B. Sangro, L. Carpanese, and R. Cianni, Survival after yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona Clinic Liver Cancer stages: a European evaluation, Hepatology, vol.54, pp.868-878, 2011.

R. Salem, A. C. Gordon, and S. Mouli, Y90 radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma, Gastroenterology, vol.151, pp.1155-1163, 2016.

V. Vilgrain, H. Pereira, and E. Assenat, Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): an open-label randomised controlled phase 3 trial, Lancet Oncol, vol.18, pp.1624-1636, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01727346

P. Chow, M. Gandhi, and S. B. Tan, SIRveNIB: selective internal radiation therapy versus sorafenib in Asia-Pacific patients with hepatocellular carcinoma, J Clin Oncol, vol.36, pp.1913-1921, 2018.

W. Y. Lau, A. S. Kennedy, and Y. H. Kim, Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres, Int J Radiat Oncol Biol Phys, vol.82, pp.401-407, 2012.

S. Ho, W. Y. Lau, and T. Leung, Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours, Eur J Nucl Med, vol.23, pp.947-952, 1996.

W. E. Bolch, L. G. Bouchet, and J. S. Robertson, MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee, J Nucl Med, vol.40, pp.11-36, 1999.

M. D'arienzo, P. Chiaramida, and L. Chiacchiararelli, 90Y PET-based dosimetry after selective internal radiotherapy treatments, Nucl Med Commun, vol.33, pp.633-640, 2012.

C. Ritz, F. Baty, J. C. Streibig, and G. D. , Dose-response analysis using R, PLoS One, vol.10, p.146021, 2015.

J. M. Bland and D. G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, vol.1, pp.307-310, 1986.

L. I. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics, vol.45, pp.255-268, 1989.

, European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC Clinical Practice Guidelines: management of hepatocellular carcinoma, J Hepatol, vol.56, pp.908-943, 2012.

B. Atassi, A. K. Bangash, and A. Bahrani, Multimodality imaging following 90Y radioembolization: a comprehensive review and pictorial essay, Radiographics, vol.28, pp.81-99, 2008.

, National Cancer Institute Common Terminology Criteria for Adverse Events. CTCAE_4.03_2010-06-14.xls, 2010.

B. Sangro, B. Gil-alzugaray, and J. Rodriguez, Liver disease induced by radioembolization of liver tumors, Cancer, vol.112, pp.1538-1546, 2008.

B. Bapst, M. Lagadec, R. Breguet, V. Vilgrain, and M. Ronot, Cone beam computed tomography (CBCT) in the field of interventional oncology of the liver, Cardiovasc Intervent Radiol, vol.39, pp.8-20, 2016.

A. Riaz, A. Gabr, and N. Abouchaleh, Radioembolization for hepatocellular carcinoma: statistical confirmation of improved survival in responders by landmark analyses, Hepatology, vol.67, pp.873-883, 2018.

R. Salem, M. Gilbertsen, and Z. Butt, Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization, Clin Gastroenterol Hepatol, vol.11, pp.1358-1365, 2013.

M. Cremonesi, C. Chiesa, and L. Strigari, Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective, Front Oncol, vol.4, p.210, 2014.

L. Strigari, R. Sciuto, and S. Rea, Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations, J Nucl Med, vol.51, pp.1377-1385, 2010.

M. Elschot, B. J. Vermolen, M. G. Lam, B. De-keizer, M. A. Van-den-bosch et al., Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization, PLoS One, vol.8, p.55742, 2013.

W. B. Lea, K. N. Tapp, M. Tann, G. D. Hutchins, J. W. Fletcher et al., Microsphere localization and dose quantification using positron emission tomography/CT following hepatic intraarterial radioembolization with yttrium-90 in patients with advanced hepatocellular carcinoma, J Vasc Interv Radiol, vol.25, pp.1595-1603, 2014.

Y. H. Kao, J. D. Steinberg, and Y. S. Tay, Post-radioembolization yttrium-90 PET/CT-part 2: dose-response and tumor predictive dosimetry for resin microspheres, EJNMMI Res, vol.3, p.57, 2013.

K. J. Fowler, N. M. Maughan, and R. Laforest, PET/MRI of hepatic 90Y microsphere deposition determines individual tumor response, Cardiovasc Intervent Radiol, vol.39, pp.855-864, 2016.

E. Garin, L. Lenoir, and J. Edeline, Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept, Eur J Nucl Med Mol Imaging, vol.40, pp.1057-1068, 2013.

B. Gil-alzugaray, A. Chopitea, and M. Iñarrairaegui, Prognostic factors and prevention of radioembolization-induced liver disease, Hepatology, vol.57, pp.1078-1087, 2013.

B. Emami, J. Lyman, and A. Brown, Tolerance of normal tissue to therapeutic irradiation, Int J Radiat Oncol Biol Phys, vol.21, pp.109-122, 1991.

Y. H. Kao, E. H. Tan, C. E. Ng, and S. W. Goh, Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review, Ann Nucl Med, vol.25, pp.455-461, 2011.

T. T. Chang, A. C. Bourgeois, A. M. Balius, and A. S. Pasciak, Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging, J Vasc Interv Radiol, vol.24, pp.333-337, 2013.

E. Garin, Y. Rolland, S. Laffont, and E. J. , Clinical impact of 99mTc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with 90Y-loaded microspheres, Eur J Nucl Med Mol Imaging, vol.43, pp.559-575, 2016.

?. Volume, ?. Number, and ?. Month, , 2018.

M. Cremonesi, C. Chiesa, and L. Strigari, Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective, Front Oncol, vol.4, p.210, 2014.

. Sir-spheres,

, Australia: Sirtex Medical Limited, New South Wales, 2017.

Y. H. Kao, E. H. Tan, C. E. Ng, and S. W. Goh, Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres: a technical review, Ann Nucl Med, vol.25, pp.455-461, 2011.

M. G. Lam, J. D. Louie, M. H. Abdelmaksoud, G. A. Fisher, C. D. Cho-phan et al., Limitations of body surface area-based activity calculation for radioembolization of hepatic metastases in colorectal cancer, J Vasc Interv Radiol, vol.25, pp.1085-1093, 2014.

M. Smits, M. Elschot, and D. Y. Sze, Radioembolization dosimetry: the road ahead, Cardiovasc Intervent Radiol, vol.38, pp.261-269, 2015.

C. Traino, A. Boni, G. Mariani, and G. , Radiodosimetric estimates for radioembolic therapy of liver tumors: challenges and opportunities, J Nucl Med, vol.53, pp.509-511, 2012.

, Comparison between optimal-activity calculations based on 99m Tc-MAA and 90 Ymicrosphere dosimetry. In scatterplot on left, dashed line stands for linear regression, BlandAltman diagram on right, solid line indicates mean difference and dashed lines 95% limits of agreement. NS 5 not significant

A. Kennedy, D. Coldwell, B. Sangro, H. Wasan, and R. Salem, Radioembolization for the treatment of liver tumors: general principles, Am J Clin Oncol, vol.35, pp.91-99, 2012.

W. E. Bolch, L. G. Bouchet, and J. S. Robertson, MIRD pamphlet no. 17: the dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee, J Nucl Med, vol.40, pp.11-36, 1999.

A. Forner, C. Ayuso, and M. Varela, Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable?, Cancer, vol.115, pp.616-623, 2009.

W. Y. Lau, A. S. Kennedy, and Y. H. Kim, Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres, Int J Radiat Oncol Biol Phys, vol.82, pp.401-407, 2012.

