual

locations. Their algorithm, which applies to �eets of AVs, uses constrained optimization

to improve an initial greedy assignment and return good quality-solutions that converge to

the optimal assignment over time. In addition, Pimenta et al., 2017 considered a dial-a-ride

system in which a set of small AVs operates between di�erent sections in a closed industrial

site. For routing decisions, the paper proposes a heuristic approach based on GRASP and

an insertion mechanism. Another study, by Ma et al., 2017, introduced a linear program-

ming model for an AV sharing and reservation (AVSR) system in which travelers book AVs

in advance and the system arranges their routes and schedules. Chen et al., 2017 studied

potential use of AVs and presented a mathematical framework for designing AV zones in a

general network. The paper also provides a numerical study to demonstrate the performance

of the proposed model.

To conclude, there has been a surge in research on AVs in domains from computer science

to robotics and engineering, but far less research into how to plan and operate AV services.

We believe there are two main reasons for this gap. First, most of scienti�c and technological

advances have been made by AV manufacturers and service providers who tend to keep

their methods and techniques a commercial secret. Second, many studies have suggested

that the same methods and algorithms that operate conventional vehicles will continue to

apply to AVs, and so a switch from conventional vehicles to AVs does not necessarily entail

any real change in the way they operate in a transportation system. From a modeling

perspective, this statement holds for many cases. However, there are some variations in

which AV-based systems need to be considered di�erently. For example, privately-owned

AVs might be allowed to operate while their owners do not need them, and they might

be able to use dedicated roads which could reduce their tra�c-related issues compared to

conventional vehicles. In addition, AVs are expected to be electric, and so planning their

charging and maintenance operations might require di�erent approaches, especially as they

have a di�erent service range and they need time to recharge, which could be time-consuming

at some intermediate locations (Hiermann et al., 2019). Further research should target(i)

better understanding how AVs can be operated, owned and shared in future transportation

systems, (ii) identifying their impacts on people transportation and how AVs respond to

passenger mobility needs,(iii) analyzing how shared AVs perform in di�erent scenarios

and real-life situations, including varying transportation demand and network topologies,

(iv) identifying the new features introduced by AVs and studying how these features could

a�ect existing ridesharing models, and (v) introducing e�cient solution approaches that

can operate large-scale AV systems and factor in the critical issue of their recharging and

maintenance operations.
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2.3.4 Case studies

This section presents a set of case studies focused on analyzing di�erent ridesharing sys-

tems and their performance and potential impacts. We consider case studies on systems that

operate conventional vehicles or AVs, and classify them according to their research objectives

and the approaches used. Research objectives have focused on studying either the perfor-

mances, e�ciencies and de�ciencies of the ridesharing systems, or their impact on peoples'

lives and future transport infrastructure. On the other hand, we also observe that the stud-

ies considered have used either optimization-based, simulation-based or data-analysis-based

approaches to achieve the intended research objectives. We discuss the di�erent studies and

their outcomes, and provide a table classifying them into di�erent categories.

There have been a number of recent case studies conducted to test the viability of

ridesharing systems and evaluate their proposed solution approaches. Agatz et al., 2011

led a study based on 2008 travel demand data from metropolitan Atlanta, and the results

suggested that advanced optimization approaches have the potential to increase the partic-

ipant matching rates and system-wide travel cost savings obtained in dynamic ridesharing

systems. Ma and Zhang, 2017 studied tra�c �ow patterns in a single bottleneck corridor

using a dynamic ridesharing mode and dynamic parking charges, and the results showed

that system performance over the traditional morning commute may not be signi�cantly im-

proved when ridesharing fees and parking charges are �xed. Nonetheless, dynamic parking

charges with appropriately set ridesharing fees can improve system performance in terms

of vehicle miles and hours traveled and in terms of allied travel costs. Jiang et al., 2017

proposed a large-scale nationwide ridesharing system called CountryRoads which was de-

ployed in three di�erent years to assess system performance improvement through a case

study of the `Chunyun' spring festival travel season in China. Results indicate that the pro-

posed system was able to attract more users, achieve a higher success matching rate, and

thus contribute to an increasingly successful ridesharing experience. Ferreira and D'Orey,

2015 proposed a dynamic and distributed taxi-sharing system that was evaluated using a

simulation modeling approach based on realistic taxi trips in Porto (Portugal). Simulation

results showed that the system has the potential to reduce taxi fares, operation costs and

total travel distance (up to 9%). Furthermore, Maciejewski et al., 2016 conducted a study

to evaluate a rule-based dispatching algorithm that manages a �eet of shared taxis based on

data collected by local taxi services in Berlin and Barcelona. Results indicated that despite

its simplicity and e�ciency, rule-based dispatching su�ers from a limited planning horizon.

Linares et al., 2017 studied a dynamic ridesharing system architecture that considers the

Metropolitan area of Barcelona as a case study, and. results showed that this transportation

mode has the potential to reduce tra�c �ow and pollution levels in big cities while o�ering

travelers shorter travel times.

Using data collected by surveying more than 500 respondents in Turin and Rome,
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Gargiulo et al., 2015 tested and evaluate a dynamic ridesharing service called VirtualBus.

They found that users' main concerns were privacy, trust, and reliability of planning. More

recently, Wang et al., 2017 investigated the cost and bene�ts of ridesharing with friends

through a study on travel demands in the Yarra Ranges (Australia). Their study revealed

that limiting ridesharing to friends while rejecting strangers might reduce ride choices and

increase detour distances but it does not generate signi�cantly higher costs. Furthermore,

prioritizing friends can substantially increase matching rate. In an e�ort to understand how

urban parameters a�ect the fraction of individual trips that can be shared (or 'shareabil-

ity'), Tachet et al., 2017 conducted a study based on millions of taxi trip records in New

York City, San Francisco, Singapore and Vienna with the aim of computing the shareability

curves for each city.

Other case studies have focused on studying ridesharing system impacts on existing

transportation systems. Martinez, 2015 used a simulation-based procedure to evaluate the

impacts of introducing a shared-taxi system in Lisbon. Barann et al., 2017 conducted an-

other study using more than 5 million taxi trips in New York City and found that ridesharing

could potentially save over 2 million kilometers of travel distance per week, which would

signi�cantly decreaseCO2 emissions. Similarly, Yu et al., 2017 evaluated the direct environ-

mental bene�ts of ridesharing in Beijing, and found that it enabled energy savings, distance

savings, and lowerCO2 emissions. Stiglic et al., 2016b studied the impact of driver and rider

�exibility in an enhanced dynamic ridesharing experience and found that suggested driver

and rider �exibility on departure/arrival times was important to ridesharing system success,

but that driver �exibility in terms of accepting detours was even more important. Thus,

the bene�ts and positive impacts of ridesharing are linearly correlated to the �exibility of

ridesharing participants. Table 2.3 gives a roll-up summary of the case studies presented.

Method
Scope

Assessing system performance Studying impacts

Optimization-based
Agatz et al., 2011
Jiang et al., 2017

Stiglic et al., 2016b
Lee and Savelsbergh, 2015

Simulation-based

Agatz et al., 2011
Maciejewski et al., 2016

Ferreira and D'Orey, 2015
Linares et al., 2017

Ma and Zhang, 2017

Martinez, 2015

Data-analysis-based

Tachet et al., 2017
Liu and Li, 2017

Sanchez et al., 2016
Gargiulo et al., 2015

Wang et al., 2017

Barann et al., 2017
Yu et al., 2017

Table 2.3: Case studies - Ridesharing systems

Case studies on ridesharing systems (see Table 2.3) have mainly focused on assessing their
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performance and giving cues and clues for further research to increase their e�ciency and

maximize their bene�ts. Studies have since been conducted using optimization, simulation

or data-analysis approaches, but there have been fewer recent case studies analyzing the

impacts of ridesharing on transportation systems, possibly because ridesharing is not a new

concept, and so the bulk of research is focused either on improving existing ridesharing

systems or operating new ones rather than studying their potential impacts, which are

assumed to be net-positive.

We now have two decades of extensive research into ridesharing systems, but little re-

search on autonomous mobility services for future transportation systems. To �ll this gap, a

number of recent studies have focused on new driverless services and their potential impacts

on urban mobility. Gruel and Stanford, 2016 identi�ed the long-term e�ects of introducing

driverless cars and explored the conditions that would make them bene�cial or damaging

in transportation systems. The study also investigated how automation could increase the

attractiveness of traveling by car. Smolnicki and Soªtys, 2016 studied di�erent autonomous

mobility solutions and discussed their impacts on metropolitan spatial structures. Talebpour

and Mahmassani, 2016 studied the in�uence of AVs on tra�c �ow stability and throughput

and found that AVs can improve stability and be more e�ective in preventing shockwave

formation and propagation. Meyer et al., 2017 simulated the in�uence of AVs on the ac-

cessibility of Swiss municipalities, and concluded that AVs could dramatically increase ac-

cessibility rates and even replace public transport outside dense urban areas. Correia and

Arem, 2016 explored the possibility of replacing individually-owned conventional vehicles

with autonomous ones and what it would mean for tra�c �ow and parking demand in a

city. Considering the city of Delft in the Netherlands as case setting, they showed that

despite increased tra�c congestion due to empty vehicle relocation trips, vehicle automa-

tion could lead to more trip requests satis�ed while reducing travel costs. Milakis et al.,

2017 investigated future development opportunities for AVs in the Netherlands and gave

estimates for the potential impacts on transport planning, tra�c management and travel

behavior over time horizons up to 2030 and 2050. Exploring the impact of shared AVs on

urban parking demand, Zhang et al., 2015b suggested that for AV adopter-users, up to 90%

of parking demand might be eliminated (also see Le Vine et al., 2015). Harper et al., 2016

studied the in�uence of travel with AVs for the elderly and people with travel-restrictive

medical conditions and found a 14% increase in annual vehicle miles traveled for the United

States population 19 and older. Furthermore, Aria et al., 2016 investigated AV e�ects on

driver behavior and tra�c performance, and the simulation results revealed that the pos-

itive e�ects of AV on roads are especially highlighted when the road network is crowded.

Diels and Bos, 2016 discussed a potential increase of motion sickness issues in AVs. Wadud,

2017 focused on identifying which vehicle sectors would likely be the earliest adopters of full

automation in the UK, and their �ndings suggests that households with the highest income

will get higher gains from automations as they travel higher distances.
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Method
Scope

Assessing system performance Studying impacts

Optimization-based Ma et al., 2017 Correia and Arem, 2016

Simulation-based

Bischo� and Maciejewski, 2016a
Fagnant and Kockelman, 2016

Chen et al., 2016b
Bischo� and Maciejewski, 2016b

Chen and Kockelman, 2016
Levin and Boyles, 2015

Scheltes and de Almeida Correia, 2017
Lokhandwala and Cai, 2018

Gruel and Stanford, 2016
Zhang et al., 2015b

Talebpour and Mahmassani, 2016
Fagnant and Kockelman, 2014

Milakis et al., 2017
Harper et al., 2016
Meyer et al., 2017

Diels and Bos, 2016
Aria et al., 2016

Smolnicki and Soªtys, 2016

Data-analysis-based -
Alessandrini et al., 2015

Fagnant and Kockelman, 2015
Wadud, 2017

Table 2.4: Case studies - Shared autonomous mobility

Studies on the deployment of AVs in shared mobility systems include Chen et al., 2016a

who ran a simulation study on the city of Austin, Texas. The results suggested that AVs

o�er a viable alternative to private vehicle travel (also see Fagnant and Kockelman, 2014;

Fagnant and Kockelman, 2016; Chen et al., 2016b). The study revealed that each shared

AV can replace 5�9 privately owned vehicles while serving 96�98% of trip requests. Bischo�

and Maciejewski, 2016c led a similar study on the city of Berlin, Germany, simulating the

replacement of hundreds of thousands of vehicles all around the city by a �eet of autonomous

taxis. Results suggested that the car �eet in Berlin can be replaced by a �eet of 100,000

autonomous taxis while maintaining high service quality for customers (also see Bischo�

and Maciejewski, 2016b). Another study, by Scheltes and de Almeida Correia, 2017, sim-

ulated a system in which the last-mile segment of train trips was carried out by a �eet of

fully autonomous vehicles. Results obtained from applying the simulation model on Delft,

Netherlands, argue that such a system is able to compete with walking mode but needs

to improve its performance to be competitive with cycling. Through a case study using

taxicab trip data from New York City, Ma and Zhang, 2017 concluded that an AV sharing

and reservation system can signi�cantly increase vehicle mileage rates while reducing their

ownership rates. Another case study by Lokhandwala and Cai, 2018 suggested that replac-

ing traditional taxis by shared AVs in New York City could potentially reduce the �eet size

by 59% while maintaining the sale service quality. The study concluded that sharing AVs

can increase occupancy rate (from 1.2 to 3) and decrease system-wide vehicle distance (up

to 55%) (case studies are classi�ed in Table 2.4).

Unlike for ridesharing systems, case studies on shared autonomous mobility systems

have mainly focused on studying their expected outcomes and e�ects on people mobility
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and on existing transportation systems. This may be due to the fact that the introduction

of autonomous mobility services in transportation systems is a new trend in transportation

research, and so its potential impacts need to be studied and carefully analyzed before it

can be widely adopted. However, most of studies reviewed have used simulation-based ap-

proaches, which is evidence that these new systems are still in an early stage of research.

As a result, more research studies will be directed towards studying their operational per-

formance as soon as they are widely deployed.

2.4 People and goods sharing rides

This section focuses on introducing shared mobility systems that combine both passenger

and freight transportation. First, we set the context by reviewing the most recent concepts

and trends in city logistics (Section 2.4.1). Then, the opportunities and challenges that can

result from combining people and freight �ows are discussed and their modeling and solution

approaches are investigated (Section 2.4.2). Table 2.5 summarizes the papers reviewed with

their di�erent characteristics and methods used.

2.4.1 Setting the context: planning city logistics

The demand for freight transportation basically results from the need to transport goods

from producers to consumers who are geographically apart. In general, this transportation

chain consists of a pickup process (pre-haul or �rst-mile), a transportation process (long

haul), and a delivery process (end-haul or last-mile) (Steadiesei� et al., 2014). While freight

transportation can take place in widespread geographical areas, city logistics considers the

transportation of goods and their potential e�ects on tra�c �ow and congestion in urban

areas (Savelsbergh and Van Woensel, 2016). However, both freight transportation and city

logistics aim to provide customers with the products they need at the right time and place

and at low cost.

Increasing global population, and thus increasing demand for goods, together with digital

revolution and technological advances are creating both opportunities and challenges for

planning and improving the sustainability of urban freight systems. Given their fundamental

role in providing for people's daily needs, e�cient city logistics have the potential to improve

quality of life for more and more people. Recent studies in this direction have focused on

anticipating the future opportunities and challenges facing city logistics. In their recent

review on city logistics, Savelsbergh and Van Woensel, 2016 identi�ed the trends driving

changes in city logistics: growing urban populations, increasing importance of e-commerce

and swift supply chains, and the rise of the sharing economy and sustainability aspects. They

claimed that sharing assets and capacities can enable higher capacity utilization, and thus

reduce �eet sizes and numbers of freight movements. Besides studying the impacts of the

information revolution on city logistics, Taniguchi et al., 2016 also described applications of



2.4. People and goods sharing rides 37

big data and decision-support systems that can be used to enhance the design and evaluation

of city logistics schemes, and gave illustrations of the need for new innovations that can

help reduce the impact of freight in urban areas. One of the most common scenarios for

reducing the number of freight vehicles going into cities is to consolidate goods volume at

urban distribution centers, called consolidated distribution centers (CDC), which are usually

located a city's borders (Allen et al., 2012). In this scenario, cargo is delivered to a CDC

by di�erent supply chain operators, consolidated at the center, and then shipped to �nal

customers using clean and highly utilized vehicles (Alessandrini et al., 2015; Figure 2.2).

The main advantage of using CDCs is that shipments can be grouped by destination into

packages where every package will be transported using a vehicle. This way, the number of

vehicle trips and the need for parking bays can be reduced, this a�ording a more e�cient

delivery service.

Figure 2.2: Consolidated Distribution Center (CDC) with vehicle deliveries

In order to make it e�cient, these vehicles have to be small, agile, have large enough

loading capacity and comply with the environmental requirements governing energy con-

sumption, CO2 emissions, and noise. The problem of planning and optimizing itineraries

of such a �eet, in which vehicles operate round trips, is called the vehicle routing problem

(VRP) (see Cattaruzza et al., 2015 for a review of VRPs for city logistics and Koç and

Laporte, 2018 for a review of VRPs with backhauls). Solving a VRP is about de�ning

routes that respect a number of constraints, including pickup and delivery locations, time

windows, vehicle capacity, narrow streets with limited accessibility, and other constraints.

For example, Simoni et al., 2018 proposed a heuristic approach for routing vehicles carrying

parcels from CDCs to their �nal destinations within an urban area, and identi�ed the most

e�cient and environment-friendly strategies and regulations for this delivery.

Another promising opportunity in city logistics is the deployment of autonomous mobil-

ity services. With their potential application in future freight transportation systems, AVs

might be used for re�lling shops from remote warehouses, performing last-mile deliveries to
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clients, and collecting and transporting waste and products (CityMobil (2011);Alessandrini

et al., 2015). However, assessing the bene�ts of AVs and their e�cient employment and

impacts on city logistics is an important topic in today's research, and still requires further

investigation. Many freight transportation companies have started using unmanned ground

vehicles and unmanned aerial vehicles (drones) for small parcel deliveries (see Otto et al.,

2018 for a recent review). The idea is that these relatively small unmanned vehicles will

depart from warehouses or delivery trucks carrying small deliveries for individual customers.

For example, Murray and Chu, 2015 studied a problem in which delivery trucks carrying

drones depart from and return to a depot. In their settings, customers are served either by

delivery trucks or by drones that operate in coordination with the delivery trucks. Depend-

ing on its �ight endurance, a drone has to deliver the customer's order and return to either

the truck or a depot, the aim being to minimize the time required to deliver all customer

orders. Such a system is thought to provide a more e�cient delivery service at lower cost

and with reduced environmental impacts.

Furthermore, another important innovation is the potential for delivering customer or-

ders to more convenient locations than the home (e.g. direct delivery to a customer's car

trunk (Savelsbergh and Van Woensel, 2016). Thanks to new technologies, a one-time access

to customer a car trunk can be granted during a speci�c time-period and revoked as soon

as the delivery is completed. In their recent paper, Reyes et al., 2017 modeled this last-mile

trunk delivery as a VRP with roaming delivery locations (VRPRDL). In their approach,

the delivery locations are �rst optimized for a �xed customer delivery sequence in order to

generate an initial route. Then, the initial route is improved by switching a predecessor's

or successor's delivery location once a customer is inserted or deleted. Results reveal that

trunk delivery could potentially cut distance traveled in tests with realistic instances.

In such systems, some locations may change or move as the delivery process starts (like

the location of a delivery truck a drone is to return to in Murray and Chu, 2015, and the

roaming delivery locations in Reyes et al., 2017). Although this feature might lead to more

�exible deliveries, it requires more complex models and sophisticated heuristic approaches,

due to the layer of complexity added by the synchronization constraints required to adapt

di�erent departure and arrival times to these roaming locations. Reyes et al., 2017, for

example, proposed a neighborhood search heuristic with a set of insertion and deletion op-

erators, and considered the roaming delivery locations when building routes by enhancing

the classical VRP insertion and deletion operators by including customer shifts to di�erent

delivery locations and consequently di�erent time-windows within them. Thus, at each a

time a new route is built, a set of alternative routes, where precisely one customer delivery

location is di�erent to the original route, are generated. However, due to the added complex-

ity, generating these alternative routes requires additional computational e�ort. Building on

this review of the latest trends in city logistics, we focus in the following subsection on the

promising concept of integrating people and freight �ows for future transportation systems
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development.

2.4.2 Combining people and freight transportation

Since both people and goods move in the urban environment, an e�cient and e�ective

transport network that ensures smooth sharing of passengers and freights is an essential

element in city life (Cochrane et al., 2017). There is ample literature on the problem of

passengers or goods transport using dedicated networks, but far less research on joint use of

transport resources between passengers and goods �ows. However, combined transportation

systems are starting to garner increasing attention.

A combined transportation system aims to use the underused assets in public mass-

transport modes such as urban rail, buses or in people private-car trips to bring loads to

a central station or take loads from that station to distribute it to the local neighborhood

(Crainic and Montreuil, 2016). In such a system, we have a set of passengers and parcels,

each having an origin location from where it should be picked up, and a destination location

to where it should be carried and dropped o�. We also have a transportation system, having

both private and public transportation modes, which is able to transport both passengers

and parcels simultaneously. Thus, the aim is to satisfy the demand of both passengers and

parcels while minimizing costs and distances traveled, and therefore reduce congestion and

pollution levels in urban areas. Of course, the transportation of goods must not disturb

passenger trips. In other words, a passenger would accept only small deviations and short

extra times for transporting parcels in the same trip. Thus, trip times that signi�cantly

exceed a passenger's usual route times in order to load and deliver parcels would likely be

unacceptable. Although most problems dealing with passengers and goods transportation

are NP-hard, so very di�cult to solve, many studies have attempted to tackle them with

di�erent models and solution approaches. These models fall into two broad categories:

single-tiered and two-tiered models (see Figure 2.3). A single-tiered model considers a set

of vehicles each having speci�c capacity. These vehicles are able to transport passengers

and goods to their destinations while accommodating certain like passenger and parcel time

windows and vehicle capacity and service time (see Li et al., 2014). In a two-tiered model,

combined transport of passengers and goods is achieved via the contribution of a �rst-tier,

generally composed of a public transport line with a set of transfer points or stations, and

a second tier, composed of a range of vehicles being able to transport both passengers and

goods (or only goods depending on the model studied) from transfer points to their �nal

destinations (see Trentini et al., 2015). Strict synchronization between the two tiers is

therefore necessary. For planning and operating such combined systems, di�erent models

and solution approaches have recently been proposed, most of which aim to minimize their

operational costs, or put di�erently, maximize their bene�ts. However, some studies have

considered other objectives like minimizing the number of vehicles required for making
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Figure 2.3: Single-tiered and two-tiered transportation systems

deliveries, minimizing total distance traveled, or minimizing the wait time for deliveries.

Below we take a deeper look at the existing models in the literature.

