E. K. Adrian, . Jr, and B. E. Walker, Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord, 1962.

, J. Neuropathol. Exp. Neurol, vol.21, pp.597-609

C. Alfaro-cervello, M. Soriano-navarro, Z. Mirzadeh, A. Alvarezbuylla, and J. M. Garcia-verdugo, Biciliated ependymal cell proliferation contributes to spinal cord growth, J. Comp. Neurol, vol.520, pp.3528-3552, 2012.

A. Alvarez-buylla and R. A. Ihrie, Sonic hedgehog signaling in the postnatal brain, Semin. Cell Dev. Biol, vol.33, pp.105-111, 2014.

F. Barnabé-heider, C. Göritz, H. Sabelström, H. Takebayashi, F. W. Pfrieger et al., Origin of new glial cells in intact and injured adult spinal cord, Cell Stem Cell, vol.7, pp.470-482, 2010.

L. Bauchet, N. Lonjon, F. Vachiery-lahaye, A. Boularan, A. Privat et al., Isolation and culture of precursor cells from the adult human spinal cord, Methods Mol. Biol, vol.1059, pp.87-93, 2013.

C. W. Beck, B. Christen, and J. M. Slack, Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate, Dev. Cell, vol.5, pp.429-439, 2003.

C. G. Becker, T. Becker, and J. Hugnot, The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Prog. Neurobiol, vol.170, pp.67-80, 2018.

M. Bélanger, B. Robert, and M. Cayouette, Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals, Dev. Cell, vol.40, pp.137-150, 2017.

E. J. Benner, D. Luciano, R. Jo, K. Abdi, P. Paez-gonzalez et al., , 2013.

, Stem Cell Reports j, vol.12, issue.1, p.17, 2019.

R. Barnabé-heider, F. Göritz, C. Sabelström, H. Takebayashi, H. Pfrieger et al., Origin of new glial cells in intact and injured adult spinal cord, Cell stem cell, vol.7, pp.470-482, 2010.

C. G. Becker, T. Becker, and J. Hugnot, The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Progress in neurobiology, 2018.

J. Hugnot, Isolate and culture neural stem cells from the mouse adult spinal cord, Neural Progenitor Cells, pp.53-63, 2013.

B. Martynoga, J. L. Mateo, B. Zhou, J. Andersen, A. Achimastou et al., Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence, Genes & development, vol.27, pp.1769-1786, 2013.

C. Ramos, R. , and B. , msh/Msx gene family in neural development, Trends in Genetics, vol.21, pp.624-632, 2005.

A. B. Rosenberg, C. M. Roco, R. A. Muscat, A. Kuchina, P. Sample et al., Id proteins in development, cell cycle and cancer, Trends in cell biology, vol.13, pp.410-418, 2003.

J. C. Sabourin, K. B. Ackema, D. Ohayon, P. O. Guichet, F. E. Perrin et al., A mesenchymal-like ZEB1+ niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord, Stem cells, vol.27, pp.2722-2733, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02156253

A. Ribeiro, J. F. Monteiro, A. C. Certal, A. M. Cristovão, and L. Saúde, Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish, Open Biol, 2017.

B. Cherm, New Gene Markers of Angiogenesis and Blood Vessels Development in

, Porcine Ovarian Granulosa Cells during Short-Term Primary Culture in Vitro, Biomed Res. Int, 2019.

M. J. Cardozo, K. S. Mysiak, T. Becker, and C. G. Becker, Reduce, reuse, recycleDevelopmental signals in spinal cord regeneration, Developmental Biology, 2017.

C. A. Grégoire, B. L. Goldenstein, E. M. Floriddia, F. Barnabé-heider, and K. J. Fernandes, Endogenous neural stem cell responses to stroke and spinal cord injury, GLIA, 2015.

H. Sabelström, M. Stenudd, and J. Frisén, Neural stem cells in the adult spinal cord, Experimental Neurology, 2014.

M. A. Anderson, Astrocyte scar formation AIDS central nervous system axon regeneration, Nature, 2016.

F. Barnabé-heider and J. Frisén, Stem cells for spinal cord repair, Cell Stem Cell, 2008.

Y. Qin, W. Zhang, and P. Yang, Current states of endogenous stem cells in adult spinal cord, J. Neurosci. Res, 2015.

C. G. Becker, T. Becker, and J. P. Hugnot, The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Progress in Neurobiology, 2018.

B. Paniagua-torija, Cells in the adult human spinal cord ependymal region do not proliferate after injury, J. Pathol, 2018.

Y. Lallemand, J. Moreau, C. Cloment, F. L. Vives, and B. Robert, Generation and characterization of a tamoxifen inducible Msx1CreERT2knock-in allele, Genesis, 2013.

H. N. Noristani, J. C. Sabourin, H. Boukhaddaoui, E. Chan-seng, Y. N. Gerber et al., Spinal cord injury induces astroglial conversion towards neuronal lineage, Mol. Neurodegener, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01376950

J. E. Lee and J. G. Gleeson, Cilia in the nervous system: Linking cilia function and neurodevelopmental disorders, Curr. Opin. Neurol, 2011.

G. L. O'grady, Recessive ACTA1 variant causes congenital muscular dystrophy with rigid spine, Eur. J. Hum. Genet, 2015.

S. Obayashi, H. Tabunoki, S. U. Kim, and J. I. Satoh, Gene expression profiling of human neural progenitor cells following the serum-induced astrocyte differentiation, Cell. Mol. Neurobiol, 2009.

A. Zarin and J. P. Labrador, Motor axon guidance in Drosophila, Seminars in Cell and Developmental Biology, 2019.

M. Namihira and K. Nakashima, Mechanisms of astrocytogenesis in the mammalian brain, Current Opinion in Neurobiology, 2013.

J. J. Breunig, Ets Factors Regulate Neural Stem Cell Depletion and Gliogenesis in Ras Pathway Glioma, Cell Rep, 2015.

S. Tamura, Y. Morikawa, and E. Senba, Up-regulated phosphorylation of signal transducer and activator of transcription 3 and cyclic AMP-responsive element binding protein by peripheral inflammation in primary afferent neurons possibly through oncostatin M receptor, Neuroscience, 2005.

T. Taga, K. Ito, A. Noguchi, H. Arakawa, Y. Uosaki et al., Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes, Mol. Biol. Cell, 2017.

A. Lavado, The Hippo Pathway Prevents YAP/TAZ-Driven Hypertranscription and Controls Neural Progenitor Number, Dev. Cell, 2018.

V. Moreno-manzano, Activated spinal cord ependymal stem cells rescue neurological function, Stem Cells, 2009.

K. Pawar, Biomaterial bridges enable regeneration and re-entry of corticospinal tract axons into the caudal spinal cord after SCI: Association with recovery of forelimb function, Biomaterials, 2015.

E. F. Schmidt, L. Kus, S. Gong, and N. Heintz, BAC transgenic mice and the GENSAT database of engineered mouse strains, Cold Spring Harb. Protoc, 2013.

