A. M. Fiore, D. J. Jacob, B. D. Field, D. G. Streets, S. D. Fernandes et al., Linking ozone pollution and climate change: The case for controlling methane, Geophys. Res. Lett, vol.29, issue.19, p.1919, 2002.

M. Bury, LCAs provide answers for climate impacts & carbon-neutral power potential, Environ. Sci. Technol, vol.44, pp.7944-7949, 2010.

I. Kapdan and F. Kargi, Bio-hydrogen production from waste materials, Enzym. Microb. Technol, vol.38, pp.569-582, 2006.

W. Nicholson, A Journal of Natural Philosophy, p.1802

O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson et al., Future cost and performance of water electrolysis: An expert elicitation study, Int. J. Hydrogen Energy, vol.42, pp.30470-30492, 2017.

Y. Ito, T. Ohto, D. Hojo, M. Wakisaka, Y. Nagata et al., Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte, ACS Catal, vol.8, pp.1-30, 2018.

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.238, pp.37-38, 1972.

V. Etacheri, C. D. Valentin, J. Schneider, D. Bahnemann, and S. Pillai, Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments, J. Photochem. Photobiol. C Photochem. Rev, vol.25, pp.1-29, 2015.

Y. Xiang, X. Wang, X. Zhang, H. Hou, K. Dai et al., Enhanced visible light photocatalytic activity of TiO2 assisted by organic semiconductors: a structure optimization strategy of conjugated polymers, J. Mater. Chem. A, vol.6, pp.153-159, 2018.

C. Liu, F. Wang, J. Zhang, K. Wang, Y. Qiu et al., Efficient Photoelectrochemical Water Splitting by g-C3N4/TiO2 Nanotube Array Heterostructures, Nano-Micro Lett, vol.10, issue.2, pp.37-38, 2018.

S. A. Ansari, M. M. Khan, M. O. Ansari, and M. H. Cho, Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis, New J. Chem, vol.40, pp.3000-3009, 2016.

L. D. Than, N. S. Luong, V. D. Ngo, N. M. Tien, T. N. Dung et al., Highly Visible Light Activity of Nitrogen Doped TiO2 Prepared by Sol-Gel Approach, J. Electron. Mater, vol.46, pp.158-166, 2017.

A. Isaev, R. Ilkanaev, and A. Idrisova, Synthesis and investigation of photocatalytic activity nitrogen doped TiO2 nanotubes, Butlerov Commun, vol.53, pp.137-142, 2018.

W. Mekprasart, T. Khumtong, J. Rattanarak, W. Techitdheera, and W. Techitdheera, Effect of Nitrogen Doping on Optical and Photocatalytic Properties of TiO2 Thin Film Prepared by Spin Coating Process, Energy Procedia, vol.34, pp.746-750, 2013.

Z. Jedi-soltanabadi, M. Ghoranneviss, Z. Ghorannevis, and H. Akbari, Anodic growth of nitrogen-doped Titanium Dioxide nanotubes by anodization process of elemental Titanium in ethylene glycol based electrolyte solution with different water contents, Vacuum, vol.155, pp.1-15, 2018.

M. Zhou, Novel Photocatalytic TiO2-based Porous Membranes prepared by PlasmaEnhanced Chemical Vapor Deposition (PECVD) For Organic Pollutant Degradation in Water, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01693147

M. Zhou, S. Roualdès, J. Zhao, V. Autès, and A. , Nanocrystalline TiO2 thin film prepared by low-temperature plasma-enhanced chemical vapor deposition for photocatalytic applications, Thin Solid Films, vol.589, pp.770-777, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01684781

K. Baba, S. Bulou, M. Quesada-gonzalez, S. Bonot, D. Collard et al., Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO2 Thin Films Grown from a Scalable PECVD/PVD Approach, ACS Appl. Mater. Interfaces, vol.9, pp.41200-41209, 2017.

D. Dogu and G. Karakas, Photocatalytic Properties and Characterization of Praseodymium-doped Titanium Dioxide, J. Adv. Oxid. Technol, vol.21, pp.1-12, 2018.

F. D. Duminica, F. Maury, and R. Hausbrand, N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity, Surf. Coatings Technol, vol.201, pp.9349-9353, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00806210

A. Zaleska, Doped-TiO2: A Review, Recent Patents Eng, vol.2, pp.157-164, 2008.

X. Wang, K. Zhang, X. Guo, G. Shen, and J. Xiang, Synthesis and characterization of Ndoped TiO2 loaded onto activated carbon fiber with enhanced visible-light photocatalytic activity, New J. Chem, vol.38, pp.6139-6146, 2014.

S. Laursen, J. Chang, W. Medlin, N. Gürmen, and H. S. Fogler, An extremely brief introduction to computational quantum chemistry, Molecular Modeling in Chemical Engineering, pp.1-5, 2004.

. Overblog, L'hydrogène, où ça en est?, Image web, 2014.

S. Zhang, Y. Zhang, J. Chen, X. Zhang, and X. Liu, High yields of hydrogen production from methanol steam reforming with a cross-U type reactor, PLoS One, vol.12, p.187807, 2017.

S. Z. Abbas, V. Dupont, and T. Mahmud, Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor, Int. J. Hydrogen Energy, vol.42, pp.2889-2903, 2017.

J. Tarascon, Filière hydrogène: de la production au stockage, Chaire Développement durable : Environnement, pp.1-68, 2011.

M. Bacchi, Hydrogénases artificielles: nouveaux catalyseurs biosynthétiques pour la production d'hydrogène, 2013.

S. Chader, H. Hacene, M. Belhamel, and S. Agathos, Etudes des procédés de production biologiques de l'hydrogène, Rev. des Energies Renouvelables, vol.10, pp.497-505, 2007.

L. Esteoulle and E. Rozwadowski, Les Déchets Radioactifs, Atelier Les Déchets, pp.1-12, 2014.

D. Cheikh and B. M. Elamine, Étude de possibilité de stockage de l'hydrogène par adsorption solaire, 2017.

G. Hermosilla-lara, Stockage de l'hydrogène par adsorption sur charbon actif: Etude des effets thermiques lors de la charge dynamique d'un réservoir à lit fixe adsorbant, 2007.

A. S. Awad, D. Mereib, M. Zakhour, M. Nakhl, and J. L. Bobet, Rapid and direct reactive synthesis of Ti-Al intermetallics by microwave heating of TiH2 and Al powder without microwave susceptor, J. Alloys Compd, vol.720, pp.182-186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01539317

T. Tayeh, Composés à base de magnésium pour le stockage et/ou la production délocalisée d'hydrogène, 2014.

T. Tayeh, A. S. Awad, M. Nakhl, M. Zakhour, J. F. Silvain et al., Production of hydrogen from magnesium hydrides hydrolysis, Int. J. Hydrogen Energy, vol.39, pp.3109-3117, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956927

L. , Stockage de l'hydrogène par des mélanges mécanochimiques à base de magnésium : Étude de composés intermétalliques ternaires à base de bore (structure et essais d'hydrogénation), 2012.

J. J. Reilly and G. D. Sandrock, Hydrogen storage in metal hydrides, Sci. Am, vol.242, pp.118-129, 1980.

. Ludwig-bölkow-systemtechnik, Hydrogen Refuelling Stations Worldwide, 2018.

S. Boucher and T. Alleau, Le transport d'Hydrogène, Memento de l'Hydrogène, 2016.

F. Lapicque, M. Cassir, T. Chartier, P. Geffroy, and L. Croguennec, Procédés de conversion d'énergie : batteries, piles à combustible et procédés non électriques, Actual. Chim, pp.81-91, 2010.

O. Barbaroux, M. Dutang, and C. Mandll, Le magazine de la chronique scientifique, pp.1-4, 2005.

T. Alleau and F. Barbier, Piles à Combustible, Actual. Chim, vol.248, pp.49-57, 2001.

P. Wellemen, Cutaway illustration of a fuel cell car, Image de Wikimedia, 2009.

J. Nowotny, C. Sorrell, L. R. Sheppard, and T. Bak, Solar-hydrogen: Environmentally safe fuel for the future, Int. J. Hydrogen Energy, vol.30, pp.521-544, 2005.

M. Fuhs, Future PV: The feasibility of solar-powered hydrogen production, pp.1-3, 2017.

J. Koponen, A. Kosonen, and J. Ahola, Review of water electrolysis technologies and design of renewable hydrogen production systems, 2016.

