K. Kosswig, Ullmann's Encyclopedia of Industrial Chemistry. Sous la dir, pp.978-981, 2000.

D. Bonn, Wetting and spreading". en, Reviews of Modern Physics, vol.81, issue.2, pp.1539-0756, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01769971

P. De-gennes and F. Brochard-wyart, Gouttes, bulles, perles et ondes. Belin, 2015.

M. C. Fuerstenau, G. J. Jameson, and R. H. Yoon, Froth flotation : a century of innovation, 2009.

D. G. Castner and B. D. Ratner, Biomedical surface science : Foundations to frontiers, Surface Science, vol.500, pp.28-60, 2002.

B. Kasemo, Biological surface science, Surface Science, vol.500, pp.39-6028, 2002.

M. Baviere and S. O. , Published for SCI by Elsevier Applied Science London, pp.1-85166, 1991.

N. Roy, R. Sengupta, and A. K. Bhowmick, Modifications of carbon for polymer composites and nanocomposites". en, Progress in Polymer Science, vol.37, p.796700, 2012.

Q. Yan, S. Zeman, and A. Elbeih, Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs)". en, Thermochimica Acta, vol.537, p.406031, 2012.

L. Wilhelmy, Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers, Annalen der Physik, vol.195, pp.177-217, 1863.

P. L. Du-nouy, AN INTERFACIAL TENSIOMETER FOR UNIVER-SAL USE". en, The Journal of General Physiology, vol.7, issue.5, pp.1540-7748, 1925.

B. Song and J. Springer, Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing : 2. Experimental, Journal of colloid and interface science, vol.184, pp.77-91, 1996.

. Bibliographie,

M. Á. Rodríguez-valverde and M. T. Miranda, Derivation of Jurin's law revisited, European Journal of Physics, vol.32, pp.1361-6404, 2011.

D. Langevin, Capillary-wave techniques for the measurement of surface tension and surface viscoelasticity, Colloids and surfaces, vol.43, pp.121-131, 1990.

D. Y. Kwok and A. W. Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science, vol.81, pp.167-249, 1999.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids : Second Edition. eng. 2 e éd, pp.978-978, 2017.

J. G. Kirkwood and F. P. Buff, The Statistical Mechanical Theory of Surface Tension, The Journal of Chemical Physics, vol.17, issue.3, pp.1089-7690, 1949.

J. H. Irving and J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, The Journal of Chemical Physics, vol.18, issue.6, pp.1089-7690

G. J. Gloor, Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, The Journal of Chemical Physics, vol.123, pp.1089-7690, 2005.

C. Vega and E. De-miguel, Surface tension of the most popular models of water by using the test-area simulation method". en, The Journal of Chemical Physics, vol.126, pp.1089-7690

C. Ibergay, Molecular simulations of the n -alkane liquid-vapor interface : Interfacial properties and their long range corrections". en, Physical Review E, vol.75, pp.1550-2376, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00145222

A. Trokhymchuk and J. Alejandre, Computer simulations of liquid/vapor interface in Lennard-Jones fluids : Some questions and answers". en, The Journal of Chemical Physics, vol.111, pp.1089-7690, 1999.

F. Goujon, Monte Carlo versus molecular dynamics simulations in heterogeneous systems : An application to the n-pentane liquid-vapor interface". en, The Journal of Chemical Physics, vol.121, p.219606, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00342617

R. Fowler, A tentative statistical theory of Macleod's equation for surface tension, and the parachor, Proceedings of the Royal Society of London. Series A -Mathematical and Physical Sciences, vol.159, p.229, 1937.

L. Gao and T. J. Mccarthy, Wetting 101". en, Langmuir 25.24 (déc. 2009), pp.1520-5827

J. Jane?ek, Long Range Corrections in Inhomogeneous Simulations". en, The Journal of Physical Chemistry B, vol.110, pp.1520-5207, 2006.

L. G. Macdowell and F. J. Blas, Surface tension of fully flexible Lennard-Jones chains : Role of long-range corrections". en, The Journal of Chemical Physics, vol.131, pp.1089-7690, 2009.

