V. Mickunaitis, A. Pikunas, and I. Mackoit, REDUCING FUEL CONSUMPTION AND CO2

. Emission-in-motor and . Cars, Transport, vol.XXII, issue.3, pp.160-163, 2007.

J. Hecht and A. Hoffmann, Audi Ultra Strategy -Lightweight Design Technologies in Competition, presented at the Proceedings of the Materialien im Karosseriebau Automotive Circle International, 2013.

J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, 1995.

J. Hirsch, Automotive trends in aluminium-The European perspective, Materials Forum, vol.28, pp.15-23, 2004.

J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, 1995.

Y. Takaki, T. Masuda, E. Kobayashi, and T. Sato, Effects of Natural Aging on Bake Hardening Behavior of Al-Mg-Si Alloys with Multi-Step Aging Process, Mater. Trans, vol.55, issue.8, pp.1257-1265, 2014.

Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu et al., Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys, J. Alloys Compd, vol.695, pp.2444-2452, 2017.

S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, vol.34, issue.3, pp.751-763, 2003.

J. Kim, E. Kobayashi, and T. Sato, Effects of Cu addition on behavior of nanoclusters during multi-step aging in Al-Mg-Si alloys, Mater. Trans, vol.52, issue.5, pp.906-913, 2011.

J. H. Kim and T. Sato, Effects of Cu Addition on Nanocluster Formation and Two-Step Aging Behaviors of Al-Mg-Si Alloys, J. Nanosci. Nanotechnol, vol.11, issue.2, pp.1319-1322, 2011.

S. Kim, J. Kim, H. Tezuka, E. Kobayashi, and T. Sato, Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration, Mater. Trans, vol.54, issue.3, pp.297-303, 2013.

M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. J. Uggowitzer et al.,

. Pogatscher, Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging, Mater. Des, vol.107, pp.257-268, 2016.

S. Wenner, C. D. Marioara, S. J. Andersen, and R. Holmestad, Effect of room temperature storage time on precipitation in Al-Mg-Si (-Cu) alloys with different Mg/Si ratios, Int. J. Mater. Res, vol.103, issue.8, pp.948-954, 2012.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater, vol.116, pp.82-86, 2016.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy, Mater. Sci. Eng. A, vol.631, pp.86-96, 2015.

S. Pogatscher, Process-controlled suppression of natural aging in an Al-Mg-Si alloy, Scr. Mater, vol.89, pp.53-56, 2014.

R. Ivanov, Solute clustering in multi-component aluminium alloys
URL : https://hal.archives-ouvertes.fr/tel-01688296

J. Guillot, J. Grilhe, and &. Al,

A. Hautes-temperatures and E. Concentration, Acta Met, vol.20, pp.291-295, 1972.

R. B. Sills and W. Cai, Solute drag on perfect and extended dislocations, Philos. Mag, vol.96, issue.10, pp.895-921, 2016.

M. A. Soare and W. A. Curtin, Solute strengthening of both mobile and forest dislocations: The origin of dynamic strain aging in fcc metals, Acta Mater, vol.56, issue.15, pp.4046-4061, 2008.

P. P. Gillis and J. J. Gilman, Dynamical Dislocation Theory of Crystal Plasticity. II. Easy Glide and Strain Hardening, J. Appl. Phys, vol.36, issue.11, p.3380, 1965.

J. G. Morris, Dynamic strain aging in aluminum alloys, Mater. Sci. Eng, vol.13, issue.2, pp.101-108, 1974.

S. Saimoto, J. Cooley, H. Larsen, and C. Scholler, Kinetic analysis of dynamic point defect pinning in aluminium initiated by strain rate changes, Philos. Mag, vol.89, issue.10, pp.853-868, 2009.

R. C. Picu, A mechanism for the negative strain-rate sensitivity of dilute solid solutions, Acta Mater, vol.52, issue.12, pp.3447-3458, 2004.

S. Gupta, A. J. Beaudoin, and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng. A, vol.683, pp.143-152, 2017.

R. A. Mulford and U. F. Kocks, NEW OBSERVATIONS ON THE MECHANISMS OF DYNAMIC STRAIN AGING AND OF JERKY FLOW, vol.27, pp.1125-1134, 1979.

R. A. Mulford, ANALYSIS OF STRENGTHENING MECHANISMS IN ALLOYS BY MEANS OF THERMAL-ACTIVATION THEORY?, Acta Metall, vol.27, pp.1115-1124, 1979.

M. Jobba, R. K. Mishra, and M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys, Int. J. Plast, vol.65, pp.43-60, 2015.

M. J. Starink, A model for co-clusters and their strengthening in Al-Cu-Mg based alloys: a comparison with experimental data, Int. J. Mater. Res, vol.103, issue.8, pp.942-947, 2012.

M. J. Starink, P. Wang, I. Sinclair, and P. J. Gregson, Microstrucure and strengthening of Al-Li-Cu-Mg alloys and mmcs: I. Analysis and modelling of microstructural changes, Acta Mater, vol.47, issue.14, pp.3841-3853, 1999.

M. J. Starink and S. C. Wang, The thermodynamics of and strengthening due to coclusters: General theory and application to the case of Al-Cu-Mg alloys, Acta Mater, vol.57, issue.8, pp.2376-2389, 2009.

A. Vaucorbeil, C. W. Sinclair, and W. J. Poole, Dislocation glide through nonrandomly distributed point obstacles, Philos. Mag, vol.93, issue.27, pp.3664-3679, 2013.

A. J. Foreman and M. J. Makin, Dislocation movement through random arrays of obstacles, Can. J. Phys, vol.45, issue.2, pp.511-517, 1967.

L. Ding, Z. Jia, Z. Zhang, R. E. Sanders, Q. Liu et al., The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions, Mater. Sci. Eng. A, vol.627, pp.119-126, 2015.

K. Teichmann, HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al-Mg-Si alloy, Philos. Mag, vol.91, issue.28, pp.3744-3754, 2011.

S. Esmaeili, D. Vaumousse, M. W. Zandbergen, W. J. Poole, A. Cerezo et al., A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe, Philos. Mag, vol.87, issue.25, pp.3797-3816, 2007.

S. Saimoto, Method to decode stress-strain diagrams to identify the structurestrength relationships in aged aluminum alloys, Mater. Sci. Eng. A, vol.709, pp.9-16, 2018.

S. Saimoto, M. A. Singh, M. R. Langille, A. Kula, and M. Niewczas, Identification of the role of Al-Fe-Mn-Si large casting dispersoids in age-hardenable aluminum alloys using small angle X-ray scattering, Mater. Sci. Eng. A, vol.734, pp.51-58, 2018.

L. M. Cheng, W. J. Poole, J. D. Embury, and D. J. Lloyd, The influence of precipitation on the work-hardening behavior of the aluminum alloys AA6111 and AA7030, Metall. Mater. Trans. A, vol.34, issue.11, pp.2473-2481, 2003.

W. J. Poole, X. Wang, D. J. Lloyd, and J. D. Embury, The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture, Philos. Mag, vol.85, pp.3113-3135, 2005.