N. Liu, M. Han, Y. Sun, C. Zhu, Y. Zhou et al., A g-C3N4 based photoelectrochemical cell using O2/H2O redox couples, Energy Environ. Sci, vol.11, pp.1841-1847, 2018.

J. Lee, K. Kim, J. Park, and S. Oh, Studies on the fabrication and characteristics of photoelectrochemical cells using IrO2-coated TiO2 photoanode for Zscheme water splitting and perovskite solar cell bias, Mol. Cryst. Liq. Cryst, vol.662, pp.75-81, 2018.

M. R. Singh, K. Papadantonakis, C. Xiang, and N. S. Lewis, An electrochemical engineering assessment of the operational conditions and constraints for solar-driven watersplitting systems at near-neutral pH, RSC Adv, vol.8, pp.2760-2767, 2015.

K. Xu, A. Chatzitakis, and T. Norby, Solid-state photoelectrochemical cell with TiO2 nanotubes for water splitting, RSC Adv, vol.16, pp.10-16, 2017.

A. J. Kinfack-leoga, L. Youssef, S. Roualdès, and V. Rouessac, Phosphonic acid-based membranes as proton conductors prepared by a pulsed plasma enhanced chemical vapor deposition technique, Thin Solid Films, vol.660, pp.506-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01864546

J. Bassil, Développement par procédés plasma de polymères conducteurs protoniques de type phosphonique pour piles à combustible, 2014.

P. Würfel and U. Würfel, From basic principles to advanced concepts, Physics of Solar Cells, 2016.

A. Mckevoy, T. Markvart, and L. Castaner, Materials, Manufacture and Operation, Sol. Cells, pp.1-615, 2013.

M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol. C Photochem. Rev, vol.4, pp.145-153, 2006.

B. O'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, pp.737-740, 1991.

Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li et al., High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts, Nat. Mater, vol.7, pp.626-630, 2008.

J. Shaikh, N. Shaikh, A. Sheikh, S. Mali, A. Kale et al., Perovskite solar cells: In pursuit of efficiency and stability, Mater. Des, vol.136, pp.54-80, 2017.

I. Mesquita, L. Andrade, and A. Mendes, Perovskite solar cells: Materials, configurations and stability, Renew. Sustain. Energy Rev, vol.82, pp.2471-2489, 2018.

A. B. Djurisic, F. Z. Liu, H. W. Tam, M. K. Wong, A. Ng et al., Perovskite solar cells -An overview of critical issues, Prog. Quantum Electron, vol.53, pp.1-37, 2017.

I. Azzouz, Y. G. Habba, M. Capochichi-gnambodoe, F. Marty, J. Vial et al., Zinc oxide nano-enabled microfluidic reactor for water purification and its applicability to volatile organic compounds, Microsystems Nanoeng, vol.4, pp.1-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01721133

R. Prihod'ko and N. Soboleva, Photocatalysis: Oxidative Processes in Water Treatment, J. Chemsitry, vol.2013, pp.1-8, 2013.

R. Suthar and B. Gao, Nanotechnology for Drinking Water Purification, pp.75-109, 2017.

M. N. Chong, B. Jin, C. Chow, and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res, vol.44, pp.2997-3027, 2010.

M. Grätzel, Photoelectrochemical cells, Nature, vol.414, pp.338-343, 2001.

S. E. Lindquist and C. Fell, Fuels-Hydrogen Prod, pp.369-383, 2009.

V. S. Thoi, R. Usiskin, and S. Haile, Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells, Chem. Sci, vol.6, pp.1570-1577, 2015.

M. Perdicakis, C. Piatnicki, and J. Bessière, Proton reduction at a platinum ultramicroelectrode : the effect of supporting electrolyte on the limiting current, J. Chim. Phys, vol.89, pp.2067-2072, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01978134

X. Lu and C. Zhao, Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities, Nat. Commun, vol.6, pp.1-7, 2015.

B. Martindale and E. Reisner, Bi-Functional Iron-Only Electrodes for Efficient Water Splitting with Enhanced Stability through In Situ Electrochemical Regeneration, Adv. Energy Mater, vol.6, p.1502095, 2015.

F. Lyu, Q. Wang, H. Zhu, M. Du, L. Wang et al., A host-guest approach to fabricate metallic cobalt nanoparticles embedded in silk-derived N-doped carbon fibers for efficient hydrogen evolution, Green Energy Environ, vol.2, pp.151-159, 2017.

F. Armstrong, Why did Nature choose manganese to make oxygen?, Philos. Trans. R. Soc. B, vol.363, pp.1263-1270, 2008.

A. Johansson and T. Brinck, Mechanisms and energetics of surface reactions at the copperwater interface, 2012.

J. Augustyn´ski, B. D. Alexander, and R. Solarska, Metal Oxide Photoanodes for Water Splitting, Top. Curr. Chem, vol.303, pp.1-38, 2011.

R. H. Coridan, M. Shaner, C. Wiggenhorn, B. S. Brunschwig, and N. S. Lewis, Electrical and Photoelectrochemical Properties of WO3/Si Tandem Photoelectrodes, J. Phys. Chem. C, vol.117, pp.6949-6957, 2013.

Y. Lin, C. Battaglia, M. Boccard, M. Hettick, Z. Yu et al., Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production, Nano Lett, vol.13, pp.5615-5618, 2013.

B. Kaiser, D. Fertig, J. Ziegler, J. Klett, S. Hoch et al., Solar hydrogen generation with wide-band-gap semiconductors: GaP(100) photoelectrodes and surface modification, ChemPhysChem, vol.13, pp.3053-3060, 2012.

C. G. Morales-guio, L. Liardet, M. T. Mayer, S. D. Tilley, M. Grätzel et al., Photoelectrochemical Hydrogen Production in Alkaline Solutions Using Cu2O Coated with Earth-Abundant Hydrogen Evolution Catalysts, Angew. Chemie Int. Ed, vol.54, pp.664-667, 2015.

A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nat. Mater, vol.10, pp.456-461, 2011.

H. Rabat, C. Andreazza, P. Brault, A. Caillard, F. Béguin et al., Carbon/platinum nanotextured films produced by plasma sputtering, Carbon N. Y, vol.47, pp.209-214, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00338141

M. Cavarroc, A. Ennajdaoui, M. Mougenot, P. Brault, R. Escalier et al., Performance of plasma sputtered Fuel Cell electrodes with ultra-low Pt loadings, Electrochem. commun, vol.11, pp.859-861, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00361475

B. Liu, X. Zhao, C. Terashima, A. Fujishima, and K. Nakata, Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems, Phys. Chem. Chem. Phys, vol.16, p.8751, 2014.

M. Anderman and J. H. Kennedy, Iron oxide (Fe2O3), pp.147-202, 1988.

R. Candea, Photoelectrochemical behavior of iron oxides thermally grown on Fe-Ni alloys, Electrochim. Acta, vol.26, pp.1803-1809, 1981.

J. Leland and A. Bard, Photochemistry of colloidal semiconducting iron oxide polymorphs, J. Phys. Chem, vol.91, pp.5076-5083, 1987.

F. Morin, Electrical properties of a-Fe2O3, Phys. Rev, vol.93, pp.1195-1199, 1954.

I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. Gratzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting, J. Phys. Chem. C, vol.113, pp.772-782, 2009.

A. Kay, I. Cesar, and M. Gratzel, New benchmark for water photooxidation by nanostructured a-Fe2O3 films, J. Am. Chem. Soc, vol.128, pp.15714-15721, 2006.

F. Morin, Electrical properties of a-Fe2O3 and a-Fe2O3 containing titanium, Phys. Rev, vol.83, pp.1005-1010, 1951.

F. Morin, Magnetic susceptibility of a-Fe2O3 and a-Fe2O3 with added titanium, Phys. Rev, vol.78, pp.819-820, 1950.

V. Aroutiounian, V. Arakelyan, and G. Shahnazaryan, Photo-electrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3:Nb2O5, Sol. Energy, vol.80, pp.1098-1111, 2006.

D. Zhong and D. Gamelin, Photoelectrochemical water oxidation by cobalt catalyst ('CoPi')/a-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck, J. Am. Chem. Soc, vol.132, pp.4202-4207, 2010.