A. L. Keppke, R. Salem, and D. Reddy, Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres, AJR, vol.188, pp.768-775, 2007.

L. Strigari, R. Sciuto, and S. Rea, Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90 Y-SIR spheres: radiobiologic considerations, J Nucl Med, vol.51, pp.1377-1385, 2010.

Y. H. Kao and M. Lichtenstein, Origin, dosimetric effect and clinical limitations of the semi-empirical body surface area method for radioembolisation using yttrium-90 resin microspheres, J Med Imaging Radiat Oncol, vol.60, pp.382-385, 2016.

O. S. Grosser, U. Gerhard, and C. Furth, Intrahepatic activity distribution in radioembolisation with yttrium-90-labeled resin microspheres using the body surface area method: a less than perfect model, J Vasc Interv Radiol, vol.26, pp.1615-1621, 2015.

M. Samim, L. M. Van-veenendaal, and M. N. Braat, Recommendations for radioembolisation after liver surgery using yttrium-90 resin microspheres based on a survey of an international expert panel, Eur Radiol, vol.27, pp.4923-4930, 2017.

A. Dieudonné, E. Garin, and S. Laffont, Clinical feasibility of fast 3-dimensional dosimetry of the liver for treatment planning of hepatocellular carcinoma with 90 Y-microspheres, J Nucl Med, vol.52, pp.1930-1937, 2011.

A. Petitguillaume, M. Bernardini, L. Hadid, C. De-labriolle-vaylet, D. Franck et al., Three-dimensional personalized Monte Carlo dosimetry in 90 Y resin microspheres therapy of hepatic metastases: nontumoral liver and lungs radiation protection considerations and treatment planning optimization, J Nucl Med, vol.55, pp.405-413, 2014.

Y. H. Kao, J. Steinberg, and Y. Tay, Post-radioembolization yttrium-90 PET/CT: part 2-dose-response and tumor predictive dosimetry for resin microspheres, EJNMMI Res, vol.3, p.57, 2013.

K. J. Fowler, N. M. Maughan, and R. Laforest, PET/MRI of hepatic 90 Y microsphere deposition determines individual tumor response, Cardiovasc Intervent Radiol, vol.39, pp.855-864, 2016.

R. A. Fox, P. F. Klemp, G. Egan, L. L. Mina, M. A. Burton et al., Dose distribution following selective internal radiation therapy, Int J Radiat Oncol Biol Phys, vol.21, pp.463-467, 1991.

A. M. Campbell, I. H. Bailey, and M. A. Burton, Analysis of the distribution of intraarterial microspheres in human liver following hepatic yttrium-90 microsphere therapy, Phys Med Biol, vol.45, pp.1023-1033, 2000.

A. S. Kennedy, C. Nutting, D. Coldwell, J. Gaiser, and C. Drachenberg, Pathologic response and microdosimetry of 90 Y microspheres in man: review of four explanted whole livers, Int J Radiat Oncol Biol Phys, vol.60, pp.1552-1563, 2004.

M. D'arienzo, L. Filippi, and P. Chiaramida, Absorbed dose to lesion and clinical outcome after liver radioembolization with 90 Y microspheres: a case report of PET-based dosimetry, Ann Nucl Med, vol.27, pp.676-680, 2013.

K. Knesaurek, J. Machac, M. Muzinic, M. Dacosta, Z. Zhang et al., Quantitative comparison of yttrium-90 ( 90 Y)-microspheres and technetium-99m ( 99m Tc)-macroaggregated albumin SPECT images for planning 90 Y therapy of liver cancer, Technol Cancer Res Treat, vol.9, pp.253-262, 2010.

M. Wondergem, M. L. Smits, and M. Elschot, 99m Tc macroaggregated albumin poorly predicts the intrahepatic distribution of 90 Y resin microspheres in hepatic radioembolization, J Nucl Med, vol.54, pp.1294-1301, 2013.

C. Chiesa, M. Mira, and M. Maccauro, Radioembolization of hepatocarcinoma with 90-Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology, Eur J Nucl Med Mol Imaging, vol.42, pp.1718-1738, 2015.

-. Tc and Y. Pet,

, Absolute mean dose difference according to catheter position. Dice coefficient similarity according to catheter position for 50 Gy isodoses (B) and 100 Gy isodoses (C). Asterisks (*) indicate P values that remained significant in multivariate analysis

, 100 Gy (B) and 150 Gy (C) isodose Dice coefficient similarity according to the catheter tip distance from major artery bifurcation at treatment. Asterisk (*) indicates P value that remained significant in multivariate analysis

M. Wondergem, M. L. Smits, and M. Elschot, 99mTc macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization, J Nucl Med, vol.54, pp.1294-1301, 2013.

E. Garin, L. Lenoir, and Y. Rolland, Dosimetry based on 99mTcmacroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: preliminary results, J Nucl Med, vol.53, pp.255-263, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866987

P. Haste, M. Tann, and S. Persohn, Correlation of technetium-99m macroaggregated albumin and Yttrium-90 glass microsphere biodistribution in hepatocellular carcinoma: a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT, J Vasc Interv Radiol, vol.28, pp.722-730, 2017.

Y. S. Song, J. C. Paeng, and H. C. Kim, PET/CT-based dosimetry in 90Y-microsphere selective internal radiation therapy: single cohort comparison with pretreatment planning on (99m)Tc-MAA imaging and correlation with treatment efficacy, Medicine, vol.94, p.945, 2015.

S. Gnesin, L. Canetti, and S. Adib, Partition model based 99mTc-MAA SPECT/CT predictive dosimetry compared to 90Y TOF PET/CT post-treatment dosimetry in radioembolisation of hepatocellular carcinoma: a quantitative agreement comparison, J Nucl Med, vol.57, pp.1672-1678, 2016.

Y. H. Kao, J. Steinberg, and Y. Tay, Post-radioembolization yttrium-90 PET/CT-part 2: dose-response and tumor predictive dosimetry for resin microspheres, EJNMMI Res, vol.3, p.57, 2013.

M. L. Smits, M. Elschot, and D. Y. Sze, Radioembolization dosimetry: the road ahead, Cardiovasc Intervent Radiol, vol.38, pp.261-270, 2015.

M. Centre-eugène, Internal radiation therapy for hepatocellular carcinomas with Therasphere: optimized dosimetry versus standard dosimetry

N. Chauhan, J. Bukovcan, and E. Boucher, Intra-Arterial TheraSphere Yttrium-90 Glass Microspheres in the Treatment of Patients With Unresectable Hepatocellular Carcinoma: Protocol for the STOP-HCC Phase 3

, Randomized Controlled Trial. JMIR Res Protoc, vol.7, p.11234, 2018.

W. A. Dezarn, J. T. Cessna, and L. A. Dewerd, Recommendations of the American association of physicists in medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies, Med Phys, vol.38, pp.4824-4845, 2011.

, TheraSphere ® yttrium-90 glass microspheres

K. Willowson, M. Tapner, T. Team, and D. Bailey, A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolisation with resin microspheres, Eur J Nucl Med Mol Imaging, vol.42, pp.1202-1224, 2015.

M. Kafrouni, C. Allimant, and M. Fourcade, Retrospective voxel-based dosimetry for assessing the body surface area model ability to predict delivered dose and radioembolization outcome. In press, J Nucl Med, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01821268

L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol.26, pp.297-302, 1945.

J. I. Gear, C. Cummings, and A. J. Craig, Abdo-man: a 3D-printed anthropomorphic phantom for validating quantitative SIRT, EJNMMI Physics, vol.3, p.17, 2016.