D. Mizrak, Single-Cell Analysis of Regional Differences in Adult V-SVZ Neural Stem Cell Lineages, Cell Rep, 2019.

C. M. O'hara, M. W. Egar, and E. A. Chernoff, Reorganization of the ependyma during axolotl spinal cord regeneration: Changes in intermediate filament and fibronectin expression, Dev. Dyn, 1992.

M. H. Tuszynski, R. Grill, L. L. Jones, H. M. Mckay, and A. Blesch, Spontaneous and augmented growth of axons in the primate spinal cord: Effects of local injury and nerve growth factor-secreting cell grafts, J. Comp. Neurol, 2002.

V. R. King, A. Alovskaya, D. Y. Wei, R. A. Brown, and J. V. Priestley, The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury, Biomaterials, 2010.

R. Harris, L. M. Sabatelli, and M. A. Seeger, Guidance cues at the Drosophila CNS midline: Identification and characterization of two Drosophila Netrin/UNC-6 homologs, Neuron, 1996.

K. Keleman and B. J. Dickson, Short-and long-range repulsion by the Drosophila Unc5 Netrin receptor, Neuron, 2001.

K. L. Ring, Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells, Stem Cell Reports, 2015.

M. T. Cobourne, Restriction of sonic hedgehog signalling during early tooth development, Development, 2004.

C. S. Lee, N. R. May, and C. M. Fan, Growth arrest specific gene 1 is a positive growth regulator for the cerebellum, Dev. Biol, 2001.

B. L. Allen, T. Tenzen, and A. P. Mcmahon, The Hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development, Genes Dev, 2007.

V. Ribes, Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube, Genes Dev, 2010.

C. B. Bai and A. L. Joyner, Gli1 can rescue the in vivo function of Gli2, Development, 2001.

C. B. Bai, W. Auerbach, J. S. Lee, D. Stephen, and A. L. Joyner, Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway, Development, 2002.

J. Motoyama, L. Milenkovic, M. Iwama, Y. Shikata, M. P. Scott et al., Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification, Dev. Biol, 2003.

C. B. Bai, D. Stephen, and A. L. Joyner, All mouse ventral spinal cord patterning by Hedgehog is Gli dependent and involves an activator function of Gli3, Dev. Cell, 2004.

P. , Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development, Genes Dev, 2003.

B. Luu, S. Ahn, G. Ge, H. Wang, and Y. Uchida, Gli3 Is Required for Maintenance and Fate Specification of Cortical Progenitors, J. Neurosci, 2011.

S. Ahn and A. L. Joyner, Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning, Cell, 2004.

S. Ahn and A. L. Joyner, In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog, Nature, 2005.

Z. Chaker, P. Codega, and F. Doetsch, A mosaic world: puzzles revealed by adult neural stem cell heterogeneity, Wiley Interdisciplinary Reviews: Developmental Biology, 2016.

H. Wang, A. W. Kane, C. Lee, and S. Ahn, Gli3 repressor controls cell fates and cell adhesion for proper establishment of neurogenic niche, Cell Rep, 2014.

S. A. Vokes, H. Ji, W. H. Wong, and A. P. Mcmahon, A genome-scale analysis of the cisregulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb, Genes Dev, 2008.

K. Nakashima and T. Taga, Mechanisms underlying cytokine-mediated cell-fate regulation in the nervous system, Mol. Neurobiol, 2002.

H. Asano, M. Aonuma, T. Sanosaka, J. Kohyama, M. Namihira et al., Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification, Stem Cells, 2009.

C. Stuhlmann-laeisz, Forced Dimerization of gp130 Leads to Constitutive STAT3 Activation, Cytokine-independent Growth, and Blockade of Differentiation of Embryonic Stem Cells, Mol. Biol. Cell, 2006.

R. A. Korsak, STAT3 is a Critical Regulator of Astrogliosis and Scar Formation after Spinal Cord Injury, J. Neurosci, 2008.

J. E. Herrmann, STAT3 is a Critical Regulator of Astrogliosis and Scar Formation after Spinal Cord Injury, J. Neurosci, 2008.

T. Takizawa, DNA Methylation Is a Critical Cell-Intrinsic Determinant of Astrocyte Differentiation in the Fetal Brain, Dev. Cell, 2001.

M. Gaete, Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells, Neural Dev, 2012.

R. Muñoz, G. Edwards-faret, M. Moreno, N. Zuñiga, H. Cline et al., Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells, Dev. Biol, 2015.

C. Mertens and J. E. Darnell, SnapShot: JAK-STAT Signaling, Cell, 2007.

P. M. Vidal, Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth After Spinal Cord Injury, Mol. Neurobiol, 2014.

E. A. Goldstein, Z. C. Hesp, C. J. Miranda, B. K. Kaspar, and D. M. Mctigue, Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats, J. Neurosci, 2015.

K. W. Park, C. Y. Lin, and Y. S. Lee, Expression of Suppressor of Cytokine Signaling-3 (SOCS3) and its role in neuronal death after complete spinal cord injury, Exp. Neurol, 2014.

I. B. Wanner, Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3-Dependent Mechanisms after Spinal Cord Injury, J. Neurosci, 2013.

M. A. Anderson, Astrocyte scar formation aids CNS axon regeneration, Nature, 2016.

D. Jin, Y. Liu, F. Sun, X. Wang, X. Liu et al., Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3, Nat. Commun, 2015.

V. S. Tapia, M. Herrera-rojas, and J. Larrain, JAK-STAT pathway activation in response to spinal cord injury in regenerative and non-regenerative stages of Xenopus laevis, 2017.

C. Lang, P. M. Bradley, A. Jacobi, M. Kerschensteiner, and F. M. Bareyre, STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury, EMBO Rep, 2013.

A. A. Oliva, Y. Kang, J. Sanchez-molano, C. Furones, and C. M. Atkins, STAT3 signaling after traumatic brain injury, J. Neurochem, 2012.

I. Glezer and S. Rivest, Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites, Brain, Behavior, and Immunity, 2010.

X. Xia, Oncostatin M protects rod and cone photoreceptors and promotes regeneration of cone outer segment in a rat model of retinal degeneration, PLoS One, 2011.

K. Rychli, The inflammatory mediator oncostatin M induces angiopoietin 2 expression in endothelial cells in vitro and in vivo, J. Thromb. Haemost, 2010.

H. Slaets, Oncostatin M Reduces Lesion Size and Promotes Functional Recovery and Neurite Outgrowth After Spinal Cord Injury, Mol. Neurobiol, 2014.

B. Zhao, L. Li, Q. Lei, and K. L. Guan, The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version, Genes and Development, 2010.