J. Sun, D. Zhong, and D. Gamelin, Composite photoanodes for photoelectrochemical solar water splitting, Energy Environ. Sci, vol.3, pp.1252-1261, 2010.

S. Sfaelou, L. C. Pop, O. Monfort, V. Dracopoulos, and P. Lianos, Mesoporous WO3 photoanodes for hydrogen production by water splitting and PhotoFuelCell operation, Int. J. Hydrogen Energy, vol.41, pp.5902-5907, 2016.

J. Zhang, I. Salles, S. Pering, P. J. Cameron, D. Mattiaa et al., Nanostructured WO3 photoanodes for efficient water splitting via anodisation in citric acid, R. Soc. Chem. Adv, vol.7, pp.35221-35227, 2017.

A. Kafizas, L. Francàs, C. Sotelo-vazquez, M. Ling, Y. Li et al., Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition, J. Phys. Chem, vol.121, pp.5983-5993, 2017.

A. Faid and N. Allam, Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes, R. Soc. Chem. Adv, vol.6, pp.80221-80225, 2016.

M. S. Islam, M. F. Hossain, and S. M. Razzak, Enhanced photoelectrochemical performance of nanoparticle ZnO photoanodes for water-splitting application, J. Photochem. Photobiol. A Chem, vol.326, pp.100-106, 2016.

X. Yang, A. Wolcott, and G. Wang, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett, vol.9, pp.2331-2336, 2009.

Y. Sun, C. J. Murphy, and K. R. Reyes-gil, Carbon-doped In2O3 films for photoelectrochemical hydrogen production, Int. J. Hydrogen Energy, vol.33, pp.5967-5974, 2008.

K. Sayama, A. Nomura, and T. Arai, Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment, J. Phys. Chem. B, vol.110, pp.11352-11360, 2006.

J. Su, L. Guo, S. Yoriya, and C. Grimes, Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting, Cryst. Growth Des, vol.10, pp.856-861, 2010.

A. Iwase and A. Kudo, Photoelectrochemical water splitting using visible-light-responsive BiVO4 fine particles prepared in an aqueous acetic acid solution, J. Mater. Chem, vol.20, pp.7536-7542, 2010.

M. Li, L. Zhao, and L. Guo, Preparation and photoelectrochemical study of BiVO4 thin films deposited by ultrasonic spray pyrolysis, Int. J. Hydrogen Energy, vol.35, pp.7127-7133, 2010.

A. Tahir and K. Wijayantha, Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes, J. Photochem. Photobiol. A, vol.216, pp.119-125, 2010.

A. Chovet and P. Masson, Cours de physique des semi-conducteurs, 2007.

W. H. Preece, On Electrical Conductors, p.1883

M. Dubois, Matériaux conducteurs, pp.1-48, 2006.

A. Tiwari, Avanced Tropological Insulator Materials. Ouvrage, 2018.

M. Gerl and J. Issi, Conductivité électrique des semi-conducteurs, pp.310-328, 1997.

C. Magne, S. Cassaignon, G. Lancel, and T. Pauporté, Brookite TiO2 nanoparticle films for dye-sensitized solar cells, ChemPhysChem, vol.12, pp.2467-2467, 2011.

S. Valencio, J. M. Marin, and G. Restrepo, Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticules Using the Sol-Gel Method and a Hydrothermal Treatment, Open Mater. Sci. J, vol.4, pp.9-14, 2010.

A. A. Nada, M. F. Bekheet, S. Roualdes, A. Gurlo, and A. , Functionalization of MCM-41 with titanium oxynitride deposited via PECVD for enhanced removal of methylene blue, J. Mol. Liq, vol.274, pp.505-515, 2019.

J. Anthony, R. Bideaux, and K. Bladh, Mineral Data Publishing (Anatase-RutileBrookite), Handbook of Mineralogy, 2001.

T. Esch, I. Gadaczek, and T. Bredow, Surface structures and thermodynamics of low-index of rutile, brookite and anatase -A comparative DFT study, Appl. Surf. Sci, vol.288, pp.275-287, 2014.

P. Pu, Étude életrochimique et photo-électrochimique des modes de conduction dans les films de TiO2 nanostructurés, 2012.

H. N. Lazzarelli, Blue Chart Gem Identification, Gemdat. org, 2010.

W. A. Deer, R. A. Howie, and J. Zussman, Rock-forming minerals, Ouvrage, 1962.

A. Gribb and J. F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2, Am. Mineral, vol.82, pp.717-728, 1997.

H. Zhang and J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania, J. Mater. Chem, vol.8, pp.2073-2076, 1998.

C. Kim, I. Kwon, B. K. Moon, J. H. Jeong, B. Choi et al., Synthesis and particle size effect on the phase transformation of nanocrystalline TiO2, Mater. Sci. Eng. C, vol.27, pp.1343-1346, 2007.

N. Nolan, M. K. Seery, and S. S. Pillai, Spectroscopic Investigation of the Anatase-toRutile Transformation of Sol?Gel-Synthesized TiO2 Photocatalysts, J. Phys. Chem. C, vol.113, pp.16151-16157, 2009.

S. C. Pillai, P. Periyat, R. George, D. E. Mccormack, M. K. Seery et al., Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst, J. Phys. Chem. C, vol.111, pp.1605-1611, 2007.

V. Etacheri, M. K. Seery, S. J. Hinder, and S. C. Pillai, Oxygen Rich Titania: A Dopant Free, High Temperature Stable, and Visible-Light Active Anatase Photocatalyst, Adv. Funtional Mater, vol.11, pp.3744-3752, 2011.

N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO2 Film Electrode Surfaces by Anodic Polarization, J. Phys. Chem. B, vol.105, pp.3023-3026, 2001.

A. Da-paola, M. Bellardita, and L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, Catalysts, vol.3, pp.36-73, 2013.

R. Bhave, Synthesis and photocatalysis study of Brookite phase titanium dioxide nanoparticles, 2007.

H. Liao and T. Reitberger, Generation of Free OHaq Radicals by Black Light Illumination of Degussa (Evonik) P25 TiO2 Aqueous Suspensions, Catalysts, vol.3, pp.418-443, 2013.

B. Ohtani, O. O. Prieto-mahaney, D. Li, and R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol. A Chem, vol.216, pp.179-182, 2010.

C. Deiana, E. Fois, S. Coluccia, and G. Martra, Surface Structure of TiO2 P25 Nanoparticles: Infrared Study of Hydroxy Groups on Coordinative Defect Sites, J. Phys. Chem. C, vol.49, pp.21531-21538, 2010.

D. C. Hurum, K. A. Gray, T. Rajh, and M. C. Thurnauer, Photoinitiated Reactions of 2,4,6 TCP on Degussa P25 Formulation TiO2: Wavelength-Sensitive Decomposition, J. Phys. Chem. B, vol.108, pp.16483-16487, 2004.

A. Wisitsoraat, T. A. , E. Comini, G. Sberveglieri, and W. Wlodarski, Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films, Thin Solid Films, vol.517, pp.2775-2780, 2009.

J. Zhao and X. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ, vol.38, pp.645-654, 2003.

N. Mufti, I. K. Laila, H. Fuad, and A. Fuad, The effect of TiO2 thin film thickness on self-cleaning glass properties, Int. Conf. Phys. Instrum. Adv. Mater, vol.853, pp.1-7, 2017.

R. Bergamasco, F. Silva, F. Arakawa, N. Yamaguchi, M. M. Reis et al., Drinking water treatment in a gravimetric flow system with TiO2 coated membranes, Chem. Eng. J, vol.174, pp.102-109, 2011.

H. Choi, E. Stathatos, and D. Dionysiou, Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems, Desalination, vol.202, pp.199-206, 2007.

J. P. Mericq, J. Mendret, S. Brosillon, and C. Faur, High performance PVDF-TiO2 membranes for water treatment, Chem. Eng. Sci, vol.123, pp.283-291, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01683022

D. Friedmann, C. Mendive, and D. Bahnemann, TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis, Appl. Catal. B Environ, vol.99, pp.398-406, 2010.

S. Lee and S. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem, vol.19, pp.1761-1769, 2013.

G. Rothenberger, P. Comte, and M. Gratzel, A contribution to the optical design of dyesensitized nanocrystalline solar cells, Sol. Energy Mater. Sol. Cells, vol.58, pp.321-336, 1999.