Y. H. Kao, E. H. Tan, and M. C. Burgmans, Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization, J Nucl Med, vol.53, pp.559-566, 2012.

M. Jiang, A. Fischman, and F. S. Nowakowski, Segmental perfusion differences on paired tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-sphere radioembolization: associations with angiography, J Nucl Med Radiat Ther, vol.3, p.122, 2012.

C. Chiesa, M. Maccauro, and R. Romito, Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: the experience of the National Tumor Institute of Milan, Q J Nucl Med Mol Imaging, vol.55, pp.168-197, 2011.

K. Knesaurek, J. Machac, M. Muzinic, M. Dacosta, Z. Zhang et al., Quantitative comparison of yttrium-90 (90Y)-microspheres and technetium-99m (99mTc)-macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer, Technol Cancer Res Treat, vol.9, pp.253-262, 2010.

R. Lhommel, L. Elmbt, P. Goffette, M. Eynde, J. F. Pauwels et al., Feasibility of 90Y TOF PETbased dosimetry in liver metastasis therapy using SIR-Spheres, Eur J Nucl Med Mol Imaging, vol.37, pp.1654-1662, 2010.

K. Willowson, N. Forwood, B. W. Jakoby, A. M. Smith, and D. L. Bailey, Quantitative 90Y image reconstruction in PET, Med Phys, vol.39, pp.7153-7159, 2012.

T. Carlier, K. P. Willowson, E. Fourkal, D. L. Bailey, M. Doss et al., Y -PET imaging: exploring limitations and accuracy under conditions of low counts and high random fraction, Med Phys, vol.42, issue.90, pp.4295-309, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01817798

K. Knesaurek, A. Tuli, S. D. Pasik, S. Heiba, and L. Kostakoglu, Quantitative comparison of pre-therapy 99mTc-macroaggregated albumin SPECT/CT and post-therapy PET/MR studies of patients who have received intraarterial radioembolization therapy with 90Y microspheres, Eur J Radiol, vol.109, pp.57-61, 2018.

E. Garin, J. Edeline, and Y. Rolland, High impact of preferential flow on 99mTc-MAA and 90Y-loaded microsphere uptake correlation, J Nucl Med, vol.57, pp.1829-1830, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396193

J. F. Prince, R. Van-rooij, G. H. Bol, H. De-jong, M. Van-den-bosch et al., Safety of a Scout Dose Preceding Hepatic Radioembolisation with 166Ho Microspheres, J Nucl Med, vol.56, pp.817-823, 2015.

M. Cremonesi, C. Chiesa, and L. Strigari, Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective, Front Oncol, vol.4, p.210, 2014.

. Rg, R. J. Selwyn, B. R. Nickles, L. A. Thomadsen, J. A. Dewerd et al., A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr, Appl Radiat Isot, vol.65, pp.318-345, 2007.

A. Kennedy, D. Coldwell, and B. Sangro, Radioembolization for the treatment of liver tumors general principles, Am J Clin Oncol, vol.35, pp.91-99, 2012.

B. Sangro, R. Salem, and A. Kennedy, Radioembolization for hepatocellular carcinoma: a review of the evidence and treatment recommendations, Am J Clin Oncol, vol.34, pp.422-453, 2011.

R. Murthy, P. Kamat, and R. Numez, Radioembolization of yttrium-90 microspheres for hepatic malignancy, Semin Intervent Radiol, vol.25, pp.48-57, 2008.

C. Breedis, C. , and G. Young, The blood supply of neoplasms in the liver, Am J Pathol, vol.30, pp.969-84, 1954.

. Ma, B. Burton, P. F. Gray, D. K. Klemp, N. Kelleher et al., Selective Internal Radiation Therapy: Distribution of radiation in the liver, Eur J Cancer Clin Oncol, vol.25, pp.1487-91, 1991.

A. F. Van-den-hoven, C. Rosenbaum, and S. G. Elias, Insights into the dose-response relationship of radioembolization with resin yttrium-90 microspheres: a prospective cohort study in patients with colorectal can liver metastases, J Nucl Med, vol.57, pp.1014-1033, 2016.

E. Garin, L. Lenoir, Y. Rolland, J. Edeline, H. Mesbah et al., Dosimetry based on 99m

, Tc-macroaggregaetd albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90 Y-loaded glass microspheres: preliminary results, J Nucl Med, vol.53, pp.255-63, 2012.

Y. H. Kao, J. D. Steinberg, Y. S. Tay, G. K. Lim, J. Yan et al., Postradioembolization yttrium-90 PET/CT -part 2: dose-response and tumor predictive dosimetry for resin microspheres, EJNMMI Res, vol.3, pp.559-66, 2013.

S. Ho, W. Y. Lau, T. W. Leung, M. Chan, P. J. Johnson et al., Clinical evaluation of the partition model for estimating radiation doses from yttrium-90 microspheres in the treatment of hepatic cancer, Eur J Nucl Med, vol.24, pp.293-301, 1997.

J. M. Campbell, . Co, O. Wong, B. Muzik, M. Marples et al., Early dose response to yttrium-90 microsphere treatment of metastatic liver cancer by a patient-specific method using single photon emission computed tomography and positron emission tomography, Int J Radiat Oncol Biol Phys, vol.74, pp.313-333, 2009.

L. Strigari, R. Sciuto, S. Rea, L. Carpanese, G. Pizzi et al., Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: radiobiologic considerations, J Nucl Med, vol.51, pp.1377-85, 2010.

P. Flamen, B. Vanderlinden, P. Delatte, G. Ghanem, L. Ameye et al., Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with yttrium-90 labeled resin microspheres, Phys Med Biol, vol.53, pp.6591-603, 2008.

E. Garin, Y. Rolland, and L. Lenoir, Utility of quantitative Tc-MAA SPECT/CT for yttriumlabelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach, Int J Mol Imaging, vol.53, pp.255-263, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739649

R. Loevinger, T. F. Budinger, and E. E. Watson, MIRD primer for absorbed dose calculations. Revised. The Society of Nuclear Medicine, 1991.

A. Dieudonne, R. F. Hobbs, W. E. Bolch, G. Sgouros, and I. Gardin, Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size, J Nucl Med, vol.51, pp.1600-1607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00490964

. We, L. G. Bolch, J. S. Bouchet, and . Robertson, MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions-radionuclide S values at the voxel level", Medical Internal Radiation Dose Committee, J Nucl Med, p.40, 1999.

M. Kp.-willowson, D. L. Tapner, and . Bailey, A multicentre comparison of quantitative 90 Y PET/CT for dosimetric purposes after radioembolization with resin microspheres, Eur J Nucl Med Mol Imaging, vol.42, pp.1202-1222, 2015.

[. Bibliographie and . Eur-;-allimant, Tumor targeting and three-dimensional voxel-based dosimetry to predict tumor response, toxicity, and survival after yttrium-90 resin microsphere radioembolization in hepatocellular carcinoma, J Vasc Interv Radiol, vol.29, issue.12, p.54, 2013.

A. , , 2009.

A. , Regional delivery of microspheres to liver metastases : The effects of particle size and concentration on intrahepatic distribution, Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005, vol.27, pp.132-139, 1991.

[. Bagni, , 2012.

, 90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy, Nucl Med Commun, vol.33, issue.2, p.50

[. Bastiaannet, The physics of radioembolization. EJNMMI Physics, vol.46, p.100, 2018.

[. Bastiaannet, Impact of respiratory motion and acquisition settings on SPECT liver dosimetry for radioembolization, Med Phys, vol.98, p.158, 2017.