D. Pan, The hippo signaling pathway in development and cancer, Developmental Cell, 2010.

F. X. Yu and K. L. Guan, The Hippo pathway: Regulators and regulations, Genes and Development, 2013.

G. Halder and R. L. Johnson, Hippo signaling: growth control and beyond, Development, 2010.

J. Mo, H. W. Park, and K. Guan, The Hippo signaling pathway in stem cell biology and cancer, EMBO Rep, 2014.

S. Piccolo, S. Dupont, and M. Cordenonsi, The Biology of YAP/TAZ: Hippo Signaling and Beyond, Physiol. Rev, 2014.

M. A. Johnston and D. A. Lim, Keeping Them Quiet: BMPs Maintain Adult Neural Stem Cell Quiescence, Cell Stem Cell, 2010.

A. J. Crowther and J. Song, Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny, Neuroscience Bulletin, 2014.

H. Chen, BMP2-SMAD Signaling Represses the Proliferation of Embryonic Neural Stem Cells through YAP, J. Neurosci, 2014.

Z. Huang, YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation, Development, 2016.

S. E. Hiemer and X. Varelas, Stem cell regulation by the Hippo pathway, Biochimica et Biophysica Acta -General Subjects, 2013.

Z. Huang, Y. Wang, G. Hu, J. Zhou, L. Mei et al., YAP Is a Critical Inducer of SOCS3, Preventing Reactive Astrogliosis, Cereb. Cortex, 2016.

N. Duval, Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord, Development, 2014.

J. M. Lytle, R. Chittajallu, J. R. Wrathall, and V. Gallo, NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury, Glia, 2009.

A. R. Hackett and J. K. Lee, Understanding the NG2 glial scar after spinal cord injury, Frontiers in Neurology, 2016.

N. Masahira, Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells, Dev. Biol, 2006.

X. Li, MEK Is a Key Regulator of Gliogenesis in the Developing Brain, Neuron, 2012.

S. Lacroix, Central canal ependymal cells proliferate extensively in response to traumatic spinal cord injury but not demyelinating lesions, PLoS One, 2014.

D. Pleasure, Macroglial Plasticity and the Origins of Reactive Astroglia in Experimental Autoimmune Encephalomyelitis, J. Neurosci, 2011.

R. Tomer, L. Ye, B. Hsueh, and K. Deisseroth, Advanced CLARITY for rapid and highresolution imaging of intact tissues, Nat. Protoc, 2014.

M. Fumagalli, Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation, J. Biol. Chem, 2011.

A. Battefeld, J. Klooster, and M. H. Kole, Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity, Nat. Commun, 2016.

S. Szuchet, The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype, Eur. J. Neurosci, 2011.

C. Takasaki, M. Yamasaki, M. Uchigashima, K. Konno, Y. Yanagawa et al., Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex, Eur. J. Neurosci, 2010.

M. A. Petryniak, G. B. Potter, D. H. Rowitch, and J. L. Rubenstein, Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain, Neuron, 2007.

S. J. Koo and S. L. Pfaff, Fine-tuning motor neuron properties: Signaling from the periphery, Neuron, 2002.

M. Wegner, Specification of Macroglia by Transcription Factors. Oligodendrocytes, Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS, 2013.

M. Kasai, K. Satoh, and T. Akiyama, Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs, Genes to Cells, 2005.

S. Kim and M. J. Webster, Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders, Mol. Psychiatry, 2010.

S. Kim and M. J. Webster, Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders, Mol. Psychiatry, 2011.

H. Hibino, A. Inanobe, K. Furutani, S. Murakami, I. Findlay et al., Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles, vol.90, p.291, 2010.

G. S. Tomassy and V. Fossati, How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses, Front. Cell. Neurosci, 2014.

S. Marques, Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system, 2016.

C. Marie, Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8, Proc. Natl. Acad. Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01934817

J. Price, B. P. Williams, and M. Götz, The Generation of Cellular Diversity in the Cerebral Cortex, 2007.

C. Giaume and X. Liu, From a glial syncytium to a more restricted and specific glial networking, J. Physiol. Paris, 2012.

Y. Lu, Viscoelastic properties of individual glial cells and neurons in the CNS, Proc. Natl. Acad. Sci, 2006.

E. M. Gibson, Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain, 2014.

S. Marques, Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system, 2016.

C. Takasaki, M. Yamasaki, M. Uchigashima, K. Konno, Y. Yanagawa et al., Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex, Eur. J. Neurosci, 2010.

S. Szuchet, The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype, Eur. J. Neurosci, 2011.

A. Battefeld, J. Klooster, and M. H. Kole, Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity, Nat. Commun, 2016.

R. Tomer, L. Ye, B. Hsueh, and K. Deisseroth, Advanced CLARITY for rapid and highresolution imaging of intact tissues, Nat. Protoc, 2014.

M. Fumagalli, Phenotypic changes, signaling pathway, and functional correlates of GPR17-expressing neural precursor cells during oligodendrocyte differentiation, J. Biol. Chem, 2011.

M. A. Petryniak, G. B. Potter, D. H. Rowitch, and J. L. Rubenstein, Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain, Neuron, 2007.

S. J. Koo and S. L. Pfaff, Fine-tuning motor neuron properties: Signaling from the periphery, Neuron, 2002.

M. Wegner, Specification of Macroglia by Transcription Factors. Oligodendrocytes, Comprehensive Developmental Neuroscience: Patterning and Cell Type Specification in the Developing CNS and PNS, 2013.

M. Kasai, K. Satoh, and T. Akiyama, Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs, Genes to Cells, 2005.

S. Kim and M. J. Webster, Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders, Mol. Psychiatry, 2010.

S. Kim and M. J. Webster, Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders, Mol. Psychiatry, 2011.

H. Hibino, A. Inanobe, K. Furutani, S. Murakami, I. Findlay et al., Inwardly Rectifying Potassium Channels: Their Structure, Function, and Physiological Roles, vol.90, p.291, 2010.

C. Marie, Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8, Proc. Natl. Acad. Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01934817

N. Chuang, An MRI-based atlas and database of the developing mouse brain, Neuroimage, 2011.

H. Huang, Anatomical Characterization of Human Fetal Brain Development with Diffusion Tensor Magnetic Resonance Imaging, J. Neurosci, 2009.

J. Nolte and J. B. Angevine, The Human Brain in Photographs and Diagrams, Hum. Brain Photogr. Diagrams, 2013.

W. A. Alaynick, T. M. Jessell, and S. L. Pfaff, SnapShot: Spinal cord development, Cell, 2011.

S. J. Harkema, Plasticity of interneuronal networks of the functionally isolated human spinal cord, Brain Research Reviews, 2008.

J. Cohen-adad, High-Resolution DWI in Brain and Spinal Cord with syngo RESOLVE, Siemens Magnetom -Clin. Neurol, 2012.

S. Duty and P. Jenner, Animal models of Parkinson's disease: A source of novel treatments and clues to the cause of the disease, British Journal of Pharmacology, 2011.

B. H. Dobkin and L. A. Havton, Basic Advances and New Avenues in Therapy of Spinal Cord Injury, Annu. Rev. Med, 2004.

M. T. Armentero, A. Pinna, S. Ferré, J. L. Lanciego, C. E. Müller et al., Past, present and future of A2A adenosine receptor antagonists in the therapy of Parkinson's disease, Pharmacol. Ther, 2011.