M. Nazeeruddin, E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: A brief overview, Sol. Energy, vol.85, pp.1172-1178, 2011.

P. J. Lu, S. C. Huang, Y. P. Chen, L. C. Chiueh, and D. Shih, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, J. Food Drug Anal, vol.23, pp.587-594, 2015.

J. Jacobs, I. De-poel, and P. Osseweijer, Sunscreens with Titanium Dioxide (TiO2) NanoParticles: A Societal Experiment, Nanoethics, vol.4, pp.103-113, 2010.

D. A. Worsley and J. R. Searle, Photoactivity test for TiO2 pigment photocatalysed polymer degradation, Mater. Sci. Technol, vol.18, pp.681-684, 2002.

X. Chai, H. Zhang, and C. Cheng, 3D FTO Inverse Opals@Hematite@TiO2 hierarchically structured Photoanode for Photoelectrochemical Water Splitting, Semicond. Sci. Technol, vol.31, p.114003, 2017.

H. Han, F. Riboni, F. Karlicky, S. Kment, A. G. Yoo et al., ?-Fe2O3/TiO2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting, Nanoscale, vol.9, pp.134-142, 2017.

A. Realpe, D. Núñez, I. Carbal, M. T. Acevedo, and G. Avila, Preparation and Characterization of Titanium Dioxide Photoelectrodes for Generation of Hydrogen by Photoelectrochemical Water Splitting, Int. J. Eng. Technol, vol.2, pp.753-759, 2015.

M. Lazar, S. Varghese, and S. Nair, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, vol.2, pp.572-601, 2012.

D. Chen and A. K. Ray, Photodegradation kinetics of 4-nitrophenol in TiO2 suspension, Water Res, vol.32, pp.3223-3234, 1998.

J. Ny, L. J. , K. Sj, H. Sh, P. Hm et al., Preparation of an aqueous suspension of stabilized TiO2 nanoparticles in primary particle form, J. Nanosci. Nanotechnol, vol.13, pp.6153-6159, 2013.

B. Yoo, K. Kim, D. Lee, M. J. Ko, H. Lee et al., Enhanced charge collection efficiency by thin-TiO2-film deposition on FTO-coated ITO conductive oxide in dye-sensitized solar cells, J. Mater. Chem, vol.20, pp.4392-4398, 2010.

Y. Q. Fu, Thin film shape memory alloys and microactuators, Int. J. Comput. Mater. Sci. Surf. Eng, vol.2, pp.208-226, 2009.

P. Kajitvichyanukul, J. Ananpattarachai, and S. Pongpom, Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process, Sci. Technol. Adv. Mater, vol.6, pp.352-358, 2005.

H. Yang, K. Zhang, R. Shi, X. Li, X. Dong et al., Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions, J. Alloys Compd, vol.413, pp.302-306, 2006.

C. B. Marien, C. Marchal, A. Koch, D. Robert, and P. Drogui, Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle's morphology and photocatalytic degradation of paraquat, Environ. Sci. Pollut. Res, vol.24, pp.12582-12588, 2016.

D. P. Macwan, P. N. Dave, and S. Chaturvedi, A review on nano-TiO2 sol-gel type syntheses and its applications, J. Mater. Sci, vol.46, pp.3669-3686, 2011.

N. Liu, X. Chen, J. Zhang, and J. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications, Catal. Today, vol.225, pp.34-51, 2014.

F. Zhang and H. Li, Hydrothermal synthesis of TiO2 nanofibres, Mater. Sci. Eng. C, vol.27, pp.80-82, 2007.

Y. Li, M. Guo, M. Zhang, and X. Wang, Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates, Mater. Res. Bull, vol.44, pp.1232-1237, 2009.

X. Xu and J. Zhu, Hydrothermal Synthesis of TiO2 Nanoparticles for Photocatalytic Degradation of Ethane: Effect of Synthesis Conditions, Recent Patents Chem. Eng, vol.5, pp.134-142, 2012.

T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir, vol.14, pp.3160-3163, 1998.

M. A. Zavala and S. ,

M. Morales and . Santos, Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature, Heliyon, vol.3, pp.1-18, 2017.

C. T. Nam, W. Yang, and L. M. Duc, Solvothermal Synthesis of TiO2 Photocatalysts in Ketone Solvents with Low Boiling Points, J. Nanomater, vol.2013, pp.1-11, 2013.

C. S. Kim, B. K. Moon, J. H. Park, B. C. Choi, and H. J. Seo, Solvothermal synthesis of nanocrystalline TiO2 in toluene with surfactant, J. Cryst. Growth, vol.257, pp.309-315, 2003.

R. Wahi, Y. Liu, J. C. Falkner, and V. L. Colvin, Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area, J. Colloid Interface Sci, vol.302, pp.530-536, 2006.

M. M. Momeni, Y. Ghayeb, and M. Davarzadeh, Single-step electrochemical anodization for synthesis of hierarchical WO3-TiO2 nanotube arrays on titanium foil as a good photoanode for water splitting with visible light, J. Electroanal. Chem, vol.739, pp.149-155, 2015.

M. Barghi, A. E. , R. Shahzad, and S. Rohani, N-and C-Modified TiO2 Nanotube Arrays: Enhanced Photoelectrochemical Properties and Effect of Nanotubes Length on Photoconversion Efficiency, Nanomaterials, vol.8, pp.198-199, 2018.

B. Endrodi, E. Kecsenovity, K. Rajeshwar, and C. Janáky, One-step Electrodeposition of Nanocrystalline TiO2 Films with Enhanced Photoelectrochemical Performance and Charge Storage, ACS Appl. Energy Mater, vol.1, pp.851-858, 2018.

N. S. Hadis, A. M. Abd, and S. H. Hana, Comparison on TiO2 thin film deposition method for fluidic based glucose memristor sensor, International Circuits and Systems Symposium, pp.36-39, 2015.

D. Manova, L. F. Arias, A. Hofele, S. Mandl, I. Alani et al., Nitrogen incorporation during PVD deposition of TiO2:N thin films, Surf. Coatings Technol, vol.312, pp.61-65, 2017.

H. Hu, B. Dong, H. Hu, F. Chen, M. Kong et al., Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air, ACS Appl. Mater. Interfaces, vol.8, pp.17999-18007, 2016.

R. L. Wilson, C. E. Simion, C. S. Blackman, C. J. Carmalt, A. Stanoiu et al., The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition, Sensors, vol.18, pp.735-748, 2018.

T. Yamaki, T. Sumita, S. Yamamoto, and A. Miyashita, Preparation of epitaxial TiO2 films by PLD for photocatalyst applications, J. Cryst. Growth, pp.574-579, 2002.

F. Gámez, A. Plaza-reyes, P. Hurtado, E. Guillén, J. A. Anta et al., Nanoparticle TiO2 Films Prepared by Pulsed Laser Deposition: Laser Desorption and Cationization of Model Adsorbates, J. Phys. Chem. C, vol.114, pp.17409-17415, 2010.

S. Agarwal, M. S. Haseman, K. D. Leedy, D. J. Winarski, P. Saadatkia et al., Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films, J. Electron. Mater, vol.47, pp.2271-2276, 2018.

F. Maury and J. Mungkalasiri, Chemical Vapor Deposition of TiO2 for Photocatalytic Applications and Biocidal surfaces, Key Eng. Mater, vol.415, pp.1-4, 2009.

C. Sarantopoulos, A. N. Gleizes, and F. Maury, Chemical vapor infiltration of photocatalytically active TiO2 thin filmson glass microfibers, Surf. Coatings Technol, vol.201, pp.9354-9358, 2007.

F. Duminica, F. Maury, and R. Hausbrand, Growth of TiO2 thin films by AP-MOCVD on stainless steel substrates for photocatalytic applications, Surf. Coatings Technol, vol.201, pp.9304-9308, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00806202

Y. Jouane, Contribution of interfacial layers based on zinc oxide deposited by sputtering in the performance of organic photovoltaic cells compatible with flexible substrates, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00769542

L. M. Liz-marzan, Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles, Langmuir, vol.22, pp.32-41, 2006.

S. Bakhti, Étude théorique des résonances plasmon de nanostructures métalliques et leur inscription lithographique par Microscopie à Force Atomique, 2014.

E. Grabowska, M. Marchelek, T. Klimczuk, G. Trykowski, and A. Zaleska-medynska, Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV-vis and visible light, J. Mol. Catal. A Chem, vol.423, pp.191-206, 2016.