A. Ghoufi, P. Malfreyt, and D. J. Tildesley, Computer modelling of the surface tension of the gas-liquid and liquid-liquid interface, Chem. Soc. Rev, vol.45, pp.1387-1409, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01259512

P. Orea, J. López-lemus, and J. Alejandre, Oscillatory surface tension due to finite-size effects". en, The Journal of Chemical Physics, vol.123, issue.11, pp.1089-7690

F. Biscay, Calculation of the surface tension from Monte Carlo simulations : Does the model impact on the finite-size effects ?, In : The Journal of Chemical Physics, vol.130, pp.1089-7690, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00665326

F. Bresme, E. Chacón, and P. Tarazona, Force-field dependence on the interfacial structure of oil-water interfaces". en, Molecular Physics 108.14 (juil. 2010), pp.1362-3028

C. Caleman, Force Field Benchmark of Organic Liquids : Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant". en, Journal of Chemical Theory and Computation, vol.8, issue.1, pp.1549-9626, 2012.

E. A. Müller and A. Mejía, Comparison of United-Atom Potentials for the Simulation of Vapor-Liquid Equilibria and Interfacial Properties of Long-Chain n -Alkanes up to n -C 100 ". en, The Journal of Physical Chemistry B, vol.115, pp.1520-5207, 2011.

B. M. Axilrod and E. Teller, Interaction of the van der Waals Type Between Three Atoms". en, The Journal of Chemical Physics, vol.11, issue.6, pp.1089-7690

F. Goujon, P. Malfreyt, and D. J. Tildesley, The gas-liquid surface tension of argon : A reconciliation between experiment and simulation". en, The Journal of Chemical Physics, vol.140, pp.1089-7690, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084928

E. M. Blokhuis and D. Bedeaux, Pressure tensor of a spherical interface". en, The Journal of Chemical Physics, vol.97, pp.1089-7690

A. Malijevský and G. Jackson, A perspective on the interfacial properties of nanoscopic liquid drops, In : Journal of Physics : Condensed Matter, vol.24, pp.1361-648, 2012.

Y. A. Lei, The Tolman Length : Is It Positive or Negative ?" en, Journal of the American Chemical Society, vol.127, pp.1520-5126, 2005.

A. Homman, Surface tension of spherical drops from surface of tension, The Journal of chemical physics, vol.140, p.34110, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00932843

E. Bourasseau, P. Malfreyt, and A. Ghoufi, Surface tension and long range corrections of cylindrical interfaces". en, The Journal of Chemical Physics, vol.143, issue.23, pp.1089-7690
URL : https://hal.archives-ouvertes.fr/hal-01238678

E. E. Gruber and W. W. Mullins, On the theory of anisotropy of crystalline surface tension, Journal of Physics and Chemistry of Solids, vol.28, pp.22-3697, 1967.

P. Müller and J. Métois, Anisotropy of the surface thermodynamic properties of silicon". en, Thin Solid Films, vol.517, issue.1, p.406090, 2008.

B. B. Laird and R. L. Davidchack, Direct Calculation of the CrystalMelt Interfacial Free Energy via Molecular Dynamics Computer Simulation". en, The Journal of Physical Chemistry B 109.38 (sept. 2005), pp.1520-5207

P. Müller and A. Saúl, Elastic effects on surface physics". en, Surface Science Reports, vol.54, p.1675729, 2004.

R. Shuttleworth, The Surface Tension of Solids, Proceedings of the Physical Society. Section A, vol.63, p.444, 1950.

J. H. Sikkenk, Molecular-dynamics simulation of wetting and drying at solid-fluid interfaces, Phys. Rev. Lett, vol.59, pp.98-101

T. Ingebrigtsen and S. Toxvaerd, Contact Angles of Lennard-Jones Liquids and Droplets on Planar Surfaces". en. In : The Journal of Physical Chemistry C, vol.111, pp.1932-7455, 2007.

F. Leroy and F. Müller-plathe, Dry-Surface Simulation Method for the Determination of the Work of Adhesion of Solid-Liquid Interfaces". en. In : Langmuir 31, vol.30, pp.1520-5827, 2015.