[. Bernardini, Optimisation of reconstruction , volumetry and dosimetry for Tc-SPECT and 90 Y-PET images : Towards reliable dose-volume histograms for selective internal radiation therapy with Y-microspheres, Physica Medica, p.95, 2017.

[. Bierman, Studies on the blood supply of tumors in man. III. Vascular patterns of the liver by hepatic arteriography in vivo, J Natl Cancer Inst, vol.12, p.31, 1951.

. Binder-foucard, Estimation nationale de l'incidence et de la mortalité par cancer en France entre 1980 et 2012. Partie 1 -Tumeurs solides. Saint Maurice (Fra) : Institut de veille sanitaire, J Hepatol, vol.58, issue.3, pp.593-608, 2013.

[. Black, Defining a radiotherapy target with positron emission tomography, Int J Radiat Oncol Biol Phys, vol.60, issue.4, pp.1272-1282, 2004.

[. Blanc, Carcinome hépatocellulaire. Thésaurus National de Cancérologie Digestive, 2017.

[. Boas, Utilisation du sorafénib (Nexavar R ) dans le traitement du carcinome hépatocellulaire : recommandations Prodige Afef, Clinical Applications of Nuclear Medicine Targeted Therapy, vol.58, pp.3-7, 2008.

[. Bolch, MIRD pamphlet No. 17 : the dosimetry of nonuniform activity distributionsradionuclide S values at the voxel level. Medical Internal Radiation Dose Committee, Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up : A cohort study, vol.40, pp.920-928, 1999.

[. Braat, , 2017.

, Adequate SIRT activity dose is as important as adequate chemotherapy dose -Authors' reply. The Lancet Oncology, vol.18, p.100

. Brans, Clinical radionuclide therapy dosimetry : The quest for the "Holy Gray, Eur J Nucl Med Mol Imaging, vol.34, issue.5, pp.772-786, 2007.

C. Breedis and G. Young, The blood supply of neoplasms in the liver. The American journal of pathology, vol.30, p.31, 1954.

S. ;. Bruix, J. Bruix, and M. Sherman, Management of hepatocellular carcinoma : An update, Hepatology, vol.53, issue.3, pp.1020-1022, 2011.

[. Bruix, Clinical management of hepatocellular carcinoma. Conclusions of the barcelona-2000 EASL conference, J Hepatol, vol.35, issue.3, 2001.

[. Brunello, Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma : A randomized controlled trial, Scandinavian Journal of Gastroenterology, vol.43, issue.6, pp.727-735, 2008.

;. Btg-biocompatibles-ltd and . Btg-biocompatibles-ltd, Press release : BTG annonce le remboursement de TheraSphere au niveau national en France, InvestorsMedia/Press-Releases/View ?press=BTG-announces-National-Reimbursement-forTheraSphe. 34 [BTG Biocompatibles Ltd, 2019.

. Burman, Selective internal radiation therapy : Distribution of radiation in the liver, Int J Radiat Oncol Biol Phys, vol.38, issue.1, p.31, 1989.

[. Campbell, Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy, Phys Med Biol, vol.45, issue.4, p.73, 2000.

[. Campbell, )Y -PET imaging : Exploring limitations and accuracy under conditions of low counts and high random fraction, Phys Med Biol, vol.46, issue.90, p.157, 2001.

[. Cea/lnhb, Guide d'utilisation et de contrôle qualité des activimètres, 2006.

[. Chan, Prospective trial using internal pair-production positron emission tomography to establish the Yttrium-90 radioembolization dose required for response of hepatocellular carcinoma, Int J Radiat Oncol Biol Phys, vol.51, p.69, 2018.

C. , Treatment modification of yttrium-90 radioembolization based on quantitative positron emission tomography/CT imaging, J Vasc Interv Radiol, vol.24, issue.3, pp.333-337, 2013.

[. Chauhan, Intra-arterial TheraSphere yttrium-90 glass microspheres in the treatment of patients with unresectable hepatocellular carcinoma : protocol for the STOP-HCC phase 3 randomized controlled trial, JMIR Res Protoc, vol.7, issue.8, 2018.

[. Chevret, The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy, Eur J Nucl Med Mol Imaging, vol.31, issue.1, pp.133-141, 1999.

. Chiesa, Radioembolization of hepatocarcinoma with 90Y glass microspheres : development of an individualized treatment planning strategy based on dosimetry and radiobiology, Need, feasibility and convenience of dosimetry treatment planning in liver selective internal radiation therapy with 90Y microspheres : the experience of the National Cancer Institute of Milan, vol.55, p.84, 2012.

[. Cho, A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer : Clinical and dosimetric factors analysis, Le foie : études anatomiques et chirurgicales, vol.25, p.20, 1957.

[. Cremonesi, Radioembolization of hepatic lesions from a radiobiology and dosimetric perspective, Frontiers in oncology, vol.4, p.78, 2014.

[. Cremonesi, Radioembolisation with 90Y-microspheres : dosimetric and radiobiological investigation for multi-cycle treatment, Eur J Nucl Med Mol Imaging, vol.35, issue.11, pp.2088-2096, 2008.

[. Daisne, Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios : Influence of reconstruction algorithms, Radiother Oncol, vol.69, issue.3, pp.247-250, 2003.

M. [d'arienzo-;-d'arienzo, Emission of ?+ particles via internal pair production in the 0+ -0+ transition of 90Zr : historical background and current applications in nuclear medicine imaging, Atoms, vol.1, issue.1, 2013.

. D'arienzo, , p.90, 2012.

, PET-based dosimetry after selective internal radiotherapy treatments, Nucl Med Commun, vol.33, p.157

. D'arienzo, Absorbed dose to lesion and clinical outcome after liver radioembolization with 90 Y microspheres : a case report of PET-based dosimetry, Ann Nucl Med, vol.27, p.95, 2013.

[. Dassen, The predictive value of the intrahepatic distribution of 99mTc-macroaggregated albumin and holmium-166 scout dose prior to holmium-166 radioembolization, p.37, 2018.

. Dawson, Partial Irradiation of the Liver, Semin Radiat Oncol, vol.11, issue.3, p.72, 2001.

. Dawson, Analysis of radiation-induced liver disease using the Lyman NTCP model, Int J Radiat Oncol Biol Phys, vol.53, issue.4, 2002.

T. Dawson, L. A. Haken-;-dawson, and R. K. Ten-haken, Partial volume tolerance of the liver to radiation, Semin Radiat Oncol, vol.15, issue.4, p.72, 2005.

D. , How to Prepare a Patient for Transarterial Radioembolization ? A Practical Guide, Cardiovasc Intervent Radiol, vol.38, issue.4, pp.794-805, 2015.

. Dewalle-vignion, MIRD Pamphlet No. 23 : quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy, Medecine Nucleaire, vol.34, issue.2, pp.1310-1325, 2010.

[. Dezarn, Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies, Med Phys, vol.38, issue.8, p.69, 2011.

[. Dieterich, Dosimétrie personnalisée en radiothérapie interne vectorisée : Exemple du traitement des carcinomes hépatocellu-laires par microsphères marquées à l'yttrium 90, Medecine Nucleaire, vol.36, issue.4, pp.215-221, 2012.

[. Dieudonne, Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size, J Nucl Med, vol.51, issue.10, pp.1600-1607, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00490964

[. Dittmann, A prospective study of quantitative SPECT/CT for evaluation of hepatopulmonary shunt fraction prior to SIRT of liver tumors, J Nucl Med, vol.59, issue.9, p.70, 2018.