A. S. Argon and P. Haasen, A new mechanism of work hardening in the late stages of large strain plastic flow in F.C.C. and diamond cubic crystals, Acta Metall. Mater, vol.41, issue.11, pp.3289-3306, 1993.

N. A. Fleck, M. F. Ashby, and J. W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening, Scr. Mater, vol.48, pp.179-183, 2003.

M. F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag, vol.21, issue.170, pp.399-424, 1970.

L. M. Brown, Transition from laminar to rotational motion in plasticity, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci, vol.355, issue.1731, pp.1979-1990, 1997.

J. C. Li and Y. T. Chou, The Role of Dislocations in the Flow Stress Grain Size Relationships, Metall. Trans. A, vol.1, pp.1145-1159, 1970.

T. Narutani and J. Takamura, Grain-size strengthening in terms of dislocation density measured by resistivity, Acta Metall. Mater, vol.39, issue.8, pp.2037-2049, 1991.

S. Saimoto and H. Jin, Effects of Solubility Limit and the Presence of Ultra-Fine Al6Fe on the Kinetics of Grain Growth in Dilute Al-Fe Alloys, Mater. Sci. Forum, vol.550, pp.339-344, 2007.

D. V. Wilson, A. R. Mirshams, and W. T. Roberts, AN EXPERIMENTAL STUDY OF THE EFFECT OF SHEET THICKNESS AND GRAIN SIZE ON LIMIT-STRAINS IN BIAXIAL STRETCHING, Int. J. Mech. Sci, vol.25, issue.12, pp.859-870, 1983.

R. Hill, The Mathematical Theory of Plasticity, 1950.

C. Man, On the r-value of textured sheet metals, Int. J. Plast, vol.18, issue.12, pp.1683-1706, 2002.

K. O. Pedersen, O. Lademo, T. Berstad, T. Furu, and O. S. Hopperstad, Influence of texture and grain structure on strain localisation and formability for AlMgSi alloys, J. Mater. Process. Technol, vol.200, issue.1-3, pp.77-93, 2008.

K. Yoshida, T. Ishizaka, M. Kuroda, and S. Ikawa, The effects of texture on formability of aluminum alloy sheets, Acta Mater, vol.55, issue.13, pp.4499-4506, 2007.

M. Niewczas, Latent hardening effects in low cycle fatigue of copper single crystals, Philos. Mag, vol.93, issue.1-3, pp.272-303, 2013.

L. E. Collins, Plane strain deformation and subsequent recovery of ideally oriented copper single crystals, 1977.

M. R. Langille, Structure, strength, ductility in aluminium alloys: constitutive relations analysis for performance evaluation, 2016.

S. Saimoto, P. Van-houtte, K. Inal, and M. R. Langille, New biaxial yield function for aluminum alloys based on plastic work and work-hardening analyses, Acta Mater, vol.118, pp.109-119, 2016.

J. Friedel, On the linear work hardening mate of face-centred cubic single crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.46, issue.382, pp.1169-1186, 1955.

A. Seeger, The temperature dependence of the critical shear stress and of workhardening of metal crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.45, issue.366, pp.771-773, 1954.

A. Seeger, CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of F.C.C. crystals, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.46, issue.382, pp.1194-1217, 1955.

A. Seeger, J. Diehl, S. Mader, and H. Rebstock, Work-hardening and work-softening of face-centred cubic metal crystals, Philos. Mag, vol.2, issue.15, pp.323-350, 1957.

A. Seeger and P. Haasen, Density changes of crystals containing dislocations, Philos. Mag, vol.3, issue.29, pp.470-475, 1958.

S. Mader, A. Seeger, and H. Thieringer, Work Hardening and Dislocation Arrangement of fcc Single Crystals. II. Electron Microscope Transmission Studies of Ni[Single Bond]Co Single Crystals and Relation to Work-Hardening Theory, J. Appl. Phys, vol.34, issue.11, p.3376, 1963.

F. R. Nabarro, Z. S. Basinski, and D. B. Holt, The plasticity of pure single crystals, Adv. Phys, vol.13, issue.50, pp.193-323, 1964.

F. R. Nabarro, XX. The law of constant resolved shear stress in crystal plasticity, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.42, issue.325, pp.213-214, 1951.

F. C. Frank, LXXXIII. Crystal dislocations.-Elementary concepts and definitions

, Edinb. Dublin Philos. Mag. J. Sci, vol.42, issue.331, pp.809-819, 1951.

J. F. Nye, Some geometrical relations in dislocated crystals, Acta Metall, vol.1, issue.2, pp.153-162, 1953.

E. Hornbogen and E. A. Starke, Overview no. 102 Theory assisted design of high strength low alloy aluminum, Acta Metall. Mater, vol.41, issue.1, pp.1-16, 1993.

E. O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, vol.64, issue.9, pp.747-753, 1951.

N. J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst, vol.173, pp.25-28, 1953.

U. F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci, vol.48, issue.3, pp.171-273, 2003.

M. J. Starink, L. F. Cao, and P. A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys, Acta Mater, vol.60, issue.10, pp.4194-4207, 2012.

B. J. Diak, K. R. Upadhyaya, and S. Saimoto, Characterization of thermodynamic response by materials testing, Prog. Mater. Sci, vol.43, issue.4, pp.223-363, 1998.

F. R. Nabarro, Cottrell-Stokes law and activation theory, Acta Metall. Mater, vol.38, issue.2, pp.161-164, 1990.

R. C. Picu and R. Li, On the relationship between the Cottrell-Stokes law and the Haasen plot, Mater. Sci. Eng. A, vol.527, issue.20, pp.5303-5306, 2010.

S. Saimoto, Dynamic dislocation-defect analysis, Philos. Mag, vol.86, issue.27, pp.4213-4233, 2006.

A. H. Cottrell and R. J. Stokes, Effects of Temperature on the Plastic Properties of Aluminium Crystals, Proc. R. Soc. Math. Phys. Eng. Sci, vol.233, issue.1192, pp.17-34, 1955.

Z. S. Basinski, Thermally activated glide in face-centred cubic metals and its application to the theory of strain hardening, Philos. Mag, vol.4, issue.40, pp.393-432, 1959.

S. Saimoto and M. S. Duesbery, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall, vol.32, issue.1, pp.147-155, 1984.

M. Bull and S. Saimoto, Role of solute-vacancy interaction on the temperature dependence of strain rate sensitivity, Solute-Defect Interation: Theory and Experiment, pp.375-381, 1986.

B. J. Diak and S. Saimoto, Role of Strain Rate Sensitivity on Diffuse Necking, Dynamic Plasticity and Structural Behaviours, pp.5-8, 1995.

R. C. Picu, G. Vincze, J. J. Gracio, and F. Barlat, Effect of solute distribution on the strain rate sensitivity of solid solutions, Scr. Mater, vol.54, issue.1, pp.71-75, 2006.

R. C. Picu, F. Ozturk, E. Esener, and R. Li, Aluminum Alloys with Identical Plastic Flow and Different Strain Rate Sensitivity, Metall. Mater. Trans. A, vol.41, issue.13, pp.3358-3364, 2010.

