, sémantiques et des répertoires de fragments de code, en gérant leurs métadonnées, en comparant leurs fonctionnalités via les paramètres d'entrées/sorties

, Mécanismes sémantiques d'adaptation

, Cette configuration (C) fait référence à un plan (P) d'exécution de ces Snippets pour le cas d'une activité donnée (A) pour la pratique (Pr), Soit (C) la configuration d'un capteur pour un Sport (S) donné et une pratique (Pr) donnée

D. L'utilisateur-signale-au and . Changement, Une requête SPARQL est envoyée au serveur KMS avec l

, Le moteur de raisonnement exécute la requête pour sélectionner les nouveaux snippets requis

, Le résultat de la sélection est affiné en considérant les contraintes du smart sensor quant à l'espace mémoire restant, la taille des Snippets nécessaires au nouvel usage, les snippets qui sont déjà installés

, La liste finale des snippets est identifiée avec un nouveau plan (P) d'exécution

, Le smart sensor compare les snippets disponibles localement par rapport à ce qui est requis

, intersection entre ce qui est disponible (D) et ce qui est requis (R) est non vide alors l'ensemble des snippets à télécharger est égal à (R-D) le cas échéant il

, Le smart sensor déclenche les opérations requise pour dé-installer, et installer les nouveaux snippets manquants et l'écosystème poursuit son fonctionnement

, Architecture du Prototype de validation

, Soit l'indicateur que nous cherchons est "HydrationRate", la requête suivante permet de retourner l'algorithme pour calculer cet indicateur, ?Algorithm WHERE{ ?Algorithm rdf:type s3n:Algorithm. ?Indicator rdf:type s3n:PosCondition. ?Algorithm s3n:hasPostCondition ?Indicator. ?Indicator DUL:hasDataValue " HydrationRate"^^xsd:string, vol.3

, Cette requête retourne l'algorithme "HydrationAlertAlgorithm

, Ceci permet de déterminer les capteurs basiques nécessaires qui permettront de les détecter, Measurement WHERE{ ?Measurement rdf:type s3n:PreCondition . ?Algorithm rdf:type s3n:Algorithm. ?Algorithm s3n:hasPreCondition ?Measurement . ?Algorithm DUL:hasDataValue " HydrationAlertAlgorithm"^^xsd:string. } Les précondition du module S3N-Algorithm sont équivalents aux s3n :Measurand (module S3N-DataSheet). Un mapping entre les deux modules

, addSensor: ("SMSHydrationAlert" rdf:type s3n:SmartSensor) (?precondition rdf:type s3n:PreCondition) (?sensor rdf:type sosa:Sensor) (?sensor s3n:hasSensorReference ?SensorReference) (?SensorReference s3n:hasMeasurand ?Measurand) stringEqualIgnoreCase(?Measurand, ?precondition) ->

, Phase d'exploitation d'un VI

, Dans ce qui suit, nous nous intéressons exclusivement à l'échange sémantique durant deux étapes de la phase d'exploitation : L'étape de configuration automatisée et l'étape de pratique sportive

, Parmi les assertions crées par les fournisseurs, nous n'évoquons ici qu'un échantillon de celles nécessaires pour le fonctionnement du système durant la phase d'exploitation. Nous les illustrons en partie pour le sport du vélo

, le système doit connaître tous les indicateurs qu'il doit calculer et leur distribution sur les SS et la GW. Pour chaque indicateur, le système a besoin de connaître l'identifiant unique qui lui est associé dans les composants du système (SS, GW, A et S), l'implémentation de l'algorithme à exécuter ainsi que la cible sur laquelle il sera exécuté

, Si le capteur intelligent dispose des capteurs basiques adéquats, ceci signifie que les capteurs basiques intégrés fournissent les bonnes mesures. Par exemple, nous considérons l'algorithme "HydrationAlertAlgorithm", pour calculer l'indicateur "HydrationRate" il aura besoin de deux mesures à savoir

, Si les capacités du micro-contrôleur sont satisfaisantes, ceci signifie qu'il possède d'au moins 6.6. Règles d'inférence du mécanisme sémantique d'adaptation une capacité de mémoire suffisante pour stocker les fragments de code