Li et al., 2014 extended the classical DARP formulation by introducing a new class of

models called the share-a-ride problem (SARP). The SARP refers to the fact that people

and parcels are transported using a set of taxis driving around in a city. The proposed

model is therefore single-tiered. In this problem, passenger requests are served by a �eet

of taxis, and some parcels are delivered during these taxi trips as long as delivery does not

a�ect the passengers signi�cantly. Passengers thus have priority over parcels. Furthermore,

the SARP assumes that a taxi cannot serve two passengers simultaneously and that a parcel

cannot be served by more than one taxi, i.e. it is either served by one taxi or not served

at all. Another basic assumption in SARP is that parcel transportation requests are known

beforehand whereas passenger requests arrive dynamically. In addition to the SARP, the

authors propose a second model, which has similar settings but with the assumption that

the assignments of passengers to taxis and their delivery sequences are also given. In this

case, dubbed the freight insertion problem (FIP), the problem becomes static (see Figure

2.4). Solving the FIP is about �nding a way to insert parcel requests without signi�cantly

extending passenger travel times. Since routing is given, the FIP has less complexity than

the SARP, and can thus be solved relatively fast, at least fast enough for solving real-

life instances. To solve this problem, authors present MILP formulations for both SARP

and FIP and conduct a numerical study of both static and dynamic scenarios. Given the

complexity of the problem, the authors proposed an ALNS to solve it (Li et al., 2016a). The

proposed approach was able to return solutions that are within 2.24% of the best results

compared to a mixed integer programming (MIP) solver and DARP test benchmarks from

the literature. Beirigo et al., 2018 introduced another SARP formulation where a �eet of
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Figure 2.4: An illustrative example of the SARP and the FIP (Li et al.,
2014)

SAVs is used to serve both passenger and freight requests. The paper extends the original

SARP formulation by allowing vehicles (in this case SAVs) to carry one or more passengers

and di�erent-sized parcels in the same trip. To solve the extended problem, the authors

proposed a MILP formulation and analyzed it on a wide set of transportation scenarios.

The SARP study was further extended by considering two stochastic variants; one with

stochastic travel times and another with stochastic delivery locations (Li et al., 2016b). In

both cases, a two-stage stochastic programming model with recourse is used with the ALNS

heuristic and a scenario generator. Results obtained from testing both stochastic models

demonstrate that even though the convergence rate is faster, the SARP is less sensitive to

the stochastic delivery locations than the stochastic travel times. The study thus concluded

that considering stochastic information when modeling and planning real-life taxi-sharing

systems can dramatically improve their performance over deterministic solutions.

Arslan et al., 2016 proposed another single-tiered model in a study on the concept of

crowd-sourcing delivery, which aims to make parcel deliveries using excess capacity on trips

that already take place (see Mladenow et al., 2015; Goetting and Handover, 2016 for recent

reviews of the latest crowd-sourced delivery models). For this purpose, the paper considered

a decentralized model that automatically matches parcel delivery requests to potential ad-

hoc drivers. Parcel deliveries are made by self-employed drivers who are willing to earn extra

money on their way to home or work. The drivers indicate their origin and destination

locations, their vehicle capacity, and a time window. Likewise, parcel delivery requests

also have time windows that state when they should be picked up and delivered. Thus, a

delivery is possible if there is a feasible match between driver's time window and parcel's
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time window. A set of backup vehicles is operated to cover parcel requests that cannot be

delivered by ad-hoc drivers. Furthermore, the paper presents an event-based rolling horizon

framework that dynamically matches tasks to drivers at each time a new delivery request

or driver arrives throughout the day, as well as exact and heuristic recursive algorithms

for solving the routing subproblem. Results show that using ad-hoc drivers can potentially

reduce last-mile delivery costs as well as system-wide vehicle mileage. Archetti et al., 2016

considered a similar problem to Arslan et al., 2016 but in their setting, a service provider

uses not only a �eet of delivery vehicles and dedicated drivers but also a set of occasional

drivers who are willing to make a single delivery using their own vehicle. Making these

deliveries should not signi�cantly extend the trip time for the occasional driver, who can

then receive a small cost compensation for each delivery they perform.. To model the

problem, Archetti et al., 2016 introduced a new variant of the classical capacitated VRP

called the 'vehicle routing problem with occasional drivers'. The paper also presents a

heuristic approach in which variable neighborhood and tabu search strategies are combined

to produce good quality solutions. Wang et al., 2016 presented a crowd-tasking model

in which last-mile deliveries are performed by a crowd of citizen workers, and proposed

to formulate the model as a network min-cost �ow problem and use an iterative pruning

technique to make the network manageably small. Dayarian and Savelsbergh, 2017 proposed

another crowd-sourced service in which customers can deliver some online orders. Potential

customers express an interest to participate in making deliveries on their way home, and thus

supplement a set of dedicated drivers performing the service, with vehicle routes generated

using a tabu search heuristic. A number of papers have considered transporting freight by

the same rail network as passengers (see Steadiesei� et al., 2014; Cochrane et al., 2017;

Ozturk and Patrick, 2017), but they are outside our scope as the models do not integrate

passengers and freight in the same trip (i.e. rail is used during passenger o�-hours).

Recent research has also focused on two-tiered models. Trentini et al., 2015 introduced a

combined system that uses the available capacity in a passenger bus line to transport parcels

(also see Trentini et al., 2013). In their problem settings, all incoming goods are stored in

CDCs, then loaded on buses operating through the bus line when there is spare capacity,

and �nally unloaded at speci�c bus stops and delivered to customers using a �eet of low-

emission city freighters. The proposed problem is modeled as a VRP with transfers, and a

mathematical formulation is given, along with an ALNS to solve it (see Masson et al., 2017,

for a similar system). Fatnassi et al., 2015 proposed another two-tiered shared passengers

and goods model with a �rst tier (train, bus or truck line) transporting passengers or goods

to connection points where a second tier, consisting of a set of small electric and AVs moving

on a speci�c guideway then transport them to their �nal destinations. The paper uses a

forward periodic-optimization approach to solve this dynamic problem.

Behiri et al., 2018 studied the freight-rail transport scheduling problem in which existing

urban rail is used for transporting freight. In their model, one rail line is considered. On
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this line, there are several stations where freight can be loaded and unloaded. Freights are

brought to these stations by truck at di�erent time windows in a day. To solve this problem,

the paper proposes two heuristic approaches: a dispatching rule-based heuristic and a single-

train decomposition-based heuristic. Similarly, Ghilas et al., 2016c considered a system in

which freight requests are delivered by a set of vehicles such that a part of the transportation

process is carried out on a scheduled public transport line. To model this two-tiered system,

the paper introduces the pickup and delivery problem with time windows and scheduled

lines (PDPTW-SL). In this problem, two options are considered for transporting freight:

direct and indirect shipments. In a direct shipment, a freight request is picked up at its

origin and delivered to its destination using one vehicle, i.e. the scheduled line is not used.

In an indirect shipment, a freight request is picked up by a vehicle, transferred to a nearby

transfer node, transported between two transfer nodes by a scheduled public transport line,

and �nally picked up by another vehicle and delivered to its �nal destination. Thus, solving

the problem is about de�ning routes and schedules for both freight requests and delivery

vehicles. In order to solve this problem, the authors proposed a branch-and-price algorithm

where the pricing problem is a variant of the elementary shortest path problem with resource

and precedence constraints (ESPPRPC). Due to the complexity of the problem, an ALNS-

based algorithm is also proposed (see Ghilas et al., 2016b). Moreover, a stochastic version

of the problem in which the demand quantity of each freight request is only revealed when

the vehicle arrives at its pickup location was considered (Ghilas et al., 2016a). To consider

this uncertainty, a scenario-based sample average approximation approach is introduced.

Another two-tiered crowd-sourced delivery system (Ka�e et al., 2017) suggested that a

set of cyclists and pedestrians, called crowd-sources, might be willing to deliver small-size

parcels from a delivery truck to customers living in the same neighborhood. A set of carrier

trucks transport parcels to intermediate transfer points (�rst-tier) and then potential crowd-

sources perform the last-mile delivery. To solve this problem, the paper proposes a tabu

search algorithm. Results show that crowd-sourcing the service can lead to lower operational

costs compared with a pure-truck delivery service.

This review on systems that combine people and freight transportation shows that the

topic is gaining increasing interest (see Table 2.5 for a summary). Models and algorithms for

both single-tiered and two-tiered systems have been explored. Although some papers have

introduced exact approaches for solving this type of problem, the bulk of the research has

focused on developing heuristic approaches. This is due to the complexity of such problems

which require fast optimization approaches to tackle them in short computation times. We

also �nd that most of the papers reviewed have focused on pro�tability. Nevertheless, other

objectives have also been considered, such as minimizing the number of vehicles needed to

operate the system and the distances covered. Thus, an useful direction for future research

would be to also address the environmental issues which have not yet been considered in
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Reference Problem Method Obj. Constraints
RC TC CC OC SC

Char.

Trentini et al., 2013 Comb. Del. H N,D X X X X T
Trentini et al., 2015 Comb. Del. H N,C X X X X T
Fatnassi et al., 2015 Comb. Del. H C X X X X T
Li et al., 2016a SARP H C X X X S
Li et al., 2016b Stoc. SARP H C X X X S
Arslan et al., 2016 Crowdsourcing E C X X X S
Archetti et al., 2016 Crowdsourcing H C X X X S
Ghilas et al., 2016c Comb. Del. E,H C X X X X T
Ghilas et al., 2016b Comb. Del. H C X X X X T
Ghilas et al., 2016a Comb. Del. H C X X X X T
Wang et al., 2016 Crowdsourcing H C X X X X S
Ka�e et al., 2017 Crowdsourcing H C X X X X T
Dayarian and Savelsbergh,
2017

Crowdsourcing H W X X X S

Masson et al., 2017 Comb. Del. H N,C X X X X T
Behiri et al., 2018 Comb. Del. H T X X X X T
Beirigo et al., 2018 SARP E C X X X X S
Problem: Comb. Del. : Combined Delivery, Stoc. SARP : Stochastic Share-a-Ride
Problem.
Method: E: Exact approach, H : Heuristic approach.
Objectives: D : Min. Travel Distance, T : Min. Waiting Time, N : Min. Number of
Vehicles, C: Min. Operational Cost, W : Max. Collected Weight.
Characterstic: S: Single-tiered, T : Two-tiered.

Table 2.5: Shared mobility - Combined people-and-freight systems

the literature. We would prone the following broad areas for future research:(i) devel-

oping e�cient solution algorithms (exact and heuristic) for combined people-and-freight

systems, (ii) extending the existing models by introducing multiple objectives related to

pro�t, operational costs, environmental impacts, etc., (iii) developing more �exible models

and e�cient algorithms that consider the di�erent sources of stochastic information (travel

times, tra�c jams, freight demands etc.), (iv) improving the dynamic (real-time) framework

of such systems by adding new techniques and strategies (leading to shorter service times,

strong synchronization between di�erent tiers in two-tiered models, etc.), (v) introducing

new public policies to regulate the potential integration of goods delivery in existing pub-

lic transport systems, (vi) focusing more on increasing passenger satisfaction and reducing

the potential inconvenience that might arise in such systems, and �nally(vii) studying the

potential deployment of automated services and their impacts on the future development of

such combined systems.
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2.4.3 Case studies

Given its potential bene�ts, the integration of passenger and freight transportation

streams has been assessed in a number of studies in the last three years. Most of these

studies have focused on analyzing the performance of such integrated systems and eval-

uating their operational gains compared to the existing transportation systems. A good

example can be found in Fatnassi et al., 2015 which considers a case study on the town of

Corby (UK). The results demonstrate potential bene�t of implementing a combined system

in terms of service time, energy consumed, noise and carbon emissions compared to classical

transportation systems. Ghilas et al., 2016a suggested these combined systems can bring up

to 16% savings on overall operational cost. Considering real taxi trips in the San-Francesco

area, Li et al., 2016a showed that a mixed-taxi service can outperform the other trans-

portation systems available in the local urban area, but also highlighted two key factors to

help maximize the gain obtained by such a service: analysis of the spatial characteristics

of requests before implementing the service, and availability of a traditional freight service

to ensure that all requests are delivered. Gonzalez-Feliu and Mercier, 2013 studied the po-

tential deployment of a combined people-freight approach in the city of Lyon (France) and

found that it was crucial to apply an accessibility analysis that shows the attractiveness of

di�erent urban zones before this combined system can take place. Thus, the di�culty for

households living at di�erent city zones to reach their retailers should be considered when

deploying the system. Wang et al., 2016 evaluated their crowd-tasking model using datasets

from bus and taxi services in Singapore, and their results demonstrate that crowd-sourcing

can be e�ciently used in large-scale problems with real-time deliveries where this kind of

service can be pro�table to logistic companies as well as crowd-workers. More recently,

Masson et al., 2017 led a case study based on a dataset derived from the city of La Rochelle

(France) and found that e�cient transshipment of freight from buses to city freighters is a

major concern in a mixed system, as ine�cient transshipment of freight between the two

tiers might delay deliveries and signi�cantly a�ect passenger trips. Although most case

studies are ultimately optimistic over the future of combining passenger and freight �ows,

some of the allied concerns and practical issues still need to be investigated. These issues

involve, among others,(i) security concerns,(ii) con�dentiality and data privacy (like using

only a barcode with limited personal information to identify parcels), (iii) the redesign of

parcels with di�erent sizes to �t in the shared transportation compartments, and (iv) un-

certainties during deliveries (e.g. freight order modi�cations and cancellations). We would

thus advocate more studies to evaluate these issues and study their impacts on the future

deployment of these integrated systems.
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2.5 Conclusions

This chapter reviewed di�erent variants of shared mobility systems along with their

modeling choices and solution approaches. The papers reviewed covered mobility systems

where people share their rides and mobility systems where people and goods are combined.

We presented a set of case studies either analyzing shared mobility system performances or

studying their potential impacts on people's lives and future transportation systems.

New shared mobility systems for both people and freight transportation have the poten-

tial to provide major societal, economic and environmental bene�ts. The development of

algorithms for planning and operating such systems is at the heart of the shared mobility

concept. This chapter highlighted a number of promising optimization opportunities and

challenges that arise when developing new systems to support shared mobility. Relevant

operations research models in this area have also been reviewed. Although ridesharing is not

a new concept, we have seen that the interest in enhancing dynamic ridesharing systems and

developing new systems for matching passengers on-the-�y continues to grow. More research

is now needed on systems that consider trip synchronization and traveler cost aspects, or

more generally the quality of the provided service. One of the latest big trends appears to

be research on deploying new autonomous mobility services. We now need more research

on how these new services can operate and how they can impact future transportation sys-

tems. As such, we propose to study a ridesharing system in which individually-owned and

on-demand autonomous vehicles are used for serving passengers where their trips are syn-

chronized using the concept of meeting points (as we will see in chapter 3). The aim is to

assess the sharing potential and planning aspects of these new autonomous mobility models

in a ridesharing context.

On the other hand, The potential integration of passenger and freight transportation

is another promising opportunity that is steadily gaining currency. As such, more stud-

ies on developing realistic models and e�cient algorithms that consider di�erent objectives

(including environmental issues) and di�erent sources of uncertainty are also needed, along

with new public policies to regulate this integration. That said, we propose to study a

system that integrates freight deliveries to a scheduled line for people transportation where

passenger demand is stochastic (chapter 4). The aim is to evaluate the expected bene�ts of

this integrated system as well as the impacts of stochastic passengers demand on such inte-

gration. We believe that these new innovations provide a rich vein of research opportunities,

and we anticipate that the review provided in this chapter, along with the systems studied

in the next chapters, could spur more contributions in this emerging area of transportation

science.
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Chapter 3

Synchronizing people transportation

�ows

As introduced in chapter 2, the impact of autonomous vehicles (AVs) on urban mobility

systems is an increasingly discussed topic in recent years. Two AV ownership models are

being considered for future transportation systems. These are: autonomous vehicles as

a public service or individual owning ownership. The �rst ownership model is based on

AVs operating within an on-demand (taxi) service while the second proposes private vehi-

cle ownership combined with o�ering the AV to other users when not used by its owner

and thereby partially �nancing the vehicle's acquisition cost. In this chapter, we study a

ridesharing system that uses both AV ownership models. We then develop a two-phase

method for assessing the sharing potential of these di�erent models by considering the

number and distance of shared trips, and thus, evaluating the potentially saved vehicle

kilometers. We analyze a set of sharing scenarios on a case study for New York City.
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3.1 Introduction

Autonomous mobility services and their potential impact on existing mobility systems

have been growing in popularity in recent years. According to (Meyer et al., 2017; Attias,

2017), fully autonomous vehicles (AVs) are expected to make traveling safer, cheaper, more

comfortable, more sustainable, and thus, to reduce traveling costs. If all those assumptions

are to become true, autonomous vehicles will dramatically change the urban form especially

that they might be used as a shared transportation service. Thus, the potential deploy-

ment of autonomous vehicles going in hand with the increasing need for shared mobility

services have attracted the attention of the operations research community especially after

many large mobility operators (Tesla, Ford, Lyft and others) have declared their plans for

deploying new autonomous mobility services.

Di�erent ownership models and usage scenarios have been introduced by various actors.1

One ownership model is based on the idea that autonomous vehicles will be individually-

owned. Thus, every user might have his own AV. Additionally, this model proposes that

an individually-owned AV can serve other users during the time its owner does not need

it. This might be the case when an AV owner is at work and the AV is not in use. Such

an ownership model can help in partially �nancing AV acquisition cost. Another ownership

model is to consider a �eet of on-demand (robotaxi) AVs. In this model, AVs are invoked

from their stations (depots) to satisfy mobility demands such that one single AV can serve

multiple demands before getting back to the station. Unlike the �rst model where owners

have the priority to be served by their AVs, all users have the same priority to be served by

an AV in an on-demand service. In addition, an important aspect is that an AV, whether

it is individually-owned or on-demand, can be shared by multiple users. Ridesharing aims

to minimize the number of vacant seats in vehicles so that the number of required vehicles

is reduced. Although it may increase depreciation and risk of damage and leads to longer

trips for owners, the idea of ridesharing comes with many bene�ts. These bene�ts include

reducing travel cost and time, alleviating tra�c congestion, conserving fuel and energy and

reducing air pollution. Thus, using autonomous vehicles in a ridesharing system represents

a promising opportunity in future transportation systems.

Extending the work on vehicle sharing by Stiglic et al., 2015, the aim of this research is

to study and compare the di�erent ownership and usage scenarios for autonomous vehicles

and assessing the sharing potential of those di�erent variants by a case study for New York

City. This chapter is organized as follows. In section 3.2, we provide an overview of related

literature. In section 3.3, we describe both variants of the problem introduced earlier. The

solution method we have developed is detailed in section 3.4. In section 3.5, we present the

computational study we have conducted on New York City and we discuss and analyze its

1For example, Tesla and Ford for the individually-owned AVs, and Lyft for the on-demand ones
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results. Finally, in section 3.6, the key �ndings are summarized and directions for future

research are suggested.

3.2 Background

Recent studies on autonomous mobility have focused on either assessing public opin-

ions regarding AVs or studying the potential impacts of introducing such a new service

on existing urban mobility systems. In a recent study, Daziano et al., 2016 observed the

willingness to pay for partial or full automation through collecting and analyzing answers

to a vehicle-purchase choice experiment focused on energy consumption and autonomous

features. Another study, conducted by Bansal and Kockelman, 2016, surveyed respondents

across Texas to understand their opinions about such a new technology. Their study showed

that a�ordability and equipment failure are Texans' top two concerns regarding AVs. On

studying AV potential impact, Bischo� and Maciejewski, 2016c simulated a city-wide re-

placement of private cars with a �eet of autonomous taxis in Berlin. Their simulation

suggested that a �eet of 100 000 vehicles will be enough to replace private cars in Berlin at

a high service quality for customers. Considering that AVs can be used as a shared mobility

service, Fagnant and Kockelman, 2014 suggested that each shared AV can replace around 11

conventional vehicles, but adds up to 10% more travel distance than comparable non-shared

AV trips resulting in overall bene�cial emissions impacts. Moreover, Zhang et al., 2018 de-

veloped models to examine how much vehicle ownership reduction can be achieved once

private conventional vehicles are replaced by AVs and the spatial distribution of unoccupied

vehicle-miles-traveled (VMT) accompanied with the vehicle reduction. Their results showed

that more than 18% of the households can reduce vehicles, while maintaining the current

travel patterns. Furthermore, Loeb et al., 2018, simulated performance characteristics of

shared AV �eets serving travelers across the Austin, Texas 6-county region where a set of

charging stations with di�erent charging times were considered. Their results suggested

that reducing charge times does lower �eet response times (to trip requests), but increasing

�eet size improves response times the most.

Another research, by Krueger et al., 2016, concluded that service attributes including

travel cost, travel time and waiting time may be critical determinants of the use and accep-

tance of shared AVs. Their results implied also that the adoption of shared AVs may di�er

across cohorts, whereby young individuals and individuals with multimodal travel patterns

may be more likely to adopt shared AVs. Additionally, Milakis et al., 2017 used scenario

analysis to identify future deployment paths of automated vehicles in the Netherlands. Ac-

cording to their scenarios, fully automated vehicles are expected to be commercially available

between 2025 and 2045, and to penetrate the market rapidly after their introduction. On

exploring the impact of shared AVs on urban parking demand, Zhang et al., 2015a showed,

through an agent-based simulation approach, that 90% of parking demand for clients who
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adopt the system might be eliminated at low market penetration rate. In addition, Harper

et al., 2016 estimated bounds on the potential increases in travel in a fully automated vehi-

cle environment due to an increase in mobility from the non-driving and senior populations

and people with travel-restrictive medical conditions. Their results estimate 14% increase

in annual vehicle-miles-traveled for the US population 19 and older.

Therefore, the study of the potential impacts of introducing AVs in urban mobility sys-

tems associated with assessing their sharing potential are at the heart of nowadays research

regarding autonomous mobility. Although research on studying the impacts of deploying

AVs has been growing in popularity in recent years, less amount of research on how to plan

and operate their trips is yet available. This is mainly because most scienti�c advances

for operating AVs have been done by AV manufacturers and service providers who do not

always publicly unfold the details of their approaches and algorithms due to commercial

sensitivity. In addition, some studies suggested that methods and algorithms that operate

conventional vehicles can still be applied to autonomous vehicles. However, an increasing

e�ort is being directed recently towards building new methods for planning AV trips. For

this purpose, Hyland and Mahmassani, 2017 propose a taxonomy for classifying AV �eet

management problems to inform future research on autonomous vehicle �eets. In their pa-

per, they review the existing categories for classify scheduling and routing problems, re�ne

some of them as they relate to the AV �eet problem and propose novel taxonomic categories

for classifying AV �eet management problems. On planning new infrastructures to adapt

and promote the deployment of AV technology, Chen et al., 2017 presented a mathemati-

cal framework for the optimal design of AV zones in a general network. Their framework

is based on, �rst, a mixed routing equilibrium model which captures di�erent routing be-

haviors (within and outside AV zones), and mixed-integer bi-level programming model to

optimize the deployment plan of AV zones. In their general framework for modeling shared

autonomous vehicles, Levin et al., 2016 propose a heuristic for dynamically constructing

shared rides using autonomous vehicles. The proposed approach consists of a dispatcher

that checks whether there are any AVs that are already located or en route to where a travel

demand has appeared and then assigns the AV to carry the longest waiting traveler. Fur-

thermore, other travelers are allowed to join the shared trip if they are traveling to the same,

or a close, destination giving the priority to travelers already in the vehicle because they

have been traveling. In addition, Kümmel et al., 2017 introduce a theoretical framework for

autonomous vehicles based on the model of a family (the provider of physical services as the

" father", the strategic manager as the "mother", and the individual AVs as the " children").

Their model allows vehicles to negotiate among them in a decentralized fashion and, at

the same time, it allows the �eet manager to set �eet priorities and pre-allocate vehicles in

locations of expected future demand. Moreover, Alonso-Mora et al., 2017 propose a general

mathematical model for real-time high-capacity ridesharing that, on the one hand, scales

to large numbers of passengers and trips, and on the other hand, dynamically generates
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optimal routes with respect to online demand and vehicle locations. Their algorithm, which

applies to �eets of autonomous vehicles, starts from a greedy assignment and improves it

through a constrained optimization, quickly returning solutions of good quality and converg-

ing to the optimal assignment over time. Their approach is based on the idea of decoupling

the problem by �rst computing feasible trips from a pairwise shareability graph and then

assigning trips to available vehicles.

