H. Abe, T. Urao, T. Ito, M. Seki, K. Shinozaki et al., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, The Plant Cell, vol.15, issue.1, pp.63-78, 2003.

K. Abhinandan, L. Skori, M. Stanic, N. Hickerson, M. Jamshed et al., Abiotic Stress Signaling in Wheat -An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat, Front Plant Sci, vol.9, 2018.

E. Acevedo, P. Silva, and H. Silva, Wheat growth and physiology, 2002.

I. G. Adonina, N. P. Goncharov, E. D. Badaeva, E. M. Sergeeva, N. V. Petrash et al., GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication, Comparative Cytogenetics, vol.9, issue.4, pp.533-580, 2015.

A. Ahmadi and D. A. Baker, The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat, Plant Growth Regulation, vol.35, pp.81-91, 2001.

H. Ahn, J. I. Shin, S. Park, J. Rhee, S. Kim et al., Transcriptional Network Analysis Reveals Drought Resistance Mechanisms of AP2/ERF Transgenic Rice, Front Plant Sci, vol.8, 2017.

M. Aida, T. Ishida, H. Fukaki, H. Fujisawa, and M. Tasaka, Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell, vol.9, issue.6, pp.841-57, 1997.

E. D. Akhunov, A. W. Goodyear, S. Geng, L. Qi, B. Echalier et al., The Organization and Rate of Evolution of Wheat Genomes Are Correlated With Recombination Rates Along Chromosome Arms, Genome Res, vol.13, issue.5, pp.753-63, 2003.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration -Guidelines for computing crop water requirements -FAO Irrigation and drainage paper 56, p.15, 1998.

S. B. Altenbach, F. M. Dupont, K. M. Kothari, R. Chan, J. E. et al., Water and Fertilizer Influence the Timing of Key Events During Grain Development in a US Spring Wheat, Journal of Cereal Science, vol.37, issue.1, pp.9-20, 2003.

K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu Rev Plant Biol, vol.55, pp.373-99, 2004.

R. Appels, (. Consortium, . Iwgsc)-tiwgs, K. Eversole, C. Feuillet et al., Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science, vol.361, issue.6403, p.7191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01885399

S. Asseng, F. Ewert, P. Martre, R. P. Rötter, D. B. Lobell et al., Rising temperatures reduce global wheat production, Nature Climate Change, vol.5, issue.2, pp.143-150, 2015.

G. N. Atlin, J. E. Cairns, and B. Das, Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Security, vol.12, pp.31-38, 2017.

R. Avni, R. Zhao, S. Pearce, Y. Jun, C. Uauy et al., Functional characterization of GPC-1 genes in hexaploid wheat, Planta, vol.239, issue.2, pp.313-337, 2014.

S. Balazadeh, M. Kwasniewski, C. Caldana, M. Mehrnia, M. I. Zanor et al., ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana, Molecular Plant, vol.4, issue.2, pp.346-60, 2011.

S. Balazadeh, D. M. Riaño-pachón, and B. Mueller-roeber, Transcription factors regulating leaf senescence in Arabidopsis thaliana, Plant Biology, vol.10, issue.s1, pp.63-75, 2008.

S. Balazadeh, H. Siddiqui, A. D. Allu, L. P. Matallana-ramirez, C. Caldana et al., A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence, The Plant Journal, vol.62, issue.2, pp.250-64, 2010.

F. Balfourier, V. Roussel, P. Strelchenko, F. Exbrayat-vinson, P. Sourdille et al., A worldwide bread wheat core collection arrayed in a 384-well plate, Theor Appl Genet, vol.114, issue.7, pp.1265-75, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00964182

M. C. Baloglu, B. Inal, M. Kavas, and T. Unver, Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species, Gene, vol.550, issue.1, pp.117-139, 2014.

M. C. Baloglu, M. T. Oz, H. A. Oktem, and M. Yucel, Expression Analysis of TaNAC69-1 and TtNAMB-2, Wheat NAC Family Transcription Factor Genes Under Abiotic Stress Conditions in Durum Wheat (Triticum turgidum), Plant Mol Biol Rep, vol.30, issue.5, pp.1246-52, 2012.