F. Taherian, What Is the Contact Angle of Water on Graphene ?, In : Langmuir, vol.29, pp.1457-1465, 2013.

F. Leroy and F. Müller-plathe, Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method". en, The Journal of Chemical Physics, vol.133, pp.1089-7690

H. Jiang, F. Müller-plathe, and A. Z. Panagiotopoulos, Contact angles from Young's equation in molecular dynamics simulations". en, The Journal of Chemical Physics, vol.147, issue.8, pp.1089-7690, 2017.

H. D. Oliveira, Test-area surface tension calculation of the graphene-methane interface : Fluctuations and commensurability". en, The Journal of Chemical Physics, vol.146, pp.1089-7690, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560002

P. Müller, A. Saúl, and F. Leroy, Simple views on surface stress and surface energy concepts, Advances in Natural Sciences : Nanoscience and Nanotechnology, vol.5, pp.2043-6262, 2013.

J. W. Gibbs, The collected works of, 1948.

B. Diu, Éléments de physique statistique, Juillet, 1996.

A. Harasima, Molecular Theory of Surface Tension, Advances in Chemical Physics, pp.203-237, 2007.

L. Landau, E. Lifshitz, and J. Sykes, Theory of Elasticity. Course of theoretical physics, 1989.

J. S. Rowlinson and B. Widom, Molecular theory of capillarity. Courier Corporation, 2013.

H. A. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Annalen der physik, vol.248, pp.127-136, 1881.

D. Berthelot, Sur le mélange des gaz, Comptes Rendus des Séances de l'Académie des Sciences, vol.126, pp.1703-1706, 1898.

D. Möller, Prediction of thermodynamic properties of fluid mixtures by molecular dynamics simulations : methane-ethane". en, pp.1362-3028

Y. Duan, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, In : Journal of computational chemistry, vol.24, pp.1999-2012, 2003.

M. Fitzner, Communication : Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces". en, The Journal of Chemical Physics, vol.147, pp.1089-7690

A. P. Sutton and J. Chen, Long-range Finnis-Sinclair potentials, Philosophical Magazine Letters, vol.61, pp.139-146, 1990.

T. Halicio?lu and G. M. Pound, Calculation of potential energy parameters form crystalline state properties". In : Physica status solidi (a), vol.30, pp.619-623, 1975.

Y. Liu, R. Ganti, and D. Frenkel, Pressure gradients fail to predict diffusio-osmosis, In : Journal of Physics : Condensed Matter, vol.30, p.205002, 2018.

K. D. Papavasileiou, O. A. Moultos, and I. G. Economou, Predictions of water/oil interfacial tension at elevated temperatures and pressures : A molecular dynamics simulation study with biomolecular force fields". en, Fluid Phase Equilibria, p.3783812, 2017.

J. M. M?guez, Calculation of Interfacial Properties using Molecular Simulation with the Reaction Field Method : Results for Different Water Models, J. Chem. Phys, vol.132, p.184102, 2010.

T. Young, YoungEssay.pdf". en. In : Philosophical Transactions of the Royal Society of London, vol.95, p.2610523, 1805.

S. Wang, Wettability and Surface Free Energy of Graphene Films, Langmuir 25, vol.18, pp.11078-11081, 2009.

Y. J. Shin, Surface-Energy Engineering of Graphene, pp.3798-3802, 2010.

J. Rafiee, Wetting transparency of graphene, Nat. Mat, vol.11, pp.217-222, 2012.

C. D. Van-engers, Direct Measurement of the Surface Energy of Graphene, Nano Lett, vol.17, pp.3815-3821, 2017.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water : TIP4P, J. Chem Phys, vol.123, p.234505, 2005.

J. Alejandre and G. A. Chapela, The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions, The Journal of Chemical Physics, vol.132, issue.1, pp.1089-7690, 2010.

M. Neumann, Computer simulations with the MCY potential, J. Chem. Phys, vol.82, pp.5663-5672, 1985.

J. M. Míguez, M. M. Piñeiro, and F. J. Blas, Influence of the longrange corrections on the interfacial properties of molecular models using Monte Carlo simulation". en, The Journal of Chemical Physics, vol.138, issue.3, pp.1089-7690, 2013.