In this chapter, we consider a simpli�ed ridesharing setting in which only one pickup and

one drop-o� is allowed during a shared trip. Thus, riders sharing the same trip will be all

picked up at the same pick-up location and all dropped o� at the same drop-o� location. For

this purpose, we de�ne a set of �xed locations where pickups and drop-o�s can take place, or

in other words, a set of meeting points. The idea of using meeting points goes in hand with

the original work, by Stiglic et al., 2015, that we extend in this research. In their paper, the

authors propose a two-phase algorithm that optimally matches drivers and riders in large-

scale ridesharing systems with meeting points where the aim is to investigate the potential

bene�ts of introducing meeting points in such a ridesharing system. Unlike the original

research which considered commuter morning trips, we propose a heuristic approach that

extends the proposed approach. We focus on studying the sharing potential of autonomous

vehicles through comparing their di�erent ownership models and usage scenarios on a full

day time horizon where demands are known beforehand. The originality of this research

is that it proposes an approximation approach that allows us to analyze a large number

of ridesharing scenarios for AVs where most of the available research on this domain uses

simulation-based approaches (see Bischo� and Maciejewski, 2016c, Chen et al., 2016b, Zhang

et al., 2015a, Fagnant and Kockelman, 2016). While considering travel costs is not in the

scope of this work, we focus on studying the number of matched participants as well as the

system-wide distance savings through a case study for New York City.

3.3 Problem description

In this chapter, we consider two ownership models for AVs; individually-owned and on-

demand service. There are two main di�erences between these two ownership models. The

di�erence is illustrated in Figure 3.1 where each node represents a meeting point (MP),

the origin or destination of an owner or a rider, or a depot. Owner's are denoted with

o's and riders are denoted with r's. In the individually-owned case, AVs are based at their

owners' home locations and the owners have a higher priority to be served by their own AVs.

Additionally, owners can indicate how much extra time they can a�ord to accommodate a

shared ride. On the other hand, all users have the same priority in the on-demand case

and AVs are located at certain locations (depots) waiting for requests. Nonetheless, both

cases have similar problem settings and will be modeled and solved by the same solution

approach (section 3.4).
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(a) Individually-owned AVs (b) On-demand AVs

Figure 3.1: Di�erent ownership models

As mentioned above, we consider a full day planning horizon where transportation de-

mands are known in advance. For example, an individually-owned AV brings its owner (o1)

from his home to his work in the morning and brings him back home in the evening while

o�ering rides to other potential riders (r1,r2 and r3) (Figure 3.1a). Riders are picked up and

dropped o� at their home/destination locations or at feasible meeting points (MPs). We

call this kind of trips one-way trips , where the origin and the destination of the trip are

two di�erent locations. One-way trips represent mainly, but not only, morning and evening

commutes. Furthermore, the individually-owned AV can serve riders (r4, r5 and r6) while

its owner (o1) is at work and must return to him before he �nishes his work. We call this

kind of trips, where AVs depart from and return to the same location, round trips . In

the on-demand AV case (Figure 3.1b), AVs are based at service centers (C) and waiting for

incoming requests. AV#2, for example, departs from its center, serves riders (r4, r5 and

r6), and once all riders are dropped o�, it returns to the center. We can observe that an

on-demand AV trip has similar characteristics to the round trip in the individually-owned

AV case. In both cases, multiple (consecutive) shared trips may take place but only one

pickup and one drop-o� are allowed during each shared trip (In Figure 3.1, riders r4 and r5,

sharing the same trip, are picked up and dropped o� at the same meeting point). Further-

more, since AVs are assumed to be electric ones, both individually-owned and on-demand

AVs cannot be in service for more than a certain amount of time because they need to

be recharged. Thus, an individually-owned AV is assumed to be recharged at its owner

home location (during the night) and work location (during the day). Similarly, on-demand

AVs are assumed to be recharged at their depots. The main di�erence is that when an

individually-owned AV is doing a round trip, it has a time window speci�ed by its owner.

Thus, if the owner is willing to allow his AV to serve other potential riders, the AV is only

available while its owner does not need it and must return to him before he needs it again.

These additional time restrictions are considered in the proposed model. For the sake of

simplifying the problem, we assume that all AVs have the same capacity and that traveling

(either walking or driving) occurs at a constant speed. However, most of those assumptions

can be relaxed so as to cover a more realistic settings.
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3.3.1 Notation and parameters

In this problem, a set of trip announcementsS is considered. Every announcements 2 S

is characterized by: an originos, a destination ds, an earliest departure timees and a latest

arrival time ls. The set of announcementsS is partitioned into two subsets; O � S set of trip

announcements by the owners andR � S set of trip announcements by the riders. While

on-demand AVs are located at di�erent centers (depots) and ready to serve riders, owners

specify when and where their owned AVs are available for sharing (for example, during a

morning trip from home to work or a day trip while owner is at work). Thus, every owner

i 2 O speci�es the maximum trip duration Ti , which implies the extra time he accepts

to accommodate a shared trip, and the number of available seatsCi , which indicates the

maximum number of riders his AV can accommodate. On the other hand, every riderj 2 R

speci�es the maximum distancemj that he is willing to walk to and from a meeting point.

Furthermore, we denote the origin and the destination of a trip announcements 2 O [ R

with os and ds. In addition, distances and travel times between every two locations are

considered. Thus, we denote the distance from locationi to location j with � i;j and the

travel time between them with t i;j . A set of meeting point locationsM is given. A rider can

be picked up at his origin or at one of his feasible pickup meeting points and dropped o�

at his destination or at one of his feasible drop-o� meeting points. A feasible meeting point

is a point which the rider can reach in an acceptable walking distance (i.e. less than the

maximum walking distance that he speci�ed). As such, we denote the set of feasible pickup

meeting points for a rider j with M p
j := f k 2 M j� oj ;k � mj g and the set of feasible drop-o�

meeting points for rider j with M d
j := f k 2 M j� k;d j � mj g. Furthermore, we use the

concept of meeting point arc introduced in Stiglic et al., 2015. A meeting point arca 2 A

denotes a combination of a pickup meeting point and a drop-o� meeting point. As such,

the set of feasible meeting point arcs for riderj is A j := f (k; l )jk 2 oj [ M p
j ; l 2 dj [ M d

j g.

Thus, a rider j can be picked up at his originoj or a meeting point in M p
j and dropped o�

at his destination dj or a meeting point in M d
j . Finally, the service time at each meeting

point m 2 M , which is the time needed for riders to get into and out the AV, is denoted by

� m .

3.3.2 De�nition of a feasible match

A match is a combination of an owneri 2 O, a set of ridersJ � R and a trajectory

that indicates the route which the AV will follow during the trip which is represented by

a meeting point arc a 2 A. In order for a match (i; J; a ) to be feasible, it must have the

following properties:

ˆ Capacity feasible:
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A feasible match must satisfy the capacity constraint of the AV, or in other words, the

number of riders that can participate in the trip must be less than or equal to the number

of available seats speci�ed by the AV owneri . Thus, if the owner i is not participating in

the trip (round trip), then the number of available seats will be equal to the AV capacity:

jJ j � Ci (3.1)

ˆ Time feasible:

A feasible match must satisfy the time-window constraints of its participants. A match

is time-feasible if it respects, for all its participants, the earliest departure times from their

origin locations and the latest arrival times at their destination locations and, for the owner,

the maximum trip duration. In order to check time feasibility of a match (i; J; a ), Stiglic

et al., 2015 suggested to construct an implied time window[ek
p; lkp] at the pickup meeting

point k for each participant p (either i or j 2 J ) in the match. Following their proposition,

ek
p represents the earliest departure time possible for participantp from the pickup meeting

point k, such that: ek
p = ep + top ;k , where ep is the earliest departure time of participant p

and top ;k is the travel time between participant origin op and the pickup meeting point k. In

addition, lkp represents the latest departure time possible for participantp from the pickup

meeting point k, such that: lkp = lp � (� k + tk;l + � l + t l;dp ), where lp is the latest arrival time

of participant p, tk;l is the travel time between pickup and drop-o� meeting points (k; l ),

t l;dp is the travel time between the drop-o� meeting point l and participant destination dp,

and � k and � l represent the service time at meeting pointsk and l respectively. Thus, in

a time feasible match, the intersection of the implied time windows has to be non-empty,

which implies that:

max(ek
i ; max

j 2 J
ek

j ) � min( lki ; min j 2 J lkj ) (3.2)

Where max(ek
i ; maxj 2 J ek

j ) is the earliest time, andmin( lki ; min j 2 J lkj ) is the latest time,

at which the shared ride can depart from meeting pointk. In addition, a time feasible match

should respect the maximum trip duration speci�ed by the owner, thus:

toi ;k + � k + tk;l + � l + t l;d i � Ti (3.3)

In other words, the sum of travel times between di�erent locations (i.e. owner origin to

pickup meeting point toi ;k , pickup meeting point to drop-o� meeting point tk;l , and drop-o�

meeting point to owner destination t l;d i ) and service times at meeting points (i.e.� k and � l )

must not exceed the maximum trip duration (Ti ) that the owner can accept to accommodate

the shared ride.

ˆ Distance feasible:
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Figure 3.2: Distance feasible match - Positive distance saving

Since only one pickup and one drop-o� are allowed in a shared trip, then the meeting

point arc a should be feasible to all ridersJ � R in a feasible match(i; J; a ). Thus, the

pickup and drop-o� meeting points shaping arca should be at feasible walking distances for

all riders participating in the feasible match:

a 2
\

j 2 J

A j (3.4)

Furthermore, a distance-feasible match must achieve a distance saving compared to the

case of non-shared (individual) trips. Consider the example in Figure 3.2 with one owner

o1, two riders r1; r2, a pickup meeting point and a drop-o� meeting point (numbers above

arcs represent distances between locations). If each traveler will drive individually from his

origin to his destination then the overall traveling distance will be 10+10+10 = 30 . On the

other hand, if a shared trip will take place (bold arrows) then the overall traveling distance

will be 8 + 10 + 8 = 26 . As such, the shared trip has the potential of reducing the overall

traveling distance, and thus, the match has a positive distance saving. A match between

owner i and riders in J � R on a meeting point arc a = ( k; l ) has an associated distance

saving of � (i;J;a ) = � oi ;di � (� oi ;k + � k;l + � l;d i )+
P

j 2 J � oj ;dj , where(� oi ;di +
P

j 2 J � oj ;dj ) is the

travel distance of individual (non-shared) trips of participants (including owner and riders'

trips), and (� oi ;k + � k;l + � l;d i ) is the travel distance of the shared trip. Thus, the match is

feasible if � (i;J;a ) > 0:

� (i;J;a ) > 0 (3.5)

st: � (i;J;a ) = � oi ;di � (� oi ;k + � k;l + � l;d i ) +
P

j 2 J � oj ;dj

As a result, a match is feasible when it respects capacity, time and distance constraints.

With every feasible match, two values are associated; the number of participants and the dis-

tance saving. By solving this problem, we aim at �nding the set of matches that maximizes

the number of matched participants as we will see in the following section.
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3.3.3 Matching problem

The matching problem is formulated as a maximum weight bipartite matching problem.

A node is created for each owneri 2 O and for each rider j 2 R. An edge connecting node

i and nodej is added if there is a feasible match between owneri and rider j . Furthermore,

nodes representing a set of riders inR are also created and an edge connecting owneri and

a set of riders is added if a feasible match between them exists. Each edgee has two weights

associated with it: the number of participants in the match ve, and a distance saving� e. Let

E represent the set of all edges in the bipartite graph and let the binary decision variablexe

for edgee 2 E indicate whether the edge is chosen in an optimal matching (xe = 1 ) or not

( xe = 0 ). In addition, let E i and E j represent the set of edges inE associated with owner

i and rider j . Thus, the matching problem with the objective of maximizing the number of

matched participants (Z ) can be formulated as the following integer program:

maxZ =
X

e2 E

vexe (3.6)

subject to

X

e2 E i

xe � 1 8i 2 O (3.7)

X

e2 E j

xe � 1 8j 2 R (3.8)

The objective function (3.6) maximizes the number of matched participants. Constraints

(3.7) and (3.8) assure that each owner and each rider is only included in at most one match

in a �nal matching.

3.4 Solution approach

As it was de�ned earlier, a match is a combination of an owner, a set of riders and a

meeting point arc where the shared ride can take place. As such, the problem is to �nd the

set of those matches in which as many travelers (owners and riders) as possible are matched

and participating in shared rides. In order to solve this problem, we propose a heuristic

algorithm. The proposed approach is an extension of the two-phase algorithm introduced

by Stiglic et al., 2015. The two phases are: generating feasible matches and selecting the

best among them through a matching problem. In the �rst phase, we look for feasible

matches for every owner iteratively and we add them to the matching problem. Then, the

matching problem aims at selecting the best matches such that each owner/rider is matched

at most once in a �nal solution. Our approach aims to maximize the number of matched
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participants. It is important to mention that the main driver of our algorithm design is the

fast execution times. This allows us to test and analyze various scenarios of the problem.

In the �rst phase, the aim is to �nd the set of feasible matches. For this purpose, the

algorithm considers owners one by one and tries to build feasible matches with potential

riders. If a feasible match is found, an edge, linking the matched participants (owner and

riders), is added to the matching problem with two associated coe�cients; the number of

participants and the potential distance savings. On the other hand, the algorithm �nds for

every rider, according to the maximum walking distance that the rider accepts, the sets of

feasible pickup and drop-o� meeting points (section 3.4.1). Furthermore, once an owner is

considered, the algorithm checks whether his trip o�er is a one-way trip or a round trip

and generate his feasible matches accordingly (sections 3.4.2, 3.4.3 respectively). We extend

the original algorithm presented in Stiglic et al., 2015, which only considers one-way trips,

by allowing AVs to perform round trips. Thus, the proposed algorithm aims at generating

feasible solutions for both one-way and round trips at short computational times.

(a) One-way trip match (b) Round trip match

Figure 3.3: Generating feasible matches

3.4.1 Determine feasible meeting point arcs for a rider

In order to generate feasible matches, the algorithm de�nes the set of feasible meeting

point arcs for every rider. In other words, the sets of meeting points where a rider can be

picked up and dropped o� need to be de�ned. For this purpose, we store the set of meeting

points in a k-d tree data structure. k-d trees have the ability of performing n nearest

neighbors search and �xed-radius near-neighbor search in logarithmic time (Bentley, 1990).

Thus, we use the k-d tree to �nd, for each rider j , the meeting points that are accessible

from his origin oj and destination dj within an acceptable walking distance (less thanmj ).

Once feasible meeting points for riderj are known, a set of feasible meeting point arcs is

constructed by combining every possible pair of feasible pickup and drop-o� meeting points.
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Figure 3.4: Algorithm 1 - Find-Owner-Feasible-Matches

3.4.2 Generate feasible matches for a one-way trip

If a one-way trip is considered (Figure 3.3a), the algorithm iterates over the set of

riders seeking to �nd feasible matches. When a rider is considered, the algorithm checks

all his feasible meeting point arcs. If the combination (owner, rider, meeting point arc)

is time feasible, the algorithm proceeds to calculate its associated distance saving. If the

combination has a positive distance saving, it will be temporarily conserved while the other

feasible meeting point arcs of the rider are checked. A match combining an owner, a rider

and a meeting point arc that has the best distance saving will be added to the set of feasible

matches. Afterwards, the algorithm will consider the next rider similarly until the whole

set of riders is checked and all feasible single-rider matches are added. Once all feasible

single-rider matches are added, the algorithm will try to �nd feasible multi-rider matches

and add those found to the matching problem (Figure 3.4, see also Appendix A.1).



3.4. Solution approach 59

3.4.3 Generate feasible matches for a round trip

If the considered o�er is a round trip (Figure 3.3b), the algorithm selects a set of arti�cial

owners in order to construct a concatenation of one-way trips (See Figure 3.5a). The idea

is to choose one rider to be a temporal owner of the AV which will pick him up at his origin

location and drop him o� at his destination location. In this case, this selected rider will be

considered as a new �arti�cial� owner of the AV and the algorithm will then try to match

him with other potential riders. Once the �rst arti�cial owner is considered and matched,

the algorithm will add other arti�cial owners as long as the AV can still return to its real

owner (or equivalently to its depot in the on-demand case) at the speci�ed latest arrival

time.

(a) Arti�cial Owners (b) Choosing the next one

Figure 3.5: Generating feasible matches for a round trip

The choice of which rider to be selected as the next arti�cial owner is made in a greedy

fashion (see Figure 3.5b). The earliest departure time of the rider and the time that the AV

needs to arrive at his origin location are considered. Thus, the rider that can be served the

earliest is chosen. In this example, rider a1 is chosen as the next arti�cial owner because

the AV can arrive to his origin location at 9:25 (Earliest departure from the depot at 9:00

+ 25 mins traveling to a1 origin location) and his earliest departure time is 9:00. Thus,

his trip can start at max(9:00,9:25) = 9:25 where a2 and a3 trips can start at 9:30 and

12:30 respectively. So, a1 is chosen because his trip can be started the earliest. The process

of assigning arti�cial ownership to riders continues until there is only time for the AV to

return to its original location (In the example, the AV must return to its origin o before

5 pm). This greedy choice is made as we want to approximate a dynamically operating

ridesharing system in which a vehicle is assigned to a �rst customer and then others are

added as soon as their requests arrive. Once all round trips are transferred into sequences

of one-way trips, they can be treated similarly (section 3.4.2). Thus, the algorithm will look

for all their feasible matches and add those found to the matching problem.
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Figure 3.6: Algorithm 2 - Match-Generation

3.4.4 Algorithm

As mentioned above, the algorithm aims to look for the feasible matches for every single

owner and then passing those feasible matches to the matching problem which will choose the

best among them. The algorithm takes an instance as input (see Figure 3.6). The instance is

composed of three sets: set of ownersO, set of ridersR and a set of meeting pointsM . The

algorithm starts by storing meeting points in the k-d tree so they can be rapidly retrieved

later. In the next step, the algorithm will search the k-d tree in order to �nd the feasible

pickup and drop-o� meeting points, and thus the feasible meeting point arcs, for every rider.

Once the feasible meeting point arcs of every rider are found, the algorithm considers owner

trip announcements one by one and checks whether it is a one-way or round trip. If it is

one-way trip, the algorithm �nds all feasible single-rider matches, then two-riders matches,

etc., until the available capacity is reached. If a feasible match is found, an edge is added to

the matching problem with two associated coe�cients; the number of participants and the

potential distance savings. On the other hand, if the considered owner trip announcement

corresponds to a round trip, the algorithm selects a set of riders as arti�cial owners. Thus,

a sequence of arti�cial owner trips will be constructed as long as the original time window

speci�ed by the "real" owner can still be respected. Those constructed arti�cial owner trips
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are one-way, and thus, feasible single and multiple rider matches are computed in a similar

manner (Figure 3.6, see Appendix A.2 for the detailed algorithm).

3.4.5 Early checking for feasible matches

When the number of participants (owners and riders) is relatively large, it can become

computationally prohibitive to �nd all their feasible matches. This huge computational

e�ort is illustrated by the fact that the algorithm will have to check for every owner, all

rider feasible meeting point arcs. Thus, reducing the number of meeting point arc feasibility

checks has the potential of accelerating of the algorithm. For this purpose, Stiglic et al.,

2015 suggests that if we assume that the rider travels to the boundary of his walking range at

vehicle speed and there is no feasible match under that assumption, then there is no feasible

match when the rider is walking. Thus, there will be no need to check all his feasible meeting

point arcs (see Figure 3.7).

Figure 3.7: Early checking - infeasibility check of a match

Following this assumption, let tmax
j denote the time needed to travel distancedmax

j at

vehicle speed, wheredmax
j is the longest distance a riderj is willing to walk to and from a

meeting point. From Figure 3.7, it is obvious that there cannot be a feasible match between

owner i and rider j if the trip time when rider j is picked up and dropped o� at the boundary

of his acceptable walking distance is longer than the maximum trip duration that the owner

i can accept:

(toi ;oj � tmax
j ) + ( toj ;dj � 2tmax

j ) + ( tdj ;di � tmax
j ) > T i (3.9)

Thus, only if this infeasibility check indicates that there may be a feasible match between

owner i and rider j , the algorithm proceeds to examine the possible matches for each meeting

point arc. As such, the number of meeting point arc feasibility checks can be reduced.
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3.5 Results and discussions

In this section, the results of a computational study are reported. The aim of this

computational study is to test the proposed solution approach and to assess the sharing

potential of the di�erent ownership and usage scenarios using datasets for New York City.

3.5.1 Parameters and instance generation

For generating the required instances, Taxi and Limousine Commission (TLC) trip

record datasets for New York City are used (see Appendix B.1). The taxi trip records

include �elds capturing pickup and drop-o� times and locations, trip distances, fares and

other related �elds. We use these trips to generate owner and rider trips according to

di�erent usage scenarios.

Since the set of meeting points is prede�ned and used for all instances, taxicab trips are

interpreted and processed in order to generate a set of owner trip announcements and a set

of rider trip announcements for each instance over a full-day time horizon. Therefore, we

generate 16 di�erent streams of trips based on datasets obtained during di�erent working

days (1, 3, 5, 7 December 2016) as follows.

Table 3.1: Base case instance characteristics

Trip pattern: short trips around city center Parameters

Average number of participants 3042
Average number of owners 1519
Average number of riders 1522

Owner-to-rider ratio 1 : 1
Average trip distance for participant 3.64 km

Average trip time for participant 9.04 mins
Max. walking distance to/from a meeting point 0.5 km

Walking speed 4 ft/s
Vehicle speed 24 km/h

Max. time �exibility of an owner 20 mins
AV capacity 4

For generating one-way trip announcements, their origin and destination locations, ear-

liest pickup and latest drop-o� times have to be de�ned. Origin and destination locations

are generated based on the original locations that are available for each taxicab trip. Since

taxicab trip time records represent the actual departure and arrival times, we extend them

by a 30 minutes time �exibility parameter in order to be matched in a shared trip (Stiglic

et al., 2015). We thus deduct 15 minutes from the actual departure time and add 15 min-

utes to the actual arrival time so that the di�erence between the latest arrival time and

the earliest departure time is equal to the sum of the actual trip duration and the time

�exibility parameter. For owner trips, we assume that owners, who wish to participate in
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a shared ride, are not willing to extend their original trip time by more than 20 minutes.

The capacity of the AVs, whether they are individually-owned or on-demand, is assumed to

be the same. Thus, if AV owner is participating in the trip (one-way trip), then he has a

capacity of 3 spare seats. Furthermore, if the owner is not participating in the trip (round

trip), then we assume that the AV has 4 spare seats to accommodate riders. In addition,

we assume that the maximum walking distance that riders are willing to walk to and from

a meeting point is 0.5 kilometer (see Table 3.1).