J. Kjell and L. Olson, Rat models of spinal cord injury: from pathology to potential therapies, Dis. Model. Mech, 2016.

B. Mota and S. Herculano-houzel, All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses, Front. Neuroanat, 2014.

B. A. Barres, The mystery and magic of glia: a perspective on their roles in health and disease, Neuron, 2008.

V. V. and D. E. Korzhevskiy, NeuN as a neuronal nuclear antigen and neuron differentiation marker, Acta Naturae, 2015.

L. Dehmelt, P. Nalbant, W. Steffen, and S. Halpain, A microtubule-based, dynein-dependent force induces local cell protrusions: Implications for neurite initiation, Brain Cell Biol, 2006.

M. Tavazoie, A Specialized Vascular Niche for Adult Neural Stem Cells, Cell Stem Cell, 2008.

Y. Ota, A. T. Zanetti, and R. M. Hallock, The role of astrocytes in the regulation of synaptic plasticity and memory formation, Neural Plasticity, 2013.

J. Michalski and R. Kothary, Oligodendrocytes in a Nutshell, Front. Cell. Neurosci, 2015.

F. Pérez-cerdá, M. V. Sánchez-gómez, and C. Matute, Pío del Río Hortega and the discovery of the oligodendrocytes, Front. Neuroanat, 2015.

A. , Cell types in the mouse cortex and hippocampus revealed by single-cell RNAseq, 2015.

S. Marques, Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system, 2016.

A. Nishiyama, Polydendrocytes: NG2 cells with many roles in development and repair of the CNS, Neuroscientist, 2007.

A. Nishiyama, R. Suzuki, and X. Zhu, NG2 cells (polydendrocytes) in brain physiology and repair, Frontiers in Neuroscience, 2014.

S. C. Lin and D. E. Bergles, Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus, Nat. Neurosci, 2004.

S. H. Kang, M. Fukaya, J. K. Yang, J. D. Rothstein, and D. E. Bergles, NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration, Neuron, 2010.

N. Baumann and D. Pham-dinh, Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System, Physiol. Rev, 2001.

E. Traiffort, M. Zakaria, Y. Laouarem, and J. Ferent, Hedgehog: A Key Signaling in the Development of the Oligodendrocyte Lineage, J. Dev. Biol, 2016.

R. H. Brownson, The effect of X-irradiation on the perineuronal satellite cells in the cortex of aging brains, J. Neuropathol. Exp. Neurol, 1960.

T. Abe, K. Ogawa, H. Fuziwara, K. Urayama, and K. Nagashima, Spinal ganglia and peripheral nerves from a patient with Tay-Sachs disease -Morphological and ganglioside studies, Acta Neuropathol, 1985.

C. Takasaki, M. Yamasaki, M. Uchigashima, K. Konno, Y. Yanagawa et al., Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex, Eur. J. Neurosci, 2010.

S. Szuchet, D. C. Plachetzki, and K. S. Eaton, Oligodendrocyte transmembrane protein: A novel member of the glutamate-binding protein subfamily, Biochem. Biophys. Res. Commun, 2001.

M. A. Petryniak, G. B. Potter, D. H. Rowitch, and J. L. Rubenstein, Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain, Neuron, 2007.

S. Szuchet, The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype, Eur. J. Neurosci, 2011.

J. Livet, ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools, Neuron, 2002.

C. Zhao, S. P. Fancy, R. J. Franklin, and C. Ffrench-constant, Up-regulation of system remyelination, J. Neurosci. Res, 2009.

M. Kasai, K. Satoh, and T. Akiyama, Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs, Genes to Cells, 2005.

T. Shimizu, T. Kagawa, T. Wada, Y. Muroyama, S. Takada et al., Wnt signaling controls the timing of oligodendrocyte development in the spinal cord, Dev. Biol, 2005.

K. Yun, S. Fischman, J. Johnson, M. Hrabe-de-angelis, G. Weinmaster et al., Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon, Development, 2002.

A. Liu, A molecular insight of Hes5-dependent inhibition of myelin gene expression: Old partners and new players, EMBO J, 2006.

K. Fujimori, K. Kadoyama, and Y. Urade, Protein kinase C activates human lipocalin-type prostaglandin D synthase gene expression through de-repression of notch-HES signaling and enhancement of AP--derived TE671 cells, J. Biol. Chem, 2005.

F. Wang, Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+, Sci. Signal, 2012.

J. Vit, P. T. Ohara, A. Bhargava, K. Kelley, and L. Jasmin, Silencing the Kir4.1 Potassium Channel Subunit in Satellite Glial Cells of the Rat Trigeminal Ganglion Results in Pain-Like Behavior in the Absence of Nerve Injury, J. Neurosci, 2008.

K. Baalman, Axon Initial Segment-Associated Microglia, J. Neurosci, 2015.

M. Taniike, I. Mohri, N. Eguchi, C. T. Beuckmann, K. Suzuki et al., Perineuronal Oligodendrocytes Protect against Neuronal Apoptosis through the Production of Lipocalin-Type Prostaglandin D Synthase in a Genetic Demyelinating Model, J. Neurosci, 2002.

S. K. Ludwin, The perineuronal satellite oligodendrocyte. A role in remyelination, Acta Neuropathol.(Berl), 1979.

M. H. Kole and G. J. Stuart, Signal Processing in the Axon Initial Segment, Neuron, 2012.

A. Battefeld, J. Klooster, and M. H. Kole, Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity, Nat. Commun, 2016.

L. J. Lawson, V. H. Perry, and S. Gordon, Turnover of resident microglia in the normal adult mouse brain, Neuroscience, 1992.

C. D. Aizenman and K. G. Pratt, There's More Than One Way to Scale a Synapse, Neuron, 2008.

B. Stevens, The Classical Complement Cascade Mediates CNS Synapse Elimination, Cell, 2007.

K. Meletis, Spinal cord injury reveals multilineage differentiation of ependymal cells, PLoS Biol, 2008.

L. Xiao, C. Saiki, and R. Ide, Stem cell therapy for central nerve system injuries: Glial cells hold the key, Neural Regeneration Research, 2014.

J. Slack, Stem cells: A Very Short Introduction, Stem cells: A Very Short Introduction, 2012.

T. Watabe and K. Miyazono, Roles of TGFdifferentiation, Cell Research, 2009.

M. Skardelly, Long-Term Benefit of Human Fetal Neuronal Progenitor Cell Transplantation in a Clinically Adapted Model after Traumatic Brain Injury, J. Neurotrauma, 2011.

T. Zigova, Neuronal progenitor cells of the neonatal subventricular zone differentiate and disperse following transplantation into the adult rat striatum, Cell Transplantation, 1998.

A. J. Mothe, T. Zahir, C. Santaguida, D. Cook, and C. H. Tator, Neural stem/progenitor cells from the adult human spinal cord are multipotent and self-renewing and differentiate after transplantation, PLoS One, 2011.

P. J. Horner, Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord, J. Neurosci, 2000.

F. Rossi and E. Cattaneo, Neural stem cell therapy for neurological diseases: Dreams and reality, Nat. Rev. Neurosci, 2002.

K. Satake, J. Lou, and L. G. Lenke, Migration of mesenchymal stem cells through cerebrospinal fluid into injured spinal cord tissue, Spine (Phila. Pa, 1976.