, ReconfigSmart1: (?smart rdf:type s3n:SmartSensor) (?smart ssn:hasSubSystem ?microcontroller) (?microcontroller ssn:implements ?algorithm) (?algorithm s3n:hasOperation ?op) (?op s3n:hasImplementation ?snippet) (?snippet rdf:type sosa:Procedure) -> (?microcontroller ssn:implements ?snippet)] [ReconfigSmart2: (?smart rdf:type s3n:SmartSensor) (?smart ssn:hasSubSystem ?sensor) (?sensor sosa:observes ?ObservableProperty) (?algorithm rdf:type s3n:Algorithm) (?algorithm s3n:hasPreCondition ?precondition) stringEqualIgnoreCase(?ObservableProperty, ?precondition) -> (?algorithm s3n:hasPreCondition ?ObservableProperty)] [ReconfigSmart3: ("SMSACTI" rdf:type s3n:SmartSensor) ("SMSACTI" ssn:hasSubSystem ?microcontroller) (?microcontroller ssn:implements ?snippet) ("SMSACTI" ssn:hasSubSystem ?sensor) (?sensor sosa:observes ?ObservableProperty) ("PedalingSpeedAlgorithm" s3n:hasPreCondition ?ObservableProperty) ("PedalingSpeedAlgorithm" s3n:hasOperation ?opConf) (?opConf s3n:hasImplementation ?snippetConf) stringEqualIgnoreCase(?snippetConf, ?snippet) -> (?microcontroller ssn:implements "PedalingSpeedAlgorithm

. Bibliographie,

P. Ken, T. Tuure, A. Marcus, . Rothenberger, and C. Samir, A design science research methodology for information systems research, Journal of management information systems, vol.24, pp.45-77, 2007.

S. Samya, R. Issam, K. Maha, and F. Jamel, Ontologie modulaire pour la fabrication et l'exploitation de vêtements intelligents dédiés au sport, 28es Journées francophones d'Ingénierie des Connaissances IC 2017, pp.139-144, 2017.

S. Samya, L. Maxime, R. Issam, M. Khemaja, G. Serge et al., Modeling Smart Sensors on top of SOSA/SSN and WoT TD with the Semantic Smart Sensor Network (S3N) modular Ontology, Emerging Topics in Semantic Technologies, ISWC 2018 Satellite Events. Sous la dir. d'Elena DEMIDOVA, Amrapali J. ZAVERI et Elena SIMPERL, pp.978-981, 2018.

D. Giusto, I. Antonio, and L. Atzori, The Internet of Things, 2010.

A. Luigi, I. Antonio, and M. Giacomo, The Internet of Things : A survey, Computer Networks, vol.54, pp.2787-2805, 2010.

A. Kevin, That 'internet of things' thing, RFID journal, vol.22, pp.97-114, 2009.

, Towards a definition of the internet of things (iot), IEEE Internet of THINGS, 2015.

C. Charu, . Aggarwal, A. Naveen, and S. Amit, The internet of things : A survey from the data-centric perspective". In : Managing and mining sensor data, pp.383-428, 2013.

C. Oscar, G. Raúl, and . Castro, Five challenges for the semantic sensor web, Semantic Web, vol.1, pp.121-125, 2010.

J. Hoyoung, S. Sofiane, P. Ioannis, S. Saket, A. Karl et al., Effective metadata management in federated sensor networks, Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC), pp.107-114, 2010.

L. Danh, H. Nguyen-mau, Q. , J. Xavier, P. Et-manfred et al., The linked sensor middleware-connecting the real world and the semantic web, Proceedings of the Semantic Web Challenge, vol.152, pp.22-23, 2011.

S. Amit, C. Henson, S. Satya, and . Sahoo, Semantic sensor web, IEEE Internet computing, vol.12, 2008.

A. Kevin, . Delin, P. Shannon, and . Jackson, Sensor web : a new instrument concept, Functional Integration of Opto-Electro-Mechanical Devices and Systems. T. 4284. International Society for Optics et Photonics, pp.1-10, 2001.

C. Xingchen and B. Rajkumar, Service oriented sensor web, Sensor networks and configuration, pp.51-74, 2007.

J. G. Alasdair, J. Gray, . Sadler, K. Oles, K. Kostis et al., A semantic sensor web for environmental decision support applications, Sensors 11, vol.9, pp.8855-8887, 2011.