For generating round trip announcements, we assume that not all owners, having a

morning trip with an earliest departure time between 5 and 9 am, from their homes to

their work locations, are willing to let their AV serve others while they are at work. For

this purpose, we randomly select 25% of those morning trips and we accordingly generate

their relative round trips. We thus consider that the origin, which is also the destination,

of the generated round trip is the owner work location. We also assume that the earliest

departure time for a round trip to be 15 minutes later than the arrival of the owner to his

work location (for example, if the owner arrives to his work location at 8:30 am, then his

AV will be available for service at 8:45 am). Furthermore, we assume that an AV should

return to its owner before 4 pm because he needs it to get back to his home. As mentioned

before, individually-owned AVs are assumed to be recharged at their owner home/work

locations and that their round trips should not be longer than 6 hours because they need

to be recharged. On the other hand, on-demand AVs are recharged at prede�ned service

centers, where they are located, and should return to their centers at most after 6 hours in

service so that they can be recharged. We assume that an on-demand AV needs 2 hours in

order to be fully recharged before it gets back in service.

Moreover, we assume that AVs circulate at a �xed speed (24 km/h) and that riders move

at 4 ft/s walking speed (Laplante and Kaeser, 2004). The service time, which is the time

needed for riders to get in or out the AV at a meeting point, is assumed to be 2 minutes.

For calculating travel distances between di�erent locations, we use the haversine formulation

(which computes the great circle distance between two points).

Finally, we generate, for each of the instances, four variants in which the owner-to-rider

ratio is di�erent (see Table 3.2). In the �rst variant we generate an equivalent number

of owner and rider trip announcements where the number of riders increases to twice, four

times and ten times the number of owners in the second, third and forth variant respectively.

Table 3.2: Instances with di�erent owner-to-rider ratio

1-to-1 1-to-2 1-to-4 1-to-10

Average number of participants 3043 4564 7609 16435
Average number of owners 1519 1519 1519 1519
Average number of riders 1523 3045 6090 14915

The goal of generating those di�erent variants is to see how increasing the demand could
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a�ect the di�erent elements of the analysis and compare the results obtained by testing

instances with di�erent owner-to-rider ratios. In addition, a higher demand better re�ects

city-wide mobility where thousands of trips take place every day. We also provide a set of

scenarios by which each one of the instances is tested as we will see in the following section.

AV usage scenarios :

As mentioned above, the main aim of this research work is to analyze the di�erent

ownership models and their di�erent usage scenarios. We thus consider di�erent scenarios

for testing each instance. The idea is to start with a scenario in which we only have

individually-owned AVs (IO AVs) and the set of riders. We then assume that a set of

those owners (10% of them at each scenario) are not willing to use their own AV, or in

other words, they are willing to be picked up by an AV as potential riders. As such, they

are added to the set of riders. Moreover, we replace those owner trip announcements by

a number of on-demand AVs (OD AVs) which are based at the prede�ned service centers.

Therefore, 10% of the owner trip announcements are randomly selected, transfered into rider

trip announcements, and replaced by a set of on-demand AVs. The process of generating

scenarios continues until all owner trip announcements are replaced by on-demand ones and

all travelers participate as riders (see Table 3.3 for an example).

Table 3.3: Base case instance with di�erent usage scenarios and 1-to-1
replacement rate

Scenario # IO AVs # OD AVs # Riders

100% IO 1510 0 1522
90% IO 1360 150 1672
80% IO 1210 300 1822
70% IO 1060 450 1972
60% IO 910 600 2122
50% IO 760 750 2272
40% IO 610 900 2422
30% IO 460 1050 2572
20% IO 310 1200 2722
10% IO 160 1350 2872
0% IO 0 1510 3022

Furthermore, three di�erent rates for replacing individually-owned AVs with on-demand

ones are considered. We consider that each added on-demand AV replaces one, two or

�ve individually-owned ones (1-to-1, 1-to-2 and 1-to-5 replacement rates). For example,

in Table 3.3, 150 individually-owned AVs are replaced by the same number of on-demand

AVs at each scenario (1-to-1 replacement rate). Relatively, the number of on-demand AVs

replacing the 150 individually-owned ones will drop to 75 and 30 with 1-to-2 and 1-to-5

replacement rates (respectively). Regardless of the replacement rate used for generating the

di�erent scenarios, replaced owner trip announcements are all considered as riders.
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Meeting points :

In order to test the generated instances and their scenarios, a set of meeting points,

where riders can be picked up and dropped o�, is needed. As such, we generate the required

meeting points based on actual public transport stations in New York (Figure 3.8a). Those

data records, which are provided by the Metropolitan Transportation Authority MTA, cap-

ture New York transit subway and bus locations (see Appendix B.2). In order to have a

minimal and well-distributed set of locations, we �lter the available locations and we elim-

inate some of them such that a minimum distance of 500 meters between every pair of

locations is guaranteed. Without �ltering those locations, the number of feasible meeting

point arcs for each rider will dramatically increase, and thus, generating feasible matches

will be computationally prohibitive.

(a) NYC - Public transport stations (b) NYC - Depots

Figure 3.8: Generating meeting points and AV depots

The choice of using public transport stations as meeting points comes with two main

bene�ts. First, they are well distributed around the city, and thus, cover the studied area

especially that their locations are available. Second, those stations are accessible by dif-

ferent modes of transportation (e.g. subway, bus, etc.). As such, considering them as

meeting points opens the door for integrating the use of autonomous vehicles with other

transportation modes in future research.

On-demand AV depots :

For the on-demand AVs case, we need to de�ne a set of locations (depots) where the on-

demand AVs can be located. For this purpose, we �x four locations corresponding to actual

taxi-service and car-service centers in New York City (one center in Manhattan ("Lower

East Side Car Services"), two centers in Queens ("Liberty Taxi NYC" and "Athena Car

Service") and one center in Brooklyn ("Eastern Car Service") (Figure 3.8b). On-demand

AVs are invoked from these centers to serve requests and get back to their centers once their

trip is �nished.
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3.5.2 Performance

The algorithm for generating feasible matches is implemented in Java 1.8.0. For solving

the matching problem, CPLEX 12.6 is used. Instances were tested on a quad-core i5-5300U

machine with 8 GB of RAM. The base case instance, with 1-to-1 owner-to-rider ratio (Table

3.1), solves in less than 7 minutes while instances with 1-to-2, 1-to-4 and 1-to-10 owner-

to-rider ratios solve in less than 12, 25 and 90 minutes respectively. CPLEX solves the

matching problem in a few seconds for di�erent instance sizes. Most of the computational

time is thus spent generating feasible matches for one-way and round trips. However, these

relatively short running times suggest that our approach is suitable for approximating dy-

namic operations where instances with a much smaller set of trip announcements have to

be solved at any one time.

3.5.3 Experiments

The solution approach that we have implemented provides a good basis because it allows

us to test instances with di�erent sizes, scenarios and replacement rates in relatively short

computational times. We use the generated instances and the set of solutions (matches)

provided by the algorithm to compute and evaluate a number of metrics that can help us

in conducting the intended analysis. We use the following metrics in our analysis: the

number of participants, the matching rate for riders, the average number of used AVs,

the average system distance savings, the average number of served participants per AV

(PpV), the average traveled distance per vehicle (DpV) and the average extra travel time

for participants. All metrics are measured at di�erent scenarios. As such, the x-axis in the

following graphs represents the di�erent usage scenarios, or in other words, the percentage

of on-demand AVs that are available for service at each of the scenarios. Furthermore, we

analyze their values over di�erent replacement rates (1-to-1, 1-to-2 and 1-to-5, as introduced

earlier in this section).

As introduced in section 3.3.3, every feasible match is associated with the number of

travelers that are participating in it and the matching problem aims at maximizing the

overall number of participants in the system. Thus, a participant is a traveler (owner or

rider) who is participating in the system. Furthermore, since an owner uses his own AV to

travel, we always consider owners as participants even if they are not matched in a shared

trip. On the other hand, a rider is considered as participant only if he is matched in a

shared trip.

Participation and matching rate :

Results, obtained by averaging the 16 instances with di�erent owner-to-rider ratios,

indicate that when the number of available on-demand AVs increases, the number of matched

participants increases as well (Figure 3.9). This applies to the four owner-to-rider ratios
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when each on-demand AV is replacing one, two or �ve individually-owned AVs. We observe

that when the number of riders becomes four or ten times the number of owners with 1-to-5

replacement rate, the number of participants decreases in scenarios with more than 80%

of on-demand AVs (Figure 3.9g & 3.9j). This is due to the large number of riders and the

fewer number of AVs which is not su�cient for serving this increasing demand.

Another important metric is rider matching rate. This metric represents the percentage

of riders that are matched in the system. Thus, only riders are included. The goal of

measuring this metric is to observe how the di�erent scenarios and replacement rates could

a�ect the number of riders that are successfully matched in a shared ride.

As for the number of matched participants, results indicate that as more on-demand

AVs are replacing individually-owned ones, the rider matching rate increases (Figure 3.9).

This is mainly because on-demand AVs have a higher �exibility in terms of time constraints

(unlike the individually-owned where owner preferences have to be respected). Thus, an on-

demand AV can provide service to a larger number of potential riders. We also observe that

the convergence towards the 100% matching rate is faster when the number of owners and

riders are equal (Figure 3.9b). When the number of riders becomes higher, the convergence

becomes relatively slower (Figure 3.9e). Furthermore, with 1-to-4 and 1-to-10 owner-to-

rider ratios, the matching rate does not converge when �ve IO AVs are replaced by one OD

AV. This is due to the lack of enough AVs to serve the increasing demand (Figure 3.9h &

3.9k). If we take the 1-to-1 owner-to-rider ratio as an example (Figure 3.9b), we observe

that satisfying all rider requests is obtained with the three di�erent replacement rates but in

di�erent scenarios. Thus, for satisfying the demand in this case, we need the percentage of

on-demand AVs to be at least: 10% of the available AVs with 1-to-1 replacement rate, 20%

with 1-to-2 replacement rate, or 50% with 1-to-5 replacement rate. On the other hand, for

the 1-to-4 owner-to-rider scenario (3.9h), satisfying rider requests can be achieved by having

at least 30% OD AVs with 1-to-1 replacement rate or 60% OD AVs with 1-to-2 replacement

rate but cannot be achieved with 1-to-5 replacement rate (similarly for 1-to-10 ratio, Figure

3.9k). This observation can help in �xing the number of on-demand AVs needed to fully

satisfy the demand in each one of the instances. This is illustrated by the number of used

AVs at each of the scenarios (Figure 3.9c, 3.9f, 3.9i, 3.9l for the di�erent owner-to-rider

ratios). Since the number of available AVs depends on the replacement rate used at each

scenario, the presented graphs correspond to 1-to-1 replacement rate (blue line with circled

points). If we consider instances with 1-to-1 owner-to-rider ratio as an example (Figure

3.9b & 3.9c), in the �rst scenario (where around 1500 IO AVs are available), we still have

about 20% of rider demands which are not served. In the second scenario, when 10% of the

available IO AVs are replaced by a similar number of OD AVs, rider demands are totally

satis�ed and the number of used AVs starts to decrease. As such, we observe that not all

the added OD AVs are actually used, or in other words, fewer number of OD AVs is needed

to satisfy all demands in this scenario. When more OD AVs are added in the later scenarios,
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(a) 1-to-1 ratio, Number of
Participants

(b) 1-to-1 ratio, Matching Rate
(%)

(c) 1-to-1 ratio, Number of
Used AVs

(d) 1-to-2 ratio, Number of
Participants

(e) 1-to-2 ratio, Matching Rate
(%)

(f) 1-to-2 ratio, Number of
Used AVs

(g) 1-to-4 ratio, Number of
Participants

(h) 1-to-4 ratio, Matching Rate
(%)

(i) 1-to-4 ratio, Number of Used
AVs

(j) 1-to-10 ratio, Number of
Participants

(k) 1-to-10 ratio, Matching
Rate (%)

(l) 1-to-10 ratio, Number of
Used AVs

Figure 3.9: Results of testing instances with di�erent owner-to-rider ratios
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the number of used AVs keep decreasing while the 100% matching rate is maintained. In

the last scenario, where riders are served by OD AVs only, we observe that around 250

OD AVs (out of 1500 that are available for service) were used to satisfy all demands. A

similar observation can be seen for instances with larger owner-to-rider scenarios. As such,

in a fully on-demand scenario, around 350, 600 and 900 OD AVs are needed to fully satisfy

rider demands with 1-to-2, 1-to-4 and 1-to-10 owner-to-rider ratios (Figure 3.9f, 3.9i, 3.9l

respectively). However, the decreased number of used AVs while maintaining high matching

rates means that an on-demand AV is serving more rider requests and doing longer trips

than an individually-owned one.

In order to compute the average number of participants that are served by an AV, or in

other words, Participant-per-Vehicle (PpV), we divide the average number of participants by

the average number of used AVs in each of the scenarios (i.e.PpV = number-of-participants

/ number-of-used-AVs). As such, results indicate that the average number of participants

served by an AV gradually increases as more on-demand AVs becomes available and shared

(While an individually-owned AV is serving 2 participants in average in 0% on-demand AV

scenario, an on-demand AV is serving up to 13 participants in average in 100% on-demand

AV scenario) (Figure 3.10a). This observation also goes in hand with the increasing matching

rates presented earlier.

(a) Participant per Vehicle (PpV) (b) Distance per Vehicle (DpV)

Figure 3.10: Participant and Distance per Vehicle (%)

Similarly, we compute the average distance traveled by an AV (Distance-per-Vehicle

(DpV )) by dividing the overall distance traveled by all AVs by the number of AVs circulating

in the system. We call the overall distance traveled by all AVs bydistance-with-sharingwhich

is the actual distance covered by all AVs for accommodating the shared rides. Thus,DpV

= distance-with-sharing / num-of-used-AVs. As such, the DpV also increases when more

on-demand AVs are added and shared with the three di�erent replacement rates (Figure

3.10b). This increase is obtained, not just because an on-demand AV is serving more riders

and thus traveling for longer distances to cover the increasing demand, but also because of

the empty trips that an on-demand AV might have to do between two consecutive shared

rides (an empty trip appears after an AV drops o� one, or more, rider and heads to pick up
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the next one) or when departing/returning to its owner (or depot) location. Thus, reducing

the distance covered by those empty trips, which mainly appear in round trips for both IO

and OD AVs, represents a challenge in such systems and an opportunity to enhance the

service and maximize its bene�ts if it is treated e�ciently. One way to reduce the e�ect of

empty trips is to consider a more realistic ridesharing settings where riders can be picked

up and dropped o� dynamically at any time during AV trip.

As a result, the increasing rider matching rate illustrates the potential bene�t of hav-

ing a �eet of on-demand AVs replacing individually-owned ones. In addition, replacing

individually-owned AVs with on-demand ones has the potential of decreasing the overall

number of AVs circulating in the system. However, the previous observations indicate that

when the demand becomes higher, a fully on-demand AV system, especially with high re-

placement rates, might not be able to satisfy all rider requests. Thus, a minimum number

of AVs circulating in the �eet need to be ensured.

Distance saving rate :

One important metric of the analysis is the potential distance saving that might be

obtained when ridesharing takes place. For calculating the saving, we compare two distances:

the actual distance covered by all AVs for accommodating the shared rides (distance-with-

sharing, introduced earlier), and the overall distance if all participants will do individual

trips with no sharing at all (called distance-with-no-sharing). The distance-with-no-sharing

is actually the sum of origin-to-destination distances of all participants (owners and riders).

As such, the distance saving is calculated as follows;distance-saving = 1 - (distance-with-

sharing / distance-with-no-sharing).

Results illustrate the bene�t of ridesharing in terms of distance saving. We can observe

that sharing AVs, whether they are individually-owned or on-demand, has the potential of

saving 19 to 23 % (21.5% in average) of the overall traveling distance (see Figure 3.11a) when

compared to a system in which no sharing takes place. This considerable distance saving

rate can be observed in all scenarios and with the di�erent replacement rates. Nonetheless,

results show that the saving rate is higher when an on-demand replaces more IO AVs (1-to-5

replacement rate). This is due to the relatively larger number of available AVs in the �rst

two replacement rates. As such, a larger number of riders might be picked up and dropped

o� at their origin and destination locations, and thus, the distance saving ratio will be less.

Fagnant and Kockelman, 2014 suggest that a shared AV can replace around 11 conventional

vehicles, but might add up to 10% travel distance compared to non-shared AV trips. This

di�erence between our results and theirs is due to three main reasons. The main reason is

that we use meeting points to match di�erent participants, while in their paper, a shared

AV should pass by rider origin and destination locations. Thus, meeting points can lead to

shorter detours and better distance savings. The second reason is related to trip patterns.

While we consider short trips around city center (with average trip distance of 3.64 km), in
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(a) With single objective (b) With two objectives

Figure 3.11: Average Distance Saving (%)

Fagnant and Kockelman, 2014 suburb-city trips are considered (with average trip distance of

8.74 km). Finally, our heuristic approach, in selecting the next arti�cial owner for AV round

trips, leads to short relocation trips (i.e. traveling from one arti�cial owner to another), and

thus, better distance savings.

However, our results are consistent with the original study, by Stiglic et al., 2015, where

27 to 29% distance savings were obtained. This small di�erence (between 19 to 23% savings

in our case, and 27 to 29% in their case) is due to round trips, which require more relocation

empty-AV trips, that do not exist in the original study. Another important reason is that we

consider a single objective which is to maximize the number of participants where the original

study considered an additional objective which is maximizing distance saving. To cope with

that, we consider this additional objective and we solve the problem in a lexicographical

fashion. This means that the model will �rst maximize the number of participants, and then,

select the solution with the highest savings such that the obtained number of participants

is maintained.

Looking at the results, we observe that the average distance saving increases to 23.4%

when the second objective is considered (compared to 21.5% with a single objective) (Figure

3.11b). This slight increase indicates that the algorithm is able to �nd multiple solutions

with the same number of participants but with di�erent distance saving rates. Once the

second objective is added, the model can select the solution with the highest saving while

maintaining the same level of service in terms of served participants and matching rates.

In addition, it was observed earlier that a minimum number of available AVs is needed to

ensure the satisfaction of rider demands. Our results show that having a larger number of

AVs in the �eet might not lead to a better distance saving ratio unless the use of available

seats in each AV is maximized. In other words, a critical key for a successful ridesharing

system is to minimize the number of used AVs while maintaining the quality of the provided

service.

Average detour time :
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Finally, we consider the average extra travel time for participants (owners and riders)

which indicates the extra travel time a participant will have in his trip in order to be matched

in a shared ride. Thus, this extra time is obtained by comparing the actual travel time of

the participant in a shared ride with the travel time of a direct trip from his origin location

to his destination location (no sharing takes place).

Figure 3.12: Average Extra Travel Time per Participant (mins)

As for AV owners, results indicate that they will have up to three minutes of addi-

tional travel time when matched in a shared ride compared to their non-shared trips. This

additional time, which demonstrates the detour an AV should perform to transport po-

tential riders, decreases as more on-demand AVs enter the system (Figure 3.12, in 100%

on-demand AV scenario, all owners participate as riders). Although sharing trips impose

additional travel time to owner trips, they will still have reduced trip costs and they might

bene�t from reserved lanes for vehicles with multiple travelers. On the other hand, our

results indicate that the average extra travel time for the rider decreases when the number

of on-demand AVs increases (Figure 3.12). This is due to the �exibility that on-demand AVs

provide where the possibility of picking up and dropping o� a rider at meeting points that

are relatively close to his origin and destination locations becomes more probable. Thus, in

a sharable on-demand service, a rider will be matched to a closer meeting point, and thus,

the extra time needed to travel from his origin to his destination will be decreased, or in

other words, a better ridesharing experience can be achieved.

Considering traveler preferences :

In a shared work with some colleagues, we conducted a survey to evaluate the willingness-

to-use of shared on-demand AVs in greater Paris region (Al Maghraoui et al., 2019). One of

the important outcomes of the survey is that 40% of the participants have expressed that
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they are ready to pay an extra fee (20% of their shared trip cost) in order to have a private

on-demand AV (i.e. no sharing with other travelers). As aforementioned, we consider that

all traveler demands are homogeneous, or in other words, no traveler pro�les or preferences

are considered in the original model. We try in this section to have a closer look on what

e�ects can be observed when these preferences are considered in the system. We believe

that the intended observations will help service operators to better understand the impact

of traveler pro�les on their future AV-based systems.

Based on the results obtained from the survey, we assume that 40% of participants are

willing to pay an extra fee to get a private on-demand AV service (i.e. 100% on-demand

AV scenario is considered here). We refer to these participants as VIP travelers. Every VIP

traveler will be served separately using on-demand AVs. For the rest, non-VIP travelers,

the system will continue to match them in shared trip. In order to analyze the impact

of introducing traveler pro�les on operator bene�ts, we assume the AV transport cost per

kilometer to be 0.2e /km 2. In addition, the traveler cost per km is considered to be 0.2e /km

for non-VIPs and 2.24e /km for VIPs 3 (i.e. 20% more than the normal fee). Results of

averaging di�erent instances with 3000 travelers (only riders in this case) indicate that the

general bene�t of the service operator might decrease by up to 4% when 40% of travelers are

assumed to be subscribed to the VIP service. Although VIP travelers pay extra charges for

the service, the operator will also have some additional costs which are related to the higher

number of on-demand AVs needed to operate the service. More precisely, an on-demand

AV that was able to serve 2 or 3 travelers in the original case, might have to serve only

a VIP traveler in the second case which might increase the system-wide vehicle-miles and

thus increase the operational cost of the service.

From travelers point of view, results indicate that introducing traveler pro�les into the

system has the potential to enhance the quality of the service provided. On the one hand,

VIP travelers will have a more comfortable, and relatively shorter travel times, as they will be

transported directly from their origins to their destinations. On the other hand, the average

detour time and the average waiting time (at meeting points) for non-VIP travelers will

decrease by 11% (� 0.37 min) and 5.5% (� 0.21 min) respectively. To conclude, introducing

traveler pro�les to the system can increase the overall satisfaction of VIP travelers as well

as having a positive e�ect on non-VIP travelers in terms of their detour and waiting times.

However, this means that service operators might need to invest 4% of their bene�ts in order

to provide an enhanced travel experience for their travelers.

2This price is set based on: http://cityobservatory.org/what-price_autonomous_vehicles/
3These travel costs were set using the average monthly subscription price (220e ) that was used in the

survey (Al Maghraoui et al., 2019)



74 Chapter 3. Synchronizing people transportation �ows

3.6 Conclusions

In this study, a heuristic approach for studying and comparing the di�erent ownership

models for autonomous vehicles has been introduced. The proposed approach consists of

two phases: an identi�cation phase for generating the set of feasible matches, and an opti-

mization phase, for selecting the best among them. The algorithm was tested with di�erent

scenarios and replacement rates using instances generated based on New York City taxicab

datasets.

Results of the analysis indicate that sharing AVs has the potential of increasing the

number of participants and the matching rate for riders as well as the number of participants

that can be served by an AV. Although shared AVs might have to circulate for longer

distances, sharing rides can save up to 23% of the overall traveling distance which has a

considerable impact on tra�c in New York City. In addition, our results suggest that a

system, in which on-demand AV service is partially or fully used and shared, has a better

performance than a system in which only individually-owned AVs are used. The advantages

of the shared on-demand AV service are illustrated in higher rider matching rates, fewer

number of AVs needed to satisfy the demand, better distance saving rates and shorter travel

times. In addition, this study suggest that �eet sizing, the e�cient planning of AV trips,

and the use of meeting points are important factors in a successful ridesharing system in

which autonomous vehicles operate.