M. Sasaki, BDNF-Hypersecreting Human Mesenchymal Stem Cells Promote Functional Recovery, Axonal Sprouting, and Protection of Corticospinal Neurons after Spinal Cord Injury, J. Neurosci, 2009.

A. Uccelli, L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease, Nature Reviews Immunology, 2008.

S. U. Kim, H. J. Lee, and Y. B. Kim, Neural stem cell-based treatment for neurodegenerative diseases, Neuropathology, 2013.

Z. Feng and F. Gao, Stem Cell Challenges in the Treatment of Neurodegenerative Disease, CNS Neuroscience and Therapeutics, 2012.

M. Stenudd, H. Sabelström, and J. Frisén, Role of endogenous neural stem cells in spinal cord injury and repair, JAMA Neurol, 2015.

H. Sabelström, M. Stenudd, and J. Frisén, Neural stem cells in the adult spinal cord, Experimental Neurology, 2014.

H. Ghazale, Docosahexaenoic acid (DHA) enhances the therapeutic potential of neonatal neural stem cell transplantation post-Traumatic brain injury, Behav. Brain Res, 2018.

P. Lu, K. Kadoya, and M. H. Tuszynski, Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury, Current Opinion in Neurobiology, 2014.

C. Blanpain and E. Fuchs, Plasticity of epithelial stem cells in tissue regeneration, Science, 2014.

L. G. Van-der-flier and H. Clevers, Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium, Annu. Rev. Physiol, 2009.

N. Barker, Identification of stem cells in small intestine and colon by marker gene Lgr5, Nature, 2007.

N. Barker, A. Van-oudenaarden, and H. Clevers, Identifying the stem cell of the intestinal crypt: Strategies and pitfalls, Cell Stem Cell, 2012.

L. Meran, A. Baulies, and V. S. Li, Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components, Stem Cells International, 2017.

C. A. Chacón-martínez, J. Koester, and S. A. Wickström, Signaling in the stem cell niche: regulating cell fate, function and plasticity, Development, 2018.

, EMBO J, 2017.

T. Sato and H. Clevers, SnapShot: Growing Organoids from Stem Cells, Cell, 2015.

K. S. Yan, Non-equivalence of Wnt and R-spondin ligands during Lgr5 + intestinal stemcell self-renewal, Nature, 2017.

Y. C. Hsu, L. Li, and E. Fuchs, Transit-amplifying cells orchestrate stem cell activity and tissue regeneration, Cell, 2014.

A. Pardo-saganta, Parent stem cells can serve as niches for their daughter cells, Nature, 2015.

X. Lim, Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling, 2013.

J. H. Van-es, Dll1 + secretory progenitor cells revert to stem cells upon crypt damage, Nat. Cell Biol, 2012.

H. Tian, Opposing activities of notch and wnt signaling regulate intestinal stem cells and gut homeostasis, Cell Rep, 2015.

F. Doetsch, Current Opinion in Genetics and Development, 2003.

Y. J. Shin, J. S. Choi, J. Y. Choi, J. H. Cha, M. H. Chun et al., Enhanced expression of vascular endothelial growth factor receptor-3 in the subventricular zone of stroke-lesioned rats, Neurosci. Lett, 2010.

C. F. Calvo, Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis, Genes Dev, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01936092

M. C. Ward and A. M. Cunningham, Developmental expression of vascular endothelial growth factor receptor 3 and vascular endothelial growth factor C in forebrain, Neuroscience, 2015.

F. Lazarini and P. M. Lledo, Is adult neurogenesis essential for olfaction?, Trends in Neurosciences, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01300437

B. Menn, J. M. Garcia-verdugo, C. Yaschine, O. Gonzalez-perez, D. Rowitch et al., Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain, J. Neurosci, 2006.

I. Kazanis, The subependymal zone neurogenic niche: a beating heart in the centre of the brain: how plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed, Brain, 2009.

A. Van-schepdael, J. M. Ashbourn, R. Beard, J. J. Miller, and L. Geris, Mechanisms of cell migration in the adult brain: modelling subventricular neurogenesis, Comput. Methods Biomech. Biomed. Engin, 2013.

H. T. Ghashghaei, C. Lai, and E. S. Anton, Neuronal migration in the adult brain: Are we there yet?, Nature Reviews Neuroscience, 2007.

P. A. Riquelme, E. Drapeau, and F. Doetsch, Brain micro-ecologies: Neural stem cell niches in the adult mammalian brain, Philosophical Transactions of the Royal Society B: Biological Sciences, 2008.

T. D. Palmer, A. R. Willhoite, and F. H. Gage, Vascular niche for adult hippocampal neurogenesis, J. Comp. Neurol, 2000.

T. Seki, T. Namba, H. Mochizuki, and M. Onodera, Clustering, migration, and neurite formation of neural precursor cells in the adult rat hippocampus, J. Comp. Neurol, 2007.

H. Suh, A. Consiglio, J. Ray, T. Sawai, K. A. D'amour et al., In Vivo Fate Analysis Reveals the Multipotent and Self-Renewal Capacities of Sox2+ Neural Stem Cells in the Adult Hippocampus, Cell Stem Cell, 2007.

M. K. Hajihosseini, Localization and fate of Fgf10-expressing cells in the adult mouse brain implicate Fgf10 in control of neurogenesis, Mol. Cell. Neurosci, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311129

S. M. Sternson, Hypothalamic survival circuits: Blueprints for purposive behaviors, Neuron, 2013.

A. Paul, Z. Chaker, and F. Doetsch, Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis, 2017.

R. Maggi, J. Zasso, and L. Conti, Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus, Front. Cell. Neurosci, 2015.

C. B. Johansson, S. Momma, D. L. Clarke, M. Risling, U. Lendahl et al., Identification of a neural stem cell in the adult mammalian central nervous system, Cell, 1999.

F. Obermair, A. Schroter, and M. Thallmair, Endogenous Neural Progenitor Cells as Therapeutic Target After Spinal Cord Injury, Physiology, 2008.

F. Barnabé-heider, Origin of new glial cells in intact and injured adult spinal cord, Cell Stem Cell, 2010.

L. S. Shihabuddin, Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus, J. Neurosci, 2000.

C. A. Grégoire, B. L. Goldenstein, E. M. Floriddia, F. Barnabé-heider, and K. J. Fernandes, Endogenous neural stem cell responses to stroke and spinal cord injury, GLIA, 2015.

K. Yu, S. Mcglynn, and M. P. Matise, Floor plate-derived sonic hedgehog regulates glial and ependymal cell fates in the developing spinal cord, Development, 2013.

C. Alfaro-cervello, M. Soriano-navarro, Z. Mirzadeh, A. Alvarez-buylla, and J. M. Garciaverdugo, Biciliated ependymal cell proliferation contributes to spinal cord growth, J. Comp. Neurol, 2012.

E. M. Rodríguez, Hypothalamic tanycytes: A key component of brain-endocrine interaction, International Review of Cytology, 2005.

C. Alfaro-cervello, The adult macaque spinal cord central canal zone contains proliferative cells and closely resembles the human, J. Comp. Neurol, 2014.