R. C. Picu, G. T. Vincze, and J. J. Gracio, Deformation and microstructure-independent

. Cottrell-stokes, commercial Al alloys, vol.27, pp.1045-1054, 2011.

H. J. Harun and P. G. Mccormick, EFFECT OF PRECIPITATION HARDENING ON STRAIN RATE SENSITIVITY AND YIELD BEHAVIOUR IN AN Al-Mg-Si ALLOY, Acta Metall, vol.27, pp.155-159, 1978.

C. P. Ling and P. G. Mccormick, Strain rate sensitivity and transient behaviour in an Al Mg Si alloy, Acta Metall. Mater, vol.38, issue.12, pp.2631-2635, 1990.

C. P. Ling and P. G. Mccormick, The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy, Acta Metall. Mater, vol.41, issue.11, pp.3127-3131, 1993.

W. A. Curtin, New interpretation of the Haasen plot for solute-strengthened alloys, Scr. Mater, vol.63, issue.9, pp.917-920, 2010.

P. Haasen, Plastic deformation of nickel single crystals at low temperatures, Philos. Mag, vol.3, issue.28, pp.384-418, 1958.

M. J. Starink and S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater, vol.51, issue.17, pp.5131-5150, 2003.

L. C. Wong and S. Saimoto, Superposition of thermal activation processes in quenched aluminum-1.7 at% copper, Scr. Metall. Mater, vol.29, issue.3, pp.341-346, 1993.

J. E. Bird and J. L. Duncan, Strain hardening at high strain in aluminum alloys and its effect on strain localization, Metall. Trans. A, vol.12, issue.2, pp.235-241, 1981.

M. Considère, Mémoire sur l'emploi du fer et de l'acier dans les constructions, vol.1, p.1885

G. H. Tao, C. H. Liu, J. H. Chen, Y. X. Lai, P. P. Ma et al., The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, vol.642, pp.241-248, 2015.

F. A. Martinsen, F. J. Ehlers, M. Torsaeter, and R. Holmestad, Reversal of the negative natural aging effect in Al-Mg-Si alloys, Acta Mater, vol.60, issue.17, pp.6091-6101, 2012.

L. Cao, P. A. Rometsch, and M. J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A, Mater. Sci. Eng. A, vol.571, pp.77-82, 2013.

L. He, H. Zhang, and J. Cui, Effects of Pre-Ageing Treatment on Subsequent Artificial Ageing Characteristics of an Al-1.01Mg-0.68Si-1.78Cu Alloy, J. Mater. Sci. Technol, vol.26, issue.2, pp.141-145, 2010.

C. Shen and B. Ou, Pre-Ageing to Improve the Microstructure and Tensile Properties of Al-0.72Mg-0.42Si-0.1Cu Artificially Aged Alloy, Can. Metall. Q, vol.47, issue.4, pp.449-458, 2008.

B. Ou and C. Shen, Impact of pre-aging on the tensile and bending properties of AA 6061, Scand. J. Metall, vol.34, issue.6, pp.318-325, 2005.

W. J. Poole, D. J. Lloyd, and J. D. Embury, The effect of natural ageing on the evolution of yield strength during artificial ageing for Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A, vol.234, pp.306-309, 1997.

S. Esmaeili and D. J. Lloyd, Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique, Mater. Charact, vol.55, issue.4-5, pp.307-319, 2005.

L. Zhen and S. B. Kang, DSC analyses of the precipitation behavior of two Al-Mg-Si alloys naturally aged for different times, Mater. Lett, vol.37, pp.349-353, 1998.

L. Zhen, S. B. Kang, and H. W. Kim, Effect of natural aging and preaging on subsequent precipitation process of an AI-Mg-Si alloy with high excess silicon, Mater. Sci. Technol, vol.13, issue.11, pp.905-911, 1997.

S. Esmaeili, D. J. Lloyd, and W. J. Poole, Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111, Mater. Lett, vol.59, issue.5, pp.575-577, 2005.

F. De-geuser, W. Lefebvre, and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett, vol.86, issue.4, pp.227-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00408093

J. Banhart, M. D. Lay, C. S. Chang, and A. J. Hill, Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy, Phys. Rev. B, vol.83, issue.1, 2011.

J. Banhart, C. S. Chang, Z. Liang, N. Wanderka, M. D. Lay et al., Natural Aging in Al-Mg-Si Alloys -A Process of Unexpected Complexity, Adv. Eng. Mater, vol.12, issue.7, pp.559-571, 2010.

C. Wolverton, Solute-vacancy binding in aluminum, Acta Mater, vol.55, issue.17, pp.5867-5872, 2007.

M. Mantina, Y. Wang, L. Q. Chen, Z. K. Liu, and C. Wolverton, First principles impurity diffusion coefficients, Acta Mater, vol.57, issue.14, pp.4102-4108, 2009.

V. Fallah, B. Langelier, N. Ofori-opoku, B. Raeisinia, N. Provatas et al., Cluster evolution mechanisms during aging in Al-Mg-Si alloys, Acta Mater, vol.103, pp.290-300, 2016.

S. Hirosawa, F. Nakamure, and T. Sato, First-Principles Calculation of Interation Energies between solutes and/or Vacancies for Predicting Atomistic Behaviors of Microalloying Elements in Aluminum Alloys, Mater. Sci. Forum, pp.283-286, 2007.

A. Serizawa, S. Hirosawa, and T. Sato, Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy, Metall. Mater. Trans. A, vol.39, issue.2, pp.243-251, 2008.

D. Yin, Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al-Mg-Si-Cu alloy, Mater. Des, vol.95, pp.329-339, 2016.

W. F. Miao and D. E. Laughlin, A differential scanning calorimetry study of aluminum alloy 6111 with different pre-aging treatments, J. Mater. Sci. Lett, vol.19, issue.3, pp.201-203, 2000.

W. F. Miao and D. E. Laughlin, Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022, Metall. Mater. Trans. A, vol.31, issue.2, pp.361-371, 2000.

M. Murayama, K. Hono, W. F. Miao, and D. E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metall. Mater. Trans. A, vol.32, issue.2, pp.239-246, 2001.

M. Liu, DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy, Prog. Nat. Sci. Mater. Int, vol.25, issue.2, pp.153-158, 2015.

Z. Zhang, H. Xu, S. Wu, and Y. Liu, Effects of combined pre-straining and pre-aging on natural aging and bakehardening response of an Al-Mg-Si alloy, Acta Metall. Sin. Engl. Lett, vol.26, issue.3, pp.340-344, 2013.

H. Zhong, Effect of composition and processing on the microstructure and formability of aluminium automotive body sheet alloys, 2014.

H. Zhong, P. A. Rometsch, and Y. Estrin, The Influence of Si and Mg Content on the Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys, Metall. Mater. Trans. A, vol.44, issue.8, pp.3970-3983, 2013.

H. Zhong, P. Rometsch, and Y. Estrin, Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, pp.2174-2178, 2014.

H. Zhong, P. A. Rometsch, L. Cao, and Y. Estrin, The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys, Mater. Sci. Eng. A, vol.651, pp.688-697, 2016.