Since we build our analysis on a set of assumptions that simplify the problem, the door

is always open for considering di�erent and more realistic settings. As such, we point out

some future research directions: (1) In this chapter we considered a static ridesharing set-

ting in which travel demands are known in advance and only one pickup and one drop o�

are allowed. Thus, an interesting research direction would be to consider more realistic

ridesharing settings in which travelers (owners and riders) are matched on-the-�y, (2) since

autonomous vehicles will be electric ones, a promising research direction would be to con-

sider recharging operations when building shared rides, and (3) how to consider di�erent

approaches for calculating travel distances. We believe that this study will help in better un-

derstanding the potential deployment of autonomous vehicles with their di�erent ownership

models, and thus, promote more research towards studying this emerging technology.
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Chapter 4

Synchronizing people and freight

transportation �ows

While a ridesharing system for people transportation is considered in chapter 3, we study

in this chapter an integrated system in which a set of freight requests need to be deliv-

ered using a �eet of grounded pickup and delivery (PD) robots where a public transporta-

tion service (referred to as scheduled line (SL)) can be used as part of PD robot's jour-

ney. As both passengers and PD robots (carrying freight) share the available capacity

on SLs, we consider that passengers are prioritized and that their demands are stochas-

tic. Thus, the number of available places for PD robots is only revealed upon SL de-

parture. We �rst formulate this problem as a Pickup and Delivery Problem with Time

Windows and Scheduled Lines (PDPTW-SL). We then introduce a sample average ap-

proximation (SAA) method along with an Adaptive Large Neighborhood Search (ALNS)

algorithm for solving the stochastic optimization problem. Finally, we present an exten-

sive computational study for assessing the impact of uncertainty on such integrated system.
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4.1 Introduction

The demand for freight transportation basically results from the need of transporting

goods from producers to consumers who are geographically apart. In general, this trans-

portation process consists of picking up products at their producer locations (pre-haul),

transporting them ( long-haul), and delivering them to �nal consumers (end-haul) at the

right time and place and at low costs (Steadiesei� et al., 2014). The increasing demand

for goods in urban areas, together with the emerging information and technological ad-

vances are creating both opportunities and challenges for planning urban freight systems

(Savelsbergh and Van Woensel, 2016). One of these promising opportunities is to use the

low-utilized people transport systems (e.g. o�-peak hours of urban rail, buses or private-car

trips) to also transport goods. A successful integration of these transportation streams can

enhance the service quality of their existing transportation systems as well as their system-

wide gains. For example, spare capacity in public transport systems can be used for retail

store replenishment (Trentini et al., 2015) or a taxi can deliver freight when transporting a

passenger or during idle time (Li et al., 2014).

In such combined systems, we have a set of passengers and parcels that need to be trans-

ported simultaneously from their origins to their destinations. This combination can lead

to minimizing vehicle-miles traveled, tra�c congestion and pollution levels in urban areas.

It can also yield some travel cost reductions for passengers. However, such a system must

ensure that the transportation of goods does not disturb passenger trips. In other words, a

passenger would accept only small deviations and short extra times when transporting some

parcels in the same trip (i.e. trip times that exceed passenger usual route times signi�cantly

might not be acceptable).

In this chapter, we consider an integrated system in which a set of freight requests needs

to be transported from their origins to their destinations. We use a �eet of grounded and

autonomous pickup and delivery (PD) robots where a public transportation service (e.g. a

set of shuttles, referred to asscheduled line (SL)) can be used as part of PD robot's journey
1. Most research considers that passengers and goods are transported separately. However,

we consider that passengers and PD robots (carrying goods) share the same capacity. This

implies that a freight request can be served in one of two ways: (1) a direct delivery (where

only a PD robot is used) or (2) transferred through SLs (where both PD robots and SLs

are used). Therefore, a parcel might be picked up at its origin location by a PD robot,

transported through the scheduled line with passengers, and delivered to its �nal destination

by the PD robot. In order to guarantee an acceptable service quality for passengers, they

are assumed to have a higher priority to use SL service. In other words, PD robots are only

able to use SLs when there are free places available (i.e. not used by any passengers).

1This integrated system was inspired from Toyota new e-Palette concept in which small delivery robots
travel with passengers in autonomous shuttles moving around in a city: https://newsroom.toyota.co.jp/
en/corporate/20546438.html
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A similar system is considered by Ghilas et al., 2016a where a scheduled line service is

used along with a �eet of heterogeneous vehicles to serve a set of freight requests. In their

system, the exact quantities demanded by each customer are only learned upon vehicles'

arrival at the corresponding pickup locations. Unlike their problem settings, we consider that

freight quantities are known in advance. In addition, we consider that passengers demand

for transportation is only learned upon the shuttles' arrival to each SL station. Since

passengers and PD robots share the same capacity on SLs, the number of available places

for PD robots at each SL departure is thus stochastic. Depending on the actual passengers

transport demand, there are two possible violation outcomes:(i) the PD robot is not able to

take the next SL departure due to the high passenger demand at the corresponding station,

and (ii) the PD robot needs to get o� the SL at an intermediate station, where passengers

demand is high, in order to give its place to a passenger. When these route failures occur, a

number of recourse actions are needed in order to recover feasibility. Applying these recourse

actions might lead to extra handling and transportation costs compared to their original

routes.

The key contributions of this chapter are as follows. First, we model the proposed

pickup and delivery problem as a two-stage stochastic problem. The �rst stage consists of

de�ning routes for PD robots carrying freight requests. These routes are evaluated over

a set of scenarios and their associated recourse costs are calculated in the second stage.

The overall objective is to minimize the overall transportation costs (i.e. the sum of the

�rst-stage routing costs and the second-stage recourse costs). Second, we propose a sample

average approximation (SAA) method along with an Adaptive Large Neighborhood Search

(ALNS) algorithm for solving the stochastic optimization problem. Finally, we provide

a computational study to quantify the impact of passengers demand realization on such

combined systems. This is achieved by comparing the solutions obtained when deterministic

and stochastic versions of the problem are solved. While the potential bene�ts of integrating

parcel deliveries to SL service were extensively studied in Ghilas et al., 2016b, in this paper

we aim at studying the impacts of stochastic passenger demands on this system with di�erent

SL frequencies and capacities.

This chapter is organized as follows. In section 4.2, we provide an overview of related

literature. In section 4.3, we describe the problem, provide a mathematical formulation for

it, and introduce an algorithm to evaluate its solutions and calculate their recourse costs.

The proposed solution method is detailed in section 4.4. In section 4.5, we present the

computational study and analyze its results. Finally, in section 4.6, the key �ndings are

summarized and directions for future research are suggested.
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4.2 Background

An increasing amount of research is being directed recently towards studying and devel-

oping new transportation systems that integrate passenger and freight �ows. These systems

can be classi�ed into single-tiered and two-tiered systems. In single-tiered systems, a set

of vehicles transport passengers and goods to their destinations while taking into account

some considerations (e.g. request time windows, vehicle capacity, etc.). On the other hand,

passenger and freight �ows are combined in two-tiered systems thanks to the contribution

of a �rst-tier (e.g. a public mass-transport line), and a second-tier (e.g. a �eet of vehicles)

that performs the last-mile deliveries to customers (see Mourad et al., 2019 for a recent

review).

Regarding single-tiered systems, Li et al., 2014 introduced theShare-a-Ride Problem

(SARP) in which passenger and freight requests are transported using a �eet of taxis driv-

ing around in a city. As passenger requests are given a higher priority, some parcels are

delivered during taxi trips in case this delivery does not a�ect the passengers signi�cantly.

For solving the SARP, a MILP formulation, that extends the classical Dial-a-Ride prob-

lem, along with an Adaptive Large Neighborhood Search (ALNS) method were proposed

(see also Li et al., 2016b). Their results demonstrated the bene�ts of such combination

in terms of transportation costs and traveled distances. These bene�ts were observed by

comparing results to those where passenger and freight requests are served separately. In

another study, Arslan et al., 2016 presented an event-based rolling horizon framework that

dynamically assigns parcel deliveries to self-employed drivers who are willing to earn some

extra money by making deliveries on their way to home or work. In addition, the authors

proposed a heuristic recursive algorithm for solving the routing subproblem. Their results

demonstrated that this integrated delivery can potentially reduce last-mile delivery costs

as well as the system-wide vehicle miles. Archetti et al., 2016 considered a similar single-

tiered model where a set of occasional drivers is used to supplement the service provided

by delivery vehicles and dedicated drivers. Occasional drivers are those willing to make

a single delivery using their own vehicle. The authors modeled this problem as aVehicle

Routing Problem (VRP) with occasional drivers and proposed a heuristic approach that

uses variable neighborhood and tabu search strategies for solving it. Their results showed

that introducing more occasional drivers to the system can decrease the total transportation

cost and the number of dedicated drivers required. Moreover, Wang et al., 2016 presented

a single-tiered model where last-mile deliveries are performed by a large-pool, acrowd, of

citizen workers. The proposed model was formulated as a network min-cost �ow problem

and solved using an iterative pruning technique. Furthermore, Dayarian and Savelsbergh,

2017 suggested that potential customers can express their interest to participate in making

deliveries on their way home. The authors proposed a tabu search heuristic method for

generating vehicle routes.
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On the other hand, some recent studies have focused on studying two-tiered systems.

Fatnassi et al., 2015 introduced an integrated system where passengers and goods are trans-

ported to intermediate points using a �rst-tier (train, bus or truck line), and then delivered

using a �eet of electric vehicles (second-tier). The authors proposed a forward periodic-

optimization approach which showed that the proposed system can achieve a potential gain

in terms of service time and energy consumption. Another study, by Masson et al., 2017,

considered a combined system that uses the available capacity in a passenger bus line to

transport parcels to speci�c bus stations where a �eet of low-emission freighters delivers

them to �nal customers. The paper formulated the system as aVehicle Routing Problem

with transfers and proposed an ALNS-based heuristic to solve it (see also Trentini et al.,

2015). Similarly, Ghilas et al., 2016b introduced a two-tiered system where parcels are

delivered by a �eet of vehicles such that a part of the delivery process is carried out on a

scheduled line of public transport. The paper modeled this integrated system asPickup and

Delivery Problem with Time Windows and Scheduled Lines(PDPTW-SL) and introduced

an ALNS-based algorithm for solving it. Their results showed that an average cost savings

of 10% can be achieved thanks to the use of the scheduled line compared to a pure-freight

delivery system. Moreover, Ka�e et al., 2017 suggested that parcels can be transported to

intermediate points using a set of carrier trucks, and then delivered by a set of potential

cyclists and pedestrians who are living in the same neighborhood. The authors proposed

a tabu search algorithm for solving the asoociated optimization problem. Their results

demonstrated that the use of potential cyclists and pedestrians can reduce the operational

costs by 9.25% compared to a truck-based delivery system.

As for studying uncertainty in such combined systems, Li et al., 2016b extended the

SARP, introduced earlier, by considering two stochastic variants. The �rst variant con-

sidered the travel times to be stochastic while the second considered stochastic delivery

locations. For solving both variants, a two-stage stochastic programming model with re-

course is used with the ALNS heuristic and a scenario generator. Through an extensive

experimental study on both stochastic models, the paper concluded that the stochastic

travel times have a more noticeable e�ect on the SARP than the stochastic delivery lo-

cations. In addition, Ghilas et al., 2016a extended their two-tiered model by considering

stochastic demand quantities of freight requests which are only revealed upon the vehicle's

arrival to their pickup locations. A scenario-based sample average approximation approach

was introduced in order to consider this uncertainty. After reviewing the related literature,

we provide a detailed description of the considered problem along with the method used to

solve it in the following sections.



80 Chapter 4. Synchronizing people and freight transportation �ows

4.3 Problem Description

Consider a set of shuttles that operate on a scheduled line (SL) service in both directions.

This service consists of a set of physical transfer nodes (i.e. stations)S, where passengers

take shuttles as part of their trip to their �nal destinations, and a set of physical scheduled

lines E linking di�erent transfer nodes. Between every pair of transfer nodesi; j 2 S , there

are two scheduled lines with opposite directions(i; j ); (j; i ) 2 E. Shuttles move through

the scheduled line in �xed routes. Every shuttle moving through scheduled line(i; j ) has a

capacity Qij , indicating the number of available places, and a scheduleK ij , indicating its

departure times at origin transfer nodei (denoted by pw
ij , e.g. the second departure froms1

to s2 is p1
s1 ;s2

= 60 time units). Moreover, shipping one unit of package on scheduled line

(i; j ) is associated with a cost� ij per unit. In addition, a �eet of autonomous, pickup and

delivery (PD) robots are located at transfer nodes. Each PD robotv 2 V is assigned to a

depot (i.e. transfer node)or 2 S and has a capacityQv and a maximum service distance

� v indicating the maximum distance it can go from a transfer node to a request pickup or

destination location. Each PD robot is associated with a routing cost per time unit� v .

(a) Direct delivery - PD robot (b) Indirect delivery - PD robot and SL

Figure 4.1: Request service modes: direct & indirect delivery

In addition, a set of freight requests need to be transported to their �nal destinations

using the �eet of PD robots. Each request is associated with an originr 2 P and a

destination r + n 2 D (where n = jPj is the number of requests), indicating where it should

be picked up and to where it should be delivered. In addition, requestr is associated with

two time windows, a pickup time window [er ; l r ] and a delivery time window [er + n ; l r + n ],

and a demand quantity dr . Pickup and delivery time windows indicate when the request

should be picked up by a PD robot and when it should be delivered to its �nal destination.

Depending on the availability of vacant places in SLs, PD robots carrying freights may travel

with passengers between di�erent transfer nodes. A freight, carried by a PD robot, can thus

be transported by a shuttle between two transfer nodes as part of its journey.

Indeed, allowing passengers and PD robots to travel simultaneously aims at using the

spare capacity in shuttles especially that loading (and unloading) these robots into shuttles
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at transfer points come with relatively short service times. As a result, delivering a request

to its �nal destination can be done in either direct or indirect way (see Figure 3.1). In a

direct delivery , a request is picked up by a PD robot at its origin and delivered directly to

its �nal destination without the use of the scheduled line (Figure 3.1a; requesta1 is picked

up at its origin oa1 by a PD robot coming from transfer nodes2, and delivered to its �nal

destination da1 before the PD robot returns to transfer nodes3).

It is important to mention that a direct delivery is only feasible if the distance between

the transfer node and request origin/destination, and between request origin and destination

locations is less than the maximum distance the robot can travel. In Figure 3.1b, if the

distance betweenoa1 and da1 is greater than the robot maximum service distance, a direct

delivery cannot be performed and the SL service must be used. On the other hand, in

an indirect delivery , a request may be collected by one PD robot, transferred through

the scheduled line and delivered afterwards to its �nal destination by the same PD robot

(Figure 3.1b, requesta1 is picked up at its origin oa1 by a PD robot, brought to transfer

node S2, transported through the scheduled line froms2 to s3 and �nally delivered to its

�nal destination da1 by the PD robot).

Since passengers and PD robots are using SLs simultaneously in indirect deliveries, we

assume that a passenger or a PD robot needs one place in a shuttle while passengers have

higher priority to be transported. We also assume that PD robots cannot take over more

than a �xed number of places in each shuttle (e.g. if the shuttle capacity is 10 places, PD

robots can take over at most 3 places). We assume that each PD robot can serve only one

freight request at a time. In other words, a PD robot can only pickup one request from its

origin to a transfer point and deliver it from a transfer point to its �nal destination during

one single trip. This assumption can be relaxed so as to consider more realistic settings in

which a PD robot can perform multiple pickups and deliveries during a single trip.

Furthermore, the following set of assumptions is used throughout the chapter:

ˆ SLs are assumed to be homogeneous in terms of frequency and capacity.

ˆ We assume that all the shuttles operating on SLs have the same capacity. Each shuttle

is thus assumed to have a maximum number of places to transport both passengers

and PD robots.

ˆ We assume that a PD robot might return to a di�erent station than the one it departed

from (as it is the case in Figure 3.1a) after delivering its request (i.e. relocation

operations are not considered).

ˆ As PD robots are likely to be electric ones, a PD robot is assumed to be fully charged

at each time it departs from a transfer node for picking up or delivering a request

and that this charge is enough to perform its trip (recharging operations are not

considered).
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ˆ It is also assumed that each PD robot has a storage compartment (where parcels are

stored during the robot trip) and those compartments are assumed to be homogeneous.

ˆ Regarding freight demands, it is assumed that the exact quantity and delivery time

windows of each request are known beforehand.

ˆ In addition, we assume that each demand unit corresponds to a package of a stan-

dardized small size so that it can �t in robot storage compartments (content, nature

and weight of the package are disregarded).

ˆ Finally, we assume that travel and service times are known beforehand and remain

unchanged during the planning horizon.

(a) Physical scheduled line (b) Virtual scheduled line

Figure 4.2: Scheduled line with four replicated transfer nodes

Similar to Ghilas et al., 2016c, each scheduled line is replicated inn copies. Figure 4.2

illustrates an example in which we have four transfer nodes {1, 2, 3, 4}, three physical sched-

uled lines (i.e., arcs (1,2), (2,1), (2,3), (3,2), (3,4) and (4,3)) and two requests { a, b }. Each

replication is assigned to one request, and only that speci�c request can travel on the assigned

scheduled line (Figure 4.2b). As such, the set of all replicated scheduled lines is denoted byF

(i.e., { (1a,2a), (1b,2b), (2a,3a), (2b,3b), (3a,4a), (3b,4b), (2a,1a), (2b,1b), (3a,2a), (3b,2b),

(4a,3a), (4b,3b) } in Figure 4.2b). Furthermore, the set of replicated SLs associate with

request r is given asF r (e.g., in Figure 4.2,F a = f (1a; 2a); (2a; 1a); :::; (3a;4a); (4a; 3a)g).

In addition, the set of replicated SLs related to the replicated transfer nodet is given asF t

(e.g. F 1a = f (1a; 2a); (2a;1a)g). Finally, F ij includes all replicated SLs associated with a

physical SL (i; j ) 2 E (e.g. F 1;2 = f (1a; 2a); (1b;2b)g and F 2;1 = f (2a; 1a); (2b;1b)g).

Furthermore, each transfer node inS (i.e. nodes 1, 2, 3 and 4 in Figure 4.2a) is

copied n times. Hence, we denote the set of all replicated transfer nodes byT (i.e.

T = f 1a;1b;2a; 2b;3a; 3b;4a; 4bg in Figure 4.2b). In addition, we use  t , 8t 2 T as the

physical transfer node represented by the replicated transfer nodet (e.g.  1a =  1b = 1 ).

Thus, set T t is f i 2 T j  i =  t and i 6= tg, 8t 2 T (e.g. T 2a = f 2bg in Figure 4.2b).
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Figure 4.3: An example network with s replicated nodes and two requests

The proposed pickup and delivery problem can be de�ned on a digraphG = ( N ; A) where

N = P
S

D
S

T , represents the set of graph nodes (i.e. request origins, destinations

and replicated transfer nodes), andA � A 1 [ A 2 [ A 3 represents the set of feasible arcs

connecting di�erent graph nodes, where:

ˆ A 1 = (( P [ D ) � (P [ D )) n f (r + n; r ) : r 2 Pg

ˆ A 2 = f (i; j ) : i; j 2 T ; ( i ;  j ) =2 Eg

ˆ A 3 = (( P [ D ) � T ) n (f (j; r ) : r 2 P ; j 2 T r g [ f (r + n; j ) : r 2 P ; j 2 T r g)

As can be seen in Figure 4.3, subsetA 1 represents arcs linking request origin and des-

tination nodes, subsetA 2 represents arcs linking replicated transfer nodes, and subsetA 3

links request origin and destination nodes to transfer nodes.

For modeling the problem, we introduce two binary variables;xv
ij equals to 1 if arc(i; j )

is used by PD robot v and 0 otherwise,8(i; j ) 2 A ; v 2 V , and qvw
ij equals to 1 if replicated

scheduled line(i; j ) is used by PD robot v that departs from node i at time pw
ij and 0

otherwise, v 2 V ; (i; j ) 2 F i j; w 2 K ij . In addition, we introduce two timing variables; � i

indicates the departure time of a PD robot from nodei , and  v
i which indicates the departure

time of a PD robot v 2 V from replicated transfer nodei (notations and variables used in

this chapter are summarized in Table 4.1). As the problem has been described and basic

variables and notations have been introduced, we present the two-stage stochastic model in

the following two subsections.

4.3.1 The �rst-stage model

Min
X

(i;j ) 2 A

X

v 2 V

� v t ij xv
ij + E [ Q ( � ; � ; � ) ] (4.1)
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Notations:
S Set of physical transfer nodes.
T Set of replicated (virtual) transfer nodes.
E Set of physical scheduled lines.
F Set of replicated (virtual) scheduled lines.
P Set of requests (represented by their origin location nodes).
D Set of request destination nodes.
V Set of PD robots.

K ij Set of indices for the departure times from origin nodei of scheduled line(i; j ) 2 E.
� ij Cost of shipping one unit of package on scheduled line(i; j ) 2 E.
� v Routing cost per one time unit of PD robot v 2 V
Qij Capacity of scheduled line(i; j ) 2 E.
Qv Capacity of PD robot v 2 V .
ov Origin location of PD robot v 2 V .
t ij Travel time from node i to node j .
si Service time at nodei .

Decision variables:
xv

ij = 1 if arc (i; j ) is used by robotv, and 0 otherwise.
qvw

ij = 1 if replicated scheduled line(i; j ) is used by robot v that departs from node i
at time pw

ij , and 0 otherwise.
Timing decisions:

� i Departure time of a robot from node i .
 v

i departure time of robot v 2 V from transfer node i .

Table 4.1: Notations and Variables

subject to

Routing and �ow constraints

X

i 2N

X

v2V

xv
ij = 1 8j 2 P [ D (4.2)

X

i 2N

xv
ov i � 1 8v 2 V (4.3)

X

i 2N

X

v2V

xv
it � 1 8t 2 T (4.4)

X

j 2N

xv
ij �

X

j 2N

xv
ji = 0 8i 2 N ; 8v 2 V (4.5)
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X

t2T

xv
it �

X

t2T

xv
tj = 0 8v 2 V ; 8(i; j ) 2 P � D (4.6)

t ij xv
ij � � v 8i; j 2 N ; 8v 2 V (4.7)

Capacity constraints

X

i 2T

X

v2V

dj xv
ij � Qv 8j 2 P (4.8)

Scheduling constraints

X

v2V

xv
ij = 1 = ) � j � � i + t ij + sj 8i; j 2 N (4.9)

� r + n � � r + t r;r + n + sr + n 8r 2 P (4.10)

ei � � i � si � l i 8i 2 P [ D (4.11)

Synchronization constraints

X

w2K  i ; j

qvw
ij = xv

ij 8v 2 V;(i; j ) 2 F v (4.12)

qvw
ij = 1 and xv

ij = 1 = )  v
i = pw

ij 8v 2 V ; (i; j ) 2 F v ; w 2 K  i ; j
(4.13)

Decision variable domains

xv
ij 2 f 0; 1g 8(i; j ) 2 A ; v 2 V (4.14)

qvw
ij 2 f 0; 1g 8v 2 V ; 8(i; j ) 2 F v ; w 2 K  i ; j

(4.15)

� i 2 R + 8i 2 N (4.16)
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 v
i 2 R + 8v 2 V ; i 2 T (4.17)

The objective function (4.1) minimizes the total costs of operating PD robots and the

recourse costs incurred by SL capacity violations. In the recourse function,� is the given

routing vector, � is the set of scenarios, and� is the cost vector for using the scheduled

lines per unit shipped. In this problem, we have four sets of constraints: routing, capacity,

scheduling, and synchronization constraints. As for routing and �ow constraints, constraints

(4.2) state that all request pickup and delivery nodes (origins and destinations) are visited

exactly once by a PD robot. Constraints (4.3) ensure that each PD robot must leave its

depot at most once. Constraints (4.4) ensure that each replicated transfer node is visited at

most once. Flow conservation for PD robots is considered in constraints (4.5). Constraints

(4.6) ensure that the same PD robot that picked up the request at its origin, will proceed to

deliver it to its �nal destination (i.e. this set of constraints couple the pickup and delivery

trips of PD robots). Constraints (4.7) ensure that the maximum travel distance that PD

robots can perform is respected. Since requests demand is known beforehand, constraints

(4.8) ensure that the capacity of PD robots is respected at each time they pickup a request.