C. Michael, C. Henson, L. Laurent, N. Holger, and S. Amit, A Survey of the Semantic Specification of Sensors, Proceedings of the 2Nd International Conference on Semantic Sensor Networks -Volume, vol.522, pp.17-32, 2009.

M. Lionel, . Ni, Z. Yanmin, M. A. Jian, L. Qiong et al., Semantic Sensor Net : an extensible framework, International Journal of Ad Hoc and Ubiquitous Computing, vol.4, pp.157-167, 2009.

A. Cory, J. K. Henson, . Pschorr, P. Amit, . Sheth et al., SemSOS : Semantic sensor observation service, Collaborative Technologies and Systems, 2009. CTS'09. International Symposium on. IEEE, pp.44-53, 2009.

B. Arne, M. Patrick, J. Krzysztof, N. Daniel, and M. Christian, Semantically-enabled sensor plug & play for the sensor web, Sensors 11, vol.8, pp.7568-7605, 2011.

B. Mike, P. George, R. Carl, and D. John, OGC® sensor web enablement : Overview and high level architecture, GeoSensor networks, pp.175-190, 2008.

M. Daniele, S. Sabrina, D. E. Francesco, . Pellegrini, and C. Imrich, Internet of things : Vision, applications and research challenges, Ad hoc networks 10, vol.7, pp.1497-1516, 2012.

C. Shanzhi, X. U. Hui, L. Dake, B. Hu, and W. Hucheng, A vision of IoT : Applications, challenges, and opportunities with china perspective, IEEE Internet of Things journal, vol.1, pp.349-359, 2014.

Q. Yongrui, Z. Quan, . Sheng, J. G. Nickolas, . Falkner et al., When things matter : A data-centric view of the internet of things, 2014.

G. Dominique, T. Vlad, and W. Erik, A resource oriented architecture for the web of things, Internet of Things (IOT), pp.1-8, 2010.

Z. Deze, G. Song, and C. Zixue, The web of things : A survey, JCM 6, vol.6, pp.424-438, 2011.

P. Dennis, R. Kay, B. Daniel, K. Oliver, M. Richard et al., SPITFIRE : toward a semantic web of things, IEEE Communications Magazine, vol.49, pp.40-48, 2011.

R. Michele, S. Floriano, D. I. Eugenio, and . Sciascio, Enabling the Semantic Web of Things : framework and architecture, 2012 IEEE Sixth International Conference on Semantic Computing, pp.345-347, 2012.

B. Christian, H. Tom, and B. Tim, Linked data : The story so far, Semantic services, interoperability and web applications : emerging concepts, pp.205-227, 2011.

B. Payam, P. Mirko, and M. Klaus, Publishing linked sensor data, CEUR Workshop Proceedings : Proceedings of the 3rd International Workshop on Semantic Sensor Networks (SSN), 2010.

P. Josh, C. Andrew, H. , H. Kamlesh, P. Amit et al., Sensor discovery on linked data, Rapp. tech, 2010.

A. Sasikanth, P. Chintan, and J. Anupam, Ontology-driven adaptive sensor networks, MobiQuitous 2004, pp.194-202, 2004.

J. David, . Russomanno, K. Cartik, and T. Omoju, Sensor ontologies : from shallow to deep models, System Theory, 2005. SSST'05. Proceedings of the Thirty-Seventh Southeastern Symposium on. IEEE. 2005, pp.107-112

J. David, . Russomanno, R. Cartik, . Kothari, A. Omoju et al., Building a Sensor Ontology : A Practical Approach Leveraging ISO and OGC Models, pp.637-643, 2005.

E. Mohamad, R. Liscano, E. L. Abdulmotaleb, and . Saddik, A novel ontology for sensor networks data, Computational Intelligence for Measurement Systems and Applications, Proceedings of 2006 IEEE, pp.75-79, 2006.

E. Mohamad, R. Liscano, E. L. Abdulmotaleb, and . Saddik, A universal ontology for sensor networks data, Computational Intelligence for Measurement Systems and Applications, pp.59-62, 2007.