S. Barak, D. Mudgil, and B. S. Khatkar, Relationship of gliadin and glutenin proteins with dough rheology, flour pasting and bread making performance of wheat varieties. LWT -Food Science and Technology, vol.51, pp.211-218, 2013.

B. Barnabás, K. Jäger, and A. Fehér, The effect of drought and heat stress on reproductive processes in cereals, Plant, Cell & Environment, vol.31, issue.1, pp.11-38, 2008.

C. Barron, A. Surget, and X. Rouau, Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition, Journal of Cereal Science, vol.45, pp.88-96, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01601193

C. G. Bartoli, C. A. Casalongué, M. Simontacchi, B. Marquez-garcia, and C. H. Foyer, Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environmental and Experimental Botany, vol.94, pp.73-88, 2013.

A. Baxter, R. Mittler, and N. Suzuki, ROS as key players in plant stress signalling, J Exp Bot, vol.65, issue.5, pp.1229-1269, 2014.

D. B. Bechtel, I. Zayas, L. Kaleikau, and Y. Pomeranz, Size-distribution of wheat starch granules during endosperm development, Cereal Chemistry, vol.67, issue.1, pp.59-63, 1990.

P. Bhattacharjee, R. Das, A. Mandal, and P. Kundu, Functional characterization of tomato membranebound NAC transcription factors, Plant Molecular Biology, vol.93, issue.4-5, pp.511-543, 2017.

X. Bie, K. Wang, M. She, L. Du, S. Zhang et al., Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco, Plant Cell Reports, vol.31, issue.12, pp.2229-2267, 2012.

T. Blomster, J. Salojarvi, N. Sipari, M. Brosche, R. Ahlfors et al., Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause StressInduced Morphogenic Response in Arabidopsis, PLANT PHYSIOLOGY, vol.157, issue.4, pp.1866-83, 2011.

A. Blum, Crop responses to drought and the interpretation of adaptation, Plant Growth Regulation, vol.20, issue.2, pp.135-183, 1996.

L. Bogorad, E. J. Gubbins, E. Krebbers, I. M. Larrinua, and B. J. Mulligan, Cloning and physical mapping of maize plastid genes, Methods in Enzymology, vol.97, issue.1, pp.524-554, 1983.

J. Bordes, C. Ravel, J. P. Jaubertie, B. Duperrier, O. Gardet et al., Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection, Theoretical and Applied Genetics, vol.126, issue.3, pp.805-827, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964316

J. Bordes, C. Ravel, L. Gouis, J. Lapierre, A. Charmet et al., Use of a global wheat core collection for association analysis of flour and dough quality traits, Journal of Cereal Science, vol.54, issue.1, pp.137-184, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00964127

P. Borrill, S. A. Harrington, and C. Uauy, Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat

, Genes|Genomes|Genetics, vol.7, issue.9, pp.3019-3048, 2017.

P. Borrill, R. Ramirez-gonzalez, and C. Uauy, expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform, Plant Physiol, vol.170, issue.4, pp.2172-86, 2016.

A. Brooks, C. F. Jenner, and D. Aspinall, Effects of Water Deficit on Endosperm Starch Granules and on Grain Physiology of Wheat and Barley, Functional Plant Biol, vol.9, issue.4, pp.423-459, 1982.

J. Brosius, Retroposons--seeds of evolution, Science, vol.251, issue.4995, p.753, 1991.

M. M. Burrell, Starch: the need for improved quality or quantity--an overview, Journal of Experimental Botany, vol.54, issue.382, pp.451-457, 2003.

D. F. Calderini and I. Ortiz-monasterio, Grain position affects grain macronutrient and micronutrient concentrations in wheat, Crop Science, vol.43, pp.141-51, 2003.

D. F. Calderini and M. P. Reynolds, Changes in grain weight as a consequence of de-graining treatments at pre-and post-anthesis in synthetic hexaploid lines of wheat (Triticum durum x T. tauschii), Functional Plant Biol, vol.27, issue.3, pp.183-91, 2000.