, Internal radiation therapy for hepatocellular carcinomas with Therasphere : optimized dosimetry versus standard dosimetry, vol.46, p.47, 2018.

[. Dunbar, Increasing survival of hepatocellular carcinoma patients in Scotland : A review of national cancer registry data, HPB, vol.15, issue.4, pp.279-285, 2013.

, Selective internal radiation therapy (SIRT) falls to extend survival in the SORAMIC study palliative cohort, Accessible en 2019 sur, vol.56, p.28, 2012.

J. Edeline, Radioembolisation des tumeurs hépatiques, 2018.

, U -Association Française de Formation Médicale Continue en Hépato-GastroEntérologie, vol.28, p.46

[. Edeline, Yttrium-90 microsphere radioembolization for hepatocellular carcinoma, Liver Cancer, vol.4, issue.1, pp.16-25, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01162379

, European Journal of Cancer, vol.45, issue.2, pp.228-247

[. Ellet, Gamma-ray dosimetry of internal emitters. I. Monte Carlo calculations of absorbed dose from point sources, Br J Radiol, vol.37, pp.45-52, 1964.

[. Ellet, Gamma-ray dosimetry of internal emitters. II. Monte Carlo calculations of absorbed dose from uniform sources, Br J Radiol, vol.38, pp.541-544, 1965.

[. Elschot, Quantitative Monte Carlobased 90Y SPECT reconstruction, J Nucl Med, vol.54, issue.9, pp.1557-1563, 2013.

[. Elschot, , 2014.

. Ho-microspheres, Eur J Nucl Med Mol Imaging, vol.41, p.54

[. Elschot, Quantitative comparison of PET and bremsstrahlung SPECT for imaging the in vivo Yttrium-90 microsphere distribution after liver radioembolization, PloS one, vol.8, issue.2, 2013.

[. Emami, Tolerance of normal tissue to therapeutic irradiation, Int J Radiat Oncol Biol Phys, vol.21, p.93, 1991.

[. Flamen, Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres, Phys Med Biol, vol.53, pp.6591-6603, 2008.

[. Forner, Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma, Cancer, vol.115, issue.3, p.41, 2009.

[. Fox, Internal radiation therapy (brachytherapy), Int J Radiat Oncol Biol Phys, vol.21, p.72, 1991.

[. Gandhi, Single administration of Selective Internal Radiation Therapy versus continuous treatment with sorafeNIB in locally advanced hepatocellular carcinoma (SIRveNIB) : Study protocol for a phase iii randomized controlled trial, Eur J Epidemiol, vol.16, issue.1, pp.39-46, 2006.

. Garin, Dosimetry Based on 99mTc-Macroaggregated Albumin SPECT/CT Accurately Predicts Tumor Response and Survival in Hepatocellular Carcinoma Patients Treated with 90Y-Loaded Glass Microspheres : Preliminary Results, Le traitement par Lipiocis iode-131. Accessible en 2019 sur, vol.40, p.71, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866987

F. Lègue, G. Amadeo, X. Palard, B. Campillo-gimenez, R. et al., , 2019.

. Gates, Partition model based 99mTc-MAA SPECT/CT predictive dosimetry compared to 90Y TOF PET/CT post-treatment dosimetry in radioembolisation of hepatocellular carcinoma : A quantitative agreement comparison, Major impact of personalized dosimetry on the targeted tumor response using 90Y loaded glass microspheres SIRT in HCC : results of a prospective and multicentric randomized study. ECIO Conference. 47, vol.52, p.157, 2011.

[. Goin, Treatment of unresectable hepatocellular carcinoma with intrahepatic yttrium 90 microspheres : A risk-stratification analysis, Liver segmentation : indications, techniques and future directions. Insights Imaging, vol.16, pp.377-392, 2005.

[. Graham, Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer, Int J Radiat Oncol Biol Phys, vol.45, issue.2, p.31, 1999.

[. Grosser, Intrahepatic activity distribution in radioembolization with Yttrium-90 -Labeled resin microspheres using the body surface area method -A less than perfect model, J Vasc Interv Radiol, vol.26, issue.11, p.122, 2015.

[. Gulec, Hepatic Structural Dosimetry in 90Y Microsphere Treatment : A Monte Carlo Modeling Approach Based on Lobular Microanatomy, Journal of Nuclear Medicine, vol.51, issue.2, p.31, 2010.

, Critères diagnostiques et bilan initial de la cirrhose non compliquée. Accessible en 2019 sur, 2015.

, Avis de la commission nationale d'évaluation des dispositifs médicaux et des technologies de santé, Avis de la commission nationale d'évalua-tion des dispositifs médicaux et des technologies de santé -SIRSpheres, microsphères d'Yttrium-90. Accessible en 2019 sur, 2018.

. Hilgard, Hepatocellular carcinoma : a retrospective review of pretreatment single photon emission CT and posttreatment positron emission tomography/CT, Avis de la commission nationale d'éva-technetium-99m macroaggregated albumin and yttrium-90 glass microsphere biodistribution in, vol.28, p.44, 2010.

[. Ho, Clinical evaluation of the partition model for estimating radiation doses from Y90 microspheres in the treatment of hepatic cancer, Eur J Nucl Med, vol.24, issue.3, p.70, 1997.

[. Ho, Partition model for estimating radiation doses from yttrium-90 microspheres in treating hepatic tumours, Eur J Nucl Med, vol.23, issue.8, p.60, 1996.

. Högberg, Heterogeneity of microsphere distribution in resected liver and tumour tissue following selective intrahepatic radiotherapy, EJNMMI Res, vol.4, issue.1, pp.48-57, 2014.

. Högberg, Increased absorbed liver dose in selective internal radiation therapy (SIRT) correlates with increased sphere-cluster frequency and absorbed dose inhomogeneity, EJNMMI Physics, vol.2, issue.1, p.74, 2015.

. Högberg, Interobserver variability in target definition for hepatocellular carcinoma with and without portal vein thrombosus : radiation therapy oncology group consensus guidelines, Int J Radiat Oncol Biol Phys, vol.96, issue.2, pp.804-813, 1999.

, HPS Specialist in Radiation Protection, 2019.

. Ilhan, Predictive value of 99mTc-MAA SPECT for 90Y-labeled resin microsphere distribution in radioembolization of primary and secondary hepatic tumors, J Nucl Med, vol.56, issue.11, pp.1654-1660, 2015.

, International Commission on Radiation Units and Measurements (1992). Photon, electron, proton and neutron interaction data for body tissues, ICRU, vol.46, 1992.

. Ioannou, HCV eradication induced by direct-acting antiviral agents reduces the risk of hepatocellular carcinoma, J Hepatol, vol.17, p.26, 2017.

. Isambert, A phantom study of the accuracy of CT, MR and PET image registrations with a block matching-based algorithm, Cancer Radiothérapie, vol.12, issue.8, pp.800-808, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00616066

[. Jiang, Segmental perfusion differences on paired Tc-99m macroaggregated albumin (MAA) hepatic perfusion imaging and Yttrium-90 (Y-90) bremsstrahlung imaging studies in SIR-Sphere radioembolization : associations with angiography, J Nucl Med Radiat Ther, vol.3, issue.1, 2012.

[. Kafrouni, Retrospective voxel-based dosimetry for assessing the body surface area model ability to predict delivered dose and radioembolization outcome, J Nucl Med, vol.100, p.100, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01821268

[. Kao, Image-guided personalized predictive dosimetry by artery-specific SPECT/CT partition modeling for safe and effective 90Y radioembolization, J Nucl Med, vol.53, issue.4, p.160, 2012.