S. M. Hirth, G. J. Marshall, S. A. Court, and D. J. Lloyd, Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016, Mater. Sci. Eng. A, vol.319, pp.452-456, 2001.

A. K. Sachdev, Development of an aluminum sheet alloy with improved formability, Metall. Trans. A, vol.21, issue.1, pp.165-175, 1990.

S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scr. Mater, vol.50, issue.1, pp.155-158, 2004.

M. Werinos, Design strategy for controlled natural aging in Al-Mg-Si alloys, Acta Mater, vol.118, pp.296-305, 2016.

M. Liu, J. ?í?ek, C. S. Chang, and J. Banhart, Early stages of solute clustering in an AlMg-Si alloy, Acta Mater, vol.91, pp.355-364, 2015.

V. Fallah, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater, vol.82, pp.457-467, 2015.

M. Carlone and S. Saimoto, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech, vol.36, issue.4, pp.360-366, 1996.

R. C. Picu, F. Ozturk, E. Esener, and R. Li, Aluminum Alloys with Identical Plastic Flow and Different Strain Rate Sensitivity, Metall. Mater. Trans. A, vol.41, issue.13, pp.3358-3364, 2010.

C. P. Ling and P. G. Mccormick, Strain rate sensitivity and transient behaviour in an Al Mg Si alloy, Acta Metall. Mater, vol.38, issue.12, pp.2631-2635, 1990.

C. P. Ling and P. G. Mccormick, The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy, Acta Metall. Mater, vol.41, issue.11, pp.3127-3131, 1993.

F. A. Martinsen, F. J. Ehlers, M. Torsaeter, and R. Holmestad, Reversal of the negative natural aging effect in Al-Mg-Si alloys, Acta Mater, vol.60, issue.17, pp.6091-6101, 2012.

G. H. Tao, C. H. Liu, J. H. Chen, Y. X. Lai, P. P. Ma et al., The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, vol.642, pp.241-248, 2015.

L. Ding, Z. Jia, Z. Zhang, R. E. Sanders, Q. Liu et al., The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions, Mater. Sci. Eng. A, vol.627, pp.119-126, 2015.

M. Murayama, K. Hono, W. F. Miao, and D. E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metall. Mater. Trans. A, vol.32, issue.2, pp.239-246, 2001.

Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu et al., Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys, J. Alloys Compd, vol.695, pp.2444-2452, 2017.

M. W. Zandbergen, A. Cerezo, and G. D. Smith, Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions, Acta Mater, vol.101, pp.149-158, 2015.

X. Wang, S. Esmaeili, and D. J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, vol.37, issue.9, pp.2691-2699, 2006.

G. A. Edwards, K. Stiller, G. L. Dunlop, and M. J. Couper, THE PRECIPITATION SEQUENCE IN Al±Mg±Si ALLOYS, Acta Metall, vol.46, issue.11, pp.3893-3904, 1998.

M. W. Zandbergen, Q. Xu, A. Cerezo, and G. D. Smith, Study of precipitation in AlMg-Si alloys by Atom Probe Tomography I. Microstructural changes as a function of ageing temperature, Acta Mater, vol.101, pp.136-148, 2015.

F. De-geuser, W. Lefebvre, and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett, vol.86, issue.4, pp.227-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00408093

R. K. Marceau, A. Vaucorbeil, G. Sha, S. P. Ringer, and W. J. Poole, Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling, Acta Mater, vol.61, issue.19, pp.7285-7303, 2013.

S. Esmaeili, D. J. Lloyd, and W. J. Poole, Modeling of precipitation hardening for the naturally aged Al-Mg-Si-Cu alloy AA6111, Acta Mater, vol.51, issue.12, pp.3467-3481, 2003.

S. Esmaeili, D. Vaumousse, M. W. Zandbergen, W. J. Poole, A. Cerezo et al., A study on the early-stage decomposition in the Al-Mg-Si-Cu alloy AA6111 by electrical resistivity and three-dimensional atom probe, Philos. Mag, vol.87, issue.25, pp.3797-3816, 2007.

S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scr. Mater, vol.50, issue.1, pp.155-158, 2004.

C. D. Marioara, S. J. Andersen, H. W. Zandbergen, and R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system, Metall. Mater. Trans. A, p.12

C. S. Chang, Z. Liang, E. Schmidt, and J. Banhart, Influence of Mg/Si ratio on the clustering kinetics in Al-Mg-Si alloys, Int. J. Mater. Res, vol.103, issue.8, pp.955-961, 2012.

S. Wenner, C. D. Marioara, S. J. Andersen, and R. Holmestad, Effect of room temperature storage time on precipitation in Al-Mg-Si (-Cu) alloys with different Mg/Si ratios, Int. J. Mater. Res, vol.103, issue.8, pp.948-954, 2012.

L. Cao, P. A. Rometsch, and M. J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A, Mater. Sci. Eng. A, vol.571, pp.77-82, 2013.

A. I. Morley, M. W. Zandbergen, A. Cerezo, and G. D. Smith, The Effect of Pre-Ageing and Addition of Copper on the Precipitation Behaviour in Al-Mg-Si Alloys, Mater. Sci. Forum, pp.543-548, 2006.

Y. Yan, Z. Q. Liang, and J. Banhart, Influence of Pre-Straining and Pre-Ageing on the AgeHardening Response of Al-Mg-Si Alloys, Mater. Sci. Forum, pp.903-908, 2014.

C. D. Marioara, The effect of Cu on precipitation in Al-Mg-Si alloys, Philos. Mag, vol.87, issue.23, pp.3385-3413, 2007.

J. Banhart, C. S. Chang, Z. Liang, N. Wanderka, M. D. Lay et al., Natural Aging in Al-Mg-Si Alloys -A Process of Unexpected Complexity, Adv. Eng. Mater, vol.12, issue.7, pp.559-571, 2010.

J. Banhart, M. D. Lay, C. S. Chang, and A. J. Hill, Kinetics of natural aging in Al-Mg-Si alloys studied by positron annihilation lifetime spectroscopy, Phys. Rev. B, vol.83, issue.1, 2011.

M. Werinos, Design strategy for controlled natural aging in Al-Mg-Si alloys, Acta Mater, vol.118, pp.296-305, 2016.

M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. J. Uggowitzer et al.,

. Pogatscher, Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging, Mater. Des, vol.107, pp.257-268, 2016.

A. Serizawa, S. Hirosawa, and T. Sato, Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy, Metall. Mater. Trans. A, vol.39, issue.2, pp.243-251, 2008.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy, Mater. Sci. Eng. A, vol.631, pp.86-96, 2015.

V. Fallah, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater, vol.82, pp.457-467, 2015.

V. Fallah, B. Langelier, N. Ofori-opoku, B. Raeisinia, N. Provatas et al., Cluster evolution mechanisms during aging in Al-Mg-Si alloys, Acta Mater, vol.103, pp.290-300, 2016.