For the scheduling constraints, constraints (4.9) ensure that if arc(i; j ) is used by PD robot

v, the departure time of v from node j should be greater than or equal to the sum ofv

departure time from node i , the travel time from i to j , and the service time at nodej .

Precedence relations for each request (i.e. request origins should be visited before their

destinations) are considered in constraints (4.10). Constraints (4.11) enforce time window

restrictions on request pickup and delivery. In order to synchronize PD robot trips and the

scheduled line, constraints (4.12) and (4.13) ensure that the departure time of a PD robot at

a transfer node is equal to the SL departure time at that transfer node (i.e. their departures

are synchronized).

We note that constraints (4.9) and (4.13) are formulated as implications, and thus, need

to be linearized. Using standard linearization techniques, we express them by one or two

linear inequalities, as follows:

� j � � i + t ij + sj � M ij (1 �
X

v2V

xv
ij ) 8i; j 2 N (4.18)

 v
i � pw

ij + M i (2 � qvw
ij � xv

ij ) 8v 2 V ; (i; j ) 2 F v ; w 2 K  i ; j
(4.19)

 v
i � pw

ij � M i (2 � qvw
ij � xv

ij ) 8v 2 V ; (i; j ) 2 F v ; w 2 K  i ; j
(4.20)
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4.3.2 The second-stage decisions

Due to the uncertainty, the SL capacity might be violated each time a shuttle arrives

at a transfer node. This is because passenger demands are unknown by the time of the

planning and are assumed to follow a known probability distribution. In other words, the

SL service might not be su�cient for the actual passengers demand and PD robots (4.21).

Given the routing solution vector � , indicating PD robot routes and schedules from the

�rst-stage, the aim of the second-stage is to evaluate this solution over a set of scenarios

and calculate the expected recourse cost (E [ Q ( � ; � ; � ) ]). At this stage, a scenario

indicates the realized passengers demand at each departure from a transfer node, and thus,

the number of available places for transporting PD robots.

X

r 2P 0

X

(a;b)2F ij

qrw
ab > Q w

ij 8(i; j ) 2 E; w 2 K ij (4.21)

Since the number of available places at each shuttle is only revealed upon the shuttle's

arrival time at a transfer node, capacity violations might occur at the corresponding transfer

node (denoted as failure point). Depending on passenger demand realizations, these capacity

violations might occur in two di�erent situations:

ˆ Situation#1 : After picking up a request and bringing it to a transfer node, a PD

robot may not be able to take the next SL departure at that transfer node due to the

high passenger demand (passengers are prioritized over PD robots).

ˆ Situation#2 : After taking a shuttle to travel between two transfer nodes as part of

its trip, a PD robot may need to get o� the SL at an intermediate transfer node due

to high passengers demand. In this case, the PD robot needs to give its place to one

of the passengers who are willing to take the SL at that transfer node.

In both situations, the same capacity violation is obtained: not enough capacity for

transporting PD robots with passengers through the SL service. A set of corrective (or

recourse) actions needs to be applied in order to recover feasibility, which might lead to

additional costs. We consider the following recourse actions to deal with both situations

leading to capacity violation outcome. These are:

ˆ Action#1 : If the PD robot cannot take the current departure at the failure point

due to high passengers demand, it is transported using the subsequent service of the

scheduled line. In other words, the PD robot waits for the next shuttle arriving to the

failure point. This recourse action comes with no extra costs as long as waiting the

next departure does not violate request delivery time window.

ˆ Action#2 : If waiting the next shuttle departure leads to violating the capacity of

the subsequent SL service or request delivery time window. If the distance between
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failure point and request destination is less than the maximum service distance that

the PD robot can handle, the PD robot delivers the request to its �nal destination by

itself. This recourse action implies some additional costs since a PD robot might have

to perform a longer trip than planned.

ˆ Action#3 : If none of the �rst two recourse actions can be applied, the request is

served by an outsourced service (a dedicated vehicle). This service transports the

request from failure point to its �nal destination. The extra cost implied by using this

outsourced service depends on the distance that the outsourced vehicle has to travel.

Figure 4.4: Calculate-Recourse-Cost Algorithm

Another important issue is to rank or schedule PD robots that are waiting to take the

scheduled line at one transfer node, according to some criteria. The model needs to decide

which PD robots have the priority to be transported in case the realized number of available

places in a shuttle is insu�cient ( situation#1 ). For this purpose, we sort PD robots at each

transfer node according to the earliest delivery date of the requests they carry. The PD robot

carrying request with the earliest delivery date is thus the �rst to be transported when a

shuttle with available places arrives to the corresponding transfer node. A similar issue

appears when some PD robots need to get o� a shuttle at an intermediate transfer node to

give space to more passengers (situation#2 ). Therefore, the model also needs to determine

the order in which PD robots are asked to get o� a shuttle at a certain intermediate transfer

node. In this latter case, PD robots already in shuttle are sorted according to their latest

delivery date (i.e. PD robot carrying request with the latest delivery date has to get o� the

shuttle �rst). It is important to mention that we do not consider the case where a PD robot
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is asked to get o� to allow another one (with an earlier delivery date) to take it's place. PD

robots are thus asked to get o� only to give place to passengers.

To summarize, the recourse function checks if there are capacity violations at each SL

departure. In case SL capacity is violated at a given departure, PD robots that are waiting

at the corresponding transfer node, referred to asat-node PD robots, are sorted according to

the earliest delivery date of their carried requests. In addition, PD robots that are already

in-shuttle are sorted according to the latest delivery date of their requests. Then,at-node

and in-shuttle PD robots that cannot take the shuttle at the current departure are assigned

to the next departure (action#1 ) since it does not imply extra costs. If waiting for the

next departure leads to violating the request's time windows, the recourse function checks

if some PD robots can deliver their requests from the corresponding transfer node to their

�nal destination ( action#2 ).

Finally, the still remaining requests (i.e. that could not be served using neitheraction#1

nor action#2 ) are outsourced using dedicated delivery vehicles (action#3 ). As a result,

depending on actual passenger demand,(i) someat-node PD robots might be able to take

SL next departure while others might have to wait, (ii) all at-node PD robots might not be

able to take the next shuttle while no in-shuttle PD robots are asked to drop o�, or (iii)

all in-shuttle PD robots may have to drop o� from the shuttle and join the waiting PD

robots at the corresponding transfer node. The algorithm for calculating the recourse cost

of a given routing solution is outlined in Figure 4.4 (see also Appendix A.3 for the detailed

recourse function).

4.4 Solution Approach

In this section, we present our solution approach. This consists of a scenario-based Sam-

ple Average Approximation (SAA) framework (Section 4.4.1), and an ALNS-based heuristic,

to solve the corresponding SAA problems (Section 4.4.2).

4.4.1 The sample average approximation method

The Sample Average Approximation (SAA) method is an iterative approach for solving

stochastic optimization problems. It aims at approximating the expected objective function

of the stochastic problem using a sample average estimate derived from a random sample

(Verweij et al., 2003). While the set of possible scenarios might be very large, the SAA

iteratively solves the problem using smaller and more tractable sets of scenarios (referred to

as SAA problems), and obtains candidate solutions along with their respective optimality

gaps.

The method starts by generating a large set of scenarios
 and iterates until the value of

the optimal solution is approximated by solving the stochastic problem with smaller sample

sets. At each iteration l , a sample set of scenarios! l : j! l j << j
 j is generated from the
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Figure 4.5: Sample Average Approximation (SAA) Algorithm

larger set 
 and the corresponding SAA problem is solved using the ALNS heuristic. The

obtained solution x l with objective value f l
! l

is then evaluated using the recourse function

in order to determine an upper boundf 
 (x l ) for the generated set of scenarios
 :

f 
 (x l ) = CalculateRecourseCost(x l ; 
) (4.22)

Afterwards, a statistical lower bound, denoted byf 0
! l

(x l ), for the optimal solution value

of sample! l is calculated by averaging the objective function values obtained in previous

iterations:

f 0
! l

(x l ) = 1 =l
lX

i =1

f i
! l

; (4.23)

where f i
! l

is the objective function value obtained at iteration i . To the best of our

knowledge, this is the most commonly used approach in the literature for approximating a

statistical lower bound in SAA-based methods (see also Verweij et al., 2003; Ghilas et al.,

2016a). Once both bounds are obtained ((4.22),(4.23)), the SAA gap is calculated as follows:

� (! l ; 
) = f 0

 (x l ) � f 0

! l
(x l ) (4.24)

The process continues until the best gap� (!; 
) is found and the corresponding best

solution is returned (see Figure 4.5, and Appendix A.5 for the detailed algorithm).
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4.4.2 ALNS heuristic

An ALNS heuristic algorithm is used to generate routing solutions of minimum total

cost. The heuristic is used in combination with the recourse function (Algorithm 3) in order

to compute the recourse cost of a generated solution. The main idea of the ALNS is to

iteratively apply a set of removal and insertion operators on an initial solution until the

best solution is found (Figure 4.6).

Figure 4.6: Adaptive Large Neighborhood Search (ALNS) Algorithm

The algorithm starts by generating an initial solution indicating initial PD robot routes.

The algorithm then applies a removal operator to remove one PD route from the initial

solution. The removed PD route is then reconstructed and reinserted to the solution using

an insertion operator and a new solution is obtained. The operators are dynamically selected

according to their past and current performances through a roulette-wheel mechanism. In

other words, each operator, removal or insertion, is associated with ascore that is increased

at each time this operator leads to a better solution, and a probability that indicates how

likely this operator is to be selected in the next iteration. This means that operators

with better scores have a higher probability to be used by the algorithm. In order to

build their scores, operators are selected randomly in the �rst 100 iterations. The roulette-

wheel mechanism is then used based on the calculated operator scores. Once applying

these operators yields an improvement, the new solution is stored, and the best solution is

updated. The algorithm continues until either a maximum number of iterations or a certain

number of iterations with no improvement is reached (see Appendix A.4 for the detailed

algorithm).
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Generating initial solutions :

Since we use simpli�ed problem settings, in which only one pickup/delivery per PD robot

trip is allowed, we start with a simple heuristic to generate initial feasible solutions. This

heuristic is composed of two main steps:

1. We start by selecting requests that can be delivered directly by a PD robot depending

on the distance between their origin and destination locations (direct delivery). These

direct PD robot routes are then added to the initial solution.

2. For the other requests (indirect delivery), indirect PD robots are constructed by ran-

domly assigning them to one of the feasible pickup/drop-o� transfer nodes while re-

specting their time restrictions.

To this end, the feasibility of the returned solution, in terms of request time windows

and SL departure times, is assured. This initial feasible solution can then be improved

by the ALNS operators as it does not lead to min-cost PD robot routes. We describe the

removal and insertion operators used by the ALNS algorithm in the following subsections.

Removal operators :

ˆ Random removal (R1 ) : This operator removes a randomly selected robot route (re-

quest) from the solution which helps in diversifying the search for a better solution.

ˆ Limited random removal (R2 ) : This operator is similar to R1 but it limits the number

of times a robot route (request) is removed in the last 100 iterations. For other

requests, which their counts have not reached the speci�ed limit,R1 is applied.

ˆ Tabu-based removal (R3 ) : This operator also keeps a record of robot route removal

counts for the last 100 iterations (asR2) and removes those with the smallest frequency

of removal rate. This operator also helps in diversifying the search.

ˆ Early-SL-depart removal (R4 ) : This operator removes the robot route with the short-

est waiting time at the pickup transfer nodes from the solution. The request waiting

time at a speci�c transfer node is obtained from the di�erence between its arrival to

that transfer node and its departure from it (i.e. a PD robot might have to wait at a

transfer node until the next SL departure).

ˆ Late-SL-depart removal (R5 ) : Unlike R4, this operator removes the robot route with

the longest waiting time at transfer nodes from the solution.
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Insertion operators :

ˆ Pickup Transfer-node insertion (I1 ) : This operator reconstructs a robot route by

assigning it to a di�erent pickup transfer node than the one it was assigned to before

being removed. This operator helps diversifying the search by leading to di�erent

transportation costs (i.e. operational and recourse costs). This potential improvement

highly depends on SL and PD robot transshipment costs as well as the maximum

service distance of PD robots which can limit the feasibility of this assignment.

ˆ Drop-o� Transfer-node insertion( I2 ) : This operator reconstructs a robot route by

assigning it to a drop-o� transfer node that is di�erent than the one it was assigned to

before being removed. Similar toI1, this operator can lead to di�erent transportation

costs.

ˆ Early-SL-depart insertion (I3 ) : This operator reconstructs a robot route by assigning

it to the same pickup transfer node but with an earlier departure time. Indeed,

changing the SL departure to which a PD robot is assigned, leads to di�erent recourse

costs as passengers demand varies between di�erent SL departures.

ˆ Late-SL-depart insertion (I4 ) : Unlike I3, this operator reconstructs a robot route by

assigning it to the same pickup transfer node but with a later departure time. This

operator is also important for solving the stochastic optimization problem as it leads

to di�erent recourse costs.

That said, these operators are used by the heuristic to remove and insert robot routes

to a current solution. They provide a reasonable choice for our problem settings where

only one request is served during a PD robot trip. The heuristic can thus be extended by

considering di�erent operators when PD robots are allowed to perform multiple pickups and

deliveries at one trip (see operators at Ghilas et al., 2016b; Ghilas et al., 2016a).

4.5 Computational study

In this section, an extensive computational study to assess the performance of the pro-

posed solution approach is presented. First, we explain how we generate test instances and

we describe the di�erent parameters used (Section 4.5.1). We then show how we generate

the set of scenarios used by the SAA algorithm for solving the stochastic problem (Sec-

tion 4.5.2). Afterwards, we analyze the performance of the proposed heuristic approach

along with the di�erent operators used, and compare the results obtained from solving the

stochastic problem with those of the deterministic one (i.e. when no uncertainty is consid-

ered). Finally, we study the impacts of the considered source of uncertainty on the obtained

solutions with di�erent settings (Section 4.5.3).
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4.5.1 Parameters and instance generation

For testing the proposed solution approach, we generate instances with di�erent network

topologies and freight request distributions. Generated instances are named asP_D_r_n,

where P represents the network topology,D is the geographical distribution of freight re-

quests,r is request nodes range from transfer nodes, andn is the number of freight requests.

Since the proposed model can adapt di�erent network topologies, we generate instances with

line (referred to as "L") and triangular (referred to as " T") topologies (Figure 4.7a & 4.7b).

While the number of SLs is di�erent, instances with either topology have the same char-

acteristics. In addition, each instance contains up to 60 freight requests where their origin

and destination nodes are distributed over 200 x 200 Euclidean space. We consider three

di�erent distributions of freight requests (inspired from Ghilas et al., 2016a). These are:

C - freight request origin and destination nodes are clustered within at most 30 time units

around transfer nodes (Figure 4.7a),RC- request nodes are randomly clustered within at

most 50 time units to one of the available transfer nodes (Figure 4.7c), andUR- freight

requests are uniform-randomly distributed over the considered space (Figure 4.7d). As PD

robots are located at transfer nodes, we consider up to three PD robots at each transfer

node.

(a) L_C_30_25 (b) T_C_30_25

(c) L_RC_50_25 (d) L_UR_50_25

Figure 4.7: Instances with di�erent network topologies and request distri-
butions

We consider a planning horizon of 600 time units where SL departure interval is set

to 30 time units (i.e. there is a shuttle departing from each transfer node every 30 time
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units). We consider that this frequency is enough to cover passengers demand through SL.

We generate request pickup and delivery time windows randomly with an average width of

40 time units. A minimum of 100 time units is also assured between the end of pickup time

window and the start of delivery time window. Service time at each location (i.e. pickup,

drop-o� or transfer node locations) is set to three time units. This service time represents

the time needed for a PD robot to pick up or deliver a freight request, or to get in or o� a

shuttle at a transfer node.

Parameter Value Parameter Value
PD robot cost 0.5 Num. iterations no improvement 50
SL cost 1 The size of the large set of scenarios 10 000
Outsourcing cost 3 The size of the sample set of scenarios 50
PD robot capacity 1 Number of ALNS iterations 10 000
SL capacity 10 Number of SAA iterations 10
Max. num. places for PD robots 3 Score for new best solution 3
Freight request quantity 1 Score for improving current solution 1

Table 4.2: Set of parameters used in the computational study

The capacity of each PD robot and the quantity of each freight request are set to 1.

This means that each PD robot can serve one freight (i.e. any freight request) at a time.

The capacity of shuttles on SL is set to 10 places for both passengers and PD robots where

PD robots can take up to 3 places (di�erent limits are analyzed in section 4.5.3). Regarding

transportation costs, we assume the time unit cost for PD robots to be 0.5 unit. This

cost includes energy consumption, insurance and transportation expenses induced when PD

robots are used. In addition, the time unit cost of using SL service is set to 1 unit. This

cost includes loading, unloading, and transportation expenses each time a PD robot uses

the SL service. Finally, the recourse cost of using the outsource delivery service is assumed

to be 3 units (di�erent SL and robot shipment costs were analyzed in Ghilas et al., 2016b).

As introduced in section 4.4.2, we consider two stopping criteria for the heuristic method.

These are: the maximum number of ALNS iterations which is set to 10 000 iterations, and

the maximum number of consecutive iterations with no improvement which is set to 50

iterations. In addition, the score of an operator is increased by 1 if it leads to improving

the current solution, and by 3 if a new best solution is found. For the SAA algorithm, the

size of the large set of scenarios (
 ) is set to 10 000 scenarios while the size of the smaller

sample (! ) is set to 50 scenarios. Finally, the number of SAA iterations is set to 10 (SAA

parameters are �xed based on (Li et al., 2016b; Ghilas et al., 2016a) where similar problems

and solution methods are considered). The set of parameters used in the computational

study along with their values are presented in Table 4.2.
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4.5.2 Scenario generation

In order to test the proposed SAA algorithm, we need to generate a large set of scenarios

which represent the realized passengers demand at each SL departure. The actual passengers

demand helps the algorithm to decide whether PD robots can be transported through SLs or

some recourse actions need to be applied. For this purpose, passengers demand is assumed

to follow a discrete triangular distribution for a given minimum value a = 0 , mean b = 6

and a maximum valuec = 10 (Figure 4.8a).

(a) Passengers demand distribution
(b) An example of SAA scenario

Figure 4.8: SAA scenario generation

For example in Figure 4.8b, based on the realized passengers demand, the number of

available places for PD robots at the di�erent departures of scheduled lineS2 ! S3 is respec-

tively [2; 0; 1; 3; :::; 2]. Hence, PD robots are not able to take the second shuttle departure

from S2 to S3 as there are no available places for them, while there are 3 available places

at the fourth departure etc.

4.5.3 Experiments

The algorithms developed in this paper (i.e. recourse, ALNS and SAA algorithms)

are implemented in Java 1.8.0. CPLEX 12.6 solver is used for solving the MIP formula-

tion. Instances are tested on a quad-core i5-5300U machine with 8 GB of RAM. We study

the e�ciency of the proposed ALNS approach by comparing its results to those obtained

with CPLEX solver and analyzing the performance of its operators. We then examine the

stochastic solutions obtained by the SAA algorithm, compare them with the deterministic

ones, and analyze the impact of di�erent levels of passengers demand, SL frequency and

capacity on the obtained solutions.

Analyzing ALNS performance :

The results of solving instances with up to 100 freight requests are presented in Table

4.3 (results obtained by CPLEX are in bold ). In this table, # dir. indicates the number
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of direct deliveries,# ind. indicates the number of indirect deliveries, and# usv. indicates

the number of unserved freight requests. In addition,Cost column represents the total

transportation costs obtained by the ALNS heuristic and CPLEX (respectively) while Gap

(%) column gives the optimality gap percentage between them. Finally,CPU column

indicates the execution time needed to run both approaches, and# iter. column gives the

number of ALNS iterations performed.

Looking at table 4.3, we observe that the proposed ALNS is always able to �nd a

solution that is identical to the optimal one obtained by solving the MIP in terms of direct

and indirect deliveries. In addition, the ALNS is able reach the optimal solutions (Gap = 0 )

for all instances with less than 40 freight requests. For instances with more than 40 requests,

the ALNS is still capable of �nding solutions that are within 0.6% of the optimal solutions.

Moreover, the proposed heuristic returns solutions for instances with 100 requests for which

CPLEX is not able to �nd optimal solutions. This is due to the increasing complexity of the

problem (i.e. number of variables) when the number of freight requests gets larger. Since

the numbers of direct and indirect deliveries are the same in both solutions, this small gap

indicates that there are very few requests that could have been assigned to another pickup

or drop-o� transfer node so that some costs can be saved. We also observe that total costs

are generally lower for instances with clustered request distribution (L_C & T_C). This

can be explained by the likelihood of performing direct deliveries which is higher in clustered

instances, while requests are more scattered in randomly distributed instances (Table 4.3,

"# dir."). This can also be re�ected by the increasing number of unserved requests in

randomly distributed instances. In this latter case, some requests cannot be brought to

transfer nodes due to PD robot distance limitations. Another observation is that the total

costs are generally higher in line networks than in triangular ones. This indicates that

a triangular network might provide a better coverage to the service area while reducing

transportation costs.

The base case instances, with 10 freight requests, solve in few seconds with CPLEX.

This amount of time increases as the number of freight requests increases. We observe that

instances with line network topology need longer time to be solved to optimality than those

with triangular topology (an average of 6.3 mins for triangular instances with 60 requests

compared to 39.5 mins for same instances with line topology). The reason is that the

number of transfer nodes, and thus the number of variables and graph edges, is bigger in

instances with line topologies. This observation also gives an indication that a triangular

network topology might be more e�ective in terms of computational e�orts needed to solve

its instances. On the other hand, the proposed heuristic solves the di�erent instances in

very short running times (1.38 seconds in average) while maintaining near-optimal solutions.

These short running times suggest that our approach is suitable for approximating optimal

solutions for the stochastic problem where instances have to be solved over a large set of

scenarios in the SAA method.
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Instance #dir. #ind. #usv. Cost Gap(%) CPU(s) #iter.