L. Clarizia, D. Spasiano, I. D. Somma, R. Marotta, R. Andreozzi et al., Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review, Int. J. Hydrogen Energy, vol.39, pp.166812-16831, 2014.

S. Sohrabi and F. Akhlaghian, Surface investigation and catalytic activity of iron-modified TiO2, J. Nanostructure Chem, vol.6, pp.93-102, 2016.

M. Lezner and A. Z. Ewelina-grabowska, Preparation and photocatalytic activity of Ironmodified titanium dioxide photocatalyst, Physicochem. Probl. Miner. Process, vol.48, pp.193-200, 2012.

Y. Tseng and B. Huang, Photocatalytic Degradation of Using Ni-Containing TiO2, Int. J. Photoenergy, vol.2012, pp.1-7, 2012.

W. Chen, T. Wang, J. Xue, S. Li, Z. Wang et al., Cobalt-Nickel Layered Double Hydroxides Modified on TiO2 Nanotube Arrays for Highly Efficient and Stable PEC Water Splitting, Small, vol.13, p.1602420, 2017.

H. N. Phung, Effect of Co-Doping and Tri-Doping with Transition Metals and a Nonmetal on Photocatalytic Activity in Visible Light of TiO2 Thin Film, J. Korean Phys. Soc, vol.70, pp.995-1000, 2017.

R. Kaur, P. Singla, and K. Singh, Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate, Int. J. Environ. Sci. Technol, pp.1-10, 2017.

J. Reszczy?ska, T. Grzyb, J. W. Sobczak, W. Lisowski, M. Gazda et al., Lanthanide co-doped TiO2: The effect of metal type and amount on surface properties and photocatalytic activity, Appl. Surf. Sci, vol.307, pp.333-345, 2014.

L. Devi and R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B Environ, pp.559-587, 2013.

D. Chen, D. Yang, Q. Wang, and Z. Jiang, Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles, Ind. Eng. Chem. Res, vol.45, pp.4110-4116, 2006.

B. Wang, F. Zhao, G. Du, S. Porter, Y. Liu et al., Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, vol.8, pp.16009-16015, 2016.

N. Begum, H. M. Ahmed, and O. M. Hussein, Characterization and photocatalytic activity of boron-doped TiO2 thin films prepared by liquid phase deposition technique, Bull. Mater. Sci, vol.31, pp.741-745, 2008.

N. P. Xekoukoulotakis, D. Mantzavinos, R. Dillert, and D. Bahnemann, Synthesis and photocatalytic activity of boron-doped TiO2 in aqueous suspensions under UV-A irradiation, Water Sci. Technol, vol.61, pp.2501-2506, 2010.

D. H. Quiñones, A. Rey, P. M. Álvarez, F. J. Beltrán, and G. Li-puma, Boron doped TiO2 catalysts for photocatalytic ozonation of aqueous mixtures of common pesticides: Diuron, o-phenylphenol, MCPA and terbuthylazine, Appl. Catal. B Environ, vol.178, pp.74-81, 2015.

W. Mai, F. Wen, D. Xie, Y. Leng, and Z. Mu, Structure and composition study of carbondoped titanium oxide film combined with first principles, J. Adv. Ceram, vol.3, pp.49-55, 2014.

S. Sakthivel and H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide, Angew. Chemie Int. Ed, vol.42, pp.4908-4911, 2003.

J. Lu, Y. Daia, M. Guo, L. Yu, K. Lai et al., Chemical and optical properties of carbon-doped TiO2: A density-functional study, Appl. Phys. Lett, vol.100, pp.102-114, 2012.

Y. Yang, D. Ni, Y. Yao, Y. Zhong, Y. Ma et al., High photocatalytic activity of carbon doped TiO2 prepared by fast combustion of organic capping ligands, RSC Adv, vol.5, pp.93635-93643, 2015.

S. K. Park, J. Jeong, T. Yun, and J. Bae, Preparation of Carbon-Doped TiO2 and Its Application as a Photoelectrodes in Dye-Sensitized Solar Cells, J. Nanosci. Nanotechnol, vol.15, pp.1529-1532, 2015.

E. Rockafellow, L. Stewart, and W. Jenks, Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation?, Appl. Catal. B Environ, vol.91, pp.554-562, 2009.

H. Natori, K. Kobayashi, and M. Takahashi, Preparation and photocatalytic property of phosphorus-doped TiO2 particles, J. Oleo Sci, vol.58, pp.389-394, 2009.

D. Qin, Q. Wang, J. Chen, C. He, Y. Li et al., Phosphorus-doped TiO2 nanotube arrays for visible-light-driven photoelectrochemical water oxidation, Sustain. Energy Fuels, vol.1, pp.248-253, 2017.

R. Asahi, T. Morikawa, T. Ohwaki, and E. Al, Visible light photocatalysis in nitrogen doped titanium oxides, Science (80-. ), vol.293, pp.269-271, 2001.

N. Nolan, D. Synnott, M. Seery, S. Hinder, and A. Wassenhaven, Effect of N-Doping on the Photo-catalytic Activity of Sol-Gel TiO2, J. Hazard. Mater, pp.88-94, 2012.

O. Linnik, N. Chorna, N. Smirnova, A. Eremenko, O. Korduban et al., Pulsed Laser-Deposited TiO2-based Films: Synthesis, Electronic Structure and Photocatalytic Activity, Semiconductor PhotocatalysisMaterials, Mechanisms and Applications, pp.136-161, 2016.

H. Feraudy, Les Plasmas du Système Solaire et de l'Univers, Plasmas Froids : Astrophysique-Aérospatial-Environnement-Biologie-Nanomatériaux, pp.13-14, 2006.

J. Tyczkowski, Cold Plasma -A Promising Tool for the Development of Electrochemical Cells, Electrochemical Cells -New Advances in Fundamental Researches and Applications, pp.1-35, 2012.

J. Raimbault, Cours de Master 2 de l'Université Paris Sud 11, 2013.

H. Alfvén and C. Fälthammar, Cosmical electrodynamics: fundamental principles, Ouvrage, 1963.

D. Benzeggouta, Etude de procédés de dépôts de films minces par décharge magnétron fortement ionisée, 2008.

L. In-sun, K. Jong-wha, Y. Chang-joo, P. Sang-kyu, and H. Yoon-bong, Preparation and characterization of TiO2 thin films by PECVD on Si substrate, Korean J. Chem. Eng, vol.13, pp.473-477, 1996.

J. M. Rax, Basic Plasma Physics, 2008.

M. Haacké, Membranes PECVD à base de a-SiCxNy : H pour la séparation de l'hydrogène, 2015.

J. J. Yasuda and M. O. Bumgarner, Some Aspects of Plasma Polymerization Investigated by Pulsed R.F.Discharge, J. Appl. Polym. Sci, vol.19, pp.1403-1408, 1975.

I. Lee, K. Jong-wha, Y. Chang-joo, P. Sang-kyu, and H. Yoon-bong, Preparation and Characterization of TiO2 Thin Films by PECVD on Si substrate, Korean J. Chem. Eng, vol.13, pp.473-477, 1996.

P. Mccurdy, L. Sturgess, S. Kohli, and E. Fisher, Investigation of the PECVD TiO2-Si (100) interface, Appl. Surf. Sci, vol.233, pp.69-79, 2004.

A. Borras, J. Cotrino, and A. Gonzalez-elipe, Type of Plasmas and Microstructures of TiO2 Thin films Prepared by Plasma Enhanced Chemical Vapor Deposition, J. Electrochem. Soc, vol.154, pp.152-157, 2007.

S. Yamauchi, H. Suzuki, and R. Akutsu, Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Layer at Room-Temperature, J. Cryst. Process Technol, vol.4, pp.20-26, 2014.

S. H. Szczepankiewicz, J. A. Moss, and M. R. Hoffmann, Slow Surface Charge Trapping Kinetics on Irradiated TiO2, J. Phys. Chem. B, vol.106, pp.2922-2927, 2002.

D. Cho, H. Min, J. H. Kim, G. Cha, G. Kim et al., Photocatalytic Characteristics of TiO2 Thin Films Deposited by PECVD, J. Ind. Eng. Chem, vol.13, pp.434-437, 2007.