K. Teichmann, HRTEM study of the effect of deformation on the early precipitation behaviour in an AA6060 Al-Mg-Si alloy, Philos. Mag, vol.91, issue.28, pp.3744-3754, 2011.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Evaluation of Solute Clusters Associated with Bake-Hardening Response in Isothermal Aged Al-Mg-Si Alloys Using a Three-Dimensional Atom Probe, Metall. Mater. Trans. A, vol.45, issue.13, pp.5906-5913, 2014.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater, vol.116, pp.82-86, 2016.

Y. Aruga, M. Kozuka, and T. Sato, Formulation of initial artificial age-hardening response in an Al-Mg-Si alloy based on the cluster classification using a high-detection-efficiency atom probe, J. Alloys Compd, vol.739, pp.1115-1123, 2018.

M. Liu and J. Banhart, Effect of Cu and Ge on solute clustering in Al-Mg-Si alloys, Mater. Sci. Eng. A, vol.658, pp.238-245, 2016.

L. He, H. Zhang, and J. Cui, Effects of Pre-Ageing Treatment on Subsequent Artificial Ageing Characteristics of an Al-1.01Mg-0.68Si-1.78Cu Alloy, J. Mater. Sci. Technol, vol.26, issue.2, pp.141-145, 2010.

H. Zhong, P. A. Rometsch, and Y. Estrin, The Influence of Si and Mg Content on the

. Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys, Metall. Mater. Trans. A, vol.44, issue.8, pp.3970-3983, 2013.

H. S. Zurob and H. Seyedrezai, A model for the growth of solute clusters based on vacancy trapping, Scr. Mater, vol.61, issue.2, pp.141-144, 2009.

M. D. Lay, H. S. Zurob, C. R. Hutchinson, T. J. Bastow, and A. J. Hill, Vacancy Behavior and Solute Cluster Growth During Natural Aging of an Al-Mg-Si Alloy, Metall. Mater. Trans. A, vol.43, issue.12, pp.4507-4513, 2012.

H. Seyedrezai, D. Grebennikov, P. Mascher, and H. S. Zurob, Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements, Mater. Sci. Eng. A, vol.525, issue.1-2, pp.186-191, 2009.

C. Wolverton, Solute-vacancy binding in aluminum, Acta Mater, vol.55, issue.17, pp.5867-5872, 2007.

L. Zhen, S. B. Kang, and H. W. Kim, Effect of natural aging and preaging on subsequent precipitation process of an AI-Mg-Si alloy with high excess silicon, Mater. Sci. Technol, vol.13, issue.11, pp.905-911, 1997.

J. Kim, E. Kobayashi, and T. Sato, Effects of Cu addition on behavior of nanoclusters during multi-step aging in Al-Mg-Si alloys, Mater. Trans, vol.52, issue.5, pp.906-913, 2011.

J. H. Kim and T. Sato, Effects of Cu Addition on Nanocluster Formation and Two-Step Aging Behaviors of Al-Mg-Si Alloys, J. Nanosci. Nanotechnol, vol.11, issue.2, pp.1319-1322, 2011.

D. Yin, Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al-Mg-Si-Cu alloy, Mater. Des, vol.95, pp.329-339, 2016.

S. Esmaeili, X. Wang, D. J. Lloyd, and W. J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, vol.34, issue.3, pp.751-763, 2003.

W. F. Miao and D. E. Laughlin, Precipitation hardening in aluminum alloy 6022, Scr. Mater, vol.40, issue.7, pp.873-878, 1999.

A. K. Gupta, D. J. Lloyd, and S. A. Court, Precipitation hardening in Al-Mg-Si alloys with and without excess Si, Mater. Sci. Eng. A, vol.316, issue.1, pp.11-17, 2001.

J. Hirsch, Automotive trends in aluminium-The European perspective, Materials Forum, vol.28, pp.15-23, 2004.

J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, 1995.

M. Considère, Mémoire sur l'emploi du fer et de l'acier dans les constructions, vol.1, p.1885

A. K. Ghosh, The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol, vol.99, issue.3, p.264, 1977.

K. W. Neale and E. Chater, Limit strain predictions for strain-rate sensitive anisotropic sheets, Int. J. Mech. Sci, vol.22, issue.9, pp.563-574, 1980.

A. K. Ghosh, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metall, vol.25, issue.12, pp.1413-1424, 1977.

B. J. Diak and S. Saimoto, Role of Strain Rate Sensitivity on Diffuse Necking, Dynamic Plasticity and Structural Behaviours, pp.5-8, 1995.

J. W. Hutchinson and K. W. Neale, SHEET NECKING-III. STRAIN-RATE EFFECTS, p.17

J. W. Hutchinson and K. W. Neale, Influence of strain-rate sensitivity on necking under uniaxial tension, Acta Metall, vol.25, issue.8, pp.839-846, 1977.

E. W. Hart, Theory of the tensile test, Acta Metall, vol.15, issue.2, pp.351-355, 1967.

Y. M. Wang and E. Ma, Strain hardening, strain rate sensitivity, and ductility of nanostructured metals, Mater. Sci. Eng. A, pp.46-52, 2004.

N. Chibane, H. Ait-amokhtar, and C. Fressengeas, On the strain rate dependence of the critical strain for plastic instabilities in Al-Mg alloys, Scr. Mater, vol.130, pp.252-255, 2017.

S. Esmaeili, L. M. Cheng, A. Deschamps, D. J. Lloyd, and W. J. Poole, The deformation behaviour of AA6111 as a function of temperature and precipitation state, Mater. Sci. Eng. A, pp.461-465, 2001.

B. J. Diak, K. R. Upadhyaya, and S. Saimoto, Characterization of thermodynamic response by materials testing, Prog. Mater. Sci, vol.43, issue.4, pp.223-363, 1998.

W. A. Curtin, New interpretation of the Haasen plot for solute-strengthened alloys, Scr. Mater, vol.63, issue.9, pp.917-920, 2010.

P. S. Bate, The effects of combined strain-path and strain-rate changes in aluminum, Metall. Trans. A, p.11

R. C. Picu, F. Ozturk, E. Esener, and R. Li, Aluminum Alloys with Identical Plastic Flow and Different Strain Rate Sensitivity, Metall. Mater. Trans. A, vol.41, issue.13, pp.3358-3364, 2010.

M. Carlone and S. Saimoto, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech, vol.36, issue.4, pp.360-366, 1996.

S. Gupta, A. J. Beaudoin, and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng. A, vol.683, pp.143-152, 2017.

B. J. Diak, Microplastic bases for constitutive characterization of aluminum alloys and their correlation to sheet formability, 1997.

M. Niewczas, M. Jobba, and R. K. Mishra, Thermally activated flow of dislocations in AlMg binary alloys, Acta Mater, vol.83, pp.372-382, 2015.

L. Ding, Z. Jia, Z. Zhang, R. E. Sanders, Q. Liu et al., The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions, Mater. Sci. Eng. A, vol.627, pp.119-126, 2015.

M. Murayama, K. Hono, W. F. Miao, and D. E. Laughlin, The effect of Cu additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si, Metall. Mater. Trans. A, vol.32, issue.2, pp.239-246, 2001.

Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu et al., Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys, J. Alloys Compd, vol.695, pp.2444-2452, 2017.

M. W. Zandbergen, A. Cerezo, and G. D. Smith, Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions, Acta Mater, vol.101, pp.149-158, 2015.

F. R. Nabarro, Cottrell-Stokes law and activation theory, Acta Metall. Mater, vol.38, issue.2, pp.161-164, 1990.

R. C. Picu and R. Li, On the relationship between the Cottrell-Stokes law and the Haasen plot, Mater. Sci. Eng. A, vol.527, issue.20, pp.5303-5306, 2010.

S. Saimoto, Dynamic dislocation-defect analysis, Philos. Mag, vol.86, issue.27, pp.4213-4233, 2006.

A. H. Cottrell and R. J. Stokes, Effects of Temperature on the Plastic Properties of Aluminium Crystals, Proc. R. Soc. Math. Phys. Eng. Sci, vol.233, issue.1192, pp.17-34, 1955.

S. Saimoto, J. Cooley, H. Larsen, and C. Scholler, Kinetic analysis of dynamic point defect pinning in aluminium initiated by strain rate changes, Philos. Mag, vol.89, issue.10, pp.853-868, 2009.

J. R. Klepaczko and C. Y. Chiem, On rate sensitivity of f.c.c. metals, instantaneous rate sensitivity and rate sensitivity of strain hardening, J. Mech. Phys. Solids, vol.34, issue.1, pp.29-54, 1986.

P. Haasen, Plastic deformation of nickel single crystals at low temperatures, Philos. Mag, vol.3, issue.28, pp.384-418, 1958.

M. J. Starink and S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater, vol.51, issue.17, pp.5131-5150, 2003.

E. Hornbogen and E. A. Starke, Overview no. 102 Theory assisted design of high strength low alloy aluminum, Acta Metall. Mater, vol.41, issue.1, pp.1-16, 1993.

L. C. Wong and S. Saimoto, Superposition of thermal activation processes in quenched aluminum-1.7 at% copper, Scr. Metall. Mater, vol.29, issue.3, pp.341-346, 1993.

X. Wang, S. Esmaeili, and D. J. Lloyd, The sequence of precipitation in the Al-Mg-Si-Cu alloy AA6111, Metall. Mater. Trans. A, vol.37, issue.9, pp.2691-2699, 2006.

S. Esmaeili and D. J. Lloyd, Characterization of the evolution of the volume fraction of precipitates in aged AlMgSiCu alloys using DSC technique, Mater. Charact, vol.55, issue.4-5, pp.307-319, 2005.

V. Fallah, B. Langelier, N. Ofori-opoku, B. Raeisinia, N. Provatas et al., Cluster evolution mechanisms during aging in Al-Mg-Si alloys, Acta Mater, vol.103, pp.290-300, 2016.

V. Fallah, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater, vol.82, pp.457-467, 2015.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater, vol.116, pp.82-86, 2016.

J. Kim, E. Kobayashi, and T. Sato, Effects of Cu addition on behavior of nanoclusters during multi-step aging in Al-Mg-Si alloys, Mater. Trans, vol.52, issue.5, pp.906-913, 2011.

S. Kim, J. Kim, H. Tezuka, E. Kobayashi, and T. Sato, Formation behavior of nanoclusters in Al-Mg-Si alloys with different Mg and Si concentration, Mater. Trans, vol.54, issue.3, pp.297-303, 2013.

G. H. Tao, C. H. Liu, J. H. Chen, Y. X. Lai, P. P. Ma et al., The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, vol.642, pp.241-248, 2015.

L. Cao, P. A. Rometsch, and M. J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A, Mater. Sci. Eng. A, vol.571, pp.77-82, 2013.

D. Yin, Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al-Mg-Si-Cu alloy, Mater. Des, vol.95, pp.329-339, 2016.

C. P. Ling and P. G. Mccormick, The effect of temperature on strain rate sensitivity in an Al-Mg-Si alloy, Acta Metall. Mater, vol.41, issue.11, pp.3127-3131, 1993.

C. P. Ling and P. G. Mccormick, Strain rate sensitivity and transient behaviour in an Al Mg Si alloy, Acta Metall. Mater, vol.38, issue.12, pp.2631-2635, 1990.

Y. Chen, M. Weyland, and C. R. Hutchinson, The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys, Acta Mater, vol.61, issue.15, pp.5877-5894, 2013.

S. Saimoto and M. S. Duesbery, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall, vol.32, issue.1, pp.147-155, 1984.

M. Niewczas, Transmission electron microscopy observations of debris structure in deformed copper single crystals, Philos. Mag. A, vol.82, issue.2, pp.393-414, 2002.

M. Niewczas and D. Park, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Eng. A, vol.706, pp.256-268

R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. Uggowitzer et al., Property Criteria for Automotive Al-Mg-Si Sheet Alloys, Materials, vol.7, issue.7, pp.5047-5068, 2014.

J. Hirsch, Automotive trends in aluminium-The European perspective, Materials Forum, vol.28, pp.15-23, 2004.

J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, 1995.

A. Poznak, R. K. Marceau, and P. G. Sanders, Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography, Mater. Sci. Eng. A, vol.721, pp.47-60, 2018.

Y. Aruga, M. Kozuka, and T. Sato, Formulation of initial artificial age-hardening response in an Al-Mg-Si alloy based on the cluster classification using a high-detection-efficiency atom probe, J. Alloys Compd, vol.739, pp.1115-1123, 2018.

S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scr. Mater, vol.50, issue.1, pp.155-158, 2004.

M. Torsaeter, The influence of composition and natural aging on clustering during preaging in Al-Mg-Si alloys, J. Appl. Phys, vol.108, issue.7, p.73527, 2010.

M. Werinos, Design strategy for controlled natural aging in Al-Mg-Si alloys, Acta Mater, vol.118, pp.296-305, 2016.

M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P. J. Uggowitzer et al.,

. Pogatscher, Hardening of Al-Mg-Si alloys: Effect of trace elements and prolonged natural aging, Mater. Des, vol.107, pp.257-268, 2016.

Z. Jia, L. Ding, L. Cao, R. Sanders, S. Li et al., The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys, Metall. Mater. Trans. A, vol.48, issue.1, pp.459-473, 2017.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater, vol.116, pp.82-86, 2016.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy, Mater. Sci. Eng. A, vol.631, pp.86-96, 2015.

V. Fallah, B. Langelier, N. Ofori-opoku, B. Raeisinia, N. Provatas et al., Cluster evolution mechanisms during aging in Al-Mg-Si alloys, Acta Mater, vol.103, pp.290-300, 2016.

V. Fallah, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater, vol.82, pp.457-467, 2015.

M. D. Lay, H. S. Zurob, C. R. Hutchinson, T. J. Bastow, and A. J. Hill, Vacancy Behavior and Solute Cluster Growth During Natural Aging of an Al-Mg-Si Alloy, Metall. Mater. Trans. A, vol.43, issue.12, pp.4507-4513, 2012.