[. Kao, Y. H. Lichtenstein-;-kao, M. Lichtenstein, and . Kao, Origin, dosimetric effect and clinical limitations of the semi-empirical body surface area method for radioembolisation using yttrium-90 resin microspheres, Personalized predictive lung dosimetry by technetium-99m macroaggregated albumin SPECT/CT for yttrium-90 radioembolization. EJNMMI Res, vol.60, p.54, 2014.

[. Kao, Post-radioembolization yttrium-90 PET/CT -part 2 : dose-response and tumor predictive dosimetry for resin microspheres, EJNMMI Res, vol.3, issue.1, p.162, 2013.

[. Kao, Postradioembolization yttrium-90 PET/CT -part 1 : diagnostic reporting, EJNMMI Res, vol.3, issue.1, p.142, 2013.

[. Kao, Clinical implications of the body surface area method versus partition model dosimetry for yttrium-90 radioembolization using resin microspheres : a technical review, Ann Nucl Med, vol.25, p.122, 2011.

[. Kao, Yttrium-90 time-of-flight PET/CT is superior to bremsstrahlung SPECT/CT for postradioembolization imaging of microsphere biodistribution, Clin Nucl Med, vol.36, issue.12, p.51, 2011.

[. Kappadath, Hepatocellular Carcinoma Tumor Dose Response After90Y-radioembolization With Glass Microspheres Using90Y-SPECT/CT-Based Voxel Dosimetry, Int J Radiat Oncol Biol Phys, vol.102, issue.2, p.96, 2018.

[. Katz, Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases, Int J Radiat Oncol Biol Phys, vol.67, issue.3, pp.793-798, 2007.

F. K. Keane and T. S. Hong, Role and future directions of external beam radiotherapy for primary liver cancer, Cancer Control, vol.24, issue.3, pp.1-12, 2017.

. Kennedy, Radioembolization for the treatment of liver tumors, Am J Clin Oncol, vol.35, issue.1, p.59, 2012.

. Kennedy, Recommendations for radioembolization of hepatic malignancies using yttrium-90 microsphere brachytherapy : a consensus panel report from the radioembolization brachytherapy oncology consortium, Int J Radiation Oncol Biol Phys, vol.68, issue.1, p.69, 2007.

. Kennedy, Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes, International Journal of Radiation Oncology Biology Physics, vol.76, issue.2, p.73, 2004.

. Keppke, Imaging of hepatocellular carcinoma after treatment with yttrium-90 microspheres, American Journal of Roentgenology, vol.188, issue.3, p.42, 2007.

[. Knesaurek, Quantitative comparison of yttrium-90 microspheres and technetium-99m macroaggregated albumin SPECT images for planning 90Y therapy of liver cancer, Technol Cancer Res Treat, vol.9, issue.3, pp.253-262, 2010.

[. Knesaurek, Quantitative comparison of pre-therapy 99mTc-macroaggregated albumin SPECT/CT and post-therapy PET/MR studies of patients who have received intra-arterial radioembolization therapy with 90Y microspheres, Eur Radiol, vol.109, p.162, 2018.

[. Knop, Regression of fibrosis and portal hypertension in HCV-associated cirrhosis and sustained virologic response after interferon-free antiviral therapy, J Viral Hepat, vol.23, issue.12, pp.994-1002, 2016.

[. Lafaro, Epidemiology of hepatocellular carcinoma, Surg Oncol Clin N Am, vol.24, p.25, 2015.

[. Lafortune, Anatomie du foie : ce qu'il faut savoir, Journal de Radiologie, vol.88, issue.7-8, 2007.

[. Lau, Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres, Int J Radiat Oncol Biol Phys, vol.82, issue.1, p.71, 2012.

[. Lau, Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres : a phase I and II study, Br J Cancer, vol.70, issue.5, p.122, 1994.

[. Lea, Microsphere localization and dose quantification using positron emission tomography/CT following hepatic intraarterial radioembolization with yttrium-90 in patients with advanced hepatocellular carcinoma, J Vasc Interv Radiol, vol.25, issue.10, p.43, 2010.

. Leung, Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors, Int J Radiat Oncol Biol Phys, vol.33, issue.4, p.70, 1995.

. Levillain, 90Y-PET/CT-based dosimetry after selective internal radiation therapy predicts outcome in patients with liver metastases from colorectal cancer, EJNMMI Res, vol.8, issue.1, p.95, 2018.

[. Lewandowski, Sustained safety and efficacy of extended-shelf-life 90 Y glass microspheres : long-term followup in a 134-patient cohort, Eur J Nucl Med Mol Imaging, vol.41, pp.486-493, 2014.

. Lhommel, Feasibility of 90 Y TOF PETbased dosimetry in liver metastasis therapy using SIR-Spheres, Eur J Nucl Med Mol Imaging, vol.37, issue.10, p.50, 2009.

[. Llovet, Sorafenib in advanced hepatocellular carcinoma, N Engl J Med, vol.359, issue.4, pp.378-390, 2008.

F. Llovet, J. M. Llovet, and R. S. Finn, Negative phase 3 study of90Y microspheres versus sorafenib in HCC, Lancet Oncol, vol.19, issue.2, 2018.

[. Llovet, The Barcelona approach : diagnosis, staging, and treatment of hepatocellular carcinoma, Liver Transplantation, vol.10, issue.2, p.26, 2004.

L. Loevinger, R. Berman, and M. Lu, PET optimization for improved assessment and accurate quantification of 90Y-microsphere biodistribution after radioembolization, EMC -Radiologie et imagerie médicale -principes et technique -radioprotection. 195, vol.9, p.225, 1948.

E. Bombardieri, E. Camerini, T. Spreafico, and C. , Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma : A phase 2 study, Phys Med Biol, vol.57, issue.5, p.77, 2013.

[. Meade, Distribution of different sized microspheres in experimental hepatic tumours, Eur J Cancer Clin Oncol, vol.23, issue.1, p.41, 1981.

. Motola-kuba, Neutronactivated holmium-166-poly (L-lactic acid) microspheres : a potential agent for the internal radiation therapy of hepatic tumors, Ann Hepatol, vol.5, issue.1, pp.1239-1282, 1999.

[. Murthy, NEMA NU 2-2012 : Performance measurements of positron emission tomographs, Rosslyn : National Electrical Manufacturers Association, vol.25, p.137, 2008.

[. Nestle, Target volume definition for 18F-FDG PETpositive lymph nodes in radiotherapy of patients with non-small cell lung cancer, Eur J Nucl Med Mol Imaging, vol.34, issue.4, pp.628-634, 2007.

;. O'donoghue and J. A. O'donoghue, Implications of nonuniform tumor doses for radioimmunotherapy, J Nucl Med, vol.40, issue.8, 1999.

[. Oken, Toxicity and response criteria of the Eastern Cooperative Oncology Group, vol.24, p.25, 1982.

[. Okuda, Natural history of hepatocellular carcinoma and prognosis in relation to treatment, Cancer, vol.56, pp.918-928, 1985.

[. Osborne, 90Y liver radioembolization imaging using amplitude-based gated PET / CT, Clin Nucl Med, vol.42, issue.5, pp.373-374, 2017.

[. Osborne, Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT, Nucl Med Commun, vol.39, issue.3, pp.222-227, 2018.

. Ourselin, Block matching : a general framework to improve robustness of rigid registration of medical images, MICCAI, vol.87, pp.557-566, 1935.
URL : https://hal.archives-ouvertes.fr/inria-00615860

[. Padia, Comparison of positron emission tomography and bremsstrahlung imaging to detect particle distribution in patients undergoing yttrium-90 radioembolization for large hepatocellular carcinomas or associated portal vein thrombosis, J Vasc Interv Radiol, vol.24, issue.8, pp.1147-1153, 2013.