B. Luis, D. Eric, O. Tom, J. Reilly, R. Del et al., MTS/IEEE Biloxi-Marine Technology for Our Future : Global and Local Challenges, IEEE, pp.1-7, 2009.

N. Holger and C. Michael, The semantic sensor network ontology, AGILE workshop on challenges in geospatial data harmonisation, pp.1-33, 2009.

C. Michael, N. Holger, T. Kerry, and T. Khoi-nguyen, Reasoning about sensors and compositions, Proceedings of the 2nd International Conference on Semantic Sensor Networks, vol.522, pp.33-48, 2009.

C. Matt, A. Robert, . Morris, and P. Francesco, Machine reasoning about anomalous sensor data, Ecological Informatics, vol.5, pp.9-18, 2010.

L. Laurent, C. Henson, and T. Kerry, Semantic Sensor Network XG Final Report. W3C Incubator Group Report. W3C, juin, 2011.

H. Armin, J. Krzysztof, J. Simon, . Cox, L. E. Danh et al., Semantic Sensor Network Ontology. W3C Recommendation. W3C, oct, 2017.

S. Eclipse, , pp.2018-2028

E. Iot-working and . Group, The three software stacks required for iot architectures

P. Per and A. Ola, Calvin -Merging Cloud and IoT, ANT/SEIT. T. 52. Procedia Computer Science, pp.210-217, 2015.

L. Souza, S. Patrik, G. Dominique, K. Moritz, K. Stamatis et al., SOCRADES : A Web Service Based Shop Floor Integration Infrastructure, Lecture Notes in Computer Science, pp.50-67, 2008.

B. Hendrik, A. Bobek, and G. Frank, SIRENA -Service Infrastructure for Real-time Embedded Networked Devices : A service oriented framework for different domains, ICN/ICONS/MCL, p.43, 2006.

X. Thang, N. , H. Tam, T. Harun, B. Kurt et al., FRASAD : A framework for model-driven IoT Application Development, pp.387-392, 2015.

M. Peter, G. Stefan, X. Thang, and N. , Model-driven design plus artificial intelligence for wireless sensor networks software development, pp.63-64, 2011.

J. Yuna, J. Hyuntae, H. Gyeonghwan, S. Dongkun, and L. Sungkil, AVIoT : web-based interactive authoring and visualization of indoor internet of things, IEEE Trans. Consumer Electronics, vol.61, pp.295-301, 2015.

M. Michael, M. Lionel, J. Jean-paul, L. E. Nicolas, . Sommer et al., An avatar architecture for the web of things, IEEE Internet Computing, vol.19, pp.30-38, 2015.

B. Jacob, P. Danilo, and V. Mirko, Aggregate programming for the internet of things, Computer, vol.9, pp.22-30, 2015.

L. Elizabeth, A. Edward, . Lee, L. Marten, C. Shaver et al., A vision of swarmlets, IEEE Internet Computing, vol.19, pp.20-28, 2015.

S. Vimal, D. Suvodeep, and K. Susheel, Design Thing'ing : methodology for understanding and discovering Use cases in IoT scenarios, Proceedings of the 7th International Conference on HCI, IndiaHCI, pp.113-115, 2015.

P. Charith, M. Ciaran, K. Arosha, . Bandara, A. Blaine et al., Privacy-by-design framework for assessing internet of things applications and platforms, Proceedings of the 6th International Conference on the Internet of Things, pp.83-92, 2016.

Z. Franco, Toward sociotechnical urban superorganisms, Computer 45, vol.8, pp.76-78, 2012.

H. Sara, P. Animesh, and I. Valerie, Service-oriented middleware for large-scale mobile participatory sensing, Pervasive and Mobile Computing, vol.10, pp.66-82, 2014.

H. Dries, D. Theo, E. Hondt, B. Gonzalez, D. E. Et-wolfgang et al., Programming urban-area applications for mobility services, ACM Transactions on Autonomous and Adaptive Systems, vol.9, issue.2, 2014.

S. Andrea and Z. Franco, Coordination infrastructures for future smart social mobility services, IEEE Intelligent Systems, vol.29, pp.78-82, 2014.

Z. Franco, Towards a general software engineering methodology for the Internet of Things, 2016.

S. Dirk, P. Frank, M. Jim, M. Rishi, and . Bhatnagar, Enterprise IoT : Strategies and Best practices for connected products and services, 2015.