K. P. Storer, J. Toh, M. A. Stoodley, and N. R. Jones, The central canal of the human spinal cord: A computerised 3-D study, J. Anat, 1998.

A. Sakakibara, E. Aoki, Y. Hashizume, N. Mori, and A. Nakayama, Distribution of nestin and other stem cell-related molecules in developing and diseased human spinal cord, Pathol. Int, 2007.

H. B. Sarnat, Role of human fetal ependyma, Pediatric Neurology, 1992.

D. Garcia-ovejero, The ependymal region of the adult human spinal cord differs from other species and shows ependymoma-like features, Brain, 2015.

C. Dromard, Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitro, J. Neurosci. Res, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00349495

A. Quiñones-hinojosa, Cellular composition and cytoarchitecture of the adult human subventricular zone: A niche of neural stem cells, J. Comp. Neurol, 2006.

S. Gil-perotin, M. Duran-moreno, S. Belzunegui, M. R. Luquin, and J. M. Garcia-verdugo, Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream, J. Comp. Neurol, 2009.

M. Sawada, Sensory Input Regulates Spatial and Subtype-Specific Patterns of Neuronal Turnover in the Adult Olfactory Bulb, J. Neurosci, 2011.

Y. Nakayama and K. Kohno, Number and polarity of the ependymal cilia in the central canal of some vertebrates, J. Neurocytol, 1974.

C. G. Becker, T. Becker, and J. P. Hugnot, The spinal ependymal zone as a source of endogenous repair cells across vertebrates, Progress in Neurobiology, 2018.

R. C. Duran, The systematic analysis of coding and long non-coding RNAs in the subchronic and chronic stages of spinal cord injury, 2017.

A. M. Klein, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 2015.

N. Habib, Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons, 2016.

X. Fan, Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos, Genome Biol, 2015.

P. Codega, Prospective Identification and Purification of Quiescent Adult Neural Stem Cells from Their In Vivo Niche, Neuron, 2014.

B. W. Dulken, D. S. Leeman, S. C. Boutet, K. Hebestreit, and A. Brunet, Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage, Cell Rep, 2017.

V. Silva-vargas, E. E. Crouch, and F. Doetsch, Adult neural stem cells and their niche: A dynamic duo during homeostasis, regeneration, and aging, Current Opinion in Neurobiology, 2013.

Z. Chaker, P. Codega, and F. Doetsch, A mosaic world: puzzles revealed by adult neural stem cell heterogeneity, Wiley Interdisciplinary Reviews: Developmental Biology, 2016.

I. Imayoshi, M. Sakamoto, and R. Kageyama, Genetic methods to identify and manipulate newly born neurons in the adult brain, Frontiers in Neuroscience, 2011.

E. Llorens-bobadilla, S. Zhao, A. Baser, G. Saiz-castro, K. Zwadlo et al., Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury, Cell Stem Cell, 2015.

A. D. Friedman, Runx1, carrest during hematopoiesis, Journal of Cellular Biochemistry, 2002.

J. T. Gonçalves, S. T. Schafer, and F. H. Gage, Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior, Cell, 2016.

J. Shin, Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis, Cell Stem Cell, 2015.

T. L. Walker, Prominin-1 Allows Prospective Isolation of Neural Stem Cells from the Adult Murine Hippocampus, J. Neurosci, 2013.

H. Hagihara, K. Ohira, K. Toyama, and T. Miyakawa, Expression of the AMPA Receptor Subunits GluR1 and GluR2 is Associated with Granule Cell Maturation in the Dentate Gyrus, Front. Neurogenes, 2011.

B. Artegiani, A. Lyubimova, M. Muraro, J. H. Van-es, A. Van-oudenaarden et al., A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche, Cell Rep, 2017.

D. A. Berg, A. M. Bond, G. Ming, and H. Song, Radial glial cells in the adult dentate gyrus: what are they and where do they come from?, 1000.

D. T. Grimes, C. W. Boswell, N. F. Morante, R. M. Henkelman, R. D. Burdine et al., Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature, 2016.

A. Ribeiro, J. F. Monteiro, A. C. Certal, A. M. Cristovão, and L. Saúde, Foxj1a is expressed in ependymal precursors, controls central canal position and is activated in new ependymal cells during regeneration in zebrafish, Open Biol, 2017.

S. P. Hui, T. C. Nag, and S. Ghosh, Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish, PLoS One, 2015.

A. Reichenbach and H. Wolburg, Astrocytes and Ependymal Glia, 2013.

V. Kuscha, S. L. Frazer, T. B. Dias, M. Hibi, T. Becker et al., Lesion-induced generation of interneuron cell types in specific dorsoventral domains in the spinal cord of adult zebrafish, J. Comp. Neurol, 2012.

V. Kuscha, A. Barreiro-iglesias, C. G. Becker, and T. Becker, Plasticity of tyrosine hydroxylase and serotonergic systems in the regenerating spinal cord of adult zebrafish, J. Comp. Neurol, 2012.

A. J. Mothe and C. H. Tator, Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat, Neuroscience, 2005.

S. Khazanov, Floor plate descendants in the ependyma of the adult mouse Central Nervous System, Int. J. Dev. Biol, 2017.

J. Hugnot, The spinal cord ependymal region: A stem cell niche in the caudal central nervous system, FEBS J, 2014.

R. Fiorelli, A. Cebrian-silla, J. M. Garcia-verdugo, and O. Raineteau, The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential, Glia, 2013.

A. Orts-del'immagine, Postnatal maturation of mouse medullo-spinal cerebrospinal fluidcontacting neurons, Neuroscience, 2017.

Y. L. Petracca, The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord, Development, 2016.

A. L. Huang, The cells and logic for mammalian sour taste detection, Nature, 2006.

J. Alfonso, C. Le-magueresse, A. Zuccotti, K. Khodosevich, and H. Monyer, Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling, Cell Stem Cell, 2012.

A. Pontes, Y. Zhang, and W. Hu, Novel functions of GABA signaling in adult neurogenesis, Frontiers in Biology, 2013.

D. Garcia-ovejero, A. Arevalo-martin, B. Paniagua-torija, Y. Sierra-palomares, and E. Molinaholgado, A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord, J. Comp. Neurol, 2013.

T. Cawsey, J. Duflou, C. S. Weickert, and C. A. Gorrie, Nestin-Positive Ependymal Cells Are Increased in the Human Spinal Cord after Traumatic Central Nervous System Injury, J. Neurotrauma, 2015.

D. A. Lim and A. Alvarez-buylla, The adult ventricular-subventricular zone (V-SVZ) and olfactory bulb (OB) neurogenesis, Cold Spring Harb. Perspect. Biol, 2016.

J. C. Sabourin, A mesenchymal-like ZEB1+ niche harbors dorsal radial glial fibrillary acidic protein-positive stem cells in the spinal cord, Stem Cells, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02156253

C. V. Pfenninger, C. Steinhoff, F. Hertwig, and U. A. Nuber, Prospectively isolated CD133/CD24-positive ependymal cells from the adult spinal cord and lateral ventricle wall differ in their long-term in vitro self-renewal and in vivo gene expression, Glia, 2011.