A. S. Pasciak, A. C. Bourgeois, and . Pasciak, Comments on : Intrahepatic activity distribution in radioembolization with yttrium-90-labeled resin microspheres using the body surface area method -A less than perfect model, Radioembolization and the dynamic role of 90Y PET/CT. Front Oncol, vol.27, p.162, 2014.

A. S. Pasciak and W. D. Erwin, Effect of voxel size and computation method on Tc-99m MAA SPECT/CT-based dose estimation for Y-90 microsphere therapy, IEEE Trans Med Imaging, vol.28, issue.11, pp.1754-1758, 2009.

[. Petitguillaume, Three-dimensional personalized monte carlo dosimetry in 90Y resin microspheres therapy of hepatic metastases : considerations and treatment planning optimization, J Nucl Med, vol.55, issue.3, pp.405-414, 2014.

[. Pouget, Introduction to radiobiology of targeted radionuclide therapy, Front Med, vol.2, issue.12, p.78, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01934653

. Prince, Chemoembolization versus radioembolization in treating patients with liver cancer that cannot be treated with radiofrequency ablation or surgery, J Nucl Med, vol.56, issue.6, pp.817-824, 2015.

[. Prince, , 2018.

B. A. Zonnenberg, M. Lam, and . Pugh, Efficacy of radioembolization with holmium-166 microspheres in salvage patients with liver metastases : a phase 2 study, Brit J Surg, vol.59, issue.4, p.25, 1973.

[. Radosa, , 2019.

, Holmium-166 radioembolization in hepatocellular carcinoma : feasibility and safety of a new treatment option in clinical practice, Cardiovasc Intervent Radiol

[. Raoul, Treatment of hepatocellular carcinoma with intra-arterial injection of radionuclides, Nat Rev Gastroenterol Hepatol, vol.7, issue.1, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00742471

, Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled-iodized oil in the treatment of hepatocellular carcinoma, Hepatology, vol.26, issue.5

[. Ricke, Safety and toxicity of radioembolization plus Sorafenib in advanced hepatocellular carcinoma : Analysis of the European multicentre trial SORAMIC, Liver International, vol.35, issue.2, pp.735-738, 1992.

[. Rong, Development and evaluation of an improved quantitative 90Y bremsstrahlung SPECT method, Med Phys, vol.39, issue.5, pp.2346-2358, 2012.

[. Russell, History and evolution of yttrium-90 radioembolization for hepatocellular carcinoma, Endocuriether Hyperther Oncol, vol.4, issue.1, p.46, 1988.

[. Salem, Y90 Radioembolization significantly prolongs time to progression compared with chemoembolization in patients with hepatocellular carcinoma, Gastroenterology, vol.151, issue.6, pp.1155-1163, 2016.

[. Salem, Research reporting standards for radioembolization of hepatic malignancies, J Vasc Interv Radiol, vol.22, issue.3, p.126, 2011.

[. Salem, Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres : a comprehensive report of long-term outcomes, Gastroenterology, vol.138, issue.1, p.44, 2010.

[. Salem, Incidence of radiation pneumonitis after hepatic intra-arterial radiotherapy with yttrium-90 microspheres assuming uniform lung distribution, Am J Clin Oncol, vol.31, issue.5, p.70, 2008.

T. Salem, R. Salem, and K. G. Thurston, Radioembolization with 90yttrium microspheres : a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies, J Vasc Interv Radiol, vol.17, pp.1251-1278, 2006.

[. Sancho, Is a technetium-99m macroaggregated albumin scan essential in the workup for selective internal radiation therapy with yttrium-90 ? An analysis of 532 patients, J Vasc Interv Radiol, vol.28, pp.1536-1542, 2017.

[. Sangro, Survival after Yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across Barcelona clinic liver cancer stages : A European evaluation, Hepatology, vol.54, issue.3, p.44, 2011.

[. Sangro, Liver disease induced by radioembolization of liver tumors : Description and possible risk factors, Cancer, vol.112, issue.7, p.71, 2008.

. Sarfaraz, Radiation absorbed dose distribution in a patient treated with yttrium-90 microspheres for hepatocellular carcinoma, Med Phys, vol.31, issue.9, pp.2449-2453, 2004.

[. Selwyn, A new internal pair production branching ratio of 90Y : The development of a non-destructive assay for 90Y and 90Sr, Int J Radiat Oncol Biol Phys, vol.35, issue.4, p.41, 2003.

[. Sieghart, Study to compare selective internal radiation therapy (SIRT) versus sorafenib in locally advanced hepatocellular carcinoma (HCC) (SIRveNIB), vivo dosimetry based on SPECT and MR imaging of 166Ho-microspheres for treatment of liver malignancies, vol.62, p.37, 1971.

. Smits, Holmium-166 radioembolisation in patients with unresectable, chemorefractory liver metastases (HEPAR trial) : a phase 1, dose-escalation study, Lancet Oncol, vol.13, pp.1025-1034, 2012.

. Smits, Radioembolization dosimetry : the road ahead, Cardiovasc Intervent Radiol, vol.38, p.82, 2015.

[. Snyder, MIRD Pamphlet No11 : "S", Absorbed dose per unit cumulated activity for selected radionuclides and organs, Society of Nuclear Medicine, vol.53, p.58, 1975.

;. Société-française-de-gastroentérologie and . Song, PET/CT-based dosimetry in 90Y-microsphere selective internal radiation therapy, Les fondamenteux de la pathologie digestive, vol.94, p.162, 2014.

[. Spreafico, The dosimetric importance of the number of 90Y microspheres in liver transarterial radioembolization (TARE), Eur J Nucl Med Mol Imaging, vol.41, p.75, 2014.

. Srinivas, Determination of Radiation Absorbed Dose to Primary Liver Tumors and Normal Liver Tissue Using Post-Radioembolization 90Y PET, Front Oncol, vol.4, p.69, 2014.

. Strigari, Dosimetry in nuclear medicine therapy : radiobiology application and results, Q J Nucl Med Mol Imaging, vol.55, p.78, 2011.

[. Strigari, Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90 Y-SIR spheres : radiobiologic considerations, J Nucl Med, vol.51, issue.9, p.78, 2010.

[. Strydhorst, A gate evaluation of the sources of error in quantitative 90Y PET, Med Phys, vol.43, issue.10, p.156, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01523817

[. Suenaga, Respiratorygated 18 F-FDG PET/CT for the diagnosis of liver metastasis, Eur J Radiol, vol.82, issue.10, pp.1696-1701, 2013.

, A new prognostic system for hepatocellular carcinoma : a retrospective study of 435 patients : the Cancer of the Liver Italian Program (CLIP) investigators, The Cancer of the Liver Italian Program (CLIP) Investigators, vol.28, pp.751-755, 1998.

[. Therasse, New guidelines to evaluate the response to treatment in solid tumors, J Natl Cancer Inst, vol.92, issue.3, p.41, 2000.

[. Tong, Yttrium-90 hepatic radioembolization : clinical review and current techniques in interventional radiology and personalized dosimetry, Br J Radiol, vol.89, p.126, 2016.

[. Torre, Global cancer statistics, Ca Cancer J Clin, vol.65, issue.2, p.25, 2012.

[. Traino, Radiodosimetric estimates for radioembolic therapy of liver : challenges and opportunities, Gastroenterol Clin Biol, vol.53, issue.4, pp.830-839, 2009.