F. Ian, . Akyildiz, S. U. Weilian, S. Yogesh, and C. Erdal, Wireless sensor networks : a survey, Computer networks, vol.38, pp.393-422, 2002.

K. S. Rekha and T. H. Sreenivas, A Review on Run-Time Reconfigurations and Code Update Mechanisms in Wireless Sensor Networks, International Journal of Innovative Research in Computer and Communication Engineering, vol.3, issue.2, pp.1015-1032, 2015.

T. Amirhosein, Programming Wireless Sensor Networks : From Static to Adaptive Models, 2011.

F. Ian, . Akyildiz, H. Ismail, and . Kasimoglu, Wireless sensor and actor networks : research challenges, Ad hoc networks, vol.2, pp.351-367, 2004.

W. Tim, C. Christopher, H. U. Wen, G. Ying, V. Philip et al., The design and evaluation of a mobile sensor/actuator network for autonomous animal control, Proceedings of the 6th International Conference on Information Processing in Sensor Networks, IPSN, pp.206-215, 2007.

C. Qing, A. Tarek, S. John, W. Kamin, and L. Liqian, Declarative tracepoints : a programmable and application independent debugging system for wireless sensor networks, Proceedings of the 6th ACM conference on Embedded network sensor systems, pp.85-98, 2008.

C. Paolo, C. Geoff, G. Richard, L. Manish, M. Cecilia et al., The RUNES middleware for networked embedded systems and its application in a disaster management scenario, Pervasive Computing and Communications, pp.69-78, 2007.

S. Brown and . Sreenan, Updating software in wireless sensor networks : A survey, pp.1-14, 2006.

S. Brown, J. Cormac, and . Sreenan, Software updating in wireless sensor networks : A survey and lacunae, Journal of Sensor and Actuator Networks, vol.2, issue.4, pp.717-760, 2013.

L. I. Xiang and M. Sangman, Middleware systems for wireless sensor networks : A comparative survey, Contemporary Engineering Sciences, vol.7, pp.649-660, 2014.

D. Adam, F. Niclas, E. Joakim, and V. Thiemo, Run-time dynamic linking for reprogramming wireless sensor networks, Proceedings of the 4th international conference on Embedded networked sensor systems, pp.15-28, 2006.

M. Waqaas, L. Olaf, M. Hamad, A. Et-klaus, and W. , Remote incremental adaptation of sensor network applications, Proc. of the 8th GI/ITG KuVS Fachgespräch" Wireless Sensor Networks"(FGSN'09, 2009.

W. Jonathan, . Hui, and C. David, The dynamic behavior of a data dissemination protocol for network programming at scale, Proceedings of the 2nd international conference on Embedded networked sensor systems, pp.81-94, 2004.

M. Waqaas, M. Hamad, A. Olaf, L. Klaus, and W. , Dynamic TinyOS : Modular and Transparent Incremental Code-Updates for Sensor Networks, Proceedings of IEEE International Conference on Communications, ICC 2010, pp.1-6, 2010.

H. Chih-chieh, R. Kumar, S. Roy, E. Kohler, and S. Mani, A dynamic operating system for sensor nodes, Proceedings of the 3rd international conference on Mobile systems, applications, and services, pp.163-176, 2005.

J. Jaein and C. David, Incremental network programming for wireless sensors, International Journal of Communications, vol.2, p.433, 2009.

R. Niels and L. Koen, Efficient code distribution in wireless sensor networks, Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, pp.60-67, 2003.

G. Paul, C. Geoff, B. Gordon, P. Barry, and H. Danny, Dynamic reconfiguration in sensor middleware, Proceedings of the international workshop on Middleware for sensor networks, pp.1-6, 2006.

M. Luca, G. Pietro, P. Et-adil-amjad, and S. , FiGaRo : Fine-Grained Software Reconfiguration for Wireless Sensor Networks, Wireless Sensor Networks, 5th European Conference, pp.286-304, 2008.

H. Danny, T. Klaas, H. Wouter, M. Nelson, J. Del et al., LooCI : A Loosely-coupled Component Infrastructure for Networked Embedded Systems, Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia. MoMM '09, pp.195-203, 2009.