J. Banhart, C. S. Chang, Z. Liang, N. Wanderka, M. D. Lay et al., Natural Aging in Al-Mg-Si Alloys -A Process of Unexpected Complexity, Adv. Eng. Mater, vol.12, issue.7, pp.559-571, 2010.

H. Seyedrezai, D. Grebennikov, P. Mascher, and H. S. Zurob, Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements, Mater. Sci. Eng. A, vol.525, issue.1-2, pp.186-191, 2009.

F. De-geuser, W. Lefebvre, and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett, vol.86, issue.4, pp.227-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00408093

L. Cao, P. A. Rometsch, and M. J. Couper, Clustering behaviour in an Al-Mg-Si-Cu alloy during natural ageing and subsequent under-ageing, Mater. Sci. Eng. A, vol.559, pp.257-261, 2013.

L. He, H. Zhang, and J. Cui, Effects of Pre-Ageing Treatment on Subsequent Artificial Ageing Characteristics of an Al-1.01Mg-0.68Si-1.78Cu Alloy, J. Mater. Sci. Technol, vol.26, issue.2, pp.141-145, 2010.

S. Esmaeili, D. J. Lloyd, and W. J. Poole, Effect of natural aging on the resistivity evolution during artificial aging of the aluminum alloy AA6111, Mater. Lett, vol.59, issue.5, pp.575-577, 2005.

W. J. Poole, D. J. Lloyd, and J. D. Embury, The effect of natural ageing on the evolution of yield strength during artificial ageing for Al-Mg-Si-Cu alloys, Mater. Sci. Eng. A, vol.234, pp.306-309, 1997.

H. Zhong, P. A. Rometsch, L. Cao, and Y. Estrin, The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys, Mater. Sci. Eng. A, vol.651, pp.688-697, 2016.

H. Zhong, P. Rometsch, and Y. Estrin, Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, pp.2174-2178, 2014.

H. Zhong, P. A. Rometsch, and Y. Estrin, The Influence of Si and Mg Content on the

. Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys, Metall. Mater. Trans. A, vol.44, issue.8, pp.3970-3983, 2013.

A. K. Ghosh, The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol, vol.99, issue.3, p.264, 1977.

A. K. Ghosh, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metall, vol.25, issue.12, pp.1413-1424, 1977.

B. J. Diak and S. Saimoto, Role of Strain Rate Sensitivity on Diffuse Necking, Dynamic Plasticity and Structural Behaviours, pp.5-8, 1995.

J. W. Hutchinson and K. W. Neale, SHEET NECKING-III. STRAIN-RATE EFFECTS, p.17

J. W. Hutchinson and K. W. Neale, Influence of strain-rate sensitivity on necking under uniaxial tension, Acta Metall, vol.25, issue.8, pp.839-846, 1977.

M. J. Starink and S. C. Wang, A model for the yield strength of overaged Al-Zn-Mg-Cu alloys, Acta Mater, vol.51, issue.17, pp.5131-5150, 2003.

E. Hornbogen and E. A. Starke, Overview no. 102 Theory assisted design of high strength low alloy aluminum, Acta Metall. Mater, vol.41, issue.1, pp.1-16, 1993.

L. C. Wong and S. Saimoto, Superposition of thermal activation processes in quenched aluminum-1.7 at% copper, Scr. Metall. Mater, vol.29, issue.3, pp.341-346, 1993.

S. Saimoto and P. Van-houtte, Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution, Acta Mater, vol.59, issue.2, pp.602-612, 2011.

F. R. Nabarro, Z. S. Basinski, and D. B. Holt, The plasticity of pure single crystals, Adv. Phys, vol.13, issue.50, pp.193-323, 1964.

S. Saimoto, I. B. Timokhina, and E. V. Pereloma, Constitutive Relations Analyses of Plastic Flow in Dual-Phase Steels to Elucidate Structure-Strength-Ductility Correlations, vol.69, pp.1228-1235, 2017.

S. Saimoto, Method to decode stress-strain diagrams to identify the structurestrength relationships in aged aluminum alloys, Mater. Sci. Eng. A, vol.709, pp.9-16, 2018.

M. R. Langille, Structure, strength, ductility in aluminium alloys: constitutive relations analysis for performance evaluation, 2016.

S. Saimoto and D. J. Lloyd, A new analysis of yielding and work hardening in AA1100 and AA5754 at low temperatures, Acta Mater, vol.60, issue.18, pp.6352-6361, 2012.

S. Saimoto and B. J. Diak, Point defect generation, nano-void formation and growth. I. Validation, Philos. Mag, vol.92, issue.15, pp.1890-1914, 2012.

S. Saimoto, B. J. Diak, and D. J. Lloyd, Point defect generation, nano-void formation and growth. II. Criterion for ductile failure, Philos. Mag, vol.92, issue.15, pp.1915-1936, 2012.

M. A. Singh, S. Saimoto, M. R. Langille, J. Lévesque, K. Inal et al., Small-angle X-ray scattering investigation of deformation-induced nanovoids in AA6063 aluminium alloy, Philos. Mag, pp.1-18, 2017.

S. Saimoto, P. Van-houtte, K. Inal, and M. R. Langille, New biaxial yield function for aluminum alloys based on plastic work and work-hardening analyses, Acta Mater, vol.118, pp.109-119, 2016.

A. P. Brahme, K. Inal, R. K. Mishra, and S. Saimoto, A new strain hardening model for rate-dependent crystal plasticity, Comput. Mater. Sci, vol.50, issue.10, pp.2898-2908, 2011.

M. Carlone and S. Saimoto, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech, vol.36, issue.4, pp.360-366, 1996.

Y. Chen, M. Weyland, and C. R. Hutchinson, The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys, Acta Mater, vol.61, issue.15, pp.5877-5894, 2013.

M. Jobba, R. K. Mishra, and M. Niewczas, Flow stress and work-hardening behaviour of Al-Mg binary alloys, Int. J. Plast, vol.65, pp.43-60, 2015.

M. Niewczas, Transmission electron microscopy observations of debris structure in deformed copper single crystals, Philos. Mag. A, vol.82, issue.2, pp.393-414, 2002.

S. Saimoto and M. S. Duesbery, Strain rate sensitivity: the role of dislocation loop and point defect recovery, Acta Metall, vol.32, issue.1, pp.147-155, 1984.

M. Niewczas and D. Park, Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing, Mater. Sci. Eng. A, vol.706, pp.256-268, 2017.

N. Yu, A. N. Zolotorevsky, A. Solonin, . Yu, V. S. Churyumov et al., Study of work hardening of quenched and naturally aged Al-Mg and Al-Cu alloys, Mater. Sci. Eng. A, vol.502, issue.1-2, pp.111-117, 2009.

M. J. Starink and S. C. Wang, The thermodynamics of and strengthening due to coclusters: General theory and application to the case of Al-Cu-Mg alloys, Acta Mater, vol.57, issue.8, pp.2376-2389, 2009.

M. J. Starink, L. F. Cao, and P. A. Rometsch, A model for the thermodynamics of and strengthening due to co-clusters in Al-Mg-Si-based alloys, Acta Mater, vol.60, issue.10, pp.4194-4207, 2012.