W. Xu, N. Sachewsky, A. Azimi, M. Hung, A. Gappasov et al., Myelin Basic Protein Regulates Primitive and Definitive Neural Stem Cell Proliferation from the Adult Spinal Cord, Stem Cells, 2017.

X. Li, E. M. Floriddia, K. Toskas, K. J. Fernandes, N. Guérout et al., Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time, 2016.

J. Hugnot, The Spinal Cord Neural Stem Cell Niche, Neural Stem Cells and Therapy, 2012.

C. Göritz, D. O. Dias, N. Tomilin, M. Barbacid, O. Shupliakov et al., A pericyte origin of spinal cord scar tissue, 2011.

L. C. Fuentealba, Embryonic Origin of Postnatal Neural Stem Cells, Cell, 2015.

R. Daneman, D. Agalliu, L. Zhou, F. Kuhnert, C. J. Kuo et al., Wnt/ -catenin signaling is required for CNS, but not non-CNS, angiogenesis, Proc. Natl. Acad. Sci, 2009.

C. E. Scott, SOX9 induces and maintains neural stem cells, Nat. Neurosci, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00580084

D. A. Turner, Wnt/ -catenin and FGF signalling direct the specification and maintenance of a neuromesodermal axial progenitor in ensembles of mouse embryonic stem cells, Development, 2014.

A. Chenn and C. A. Walsh, Regulation of cerebral cortical size by control of cell cycle, 2002.

D. Zechner, Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system, Dev. Biol, 2003.

A. W. Helms and J. E. Johnson, Specification of dorsal spinal cord interneurons, Current Opinion in Neurobiology, 2003.

M. Kléber and L. Sommer, Wnt signaling and the regulation of stem cell function, Current Opinion in Cell Biology, 2004.

S. Megason and A. Mcmahon, A mitogen gradient of dorsal midline Wnts organizes growth in the CNS, Development, 2002.

F. Ille, Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord, Dev. Biol, 2007.

F. Ulloa and J. Briscoe, Morphogens and the control of cell proliferation and patterning in the spinal cord, Cell Cycle, 2007.

D. Zechner, -catenin signals control expression of the transcription factor Olig3 and the specification of spinal cord neurons, Dev. Biol, 2007.

A. W. Helms, Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons, Development, 2005.

T. Müller, K. Anlag, H. Wildner, S. Britsch, M. Treier et al., The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord, Genes Dev, 2005.

N. A. Bermingham, Proprioceptor pathway development is dependent on MATH1, Neuron, 2001.

K. Gowan, Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons, Neuron, 2001.

L. Wine-lee, Signaling through BMP type 1 receptors is required for development of interneuron cell types in the dorsal spinal cord, Development, 2004.

V. V. Chizhikov and K. J. Millen, Roof plate-dependent patterning of the vertebrate dorsal central nervous system, Dev. Biol, 2005.

Y. Muroyama, M. Fujihara, M. Ikeya, H. Kondoh, and S. Takada, Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord, Genes Dev, 2002.

B. Zhuang and S. Sockanathan, Dorsal-ventral patterning: A view from the top, Current Opinion in Neurobiology, 2006.

K. Azim, -catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons, Stem Cells, 2014.

N. Masahira, Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells, Dev. Biol, 2006.

L. Xing, T. Anbarchian, and J. , -catenin signaling regulates ependymal cell development and adult homeostasis, Proc. Natl. Acad. Sci, 2018.

J. R. Timmer, C. Wang, and L. Niswander, BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors, Development, 2002.

A. Liu and L. A. Niswander, Bone morphogenetic protein signalling and vertebrate nervous system development, Nature Reviews Neuroscience, 2005.

S. Tozer, G. L. Dreau, E. Marti, and J. Briscoe, Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube, Development, 2013.

C. Ramos and B. Robert, msh/Msx gene family in neural development, Trends in Genetics, 2005.

N. Duval, Msx1 and Msx2 act as essential activators of Atoh1 expression in the murine spinal cord, Development, 2014.

T. M. , Neuronal specification in the spinal cord: Inductive signals and transcriptional codes, Nature Reviews Genetics, 2000.

Q. Lei, Transduction of graded Hedgehog signaling by a combination of Gli2 and Gli3 activator functions in the developing spinal cord, Development, 2004.

M. P. Matise, Molecular genetic control of cell patterning and fate determination in the developing ventral spinal cord, Wiley Interdisciplinary Reviews: Developmental Biology, 2013.

M. Sander, Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates, Genes Dev, 2000.

A. Kicheva, Coordination of progenitor specification and growth in mouse and chick spinal cord, 2014.

J. Briscoe, A. Pierani, T. M. Jessell, and J. Ericson, A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube, Cell, 2000.

M. Barzi, D. Kostrz, A. Menendez, and S. Pons, Sonic hedgehog-induced proliferation requires, J. Biol. Chem, 2011.

D. Stamataki, F. Ulloa, S. V. Tsoni, A. Mynett, and J. Briscoe, A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube, Genes Dev, 2005.

E. Dessaud, A. P. Mcmahon, and J. Briscoe, Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network, Development, 2008.

F. Bangs and K. V. Anderson, Primary cilia and Mammalian Hedgehog signaling, Cold Spring Harb. Perspect. Biol, 2017.

S. C. Goetz and K. V. Anderson, The primary cilium: A signalling centre during vertebrate development, Nature Reviews Genetics, 2010.

R. Rohatgi, L. Milenkovic, and M. P. Scott, Patched1 regulates hedgehog signaling at the primary cilium, 2007.

M. Cohen, Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms, Nat. Commun, 2015.

J. Briscoe and S. Small, Morphogen rules: design principles of gradient-mediated embryo patterning, Development, 2015.

A. Iulianella, D. Sakai, H. Kurosaka, and P. A. Trainor, Ventral neural patterning in the absence of a Shh activity gradient from the floorplate, Dev. Dyn, 2018.

E. Dessaud, Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen sonic hedgehog, PLoS Biol, 2010.

V. Ribes and J. Briscoe, Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback, 2009.

J. E. Burda and M. V. Sofroniew, Reactive gliosis and the multicellular response to CNS damage and disease, Neuron, 2014.

C. S. Ahuja, Traumatic spinal cord injury -Repair and regeneration, Clin. Neurosurg, 2017.

O. N. Hausmann, Post-traumatic inflammation following spinal cord injury, Spinal Cord, 2003.

A. Alizadeh, S. M. Dyck, and S. Karimi-abdolrezaee, Myelin damage and repair in pathologic CNS: challenges and prospects, Front. Mol. Neurosci, 2015.

M. T. Filbin, Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS, Nat. Rev. Neurosci, 2003.

R. J. Franklin and C. Ffrench-constant, Regenerating CNS myelin -From mechanisms to experimental medicines, Nature Reviews Neuroscience, 2017.

C. Soderblom, Perivascular Fibroblasts Form the Fibrotic Scar after Contusive Spinal Cord Injury, J. Neurosci, 2013.

T. M. Shea, J. E. Burda, and M. V. Sofroniew, Cell biology of spinal cord injury and repair, Journal of Clinical Investigation, 2017.