Y. K. Chae, S. Mori, and M. Suzuki, Visible-light photocatalytic activity of anatase TiO2 treated with argon plasma, Thin Solid Films, vol.517, pp.4260-4263, 2009.

D. Li, M. Carette, A. Granier, J. P. Landesman, and A. Goullet, Effect of ion bombardment on the structural and optical properties of TiO2 thin films deposited from oxygen/titanium tetraisopropoxide inductively coupled plasma, Thin Solid Films, vol.589, pp.783-791, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01725497

H. Huang, X. Gu, J. Zhou, K. Ji, H. Liu et al., Photocatalytic degradation of Rhodamine B on TiO2 nanoparticles modified with porphyrin and iron-porphyrin, Catal. Commun, vol.11, pp.58-61, 2009.

S. Aldrich, Titanium (IV) isopropoxide, Fiche technique, 2017.

X. Meng, D. Geng, J. Liu, R. Li, and X. Sun, Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition, Nanotechnology, vol.22, issue.16, p.165602, 2011.

. Chemspider, Tetraisopropoxytitanium (IV), 2015.

A. Brevet, Les premiers instants de la croissance de films minces d'oxydes métalliques par MOCVD : caractérisation physico-chimique de l'interface film/substrat, 2006.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2006.

W. M. Haynes, Ionization Energies of Atoms and Atomic Ions, CRC Handbook of Chemistry and Physics, pp.10-203, 2011.

M. Van-hest, J. R. Haartsen, M. Van-weert, D. C. Shram, and M. Van-de-sanden, Analysis of the expanding thermal argon-oxygen plasma gas phase, Plasma Sources Sci. Technol, vol.12, pp.539-553, 2003.

P. Gaucherel and B. Rowe, Measurement of rates of charge exchange and dissociative recombination reactions in Ar-N2, Ar-H2 and Ar-O2 mixtures, Int. J. Mass Spectrom. Ion Phys, vol.25, pp.211-227, 1977.

J. B. Hasted, Physics of Atomic Collisions, 1964.

A. Fridman, Dissociation of Ammonia in Non-Equilibrium Plasma: Mechanism of the Process in Low Discharge," in Plasma Chemistry, pp.337-338, 2008.

S. Zipper, Monsanto to Sell Silicon Wafer Firm, 1988.

T. Abrisa, Corning® 0211 Microsheet Flexible Thin Glass, Fiche technique, 2015.

L. Rossignol, Disques borosilicatés, Fiche technique, 2016.

I. Schott-north and . America, SCHOTT CoralPor ® Porous Glass Product Information, Fiche technique, 2013.

, Carbon Cloth CC4 Plain, Fuel Cell Earth, issue.1, 2018.

F. Scarpelli, T. Mastropietro, T. Poerio, and N. Godbert, Mesoporous TiO2 Thin Films: State of the Art, pp.57-80, 2018.

P. Scherrer, Determination of the size and internal structure of colloidal particles using Xrays, Nachr Ges Wiss Goettingen, Math-Phys K, vol.2, pp.98-100, 1918.

T. Baudin, Analyse EBSD Principe et cartographies d'orientations, vol.33, pp.1-17, 2010.

. Thermonicolet, Theory of Infrared Spectroscopy Instrumentation, pp.1-2, 2002.

A. Bonneau, Spectroscopie infrarouge à transformée de Fourier (FTIR), Assoc. des Archéologues du Québec, 2017.

M. Dalibart and L. Servant, , pp.1-26, 2000.

J. Goldstein, D. E. Newbury, P. Echlin, C. E. Lyman, D. C. Joy et al., Scanning Electron Microscopy and X-ray Microanalysis, vol.10, p.1983, 1992.

J. Ruste, Microscopie électronique à balayage-Principe et équipement, p.865, 2013.

F. R. Charlot, A. L. Crisci, L. A. Maniguet, F. L. Robaut, and F. R. Roussel-dherbey, Le point sur la microanalyse X, SPECTRA ANALYSE 256, pp.22-43, 2007.

, JEOL, Energy table for EDS analysis, vol.100, p.14001, 2017.

V. Rouessac, Contribution à l'étude microstructurale des couches minces supportées aSiOXCY:H et autres membranes poreuses, Mémoire HDR, 2007.

A. Van-der-lee, Diffusion, diffraction, réflectométrie et fluorescence de rayons-X à la PAC, pp.1-35, 2013.

K. Sing, The use of nitrogen adsorption for the characterisation of porous materials, Colloids Surfaces A Physicochem. Eng. Asp, pp.3-9, 2001.

G. Grévillot, Traitement d'air chargé en composés organiques volatils par adsorption sur solides microporeux, Culture-Sciences Chimie, 2004.

P. Auger and J. L. Boulmier, La porosimétrie au mercure et son application aux échantillons de poudres, Ouvrage, Département Minéralogie Géochimie Analyses, 1986.

J. Daïan, Le modèle XDQ, pp.1-9, 2007.

N. Vayer, T. H. Nguyen, D. Grosso, C. Boissiere, M. A. Hillmyer et al., Characterization of nanoporous polystyrene thin films by environmental ellipsometric porosimetry, Macromolecules, vol.44, p.8892, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02267818

W. Ogieglo, L. Upadhyaya, M. Wessling, A. Nijmeijer, and N. E. Benes, Effects of time, temperature, and pressure in the vicinity of the glass transition of a swollen polymer, J. Memb. Sci, vol.464, p.80, 2014.

V. Rouessac, R. Coustel, F. Bosc, J. Durand, and A. , Characterisation of mesostructured TiO2 thin layers by ellipsometric porosimetry, Thin Solid Films, vol.495, p.232, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00080025

A. Van-der-lee, Analyse structurale de couches minces par réflectometrie de rayons-X, 2012.

C. Nordling, E. Sokolowski, and K. Siegbahn, Evidence of Chemical Shifts of the Inner Electronic Levels in a Metal Relative to Its Oxides (Cu, Cu2O, CuO, Ark. Fysic, vol.13, p.483, 1958.

E. Sokolowski, C. Nordling, and K. Siegbahn, Chemical Shift Effect in Inner Electronic Levels of Cu Due to Oxidation, Phys. Rev, vol.110, p.776, 1958.

L. Douillard, Spectrométrie de photoélectrons X, Cours Iramis-CEA, 2003.

A. Gautam, A. Kshirsagar, R. Biswas, S. Banerjee, P. Khanna et al., Photodegradation of Organic Dyes Based on Anatase and Rutile TiO2 Nano-Particles, R. Soc. Chem. Adv, vol.6, pp.2746-2759, 2016.

A. Sclafani, Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions, J. Phys. Chem, vol.100, pp.13655-13661, 1996.

J. Barbillat, D. Bougeard, G. Buntinx, M. Delhaye, P. Dhamelincourt et al., Spectrométrie Raman, p.2865, 1999.

P. Borrut, Microscope à Force Atomique (AFM)," in Microscopies à Champs de Force, Cours, pp.1-12, 2015.

G. F. Lothian, Absorption spectrophotometry, Ouvrage, Édition Hilger, 1969.

T. Germer, J. Zwinkels, and B. Tsai, Spectrophotometry: Accurate Measurement of Optical Properties of Materials, Ouvrage, 2014.

J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Mater. Res. Bull, vol.3, pp.37-46, 1968.

E. A. Davis and N. F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag, vol.22, pp.903-922, 1970.

J. B. Jorcin, Spectroscopie d'Impédance Électrochimique Locale : Caractérisation de la délamination des peintures de la corrosion des alliages Al-Cu, 2007.

. Applicationnote, Basics of Electrochemical Impedance Spectroscopy, pp.1-17, 2010.

M. , Photoelectrochemical (PEC) and Electrical Studies on Tungsten and Molybdenum Heteropolyoxometalate Thin Films, 2010.

E. Belgsir, M. Hachkar, Y. Duhirel, G. Juhel, and B. Kokoh, Initiation aux expériences de voltammétrie, Cours DEA Unviersité de Poitiers, 2000.

C. Christophe, Intégration de microcapteurs électrochimiques en technologies 'Silicium et Polymères' pour l'étude du stress oxydant. Application à la biochimie cutanée, 2010.

T. Kalaivani and P. Anilkumar, Role of Temperature on the Phase Modification of TiO2 Nanoparticles Synthesized by the Precipitation Method, Silicon, vol.10, pp.1679-1686, 2018.