L_C_30_10 0(0) 10(10) 0(0) 1030.1(1030.1) 0.0 0.03(4.1) 19
L_C_30_20 2(2) 18(18) 0(0) 3339.1(3339.1) 0.0 0.31(32.3) 239
L_C_30_30 3(3) 27(27) 0(0) 4156.4(4156.4) 0.0 0.53(143.5) 401
L_C_30_40 5(5) 35(35) 0(0) 4896.9(4872.2) 0.49 0.79(537.6) 698
L_C_30_60 7(7) 53(53) 0(0) 7452.2(7443.9) 0.11 1.47(3103.4) 919
L_C_30_100 12 (-) 88 (-) 0 (-) 12695.1(-) - 5.01 (-) 3157
L_RC_30_10 2(2) 8(8) 0(0) 971.2(971.2) 0.0 0.03(3.3) 20
L_RC_30_20 2(2) 18(18) 0(0) 2910.4(2910.4) 0.0 0.26(23.9) 189
L_RC_30_30 3(3) 25(25) 2(2) 4120.2(4120.2) 0.0 0.41(112.9) 352
L_RC_30_40 5(5) 34(34) 1(1) 5291.3(5291.3) 0.0 0.76(351.9) 626
L_RC_30_60 8(8) 51(51) 1(1) 9006.8(8983.8) 0.25 1.53(1802.4) 946
L_RC_30_100 12 (-) 87 (-) 1 (-) 14747.9(-) - 5.31 (-) 3323
L_UR_30_10 0(0) 8(8) 2(2) 1472.1(1472.1) 0.0 0.03(4.5) 17
L_UR_30_20 1(1) 16(16) 3(3) 3510.0(3510.0) 0.0 0.32(26.9) 198
L_UR_30_30 2(2) 23(23) 5(5) 4707.5(4707.5) 0.0 0.49(135.7) 401
L_UR_30_40 1(1) 34(34) 5(5) 6120.8(6099.7) 0.34 0.69(349.3) 517
L_UR_30_60 4(4) 51(51) 5(5) 9779.1(9741.8) 0.38 1.57(2215.9) 1065
L_UR_30_100 5 (-) 85 (-) 10 (-) 14917.4(-) - 6.12 (-) 4217

T_C_30_10 0(0) 10(10) 0(0) 1087.7(1087.7) 0.0 0.03(1.3) 21
T_C_30_20 5(5) 15(15) 0(0) 1826.9(1826.9) 0.0 0.14(7.1) 219
T_C_30_30 7(7) 23(23) 0(0) 2535.9(2535.9) 0.0 0.47(31.1) 311
T_C_30_40 7(7) 33(33) 0(0) 4087.4(4063.5) 0.0 1.07(95.4) 642
T_C_30_60 12(12) 48(48) 0(0) 6001.2(5978.6) 0.38 1.62(444.9) 1013
T_C_30_100 20 (-) 79 (-) 1 (-) 9473.3(-) - 4.37 (-) 3543
T_RC_30_10 2(2) 7(7) 1(1) 1121.3(1121.3) 0.0 0.03(1.2) 19
T_RC_30_20 1(1) 17(17) 2(2) 2224.4(2224.4) 0.0 0.22(5.9) 197
T_RC_30_30 3(3) 24(24) 3(3) 3666.8(3666.8) 0.0 0.39(24.5) 288
T_RC_30_40 1(1) 36(36) 3(3) 5126.3(5126.3) 0.0 0.96(61.7) 536
T_RC_30_60 6(6) 51(51) 3(3) 6340.7(6303.1) 0.58 1.61(371.7) 1002
T_RC_30_100 11 (-) 84 (-) 5 (-) 10148.9(-) - 5.91 (-) 3782
T_UR_30_10 0(0) 7(7) 3(3) 1164.6(1164.6) 0.0 0.03(1.2) 24
T_UR_30_20 1(1) 16(16) 3(3) 2784.6(2784.6) 0.0 0.19(5.8) 158
T_UR_30_30 2(2) 24(24) 4(4) 3825.7(3825.7) 0.0 0.32(20.6) 210
T_UR_30_40 2(2) 34(34) 4(4) 5673.4(5642.6) 0.54 0.94(61.6) 613
T_UR_30_60 5(5) 44(44) 11(11) 7861.9(7829.2) 0.41 1.38(317.6) 897
T_UR_30_100 8 (-) 78 (-) 14 (-) 13351.1(-) - 4.34 (-) 2976

Average ALNS 4.6 36.1 2.5 5539.6 0.116 1.38 937.6

Table 4.3: Analyzing ALNS performance

In tables 4.4 & 4.5, we analyze the removal and insertion operators used in the ALNS

using some relevant information on their performance. For each operator, we present its

usage frequency as a percentage of the total number of iterations, and the total time spent

on running it (given in parenthesis).
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Instance R1 R2 R3 R4 R5

L_C_30_60 25.4% (0.02) 23.1% (0.02) 23.6% (0.02) 14.1% (0.01) 13.8% (0.01)
L_RC_30_60 24.3% (0.02) 27.2% (0.02) 21.4% (0.02) 12.6% (0.01) 14.5% (0.01)
L_UR_30_60 22.1% (0.02) 24.5% (0.02) 24.1% (0.02) 16.8% (0.01) 12.5% (0.01)
T_C_30_60 26.5% (0.02) 25.3% (0.02) 22.7% (0.02) 12.1% (0.01) 13.4% (0.01)

T_RC_30_60 26.2% (0.02) 23.1% (0.02) 27.6% (0.02) 12.9% (0.01) 10.2% (0.01)
T_UR_30_60 24.9% (0.02) 23.9% (0.02) 25.2% (0.02) 11.8% (0.01) 14.2% (0.01)

Average 24.9% 24.5% 24.1% 13.4% 13.1%

Table 4.4: The performance of removal operators

Instance I1 I2 I3 I4

L_C_30_60 34.3% (0.04) 37.8% (0.04) 15.4% (0.02) 12.5% (0.01)
L_RC_30_60 32.7% (0.04) 38.4% (0.04) 14.8% (0.01) 14.1% (0.01)
L_UR_30_60 28.9% (0.03) 36.8% (0.04) 18.2% (0.02) 16.1% (0.02)
T_C_30_60 31.5% (0.04) 38.3% (0.04) 16.3% (0.02) 13.9% (0.01)

T_RC_30_60 34.7% (0.04) 40.1% (0.04) 13.6% (0.01) 11.6% (0.01)
T_UR_30_60 33.8% (0.04) 35.2% (0.04) 16.4% (0.02) 14.6% (0.01)

Average 32.6% 37.8% 15.8% 13.8%

Table 4.5: The performance insertion operators

Considering removal operators (Table 4.4), we observe that operators R1, R2 and R3

are the most frequently used. This is mainly because these three operators randomly select

robot routes (requests) and are used to diversify the search for a better solution.

We also observe that I1 and I2 are the most frequently used insertion operators (Table

4.5). This indicates that operators which assign robot route to an earlier, or later, SL

departure (i.e. I3 and I4) are used less than other operators which assign it to a di�erent

pickup, or drop-o�, transfer node.

Analyzing SAA performance and stochastic solutions :

In order to quantify the impact of stochastic passengers demand, we solve the instances,

introduced earlier in Table 4.3, using the proposed SAA algorithm. Results are presented

in Table 4.6 where the �rst three columns represent the usage frequency of recourse actions

1, 2, and 3 (respectively) as a percentage of the total number of times recourse actions

were used for each instance. The total transportation cost is then given along with the

associated operational and recourse costs. The additional cost induced by uncertainty is

then calculated by comparing the total cost of the stochastic solution with that of solving

the deterministic version of the problem using the heuristic (given in Table 4.3).

In table 4.6, we observe that the realization of passengers demand can add an average of

3.3% to the total transportation cost. This increase is due to the recourse actions that are

used to correct the interrupted robot routes. Indeed, when passengers demand is revealed,
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Instance act1(%) act2(%) act3(%) Cost(oper.,rcs.) Add(%) CPU(s)

L_C_30_10 95 1 4 1066.2 (1019.1 , 47.1) 3.5 15.7
L_C_30_20 81 2 17 3427.1 (3070.2 , 356.9) 2.6 154.8
L_C_30_30 86 1 13 4350.3 (3815.3 , 534.9) 4.7 234.5
L_C_30_40 91 2 8 4983.4 (4382.8 , 600.6) 2.3 395.2
L_C_30_60 89 0.5 1.5 7498.4 (7382.5 , 115.8) 0.7 635.4
L_C_30_100 94 1 5 12839.7 (12671.6 , 168.1) 1.1 2505.2
L_RC_30_10 99 1 0 975.1 (970.7 , 4.5) 0.4 13.8
L_RC_30_20 85 0 15 3257.1 (2924.8 , 332.2) 5.7 129.8
L_RC_30_30 92 0 8 4224.6 (4119.4 , 105.2) 2.5 204.5
L_RC_30_40 98 0 2 5326.1 (5219.6 , 106.5) 0.7 381.2
L_RC_30_60 97 1 2 9221.7 (8901.9 , 319.8) 2.6 765.1
L_RC_30_100 95 1 4 15322.6 (14356.7 , 965.9) 3.9 2655.4
L_UR_30_10 99 1 0 1478.3 (1470.1 , 8.3) 0.4 12.5
L_UR_30_20 93 1 6 3559.3 (3427.8 , 131.5) 1.4 157.4
L_UR_30_30 94 1 5 4960.1 (4622.6 , 337.6) 5.3 244.1
L_UR_30_40 98 0 2 6183.1 (6165.2 , 17.8) 1.4 345.5
L_UR_30_60 98 1 1 9929.2 (9670.2 , 258.9) 1.9 758.1
L_UR_30_100 96 0 4 15464.1 (14619.4 , 844.6) 3.7 3060.3

T_C_30_10 97 3 0 1172.9 (1170.6 , 2.3) 7.8 14.8
T_C_30_20 85 1 14 2058.4 (1789.6 , 268.4) 8.1 72.4
T_C_30_30 97 0 3 2582.9 (2483.6 , 99.3) 1.9 233.1
T_C_30_40 94 2 4 4213.2 (4079.8 , 133.3) 3.1 535.4
T_C_30_60 92 1 7 6114.8 (5669.5 , 445.2) 2.3 810.1
T_C_30_100 97 1 2 9589.1 (9424.9 , 164.1) 1.2 2185.7
T_RC_30_10 91 6 3 1138.7 (1074.3 , 72.4) 1.6 12.9
T_RC_30_20 96 3 1 2270.6 (2208.6 , 62.4) 2.1 112.4
T_RC_30_30 94 1 5 3738.8 (3578.6 , 160.2) 1.9 196.2
T_RC_30_40 90 2 8 5566.4 (5041.7 , 524.7) 8.6 581.3
T_RC_30_60 93 1 6 6678.8 (6231.9 , 446.9) 5.9 805.7
T_RC_30_100 97 1 2 10407.3 (10045.2 , 362.1) 2.6 2955.2
T_UR_30_10 95 0 5 1216.1 (1151.2 , 64.9) 4.4 12.8
T_UR_30_20 97 0 3 2828.3 (2763.9 , 64.4) 1.6 96.1
T_UR_30_30 91 1 8 4109.7 (3736.7 , 372.9) 7.4 162.4
T_UR_30_40 97 0.5 2.5 5704.1 (5626.9 , 77.1) 1.1 570.3
T_UR_30_60 94 1 5 8159.8 (7732.6 , 427.1) 4.2 691.6
T_UR_30_100 95 1 4 13893.2 (13207.2 , 686.1) 3.9 2170.8

Average SAA 93.6 1.1 5.3 5708.6 (5439.6 , 269.2) 3.3 691.3

Table 4.6: SAA results

the actual number of places for PD robots at each SL departure might not be su�cient and

recourse actions need to be applied adding extra expenses to the total transportation cost.

Since the recourse function applies recourse actions one by one to recover feasibility, one can

observe thataction#1 is the most frequently used among the other recourse actions (93.6%
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(a) Average total costs (b) Average added costs

Figure 4.9: Passengers demand analysis

in average). This is because this recourse action uses the subsequent SL service (i.e. waiting

the next SL departure) which does not imply additional transportation costs. We also

observe that action#2 is not frequently used by the algorithm (only 1.1%). This indicates

that a direct PD robot delivery, from failure point to request destination, is not feasible in

most of the time due to PD robot distance limitations. Most of the added recourse costs are

thus induced by action#3 as it guarantees the feasibility of all interrupted deliveries using

the outsourced service. Regarding network topology, we observe that the average added cost

for instances with line topology is lower than those with triangular topology (2.5% compared

to 3.8%). This is because the number of stations in triangular network is less than that of

the line network. As a consequence, the number of PD robots at each station is larger in a

triangular network and the likelihood of applying recourse actions (i.e. to recover capacity

violations at each SL departure) is thus higher. We analyze in the following the impacts

of uncertainty under di�erent settings including passengers demand and SL frequency and

capacity.

Analyzing uncertainty with di�erent levels of passengers demand

In the original setting, we generate SAA scenarios assuming that passengers demand

follows a discrete triangular distribution with a mean value b = 6 (Figure 4.8a). In this

section, we analyze the di�erent levels of passengers demand by testing the algorithm with

di�erent mean values (b = 2 ; 4; 6&8 respectively). As the mean value increases, the prob-

ability of having a large passengers demand at each SL departure becomes higher. This

re�ects a real-life case where passengers demand changes over day hours which can limit

the integration of PD robot deliveries into the system. The aim of this analysis is thus

to investigate the potential impact of these di�erent levels of passengers demand. This is

done by performing ten runs of the algorithm for each demand level and taking the average

(Figure 4.9).
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(a) Average total costs (b) Average added costs

Figure 4.10: SL frequency analysis

Results show that the total transportation costs increases as passengers demand becomes

higher (Figure 4.9a). This increase is mainly induced by the recourse actions that are used

more frequently. Relatively, the average added costs slightly increase from 3.14% to 3.39%

when passengers demand level goes from 2 to 8 (Figure 4.9b). These observations are

important for two main reasons. First, the increasing transportation costs indicate that

allowing PD robots to be transported with passengers through SLs might not always be

e�cient when passengers demand is high (e.g. morning and evening peak hours). In other

words, this combination can prove most e�cient during day hours when the probability

of having free places in SLs is bigger. Second, the use of the outsourcing delivery service

(action#3 ) will increase in peak hours as the subsequent service might also be fully charged

with passengers. This means that road tra�c can increase as more vehicles are circulating

in the system to deliver freight requests that could not be transported using SL service.

However, SL combined service still yields many bene�ts compared to existing freight delivery

services, but these bene�ts can be maximized in o�-peak hours.

Analyzing uncertainty with di�erent SL frequencies :

As aforementioned, we consider the SL departure frequency to be 30 time units. We

investigate in this section the impact of SL frequency on the total transportation cost. For

this purpose, we run the algorithm with SL frequency of 20, 30, 40, 50 and 80 time units

and we take the average of ten runs of the algorithm for each SL frequency (Figure 4.10).

We observe that the total transportation costs increases as SL departures become less

frequent. This can be explained by the fact that less frequent SL departures lead to more

PD robots waiting at each transfer node which means a higher possibility of having SL

capacity violations (Figure 4.10a). On the other hand, with a more frequent SL service

(e.g. 20 time units), the total costs decreases as less recourse actions are needed. This can

also be observed by looking at the average added costs with di�erent SL frequencies (Figure

4.10b). While increasing the SL frequency to 20 time units can reduce the added costs
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(a) Average total costs (b) Average added costs

Figure 4.11: SL capacity analysis

(up to 0.09%) compared to the original ones, decreasing the frequency can yield a slightly

increasing added costs (up to 0.03%, 0.11% and 0.21% for 40, 50 and 80 SL frequencies

respectively). However, increasing SL frequency might also lead to additional costs for SL

operators as more shuttles are circulating in the system (e.g. energy, driver wages etc.).

Although freight transportation costs can be decreased by making SLs more frequent, it

might not be pro�table for SL operators especially at passengers o�-peak times. On the

other hand, reducing SL frequency can also lead to many passengers left unserved at SL

stations. To conclude, increasing, or decreasing, SL frequency need to take into account the

varying levels of passengers demand.

Analyzing uncertainty with di�erent SL capacities :

As introduced earlier, we assumed that PD robots can take up to 3 places in shuttles.

In this section, we investigate the e�ect of changing the maximum number of places allowed

for PD robots on the total transportation costs. As such, we take the average of ten runs

of the algorithm with up to 5 maximum places (Figure 4.11).

Looking at the obtained results, we observe that allowing more PD robots at each SL

departure has a positive e�ect in terms of the total transportation costs and the average

added costs. This positive e�ect is justi�ed by a lowering of 0.07% and 0.1% on the added

costs when up to 4 or 5 PD robots are allowed at each SL departure. This means that

with an extra capacity for PD robots, stochastic solutions become cheaper and less capacity

violations can be encountered. However, this might also have a negative e�ect on the number

of PD robots that have to get o� at an intermediate transfer node where passengers demand

is high leading to many waiting PD robots at that node.
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4.6 Conclusion

In this chapter, a transportation service that combines passenger and freight �ows has

been studied. The associated optimization problem has been formulated as a pickup and

delivery problem with time windows, scheduled lines (PDPTW-SL) and stochastic passen-

gers demand. An MIP formulation along with ALNS-based heuristic approach have been

introduced. For dealing with uncertainty, a sample average approximation method and a

recourse algorithm have been developed. An extensive computational study to evaluate the

performance of the proposed approaches and their di�erent components has been presented.

Results of testing instance with up to 60 freight requests showed that the proposed

heuristic approach can return solutions that are within 0.6% of the optimal solutions. The

analysis also revealed that an average of 3.3% extra costs can be observed when stochastic

passengers demand is realized. These additional costs re�ect the e�ect of uncertainty on the

total transportation costs. Analyzing the impact of di�erent SL frequencies and capacities,

the results demonstrated the positive e�ect of increasing the frequency of SL departures and

the maximum capacity for PD robots on the system.

Since we build our analysis on a set of assumptions that simplify the problem, there are

still a number of challenges facing the deployment of such integrated transportation system.

Here we outline some directions for future research: (1) We assumed in this chapter that

each PD robot can only serve one freight request at a time due to the complexity of the

considered problem. A more realistic setting would be to allow multiple request pickup and

delivery per PD robot trip. This gives rise to the challenge of coupling, or synchronizing,

both pickup and delivery routing problems as the same PD robot performs them. (2)

Another interesting direction would be to study the impact of such integrated service on

passenger transportation on a daily horizon in which their demand varies during day hours.

Finally, (3) Since we consider one source of uncertainty in this chapter, which is passengers

demand, it is also important to look at other sources of uncertainty like travel times. As

PD robots are operating in an urban area, many external factors might a�ect their travel

time and speed. We believe that this study helps in a better understanding of the potential

deployment of such integrated systems, and thus, promote more research towards studying

this emerging trend in city logistics and transportation.
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Chapter 5

Conclusions

In this chapter, we summarize the key �ndings and main contributions of the thesis. In

addition, we take the aforementioned research questions one by one and we show how they

were addressed. We also describe how addressing these research questions has contributed

to the ful�llment of the overall research objective of the thesis. We then highlight the main

challenges facing research in this area and suggest potential directions for future research.
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5.1 Key �ndings and contributions

In dense urban areas, where there is a wide variety of public and private transporta-

tion services (e.g. bus, taxi, metro, tram, bike etc.), passenger and freight �ows overlap to

a signi�cant extent. This lack of synchronization between di�erent transportation �ows is

increasing tra�c congestion and pollution levels in already congested and polluted urban ar-

eas. This issue becomes more critical when we take into account the increasing urbanization

rates and the growing demand for urban transportation. With the introduction of new tech-

nologies and innovative mobility systems, such as autonomous vehicles and crowd-sourced

delivery services, the need for new shared mobility systems becomes more essential. These

systems have the potential to enhance the quality of the service provided while reducing its

negative e�ects from the operational, economical and environmental aspects.

To cope with this reality, this thesis aims at giving a deeper understanding and a wider

overview of the actual opportunities and challenges facing the development of shared mo-

bility systems, and at the same time, developing models and optimization methods that

can deal with their synchronization issues. In the following, we describe how the di�erent

research questions were addressed along with their contribution to the overall objective of

the thesis.

Research question 1: What are the di�erent variants of shared mobility systems and

what methods are used to optimize them?

In chapter 2, a thorough insight on the di�erent variants of shared mobility systems is

given. This review covers mobility systems where people share their rides and mobility sys-

tems where people and goods streams are combined. The chapter also provides an extensive

study of their constraint types and objectives along with modeling and solution approaches

that are used to operate them. The latest trends in shared mobility (e.g. autonomous mobil-

ity, combined freight delivery and others) are then investigated and the recently-published

papers and case studies are summarized in overview tables. The review provided in this

chapter highlights some research gaps that we believe more research is needed to address

them. For example, considering synchronization issues in shared mobility models, operating

autonomous vehicles in a ridesharing context, integrating freight delivery to passenger trans-

portation with stochastic aspects, and others. This helps us in identifying some interesting

directions for our research.

Research question 2: How can people trips be synchronized in a ridesharing system

with autonomous vehicles and what gains can this synchronization yield?

Based on the review provided in chapter 2, in chapter 3 we study a ridesharing system

where individually-owned and on-demand autonomous vehicles (AVs) are used for trans-

porting passengers. Passenger trips are synchronized using the concept of meeting points

which indicate where riders can be picked up and dropped o� during a shared trip. We

propose in this chapter a two-phase approach for matching potential participants in shared
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trips. The proposed approach consists of, �rst, an algorithm for generating the set of feasible

matches that respect time restrictions of the participants, and second, a matching optimiza-

tion problem for selecting the best among them. Through a case study on New York City,

the obtained results demonstrate that an average of 21% saving in terms of system-wide

vehicle-miles can be achieved when passenger trips are shared (i.e. synchronized). The

results also show that a system, in which on-demand AV service is partially or fully used

and shared, has a better performance than a system in which only individually-owned AVs

are used. This observation is important for AV operators as it helps them in building their

future automated services.

Research question 3: How can people and freight �ows be combined and what are

the impacts of stochastic passenger demands on planning such a combined system?

In chapter 4, we consider the problem of synchronizing passenger and freight �ows in

urban areas. In order to tackle this problem, we study a transportation system in which

the delivery of small parcels is integrated into a scheduled line service (SL) for passenger

transportation. For solving the problem, we propose a MIP formulation that contains a set of

routing, timing and synchronization constraints. We then develop an ALNS-based heuristic

method that uses a set of removal and insertion operators to enhance an initial solution.

Results of testing instances with up to 60 freight requests demonstrate the e�ciency of the

proposed approach as it can return solutions that are within 0.6% from the optimal ones. In

order to study uncertainty, we consider that passengers demand is stochastic. This means

that the actual number of available places for transporting freight with passengers is only

revealed upon SL departures. We develop a sample average approximation method that

can deal with this stochastic aspect and quantify its e�ects on the system. We study the

impact of uncertainty by comparing the obtained stochastic solutions to the deterministic

ones, and analyzing di�erent SL capacities for transporting freight. The analysis suggests

that an average of 3.3% extra costs can be observed when stochastic passengers demand is

realized which re�ect the e�ect of uncertainty of the total transportation costs. Results also

indicate the positive e�ect of allowing more SL capacity for transporting freight.