I. Todorov and W. S. , DLPOLY3 : New Dimensions in Molecular Dynamics Simulations via Massive Parallelism, vol.16, pp.1911-1918, 2006.

H. J. Berendsen, Molecular-dynamics with coupling to an external bath, J. Chem. Phys, vol.81, pp.21-9606, 1984.

A. Ghoufi and P. Malfreyt, Numerical evidence of the formation of a thin microscopic film of methane at the water surface : a free energy calculation, Phys. Chem. Chem. Phys, vol.12, pp.5203-5205, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01072094

M. C. Gordillo and J. Marti, Structure of water adsorbed on a single graphene sheet, Phys. Rev. B, vol.78, p.75432, 2008.

G. Tocci, L. Joly, and A. Michaelide, Friction of Water on Graphene and Hexagonal Boron Nitride from Ab Initio Methods : Very Different Slippage Despite Very Similar Interface Structures, Nano Lett, vol.14, pp.6872-6877, 2014.

L. Garnier, Physics behind Water Transport through Nanoporous Boron Nitride and Graphene, J. Phys. Chem. Lett, vol.7, pp.3371-3376, 2016.

A. Akaishi, T. Yonemaru, and J. Nakamura, Formation of Water Layers on Graphene Surfaces, ACS Omega, vol.2, pp.2184-2190, 2017.

. Bibliographie,

K. Suzuki, Atomic-Resolution Imaging of Graphite-Water Interface by Frequency Modulation Atomic Force Microscopy, Appl. Phys. Express, vol.4, p.125102, 2011.

H. Komurasaki, Layered Structures of Interfacial Water and Their Effects on Raman Spectra in Graphene-on-Sapphire Systems, J. Phys. Chem. C, vol.116, pp.10084-10089, 2012.

D. S. Wastl, Observation of 4 nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air, ACS Nano, vol.7, pp.10032-10037, 2013.

A. Luzar and D. Chandler, Effect of Environment on Hydrogen Bond Dynamics in Liquid Water, Phys. Rev. Lett, vol.76, pp.928-931, 1996.

R. Renou, Superpermittivity of nanoconfined water, J. Chem. Phys, vol.142, p.184706, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01212247

H. Wang, C. Junghans, and K. Kremer, Comparative Atomistic and Coarse-Grained Stiudy of Water : what do we lose by Coarse-Graining ?, In : Eur. Phys. J. E, vol.28, pp.221-229, 2009.

A. Ghoufi, Surface tension of water and acid gases from Monte Carlo simulations, J. Chem. Phys, vol.128, pp.154716-154731, 2008.

, Polymer Data Handbook, In : Journal of the American Chemical Society, vol.131, pp.16330-16330, 2009.

G. Tsolou, V. G. Mavrantzas, and D. N. Theodorou, Detailed Atomistic Molecular Dynamics Simulation of cis-1,4-Poly(butadiene), Macromolecules, vol.38, pp.1478-1492, 2005.

H. H. Cady and A. C. Larson, The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene, Acta Crystallographica, vol.18, issue.3, pp.485-496, 1965.

C. A. Lemarchand, A parallel algorithm to produce long polymer chains in molecular dynamics, The Journal of Chemical Physics, vol.150, p.224902, 2019.

L. J. Fetters, Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties, Macromolecules, vol.27, pp.4639-4647, 1994.

M. G. Frölich and T. D. Sewell, Pivot algorithm and push-off method for efficient system generation of all-atom polymer melts : Application to hydroxyl terminated polybutadiene, Macromol. Theory Simul, vol.22, pp.344-353, 2013.

M. G. Fröhlich, T. D. Sewell, and D. L. Thompson, Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts : Mechanical and structural responses". en, The Journal of Chemical Physics, vol.140, issue.2, pp.1089-7690, 2014.

D. Bedrov, A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature". en, The Journal of Chemical Physics, vol.131, pp.1089-7690, 2009.

M. P. Kroonblawd and T. D. Sewell, Theoretical determination of anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)". en, The Journal of Chemical Physics, vol.139, issue.7, pp.1089-7690, 2013.

W. L. Jorgensen and J. Tirado-rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society, vol.110, issue.6, pp.1657-1666, 1988.