P. Li, H. Liu, T. Chen, C. Chang, Y. Lu et al., Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface, Materials (Basel), vol.9, pp.429-440, 2016.

C. Pecharromán, F. Grac?á, J. P. Holgado, M. Ocaña, A. R. González-elipe et al., Determination of texture by infrared spectroscopy in titanium oxide-anatase thin films, J. Appl. Phys, vol.93, p.4634, 2003.

S. F. Resende, E. H. Nunes, M. Houmard, and W. L. Vasconcelos, Simple Sol-gel Process to Obtain Silica-coated Anatase Particles With Enhanced TiO2-SiO2 Interfacial Area, J. Colloid Interface Sci, vol.433, pp.211-217, 2014.

W. Zeng, T. Liu, Z. Wang, S. Tsukimoto, M. Saito et al., Oxygen Adsorption on Anatase TiO2 (101) and (001) Surfaces from First Principles, Mater. Trans, vol.51, pp.171-175, 2010.

H. Jensen, A. Soloviev, Z. Li, and G. Erik, XPS and FTIR investigation of the surface properties of different prepared titania nano-powders, Appl. Surf. Sci, vol.246, pp.239-249, 2005.

J. Long and X. Yongfu, Different roles of water in secondary organic aerosol formation from toluene and isoprene, Atmos. Chem. Phys, vol.18, pp.8137-8154, 2018.

M. C. Mathpal, P. Kumar, A. K. Tripathi, R. Balasubramaniyan, M. K. Singh et al., Facile deposition and plasmonic resonance of Ag-Au nanoparticles in titania thin film, New J. Chem, vol.39, pp.6522-6530, 2015.

M. Garcia, C. Belver, J. Hanson, X. Wang, and J. Rodriguez, Anatase-TiO2 Nanomaterials: Analysis of Key Parameters Controlling Crystallization, J. Am. Chem. Soc, vol.129, pp.13604-13612, 2007.

T. Huyen, H. Kosslick, I. Farook, A. Schulz, U. Bentrup et al., Photocatalytic Performance of Highly Active Brookite in the Degradation of Hazardous Organic Compounds Compared to Anatase and Rutile, Appl. Catal. B Environ, vol.200, pp.647-658, 2017.

D. M. Savory, ATR-IR Spectroscopic Studies of Trapped Electrons in Titanium Dioxide, 2014.

S. Nosheen, F. Galasso, and S. Suib, Role of Ti-O bonds in phase transitions of TiO2, Langmuir, vol.25, pp.7623-7630, 2009.

S. Ratzsch, E. Kley, A. Tünnermann, and A. Szeghalmi, Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide, Nanotechnology, vol.26, p.24003, 2015.

S. Kimiagar, M. , and M. Reza, N-doped TiO2 nanothin films: photocatalytic and hydrophilicity properties, Eur. Phys. J. Appl. Phys, vol.61, pp.1-5, 2013.

R. Valencia-alvarado, A. De-la-piedad-beneitez, R. López-callejas, B. G. Méndez, A. Mercado-cabrera et al., Sequential Processes to Produce N-TiO2 Films Through RF Plasmas, vol.67, pp.1-9, 2016.

J. Vlassak, Thin Film Mechanics, Ouvrage, 2004.

K. Aite, R. Koekoek, J. Holleman, and J. Middelhoek, Characterization of intrinsic stresses of PECVD silicon nitride films deposited in a hot-wall reactor, J. Phys, vol.50, pp.323-331, 1989.
URL : https://hal.archives-ouvertes.fr/jpa-00229562

K. Aite, J. Holleman, J. Middelhoek, and R. Koekoek, The relationship between intrinsic stress of silicon nitride films and ion generation in a 50 kHz RF discharge, MRS Fall Meeting, p.130, 1988.

M. T. Swihart, M. D. Allendorf, and M. Meyyappan, Fundamental Gas-Phase and Surface Chemistry of Vapor-Phase Deposition II and Process Control, Diagnostics and Modeling in Semiconductor Manufacturing IV, 2001.

A. V. Novak and V. R. Novak, Evolution of morphology of surface during film growth of polycrystalline silicon with hemispherical grains, Tech. Phys. Lett, vol.40, pp.549-552, 2014.

P. Y. Zheng, T. Zhou, B. J. Engler, J. S. Chawla, R. Hull et al., Surface roughness dependence of the electrical resistivity of W(001) layers, J. Appl. Phys, vol.122, p.95304, 2017.

Y. Du, A. Kumar, H. Pan, K. Zeng, S. Wang et al., The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy, AIP Adv, vol.3, pp.82107-82108, 2013.

A. V. Novak and V. R. Novak, Roughness of amorphous, polycrystalline and hemispherical-grained silicon films, Tech. Phys. Lett, vol.39, issue.10, pp.858-861, 2013.

D. Wang, L. Jia, X. Wu, L. Lu, and A. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity, Nanoscale, vol.4, pp.572-584, 2012.

K. Yanagisawa and J. Ovenstone, Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature, J. Phys. Chem. B, vol.103, pp.7781-7787, 1999.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, Properties of amorphous and crystalline titanium dioxide from first principles, J. Mater. Sci, vol.47, p.7515, 2012.

M. W. Barsoum, C. J. Rawn, T. El-raghy, A. T. Procopio, W. D. Porter et al., Thermal properties of Ti4AlN3, J. Appl. Phys, vol.87, p.8407, 2000.

N. Saha and H. Tompkins, Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study, J. Appl. Phys, vol.72, pp.3072-3079, 1992.

L. S. Yuan, N. S. Razali, and H. Nur, Fine-tuning the local structure and catalytic activity of titanium-amine functionalized silica in oxidation of limonene by aqueous hydrogen peroxide, Catal. Commun, vol.20, pp.85-88, 2012.

B. Buchholcza, H. Haspel, A. Oszkób, A. Kukoveczac, and Z. Kónya, Titania nanotube stabilized BiOCl nanoparticles in visible-light photocatalysis, RSC Adv, vol.7, pp.16410-16422, 2017.

R. Quesada-cabrera, C. Sotelo-vázquez, M. Quesada-gonzález, E. P. Melián, N. Chadwick et al., On the apparent visible-light and enhanced UV-light photocatalytic activity of nitrogen-doped TiO2 thin films, J. Photochem. Photobiol. A Chem, vol.333, pp.49-55, 2017.

M. Muhibbullah and A. Haleem, Estimation of the Open Circuit Voltage of a pn Junction Based on Photo-electrochemical Measurements, Trans. Mater. Res. Soc. Japan, vol.40, pp.247-252, 2015.

M. Muhibbullah, M. Golam-mowla, S. M. Choudhury, and . Mominuzzaman, An equation of the width of the depletion layer for a step heterojunction, Trans. Mater. Res. Soc. Japan, vol.37, pp.405-408, 2012.

H. Li, X. Wang, Q. Wei, X. Liu, Z. Qian et al., Enhanced photocathodic protection performance of Ag/graphene/TiO2 composite for 304SS under visible light, Nanotechnology, vol.28, pp.1-31, 2017.

H. Jie, W. Song-tao, C. Xiao-li, C. Zhen-wei, Y. Xi-liang et al., Photoelectrochemical Characteristics of Nano-Titanium Dioxide Thin Films Prepared by RF Magnetron Sputtering, Acta Physico-Chimica Sin, vol.20, pp.1191-1195, 2004.

E. J. Kelly, Anodic Dissolution and Passivation of Titanium in Acidic Media (Chloride Solutions), J. Electrochem. Soc, vol.126, p.2064, 1979.

L. K. Preethi, R. P. Antony, T. Mathews, L. Walczak, and C. S. Gopinath, A Study on Doped Heterojunctions in TiO2 Nanotubes: An Efficient Photocatalyst for Solar Water Splitting, Sci. Rep, vol.7, issue.1, pp.1-15, 2017.

W. Xie, R. Li, and Q. Xu, Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation, Sci. Rep, vol.8, p.8752, 2018.

S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires, Nano Lett, vol.12, pp.26-32, 2012.

E. M. Samsudin, S. B. Hamid, J. C. Juan, W. J. Basirun, A. E. Kandjani et al., Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine, RSC Adv, vol.5, pp.44041-44052, 2015.

S. Roy and G. G. Botte, Perovskite solar cell for photocatalytic water splitting with a TiO2 /Co-doped hematite electron transport bilayer, RSC Adv, vol.8, pp.5388-5394, 2018.