C. Y. Caley, C. M. Duffus, and B. Jeffcoat, Effects of Elevated Temperature and Reduced Water Uptake on Enzymes of Starch Synthesis in Developing Wheat Grains, Functional Plant Biol, vol.17, issue.4, pp.431-440, 1990.

K. G. Campbell, C. J. Bergman, D. G. Gualberto, J. A. Anderson, M. J. Giroux et al., Quantitative Trait Loci Associated with Kernel Traits in a Soft × Hard Wheat Cross, Crop Science, vol.39, issue.4, p.1184, 1999.

L. Cao, Y. Yu, X. Ding, D. Zhu, F. Yang et al., The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity, Plant Molecular Biology, vol.95, issue.3, pp.253-68, 2017.

D. Capron, S. Mouzeyar, A. Boulaflous, C. Girousse, C. Rustenholz et al., Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development, BMC Plant Biol, vol.12, p.35, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01189698

A. Cenci, V. Guignon, N. Roux, and M. Rouard, Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots, Plant Molecular Biology, vol.85, issue.1-2, pp.63-80, 2014.

U. Chakraborty and B. Chakraborty, Abiotic Stresses in Crop Plants. CABI, 2015.

H. Chauhan, N. Khurana, A. Nijhavan, J. P. Khurana, and P. Khurana, The wheat chloroplastic small heat shock protein (sHSP26) is involved in seed maturation and germination and imparts tolerance to heat stress, Plant, Cell & Environment, vol.35, issue.11, pp.1912-1943, 2012.

D. Chen, S. Chai, C. L. Mcintyre, and G. Xue, Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance, Plant Cell Reports, vol.37, issue.2, pp.225-262, 2018.

D. Chen, T. Richardson, S. Chai, L. Mcintyre, C. Rae et al., Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat, Plant Cell Physiol, vol.57, issue.10, pp.2076-90, 2016.

H. Chen, J. E. Hwang, C. J. Lim, D. Y. Kim, S. Y. Lee et al., Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response, Biochem Biophys Res Commun, vol.401, issue.2, pp.238-282, 2010.

S. Chen, I. W. Lin, X. Chen, Y. Huang, C. Lo et al., Sweet potato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack, The Plant Journal, vol.86, issue.3, pp.234-282, 2016.

X. Chen, Y. Wang, B. Lv, J. Li, L. Luo et al., The NAC Family Transcription Factor OsNAP Confers Abiotic Stress Response Through the ABA Pathway, Plant and Cell Physiology, vol.55, issue.3, pp.604-623, 2014.

Y. H. Chi, S. Melencion, C. V. Alinapon, M. J. Kim, E. S. Lee et al., The membranetethered NAC transcription factor, AtNTL7, contributes to ER-stress resistance in Arabidopsis, Biochemical and Biophysical Research Communications, vol.488, issue.4, pp.641-648, 2017.

A. Chojecki, M. W. Bayliss, and M. D. Gale, Cell Production and DNA Accumulation in the Wheat Endosperm, and their Association with Grain Weight, Ann Bot, vol.58, issue.6, pp.809-826, 1986.

G. A. Chope, Y. Wan, S. P. Penson, D. G. Bhandari, S. J. Powers et al., Effects of Genotype, Season, and Nitrogen Nutrition on Gene Expression and Protein Accumulation in Wheat Grain, Journal of Agricultural and Food Chemistry, vol.62, pp.4399-407, 2014.

F. Choulet, A. Alberti, S. Theil, N. Glover, V. Barbe et al., Structural and functional partitioning of bread wheat chromosome 3B, Science, vol.345, issue.6194, p.1249721, 2014.

M. W. Christiansen, P. B. Holm, and P. L. Gregersen, Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots, BMC Res Notes, vol.4, p.302, 2011.

J. A. Christianson, E. S. Dennis, D. J. Llewellyn, and I. W. Wilson, ATAF NAC transcription factors: Regulators of plant stress signaling, Plant Signaling & Behavior, vol.5, issue.4, pp.428-460, 2010.