[. Ulrich, Predictive value of intratumoral 99mTc-macroaggregated albumin uptake in patients with colorectal liver metastases scheduled for radioembolization with 90Y-microspheres, J Nucl Med, vol.54, issue.4, pp.516-522, 2013.

. Van-de-maat, MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation, Eur Radiol, vol.23, issue.3, pp.827-835, 2012.

. [van-hazel, Randomised phase 2 trial of SIRSpheres plus Fluorouracil/Leucovorin chemotherapy versus Fluorouracil/Leucovorin chemotherapy alone in advanced colorectal cancer, Phys Med Biol, vol.88, issue.22, pp.6901-6916, 2004.

. Vauthey, Body surface area and body weight predict total liver volume in western adults, Liver Transplant, vol.8, issue.3, pp.233-240, 2002.

[. Vente, Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver : Technical aspects studied in a large animal model, Eur Radiol, vol.20, issue.4, pp.862-869, 2010.

. Vilgrain, Radioembolisation with yttrium-90 microspheres versus sorafenib for treatment of advanced hepatocellular carcinoma (SA-RAH) : Study protocol for a randomised controlled trial, Trials, vol.15, p.474, 2014.

. Vilgrain, Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH) : an open-label randomised controlled phase 3 trial, Lancet Oncol, vol.18, issue.12, pp.1624-1637, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01727346

[. Wallace, The evolving epidemiology of hepatocellular carcinoma : A global perspective, Expert Rev of Gastroenterol Hepatol, vol.9, issue.6, p.22, 2015.

[. Walrand, The low hepatic toxicity per Gray of 90Y glass microspheres is linked to their transport in the arterial tree favoring a nonuniform trapping as observed in posttherapy PET imaging, J Nucl Med, vol.55, issue.1, p.74, 2014.

[. Walrand, , 2014.

, A Hepatic Dose-Toxicity Model Opening the Way Toward Individualized Radioembolization Planning

[. Werner, Respiratory gating enhances imaging of pulmonary nodules and measurement of tracer uptake in FDG PET/CT, AJR, vol.193, issue.6, pp.1640-1645, 2009.

[. Westcott, The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres, Adv Radiat Oncol, vol.1, issue.4, p.33, 2016.

[. Wiangnon, Trends in incidence of hepatocellular carcinoma, Asian Pacific J Cancer Prev, vol.13, issue.3, p.155, 1990.

[. Willowson, Clinical and imaging-based prognostic factors in radioembolisation of liver metastases from colorectal cancer : a retrospective exploratory analysis, EJNMMI Res, vol.7, issue.1, p.46, 2017.

[. Willowson, A multicentre comparison of quantitative 90Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study, Eur J Nucl Med Mol Imaging, vol.42, issue.8, p.157, 2015.

[. Wondergem, 99mTc-Macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization, J Nucl Med, vol.54, issue.8, pp.1294-1302, 2013.

. Wulf, Stereotactic radiotherapy of primary liver cancer and hepatic metastases, Immunization, vaccines and biologicals : hepatitis B. Accessible en 2019 sur, vol.45, pp.838-847, 2006.

, Efficacy evaluation of TheraSphere to treat inoperable liver cancer with blockage of the portal vein (YES-P), p.46, 2017.

[. Yorke, Can current models explain the lack of liver complications in Y-90 microsphere therapy ?, Clin Cancer Res, vol.5, 1999.

[. Yu, 90Y microsphere therapy : Does 90Y PET/CT imaging obviate the need for 90Y Bremsstrahlung SPECT/CT imaging, Int J Radiat Oncol Biol Phys, vol.85, issue.3, pp.834-839, 1996.

, Liste des figures

. .. Anatomie-du-foie,

, Taux d'incidence et de mortalité pour le cancer primitif du foie, p.22

. Recommandations and . .. Chc, , p.23

.. .. Pugh,

. .. Stadification, , vol.26

. .. Principe-de-la-rtis,

. Microsphères-de-résine and .. .. De-verre,

. .. Déroulement-de-la-rtis,

. Cas-clinique-tep-vs, . Temp, and . .. De-freinage, 53 1.16 Calcul de dose absorbée à l'échelle du voxel

. .. Comparaison-d'histogrammes-dose-volume, 76 1.19 Illustration du modèle linéaire-quadratique

. .. , Exemple de définition du volume tumoral viable, p.85

. .. Fonctionnelle, Contours anatomiques visibles sur l'imagerie, vol.87

, Illustration de la détermination du facteur de calibration, p.89

T. .. Panneau-de-dosimétrie-du,

, Illustration de l'histogramme dose-volume idéal

. .. , Exemple clinique d'histogramme dose-volume, p.95

. .. Étapes-de-la-dosimétrie-personnalisée, , p.96

, Illustration de la variabilité de la définition du volume tumoral, p.97

. .. , Illustration des expérimentations avec le fantôme NEMA, p.130

, Acquisition d'images du fantôme NEMA

. .. Tep, Segmentation des sphères sur l'imagerie TEMP et, p.133

, Représentation graphique des facteurs de recouvrement TEMP et TEP 136

. .. , Évaluation de l'impact visuel de la durée d'acquisition, p.141

, Évaluation de l'impact quantitatif de la durée d'acquisition, p.141

. .. , Illustration de la conception du fantôme Abdo-Man, p.144

. Sphères and . .. Abdo-man, , p.145

, Acquisition d'images TEMP et TEP du fantôme Abdo-Man, p.147

, Illustration de la définition des sphères du fantôme Abdo-Man, p.148

N. .. , Représentation graphique des facteurs de recouvrement de l'imagerie TEMP pour les fantômes Abdo-Man, p.149

. .. Abdo-man, Images TEMP des sphères 7 et 8 du fantôme, p.150

, Facteurs de recouvrement en fonction de la durée d'acquisition, p.151

, Visualisation de la sphère "nécrosée" en fonction de la durée d'acquisition151

, Illustration d'images TEMP et TEP des sphères homogène et "nécrosée, p.152

, Exemple d'images cliniques d'un patient ayant une lésion nécrosée, p.152

. .. Dosimétries-calculées-pour-le-fantôme-abdo-man, , p.155

A. ,

A. , Illustration de l'effet de volume partiel

, Liste des tableaux

É. .. De-performance-de-l'ecog/oms, , p.25

.. .. Critères-d'évaluation-de-la-réponse-tumorale,

. Essais and . .. Chc, , p.45

D. .. Essai-clinique,

.. .. Méthode-empirique,

.. .. Méthodes-de-planification-d'activité,

, Seuils de dose absorbée à la tumeur pour les microsphères de résine . . 66 1.10 Seuils de dose absorbée à la tumeur pour les microsphères de verre, p.69

, Seuils de dose absorbée aux poumons

, Paramètres d'imagerie pour déterminer le facteur de calibration, p.90

. Spécifications and . .. Nema, , p.129

, Paramètres d'acquisition et de reconstruction pour le fantôme NEMA, p.131

. .. Activité, , p.132

, Volumes théoriques des sphères du fantôme NEMA vs. volumes segmentés sur l'imagerie TEMP et TEP

F. De and . .. Tep, , p.135

, Facteurs de recouvrement TEP -Comparaison avec l'étude QUEST, p.136

.. .. Variabilité,

. Spécifications and . .. Abdo-man, , p.146

, Activité totale mesurée dans le fantôme Abdo-Man vs, p.148

R. Dosimétriques and . .. Le-fantôme-abdo-man, , p.154