Z. Wang, X. Li, H. Ling, C. K. Tan, L. P. Yeo et al., 3D FTO/FTONanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting, Small, vol.14, p.1800395, 2018.

P. Plonczak, A. Bieberle-hutter, M. S. Ogaard, T. Ryll, J. Martynzuk et al., Tailoring of LaxSr1-xCoyFe1-yO3-? nanostructure by pulsed laser deposition, Adv. Funtional Mater, vol.21, pp.2764-2775, 2011.

U. P. Muecke, D. Beckel, A. Bieberle-hutter, S. Graf, A. Infortuna et al., Micro solid oxide fuel cells on glass ceramic substrates, Adv. Funtional Mater, vol.18, pp.3158-3168, 2008.

C. He, S. Desai, G. Brown, and S. Bolepalli, PEM Fuel Cell Catalysts: Cost, Performance, and Durability, Electrochem. Soc. Interface, vol.14, pp.41-44, 2005.

A. Caillard, P. Brault, J. Mathias, C. Charles, R. Boswell et al., Deposition and diffusion of platinum nanoparticles in porous carbon assisted by plasma sputtering, Surf. Coatings Technol, vol.200, pp.391-394, 2005.

P. Brault, C. Josserand, J. M. Bauchire, A. Caillard, C. Charles et al., Anomalous Diffusion Mediated by Atom Deposition into a Porous Substrate, Phys. Rev. Lett, vol.102, pp.1-4, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00355521

P. Brault, A. Caillard, S. Baranton, M. Mougenot, S. Cuynet et al., One-step synthesis and chemical characterization of Pt/C nanowire composites by plasma sputtering, ChemSusChem, vol.6, pp.1168-1171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00826565

Y. Zhou, K. Neyerlin, T. S. Olson, S. Pylypenko, J. Bult et al., Enhancement of Pt and Pt-Alloy Fuel Cell Catalyst Activity and Durability via Nitrogen-Modified Carbon Supports, Energy Environ. Sci, vol.3, pp.1437-1446, 2010.

L. Xie, P. Brault, C. Coutanceau, J. M. Bauchire, A. Caillard et al., Efficient amorphous platinum catalyst cluster growth on porous carbon : A combined molecular dynamics and experimental study, Appl. Catal. B Environ. B Environ, vol.162, pp.21-26, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02274277

L. Petrick, Pt Nanophase supported catalysts and electrode systems for water electrolysis, 2008.

A. J. Feichtinger, A. Lammer, and M. Riess, Platinum, the view from South Africa, pp.91-95, 1988.

P. Blazy and E. Jdid, Métallurgie des platinoïdes -Minerais et procédés, pp.1-20, 2003.

K. and B. Ucer, Sputtering, Thin Film Fabrication, pp.1-23, 2010.

C. Hood, Coating Methods for Use with the Platinum Metals, Platin. Met. Rev, vol.20, pp.48-52, 1976.

T. Hyde, Crystallite Size Analysis of Supported Platinum Catalysts by XRD, Platin. Met. Rev, vol.52, pp.129-130, 2008.

A. Ennajdaoui, Optimisation des conditions de synthèse par CVD plasma de membranes conductrices de protons pour piles à combustible, 2009.

R. Lacroix, J. Guerlet, and J. Vignes, , pp.1-5, 2018.

B. Ergul, M. Begum, N. N. Kariuki, D. J. Myers, and T. Karabacak, Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities, ECS Trans, vol.80, pp.847-852, 2017.

K. Mauritz and R. Moore, Sate of Understanding Nafion, Chem. Rev, vol.104, pp.4535-4585, 2004.

X. Zhang and Y. Ding, Thickness-dependent structural and transport behaviors in the platinum-Nafion interface: a molecular dynamics investigation, RSC Adv, vol.4, pp.44214-44222, 2014.

Q. A. Acton, Electrochemical Research, Issues in Specialized Chemical and Chemistry Topics, pp.83-84, 2012.

D. Caldwell, Production of Chlorine, Comprehensive Treatise of Electrochemistry: Electrochemical Processing, pp.135-137, 2013.

W. Mabrouk, Synthèse et caractérisations de nouvelles membranes protoniques. Applications en pile à combustible échangeuses de protons, Thèse de la Faculté des Sciences de Tunis et du Cnam Rhônes-Alpes, 2012.

H. and B. Attia, Elaboration et caractérisation des membranes à base de Nafion ® /H3 et Nafion ® /H1 pour les piles à combustible, 2013.

C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, G. P. Robertson et al., A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer, J. Mater. Chem, vol.22, pp.25093-25101, 2012.

M. S. Çögenli, S. Mukerjee, and A. B. Yurtcan, Membrane Electrode Assembly with Ultra Low Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition, Fuel Cells, vol.2, pp.288-297, 2015.

H. Liang, H. Su, B. G. Pollet, V. Linkov, and S. Pasupathi, Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method, J. Power Sources, vol.266, pp.107-113, 2014.

, Liste des contributions scientifiques

, Cette partie expose un résumé de toutes les contributions de type communications orales, posters, journées doctorales, séminaires et organisation d'évènements scientifiques menées conjointement au travail de thèse. Les productions scientifiques issues des travaux du projet sont de même listées

. Doctoriales-®-de-sète, organisées par le Collège Doctoral du, 2016.

, Premier prix du meilleur projet innovant 'Tap-E, fini les prises de têtes' consistant en l'invention et la commercialisation d'un clavier piézoélectrique pouvant recharger la batterie des ordinateurs portables en tapant sur celui-ci

L. Youssef, E. Soteras, B. Briou, K. Kossi, P. A. Wasner et al.,

, Accélération du Transfert de Technologies) du Campus SaintPriest (Montpellier) pour évaluation par des spécialistes en gestion et économie

, Association des Doctorants 2A3M. Communication orale 'Développement par PECVD de couches minces TiO2 multifonctionnelles pour la photo-électrolyse de l'eau par voie solaire' et participation à un poster présenté par A.J. Kinfack Leoga 'Development by PECVD process of proton conducting membranes for hydrogen production by water splitting, 2016.

, Poster intitulé 'Innovative N-doped TiO2 photo-catalytic layer integrated in a plasma multi-layered system for Hydrogen generation by solar energy, Conférence internationale SPEA9-9 th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications, 2016.

, ) : organisée par la Société Chimique de France (SCF) à Bordeaux, France. Communication orale 'Développement par procédé PECVD-Basse Fréquence de films minces de TiO2 dopés à l'azote pour la photo, 2016.

, Présentation orale du retour des Doctoriales ® de Sète avec l'équipe le 5 décembre 2016 (Journée de rentrée EDSCB) et communication orale 'Développement par procédé PECVD-Basse Fréquence de films minces de TiO2 dopés à l'azote pour la photo, èmes Journées de l'École Doctorale Sciences Chimiques Balard (décembre 2016) : organisée par la direction de l'École Doctorale (SCB) à

, organisée par l'Association des Doctorants IEM, 2017.

, Chemists Network) déclarée officiellement à la préfecture de Montpellier en 2017 (dont j'étais membre actif, 2017.

, Development by Low-Frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) process of N-doped TiO2 and Plasma sputtering Pt-C Thin Films for Water splitting by Solar Energy and their integration in a Standard Photo-electrochemical cell for Hydrogen Generation

, Conférence internationale European Materials Research Society, 2017.

F. Strasbourg, Communication orale 'Development by Low-Frequency Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Nitrogen-doped TiO2 Thin Films for Water Photo-oxidation by Solar Energy and their integration in a Standard Photo-electrochemical cell for Hydrogen Generation' présentée en anglais dans le symposium, Photocatalytic Materials for Energy and Environment

, PECVD) process of Nitrogen-doped TiO2 Thin Films for Water Photo-oxidation by Solar Energy and their integration in a Standard Photo-electrochemical cell for Hydrogen Generation'. Présentation de 2 posters : un scientifique spécifique au projet de thèse sous le titre 'Innovative N-doped TiO2 photocatalytic and Pt/E-Tek ® layers

, organisé par la direction de l'École Doctorale Sciences et Technologies (EDST) à Beyrouth, Liban. Présentation d'un poster intitulé 'Development by Plasma processes of Membrane-Electrodes multilayered Assemblies for Hydrogen generation and separation by solar energy, 2017.