Research objective: Develop e�cient models and optimization approaches for syn-

chronizing people and freight �ows in urban mobility systems.

As aforementioned, this thesis aims at studying shared mobility systems and developing

e�cient approaches for operating them. In order to better understanding the concept of

shared mobility, the thesis provides a detailed classi�cation and an comprehensive overview

of its variants based on their features, context of application, objectives, characteristics,

models and solution methods. Then, the problem of synchronizing passenger and freight

�ows is tackled by studying two di�erent transportation systems. For both systems, the

focus is on developing heuristic approaches that are able to �nd near-optimal solutions

at short computational times. As shown throughout the thesis, the results of testing the

proposed systems show the potential gains that can be obtained when passenger and freight
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�ows are synchronized. We believe that these gains can give an important indication for

service operators as the proposed systems are not yet fully operational in real-life and more

research is still needed to quantify their bene�ts.

It is also important to mention that the proposed systems do not aim at replacing the

existing services for passenger and freight transportation. In contrast, they represent an

opportunity to complement them and open the door towards a new generation of shareable

and sustainable systems of transportation. For example, shared AVs are not expected to

replace public transport or eliminate private car ownership, but they might provide a supple-

mentary service in city centers where private cars usage is limited. Similarly, integrating the

use of small robots for last-mile delivery with a scheduled transportation service might not

a�ect passenger transportation but can reduce delivery trucks movements in urban areas.

5.2 Challenges

There is a set of challenges that are facing shared mobility systems and limiting their

deployment. These challenges are mainly due to the complexity of real-life systems and

the need for relevant regulations and infrastructures to accommodate them. Due to this

complexity, we made some assumptions throughout the thesis to simplify the considered

problems and can still represent the reality.

In chapter 3, we assume that an individually-owned AV can serve other travelers while

its owner does not need it. This assumption might rise many questions regarding security

and maintenance issues (e.g. cleaning AV after each use). We also assume that passengers

demand is known in advance. In order to establish a successful AV service, such a system

must be able to match passengers on-the-�y and at very short service times. In such real-

time service, uncertainty in travel times (i.e. due to tra�c congestion, accidents, etc.) and

recharging operations also need to be considered when building such a system.

Similarly in chapter 4, assuming that PD robots can use SL service with passengers

means that SL shuttles and stations need to be equipped with loading and o�oading in-

frastructure that allows this process to take place. In addition, such a combined service

is limited to small parcels which might also rise a security issue. As for uncertainty, we

assume that passengers demand at each SL departure to be stochastic while freight request

quantities and robot travel times are known in advance. These di�erent stochastic aspects

might represent a challenging issue that limits the deployment of such a combined service

in congested urban areas.

Generally, planning shared mobility systems become more complex when more realis-

tic problem settings are considered. The number of transportation units (e.g. AVs, SLs,

PD robots, etc.), the number of transportation requests to be served, and the availability

of transportation resources, all represent important determinant in the complexity of the

considered problem, and relatively, the approach used to solve it. While studying simpli�ed
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problems with deterministic setting helps in evaluating the potential bene�t of new shared

mobility systems, considering the stochastic aspects represent a key-factor for successfully

operating them in real-life context.

5.3 Further research directions

The research presented in this thesis can be extended in many directions. In this thesis

we focused on evaluating the potential bene�ts of two transportation systems from the

operational point of view. We thus believe that this thesis has opened the door for many

interesting research topics.

For the ridesharing model with AVs, an interesting direction for further research is to

consider dynamic aspects of the problem so that participants are matched at short notice.

Another possible research direction is to consider AV recharging operations in the planning

of their routes. Moreover, considering unexpected events that can a�ect AV travel times (i.e.

uncertainty) also represents an important extension as it can give a more realistic view of

the system. From a methodological point of view, developing an exact approach for solving

the problem might be very helpful as it can be used to generate bounds and evaluate the

performance of the proposed heuristic approach.

Regarding the integration of passenger and freight �ows, the proposed system can also

be extended in many ways. One of them is to study stochastic travel times and their

impact on the system. These stochastic travel times include those for PD robots and those

for SL (i.e. SL departures might also be a�ected by accidents, congestion, etc.). From a

methodological point of view, the system can be extended to allow multiple pickup and

deliveries during a PD robot trip. This extension requires modifying the routing constraints

of the model which would complicate the problem even more. Another methodological

extension is consider di�erent recourse actions which might a�ect the overall transportation

costs of the system.





111

Appendix A

Appendix A: Algorithms

A.1 Ch. 3: Find-Owner-Feasible-Matches Algorithm

Algorithm 1 Algorithm for generating feasible matches for an owner trip announcement

1: procedure Find-Owner-Feasible-Matches (instance,owner)
2: for eachrider in instance.R do
3: for eachrider meeting point arc do
4: if match owner, rider , meeting point arc is time feasiblethen
5: store meeting point arc;
6: compute distance savings;
7: if distance savings> best match distance savingsthen
8: update best match distance savings;
9: update best match;

10: if best match distance savings> 0 then
11: append best matchto match list;
12: append rider to feasible rider list;
13: if number of feasible riders> 1 then
14: for k = 2 ; ::Cowner do
15: construct matches with k riders;
16: if new match found then
17: compute distance savings;
18: if distance savings> 0 then
19: append match to match list;
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A.2 Ch. 3: Match-Generation Algorithm

Algorithm 2 Algorithm for generating feasible matches

1: procedure Match-Generation (instance)
2: store meeting points in k-d tree;
3: for eachrider in instance.R do
4: query k-d tree and �nd feasible meeting point arcs forrider ;
5: for eachowner in instance.O do
6: if owner trip is a one-way trip then
7: add owner trip to one-way trips;
8: else //then it is a round trip
9: origin = owner.origin;

10: sort riders with respect to their distance from origin ; //increasing order
11: while it is possible to add new arti�cial trips do
12: pick rider from the sorted list of riders; //starting with �rst, second .. etc.
13: if rider is time compatible then
14: add a new trip with rider as anarti�cial owner ;
15: Find-Owner-Feasible-Matches(arti�cial owner )
16: excluderider from instance.R and from the sorted list;
17: origin = rider .destination;
18: sort riders with respect to their distances fromorigin ;
19: for eachowner in one-way trips do
20: Find-Owner-Feasible-Matches(owner)

21: return match list;
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A.3 Ch. 4: Calculate-Recourse-Cost Algorithm

Algorithm 3 Algorithm for calculating the average recourse cost of a given routing solution

1: procedure Calculate-Recourse-Cost (routing solution � , set of scenarios� )
2: initialize recourse cost: E [ Q ( � ; � ; � ) ]  0
3: let c(� ) be the routing costs of solution�
4: for each scenarios in � do
5: for each transfer nodet in S do
6: let Wt be the set of PD robots waiting at transfer nodet: Wt � P 0

7: for each scheduled departurepw
t;t +1 at t do

8: let I w
t be the set of PD robots already in shuttle atpw

t;t +1
9: rank PD robots in Wt according to their requests earliest due dates

10: rank PD robots in I w
t according to their requests latest due dates

11: if jW t j > Q w
ij then

12: add PD robots to SL in order until Qw
ij is reached

13: for each excessive PD robotdo
14: if direct delivery from t to destination is possiblethen
15: update recourse costaccording to the extra traveled distance by

PD robot
16: else
17: add PD robot to Wt

18: let � t be the realized number of passengers waiting for service att
19: if j� t j � Qw

ij > 0 then
20: for each robot in I w

t do
21: if direct delivery from t to destination is possiblethen
22: update recourse costaccording to the extra traveled distance by

PD robot
23: else
24: add PD robot to Wt

25: for each PD robot in Wt do
26: if time window is violated then
27: use outsourced vehicle to make the delivery
28: update recourse cost according to the traveled distance by out-

sourced vehicle
29: remove PD robot from Wt

30: return recourse cost
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A.4 Ch. 4: ALNS-Heuristic Algorithm

Algorithm 4 The ALNS Framework

1: procedure ALNS-Heuristic (Set of removal operatorsOR , set of insertion operators
OI )

2: generate an initial solution: current solution
3: initialize best solution  current solution
4: for a number of iterations do
5: select a removal operatorr � 2 O R with probability Pr �

6: apply operator r � to current solution to obtain a partially destroyed solution
7: select an insertion operatori � 2 O I with probability Pi �

8: apply operator i � to repair the partially destroyed solution and get new solution
9: if new solution is better than current solution then

10: current solution  new solution
11: if current solution is better than best solution then
12: best solution  current solution
13: update operator probabilities
14: return best solution

A.5 Ch. 4: Sample-Average-Approximation Algorithm

Algorithm 5 Sample Average Approximation (SAA) Algorithm

1: procedure Sample-Average-Approximation (sample sizej
 j, large set of scenarios

 0, number of iterations m)

2: generate large set of scenarios

3: m = 0
4: while m < M do
5: generate sample set!
6: solve corresponding SAA problem using ALNS to get routing solutionx m

7: Calculate-Recourse-Cost(� , 
 ) ! get upper boundfor 

8: calculate lower boundfor ! by averaging objective values of previous iterations
9: calculate SAA gap usingupper boundand lower bound

10: if tighter gap is found then
11: best solution  found solution
12: m = m + 1
13: return best solution
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Appendix B: Data

B.1 Ch. 3: NYC taxicab trip datasets

The taxicab trip records were collected and provided to the NYC Taxi and Limousine

Commission (TLC) by technology providers authorized under the Taxicab & Livery Pas-

senger Enhancement Programs (TPEP/LPEP). Datasets were obtained from TLC website

(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml ).

As the number of trip records in every dataset is very large and some of them might be

incomplete (e.g. the departure or arrival time of a trip might not be indicated), we make

sure to �lter these records and take those which contain all the required information. This

veri�cation is done using a method (implemented in Java) that reads trip records from excel

�les, �lter them, and generate instances of di�erent sizes.

B.2 Ch. 3: NYC meeting points

Subway and bus station locations at New York City are made available by the Metropoli-

tan Transportation Authority (MTA) for development and research purposes. Data records

are provided at MTA website

(http://web.mta.info/developers/developer-data-terms.html#data ).

(a) Before �ltering (b) After �ltering

Figure B.1: Reducing the number of MPs using QGIS
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Since the number of MP locations provided is large, we need a way to reduce them as

they can highly increase the computational time of the matching algorithm. As can be

seen in Figure B.1a, the MP locations are sometimes within few meters of each other. To

overcome this di�culty, we use QGIS software, which is a geographical information system,

to �lter MPs and get a reduced, and better distributed, set of locations that can be used

by the algorithm. We thus use the distance matrix plugin of QGIS for several times until

the large set of MPs is �ltered and a minimized set, with a minimum distance of 300 meters

between every pair of MPs, is obtained (Figure B.1b).
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Appendix C: Résumé étendu

Dans les zones urbaines denses, où il existe une grande variété de services de transport

publics et privés (bus, taxi, métro, tram, vélo, etc.), les �ux de passagers et de marchandises

se chevauchent dans une large mesure. L'absence de synchronisation entre les di�érents �ux

de transport augmente les embouteillages et les niveaux de pollution dans les zones urbaines

déjà saturées et polluées. Ce problème de synchronisation devient plus critique lorsque nous

prenons en compte les taux d'urbanisation croissants entraînant une demande accrue de

transport urbain. En outre, avec l'introduction de nouvelles technologies et de systèmes

de mobilité innovants, tels que les véhicules autonomes et les services de distribution par-

ticipatifs, le besoin de nouveaux systèmes de mobilité partagés devient plus essentiel. Ces

systèmes peuvent potentiellement améliorer la qualité du service fourni tout en réduisant ses

e�ets négatifs liés aux aspects opérationnels, économiques et environnementaux (Chapter

1).

Pour faire face à cette réalité, cette thèse a pour objectif de donner une compréhension

plus profonde et une vision plus large des opportunités et des dé�s actuels liés au développe-

ment de systèmes de mobilité partagée, tout en développant des modèles et des méthodes

d'optimisation pouvant traiter leurs problèmes de synchronisation. Dans ce qui suit, nous

décrivons les di�érentes questions de recherche et comment ils ont été abordées, ainsi que

leur contribution à l'objectif général de la thèse.

Question 1: Quelles sont les variantes des systèmes de mobilité partagée et comment

les optimiser?

Dans le deuxième chapitre (Chapter 2), un aperçu complet des di�érentes variantes des

systèmes de mobilité partagée est donné. Cette revue couvre les systèmes de mobilité où

les gens partagent leurs trajets, et celles où les �ux de personnes et de biens sont combinés.

Ce chapitre propose également une étude approfondie de leurs types de contraintes et de

leurs objectifs, ainsi que des approches de modélisation et de résolution utilisées pour les

exploiter. Ensuite, les dernières tendances en matière de mobilité partagée (mobilité au-

tonome, livraison combinée de fret, etc.) sont examinées et les articles et études de cas

récemment publiés sont résumés dans des tableaux récapitulatifs. La revue présentée dans

ce chapitre met en évidence certaines lacunes de la recherche qui, à notre avis, doivent être
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approfondies. Par exemple, examiner les problèmes de synchronisation dans les modèles de

mobilité partagée, utiliser des véhicules autonomes dans un contexte de covoiturage, intégrer

la livraison du fret au transport de passagers avec des aspects stochastiques, etc. Cela nous

aide à identi�er des pistes intéressantes pour notre recherche.

Question 2: Comment synchroniser les déplacements de personnes et quels gains cette

synchronisation peut-elle générer?

En basent sur la revue présentée en Chapitre 2 (Chapter 2), nous étudions en chapitre

3 (Chapter 3) un système de covoiturage dans lequel des véhicules autonomes (AV), à la

demande et individuels, sont utilisés pour transporter les passagers. Les trajets des passagers

sont synchronisés en utilisant le concept de points de rencontre qui indique où les passagers

peuvent être pris en charge et déposés au cours d'un trajet partagé. Pour opérer un tel

système, nous proposons dans ce chapitre une approche en deux phases pour mettre en

correspondance des participants potentiels lors de voyages partagés. L'approche proposée se

compose, d'une part, d'un algorithme permettant de générer l'ensemble des correspondances

possibles qui respectent les contraintes de temps des participants, et, d'autre part, d'un

problème d'optimisation de la correspondance permettant de sélectionner les meilleurs. À

travers une étude de cas sur la ville de New York, les résultats obtenus démontrent qu'une

moyenne de 21% d'économies en termes de kilomètres parcourus par véhicule-système peut

être réalisée lorsque les trajets de passagers sont partagés (i.e. synchronisés). Les résultats

montrent également qu'un système, dans lequel un service à la demande et partagé est

utilisé partiellement ou totalement, o�re de meilleures performances qu'un système dans

lequel seuls des véhicules individuels sont utilisés. Cette observation est importante pour

les opérateurs de services autonomes, car elle peut les aider à créer leurs futurs services

automatisés.

Question 3: Comment combiner les �ux de passagers et de fret et quels sont les e�ets

de l'incertitude sur ces systèmes?

Au chapitre 4 (Chapter 4), nous considérons le problème de la synchronisation des �ux

de passagers et de marchandises dans les zones urbaines. A�n de résoudre ce problème,

nous étudions un système de transport dans lequel la livraison de petits colis est intégrée

à un service de navette pour le transport de passagers. Ensuite, nous proposons une for-

mulation mathématique contenant un ensemble de contraintes de routage, du temps, et de

synchronisation. Nous développons par la suite une méthode heuristique de recherche de

voisinage (ALNS) qui utilise un ensemble d'opérateurs de suppression et d'insertion pour

améliorer une solution initiale. En testant des instances contenant jusqu'à 60 demandes de

fret, les résultats démontrent l'e�cacité de l'approche proposée, car elle permet de trouver

des solutions à moins de 0.6% des solutions optimales. En outre, pour tenir compte de

l'incertitude, nous considérons que la demande des passagers est stochastique. Cela signi�e

que le nombre réel de places disponibles pour le transport de fret n'est révélé qu'au moment

du départ des navettes. Nous développons donc une méthode d'approximation (Sample
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Average Approximation SAA) capable de traiter cet aspect stochastique et de quanti�er ses

e�ets sur le système. Nous étudions ensuite l'impact de cette incertitude en comparant les

solutions stochastiques obtenues aux solutions déterministes et en analysant les di�érentes

capacités de navette pour le transport de fret. L'analyse suggère qu'une moyenne de 3.3% de

coûts supplémentaires peut être observée lorsque la demande stochastique de passagers est

réalisée, ce qui re�ète l'e�et de l'incertitude des coûts de transport généraux. Les résultats

indiquent également l'e�et positif de permettre une plus grande capacité dans les navettes

pour le transport de fret.

L'objectif de recherche: L'objectif de cette thèse est de développer des modèles et

des approches d'optimisation pour la synchronisation des �ux de personnes et de fret dans

les systèmes de mobilité urbaine.

Cette thèse vise à étudier les systèmes de mobilité partagée et à développer des approches

e�caces pour les exploiter. A�n de mieux comprendre le concept de mobilité partagée, la

thèse fournit une classi�cation détaillée et un aperçu complet de ses variantes en fonction

de leurs caractéristiques, contexte de l'application, objectifs, caractéristiques, modèles, et

méthodes de solution. Ensuite, le problème de la synchronisation des �ux de passagers

et de fret est abordé en étudiant deux systèmes de transport di�érents. Pour les deux

systèmes, l'accent est mis sur le développement d'approches heuristiques capables de trouver

des solutions quasi optimales à des temps de calcul courts. Les résultats des systèmes

proposés justi�ent les gains potentiels pouvant être obtenus lorsque les �ux de voyageurs

et de marchandises sont synchronisés. Nous pensons que ces gains peuvent donner une

indication importante aux opérateurs de services, surtout que les systèmes proposés ne sont

pas encore pleinement opérationnels dans la vie réelle et que des recherches supplémentaires

sont encore nécessaires pour quanti�er leurs avantages.

Il est également important de dire que les systèmes proposés ne visent pas à remplacer

les services existants pour le transport de passagers et de marchandises. En revanche, ils

représentent une opportunité de les compléter et d'ouvrir la voie à une nouvelle génération

de systèmes de transport partageables et durables. Par exemple, les véhicules autonomes

partagés ne sont pas censés remplacer les transports en commun ni éliminer la possession

d'une voiture privée, mais ils pourraient fournir un service supplémentaire dans les centres-

villes où l'utilisation de la voiture privée est limitée. De même, l'intégration de petits

robots, utilisés pour la livraison du dernier kilomètre, dans un service de transport pour les

passagers vise à réduire les déplacements de camions de livraison dans les zones urbaines.

En�n, nous résumons les principales conclusions et contributions de la thèse, soulignons les

principaux dé�s auxquels sont confrontés les systèmes de mobilité partagée et proposons

des pistes pour les recherches futures dans ce domaine (Chapter 5).
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Titre : La synchronisation des �ux de passagers et de marchandises dans les syst �emes de mobilité urbaine

Mots cl és : mobilité urbaine, synchronisation, transport de passagers et de marchandises, covoiturage,
véhicules autonomes, optimisation, incertitude, méthodes heuristiques

Résum é : Avec l'augmentation progressive de la po-
pulation dans les grandes villes, comme Paris, nous
prévoyons d'ici 2050 une augmentation de 50% du
tra�c routier. En consid érant les embouteillages et
la pollution que cette augmentation va générer, on
voit clairement la nécessité de nouveaux syst �emes
de mobilité plus durables, comme le covoiturage, ou
plus généralement toute la mobilité partagée. En par-
lant de mobilité partagée, ce n'est pas seulement le
partage de trajets de personnes qui ont le même
itinéraire au même temps, elle inclut aussi les mar-
chandises. Cette th �ese aborde le dé� de la synchro-
nisation des �ux de passagers et de marchandises
dans les syst �emes de mobilité urbaine et elle vise
�a développer des méthodes d'optimisation pour que
cette synchronisation dans la mobilité partagée soit
réalisable. Dans un premier temps, nous étudions les
différentes variantes des syst �emes de mobilité par-
tagée et nous les classi�ons en fonction de leurs
mod�eles, caractéristiques, approches de résolution et
contextes d'application. En nous basant sur cette re-

vue de littérature, nous identi�ons deux probl �emes de
mobilité partagée, que nous considérons en détails
dans cette th �ese et nous développons des méthodes
d'optimisation pour les résoudre. Pour synchroniser
les �ux de passagers, nous étudions un mod�ele de
covoiturage en utilisant les véhicules autonomes, per-
sonnels et partagés, et des points de rencontre o�u la
synchronisation entre passagers peut avoir lieu. Pour
cela, une méthode heuristique en deux phases est
proposée et une étude de cas sur la ville de New York
est présentée. Ensuite, nous développons un mod�ele
d'optimisation qui combine les �ux de passagers et
de marchandises dans une zone urbaine. Le but de
ce mod�ele est d'utiliser les capacités disponibles sur
une ligne de transport �xe pour transporter les passa-
gers et des robots transportant des petits colis �a leurs
destinations �nales en consid érant que la demande
de passagers est stochastique. Les résultats obtenus
montrent que les solutions proposées par ces deux
mod�eles peuvent conduire �a une meilleure utilisation
des syst �emes de transport dans les régions urbaines.

Title : The synchronization of shared mobility �ows in urban environments

Keywords : urban mobility, synchronization, passenger and freight transportation, ridesharing, autonomous
vehicles, optimization, uncertainty, heuristic approaches

Abstract : The rise of research into shared mobility
systems re�ects emerging challenges, such as rising
urbanization rates, traf�c congestion, oil prices and
environmental concerns. The operations research
community has turned towards more sharable and
sustainable systems of transportation. Although sha-
red mobility comes with many bene�ts, it has some
challenges that are restricting its widespread adop-
tion. More research is thus needed towards develo-
ping new shared mobility systems so that a better use
of the available transportation assets can be obtained.
This thesis aims at developing ef�cient models and
optimization approaches for synchronizing people and
freight �ows in an urban environment. First, we review
different variants of the shared mobility problem where
either travelers share their rides, or the transportation
of passengers and freight is combined. We then clas-
sify these variants according to their models, solution
approaches and application context and we provide a
comprehensive overview of the recently published pa-
pers and case studies. Based on this review, we iden-
tify two shared mobility problems, which we study fur-
ther in this thesis. Second, we study a ridesharing pro-

blem where individually-owned and on-demand auto-
nomous vehicles (AVs) are used for transporting pas-
sengers and a set of meeting points is used for syn-
chronizing their trips. We develop a two-phase me-
thod (a pre-processing algorithm and a matching opti-
mization problem) for assessing the sharing potential
of different AV ownership models, and we evaluate
them on a case study for New York City. Then, we
present a model that integrates freight deliveries to
scheduled lines for people transportation where pas-
sengers demand, and thus the available capacity for
transporting freight, is assumed to be stochastic. We
model this problem as a two-stage stochastic pro-
blem and we provide a MIP formulation and a sample
average approximation (SAA) method along with an
Adaptive Large Neighborhood Search (ALNS) algo-
rithm to solve it. We then analyze the proposed ap-
proach as well as the impacts of stochastic passen-
gers demand on such integrated system on a compu-
tational study. Finally, we summarize the key �ndings,
highlight the main challenges facing shared mobility
systems, and suggest potential directions for future
research.

Universit é Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	Abstract
	Résumé