P. José, M. Matthias, G. Andreas, L. Daniel, M. Olga et al., FlexCup : A Flexible and Efficient Code Update Mechanism for Sensor Networks, Proceedings of the Third European Conference on Wireless Sensor Networks. EWSN'06, pp.212-227, 2006.

C. Geoff, B. Gordon, G. Paul, T. Francois, J. Ackbar et al., A Generic Component Model for Building Systems Software, In : ACM Trans. Comput. Syst, vol.26, issue.1, 2008.

J. Fassino, J. , S. , J. , L. Lawall et al., Think : A Software Framework for Component-based Operating System Kernels, USENIX Annual Technical Conference, pp.73-86, 2002.

B. Eric, C. Thierry, L. Matthieu, Q. Vivien, and S. Jean-bernard, The fractal component model and its support in java, Software : Practice and Experience, vol.36, pp.1257-1284, 2006.

L. Frédéric, N. Juan, J. Babau, and L. Olivier, Component-based real-time operating system for embedded applications, International Symposium on Component-Based Software Engineering, pp.209-226, 2009.

L. Philip and C. David, Maté : A tiny virtual machine for sensor networks, ACM Sigplan Notices. T. 37. 10. ACM, pp.85-95, 2002.

T. Amirhosein, L. Quan, R. Romain, and E. Frank, WiSeKit : A distributed middleware to support application-level adaptation in sensor networks, IFIP International Conference on Distributed Applications and Interoperable Systems, pp.44-58, 2009.

T. Amirhosein, R. Romain, L. Quan, and E. Frank, Supporting lightweight adaptations in context-aware wireless sensor networks, Proceedings of the 1st International Workshop on Context-Aware Middleware and Services : affiliated with the 4th International Conference on Communication System Software and Middleware, pp.43-48, 2009.

T. Amir, L. Frederic, R. Romain, and E. Frank, Optimizing sensor network reprogramming via in situ reconfigurable components, ACM Transactions on Sensor Networks (TOSN), vol.9, p.14, 2013.

L. Danh and H. Manfred, Linked Open Data in Sensor Data Mashups, Proceedings of the 2Nd International Conference on Semantic Sensor Networks, vol.522, pp.1-16, 2009.

S. Gervais-ducouret, Next Smart Sensors Generation, Conference : Sensors Applications Symposium. IEEE, 2011.

M. Carmen, S. Asunción, G. Mariano, and F. , The NeOn methodology for ontology engineering, Ontology engineering in a networked world, pp.9-34, 2012.

A. Busayawan and H. Ray, A strategic approach to new product development in smart clothing, Proceedings of the 6th Asian Design Conference. T. 70. Citeseer, 2003.

C. Qiu and H. U. Yue, The Review of Smart Clothing Design Research based on the Concept of 3F+ 1I, International Journal of Business and Social Science, vol.6, p.1, 2015.

W. Nico, B. , and W. N. Borst, Construction of engineering ontologies for knowledge sharing and reuse, 1997.

D. Mathieu, A. Schlicht, S. Heiner, and S. Marta, Ontology modularization for knowledge selection : Experiments and evaluations, International Conference on Database and Expert Systems Applications, pp.874-883, 2007.

S. Rodolfo, N. Claudia, N. Wolfgang, and B. Paolo, Adaptive ontology re-use : finding and re-using sub-ontologies, International Journal of Web Information Systems, vol.4, pp.198-214, 2008.

K. Sebastian and K. Takuki, Web of Things (WoT) Thing Description. First Public Working Draft. W3C, sept, 2017.

L. Maxime, Planned ETSI SAREF Extensions based on the W3C&OGC SOSA/SSNcompatible SEAS Ontology Patterns, Proceedings of Workshop on Semantic Interoperability and Standardization in the IoT, SIS-IoT, 2017.

A. Xavier, G. Sophie, and J. Hornung, VetiVoc : a modular ontology for the fashion, textile and clothing domain, Applied Ontology, vol.11, pp.1-28, 2016.

G. Jasmin, B. Uwe, F. Michael, L. Frank, and R. Lukas, Comparison of IoT platform architectures : A field study based on a reference architecture, Cloudification of the Internet of Things (CIoT). IEEE, pp.1-6, 2016.