M. A. Anderson, Astrocyte scar formation AIDS central nervous system axon regeneration, Nature, 2016.

S. Bardehle, Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation, Nat. Neurosci, 2013.

I. B. Wanner, Glial Scar Borders Are Formed by Newly Proliferated, Elongated Astrocytes That Interact to Corral Inflammatory and Fibrotic Cells via STAT3-Dependent Mechanisms after Spinal Cord Injury, J. Neurosci, 2013.

M. Tsintou, K. Dalamagkas, and A. M. Seifalian, Advances in regenerative therapies for spinal cord injury: A biomaterials approach, Neural Regen. Res, 2015.

A. Barreiro-iglesias, Serotonin Promotes Development and Regeneration of Spinal Motor Neurons in Zebrafish, Cell Rep, 2015.

M. M. Reimer, Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration, Dev. Cell, 2013.

K. Ogai, K. Nakatani, S. Hisano, K. Sugitani, Y. Koriyama et al., Function of Sox2 in ependymal cells of lesioned spinal cords in adult zebrafish, Neurosci. Res, 2014.

M. H. Mokalled, C. Patra, A. L. Dickson, T. Endo, D. Y. Stainier et al., Injuryinduced ctgfa directs glial bridging and spinal cord regeneration in zebrafish, Science, p.80, 2016.

V. M. Tysseling, SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury, J. Neuroinflammation, 2011.

I. Pineau and S. Lacroix, Proinflammatory cytokine synthesis in the injured mouse spinal cord: Multiphasic expression pattern and identification of the cell types involved, J. Comp. Neurol, 2007.

J. C. Gensel and B. Zhang, Macrophage activation and its role in repair and pathology after spinal cord injury, Brain Res, 2015.

B. Zhang and J. C. Gensel, Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic differences between the brain and spinal cord, Experimental Neurology, 2014.

S. David and A. Kroner, Repertoire of microglial and macrophage responses after spinal cord injury, Nature Reviews Neuroscience, 2011.

F. M. Bareyre and M. E. Schwab, Inflammation, degeneration and regeneration in the injured spinal cord: Insights from DNA microarrays, Trends in Neurosciences, 2003.

D. J. Donnelly and P. G. Popovich, Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury, Exp. Neurol, 2007.

K. A. Kigerl, J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly et al., Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord, J. Neurosci, 2009.

J. C. Furlan, M. B. Bracken, and M. G. Fehlings, Is age a key determinant of mortality and neurological outcome after acute traumatic spinal cord injury?, Neurobiol. Aging, 2010.

M. Bouab, G. N. Paliouras, A. Aumont, K. Forest-bérard, and K. J. Fernandes, Aging of the subventricular zone neural stem cell niche: Evidence for quiescence-associated changes between early and mid-adulthood, Neuroscience, 2011.

J. C. Conover and B. A. Shook, Aging of the subventricular zone neural stem cell niche, Aging Dis, 2011.

V. Capilla-gonzalez, A. Cebrian-silla, H. Guerrero-cazares, J. M. Garcia-verdugo, and A. Quiñones-hinojosa, Age-related changes in astrocytic and ependymal cells of the subventricular zone, Glia, 2014.

C. G. Geoffroy, B. J. Hilton, W. Tetzlaff, and B. Zheng, Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System, Cell Rep, 2016.

H. Sabelström, Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice, Science, p.80, 2013.

F. Barnabé-heider and J. Frisén, Stem cells for spinal cord repair, Cell Stem Cell, 2008.

V. Neirinckx, C. Coste, R. Franzen, A. Gothot, B. Rogister et al., Neutrophil contribution to spinal cord injury and repair, Journal of Neuroinflammation, 2014.

X. C. Li, C. F. Zhong, G. Deng, R. W. Liang, and C. M. Huang, Efficacy and safety of bone marrow-derived cell transplantation for spinal cord injury: A systematic review and metaanalysis of clinical trials, Clin. Transplant, 2015.

D. Jarocha, O. Milczarek, A. Wedrychowicz, S. Kwiatkowski, and M. Majka, Continuous improvement after multiple mesenchymal stem cell transplantations in a patient with complete spinal cord injury, Cell Transplant, 2015.

H. Iwai, Allogeneic Neural Stem/Progenitor Cells Derived From Embryonic Stem Cells Promote Functional Recovery After Transplantation Into Injured Spinal Cord of Nonhuman Primates, Stem Cells Transl. Med, 2015.

A. H. , Early intervention for spinal cord injury with human induced pluripotent stem cells oligodendrocyte progenitors, PLoS One, 2015.

H. Kumamaru, Generation and post-injury integration of human spinal cord neural stem cells, Nat. Methods, 2018.

N. M. King and J. Perrin, Ethical issues in stem cell research and therapy, Stem Cell Research and Therapy, 2014.

C. P. Hofstetter, Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome, Nat. Neurosci, 2005.

H. Yang, B. R. He, and D. J. Hao, Biological Roles of Olfactory Ensheathing Cells in Facilitating Neural Regeneration: A Systematic Review, Molecular Neurobiology, 2014.

A. Honoré, Isolation, characterization, and genetic profiling of subpopulations of olfactory ensheathing cells from the olfactory bulb, Glia, 2012.

A. P. Pêgo, Regenerative medicine for the treatment of spinal cord injury: More than just promises?, J. Cell. Mol. Med, 2012.

J. Li and G. Lepski, Cell transplantation for spinal cord injury: A systematic review, BioMed Research International, 2013.

P. Assinck, G. J. Duncan, B. J. Hilton, J. R. Plemel, and W. Tetzlaff, Cell transplantation therapy for spinal cord injury, Nature Neuroscience, 2017.

I. Vismara, S. Papa, F. Rossi, G. Forloni, and P. Veglianese, Current Options for Cell Therapy in Spinal Cord Injury, Trends in Molecular Medicine, 2017.

H. Nakajima, Transplantation of Mesenchymal Stem Cells Promotes an Alternative Pathway of Macrophage Activation and Functional Recovery after Spinal Cord Injury, J. Neurotrauma, 2012.

N. Weishaupt, A. Blesch, and K. Fouad, BDNF: The career of a multifaceted neurotrophin in spinal cord injury, Experimental Neurology, 2012.

D. H. Hwang, Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair, Cell Transplant, 2011.

E. J. Benner, Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4, Nature, 2013.

G. Yiu and Z. He, Glial inhibition of CNS axon regeneration, Nature Reviews Neuroscience, 2006.

J. M. Cregg, M. A. Depaul, A. R. Filous, B. T. Lang, A. Tran et al., Functional regeneration beyond the glial scar, Experimental Neurology, 2014.

A. Manuscript, Don't Fence me in: Harnessing the beneficial roles of astrocytes for spinal cord repair, Changes, 2012.

M. Pekny, U. Wilhelmsson, and M. Pekna, The dual role of astrocyte activation and reactive gliosis, Neuroscience Letters, 2014.

M. Ronaghi, S. Erceg, V. Moreno-manzano, and M. Stojkovic, Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?, Stem Cells, 2010.