W. J. Poole, X. Wang, D. J. Lloyd, and J. D. Embury, The shearable-non-shearable transition in Al-Mg-Si-Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture, Philos. Mag, vol.85, pp.3113-3135, 2005.

L. M. Brown, Transition from laminar to rotational motion in plasticity, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci, vol.355, issue.1731, pp.1979-1990, 1997.

E. Christiansen, C. D. Marioara, K. Marthinsen, O. S. Hopperstad, and R. Holmestad, Lattice rotations in precipitate free zones in an Al-Mg-Si alloy, Mater. Charact, vol.144, pp.522-531, 2018.

C. S. Chang, Z. Liang, E. Schmidt, and J. Banhart, Influence of Mg/Si ratio on the clustering kinetics in Al-Mg-Si alloys, Int. J. Mater. Res, vol.103, issue.8, pp.955-961, 2012.

F. De-geuser, W. Lefebvre, and D. Blavette, 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy, Philos. Mag. Lett, vol.86, issue.4, pp.227-234, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00408093

M. Liu, J. ?í?ek, C. S. Chang, and J. Banhart, Early stages of solute clustering in an AlMg-Si alloy, Acta Mater, vol.91, pp.355-364, 2015.

S. Esmaeili and D. J. Lloyd, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scr. Mater, vol.50, issue.1, pp.155-158, 2004.

Z. Jia, L. Ding, L. Cao, R. Sanders, S. Li et al., The Influence of Composition on the Clustering and Precipitation Behavior of Al-Mg-Si-Cu Alloys, Metall. Mater. Trans. A, vol.48, issue.1, pp.459-473, 2017.

A. Poznak, R. K. Marceau, and P. G. Sanders, Composition dependent thermal stability and evolution of solute clusters in Al-Mg-Si analyzed using atom probe tomography, Mater. Sci. Eng. A, vol.721, pp.47-60, 2018.

Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu et al., Effect of Ag and Cu additions on natural aging and precipitation hardening behavior in Al-Mg-Si alloys, J. Alloys Compd, vol.695, pp.2444-2452, 2017.

M. W. Zandbergen, A. Cerezo, and G. D. Smith, Study of precipitation in Al-Mg-Si Alloys by atom probe tomography II. Influence of Cu additions, Acta Mater, vol.101, pp.149-158, 2015.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al-Mg-Si alloy, Scr. Mater, vol.116, pp.82-86, 2016.

Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Formation and reversion of clusters during natural aging and subsequent artificial aging in an Al-Mg-Si alloy, Mater. Sci. Eng. A, vol.631, pp.86-96, 2015.

V. Fallah, B. Langelier, N. Ofori-opoku, B. Raeisinia, N. Provatas et al., Cluster evolution mechanisms during aging in Al-Mg-Si alloys, Acta Mater, vol.103, pp.290-300, 2016.

V. Fallah, Atomic-scale pathway of early-stage precipitation in Al-Mg-Si alloys, Acta Mater, vol.82, pp.457-467, 2015.

F. A. Martinsen, F. J. Ehlers, M. Torsaeter, and R. Holmestad, Reversal of the negative natural aging effect in Al-Mg-Si alloys, Acta Mater, vol.60, issue.17, pp.6091-6101, 2012.

G. H. Tao, C. H. Liu, J. H. Chen, Y. X. Lai, P. P. Ma et al., The influence of Mg/Si ratio on the negative natural aging effect in Al-Mg-Si-Cu alloys, vol.642, pp.241-248, 2015.

M. J. Starink, A model for co-clusters and their strengthening in Al-Cu-Mg based alloys: a comparison with experimental data, Int. J. Mater. Res, vol.103, issue.8, pp.942-947, 2012.

H. Zhong, Effect of composition and processing on the microstructure and formability of aluminium automotive body sheet alloys, 2014.

H. Zhong, P. A. Rometsch, and Y. Estrin, The Influence of Si and Mg Content on the

. Microstructure, Tensile Ductility, and Stretch Formability of 6xxx Alloys, Metall. Mater. Trans. A, vol.44, issue.8, pp.3970-3983, 2013.

H. Zhong, P. Rometsch, and Y. Estrin, Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys, Trans. Nonferrous Met. Soc. China, vol.24, issue.7, pp.2174-2178, 2014.

L. He, H. Zhang, and J. Cui, Effects of Pre-Ageing Treatment on Subsequent Artificial Ageing Characteristics of an Al-1.01Mg-0.68Si-1.78Cu Alloy, J. Mater. Sci. Technol, vol.26, issue.2, pp.141-145, 2010.

U. F. Kocks, A. S. Argon, and M. F. Ashby, Thermodynamics and Kinetics of Slip, 1975.

M. Carlone and S. Saimoto, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech, vol.36, issue.4, pp.360-366, 1996.

Z. S. Basinski, M. Sahoo, and S. Saimoto, Resistivity change with deformation of high purity Cu crystals and its subsequent recovery, Acta Metall, vol.25, issue.6, pp.657-665, 1977.

P. M. Sutton, The variation of the elastic constants of crystalline aluminum with temperature between 63 K and 773 K, Phys. Rev, vol.91, issue.4, p.816, 1953.

B. J. Diak and S. Saimoto, The determination of solute clusters in dilute aluminum alloys using strain rate sensitivity, Mater. Sci. Eng. A, pp.1019-1022, 1997.

M. Niewczas, M. Jobba, and R. K. Mishra, Thermally activated flow of dislocations in AlMg binary alloys, Acta Mater, vol.83, pp.372-382, 2015.

R. C. Picu, G. T. Vincze, and J. J. Gracio, Deformation and microstructure-independent

, Cottrell-Stokes ratio in commercial Al alloys, Int. J. Plast, vol.27, issue.7, pp.1045-1054

, An analysis of necking formation in age-hardenable aluminium alloys: the effects of strain hardening and strain-rate sensitivity

S. Saimoto and P. Van-houtte, Constitutive relation based on Taylor slip analysis to replicate work-hardening evolution, Acta Mater, vol.59, issue.2, pp.602-612, 2011.

E. W. Hart, Theory of the tensile test, Acta Metall, vol.15, issue.2, pp.351-355, 1967.

A. K. Ghosh, Tensile instability and necking in materials with strain hardening and strain-rate hardening, Acta Metall, vol.25, issue.12, pp.1413-1424, 1977.

A. K. Ghosh, The Influence of Strain Hardening and Strain-Rate Sensitivity on Sheet Metal Forming, J. Eng. Mater. Technol, vol.99, issue.3, p.264, 1977.

A. K. Ghosh, A-physically-based-constitutive-model-for-metal-deformation, Acta Metall, vol.28, pp.1443-1465, 1980.

S. Saimoto, Method to decode stress-strain diagrams to identify the structurestrength relationships in aged aluminum alloys, Mater. Sci. Eng. A, vol.709, pp.9-16, 2018.

M. Carlone and S. Saimoto, Precision strain rate sensitivity measurement using the step-ramp method, Exp. Mech, vol.36, issue.4, pp.360-366, 1996.