N. K. Christov, P. K. Christova, H. Kato, Y. Liu, K. Sasaki et al., an abiotic stressinducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis, Plant Physiology and Biochemistry, vol.84, pp.251-60, 2014.

B. J. Clavijo, L. Venturini, C. Schudoma, G. G. Accinelli, G. Kaithakottil et al., An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations, Genome Research, vol.27, issue.5, pp.885-96, 2017.

M. Cooper, D. Woodruff, I. Phillips, K. Basford, and A. Gilmour, Genotype-by-management interactions for grain yield and grain protein concentration of wheat, Field Crops Research, vol.69, issue.1, pp.47-67, 2001.

F. Cormier, M. Throude, C. Ravel, J. Gouis, M. Leveugle et al., Detection of NAM-A1 Natural Variants in Bread Wheat Reveals Differences in Haplotype Distribution between a Worldwide Core Collection and European Elite Germplasm, Agronomy, vol.5, issue.2, pp.143-51, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244507

M. Cosségal, V. Vernoud, N. Depège, and P. M. Rogowsky, Endosperm: Developmental and Molecular Biology, pp.57-71, 2007.

P. Q. Craufurd, V. Vadez, S. Jagadish, P. Prasad, and M. Zaman-allah, Crop science experiments designed to inform crop modeling, Agricultural and Forest Meteorology, vol.170, pp.8-18, 2013.

C. Delessert, K. Kazan, I. W. Wilson, D. Van-der-straeten, J. Manners et al., The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis, Plant J, vol.43, issue.5, pp.745-57, 2005.

B. B. Dholakia, J. Ammiraju, H. Singh, M. D. Lagu, M. S. Röder et al., Molecular marker analysis of kernel size and shape in bread wheat, Plant Breeding, vol.122, issue.5, pp.392-397, 2003.

A. Distelfeld, S. P. Pearce, R. Avni, B. Scherer, C. Uauy et al., Divergent functions of orthologous NAC transcription factors in wheat and rice, Plant Molecular Biology, vol.78, issue.4-5, pp.515-539, 2012.

G. L. Dodd and L. A. Donovan, Water potential and ionic effects on germination and seedling growth of two cold desert shrubs, American Journal of Botany, vol.86, issue.8, pp.1146-53, 1999.

R. Dolferus, J. X. Richards, and R. A. , Abiotic stress and control of grain number in cereals, Plant Science, vol.181, issue.4, pp.331-372, 2011.

S. Drea, D. J. Leader, B. C. Arnold, P. Shaw, L. Dolan et al., Systematic Spatial Analysis of Gene Expression during Wheat Caryopsis Development, Plant Cell, vol.17, issue.8, pp.2172-85, 2005.

M. Duan, R. Zhang, F. Zhu, Z. Zhang, L. Gou et al., A Lipid-Anchored NAC Transcription Factor Is Translocated into the Nucleus and Activates Glyoxalase I Expression during Drought Stress. The Plant Cell, vol.29, pp.1748-72, 2017.

M. Duval, T. Hsieh, S. Y. Kim, and T. L. Thomas, Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily, Plant Mol Biol, vol.50, issue.2, pp.237-285, 2002.

K. W. Earley, J. R. Haag, O. Pontes, K. Opper, T. Juehne et al., Gateway-compatible vectors for plant functional genomics and proteomics, The Plant Journal, vol.45, issue.4, pp.616-645, 2006.

S. Ebrahimian-motlagh, P. A. Ribone, V. P. Thirumalaikumar, A. D. Allu, R. L. Chan et al., JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13, Frontiers in Plant Science, vol.8, 2017.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, issue.5, pp.1792-1799, 2004.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, pp.2460-2461, 2010.

D. B. Egli, Seed biology and the yield of grain crops, CAB International, 1998.

J. B. Endelman, Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP, The Plant Genome, vol.4, issue.3, pp.250-255, 2011.

N. Z. Ergen, J. Thimmapuram, H. J. Bohnert, and H. Budak, Transcriptome pathways unique to dehydration tolerant relatives of modern wheat, Functional & Integrative Genomics, vol.9, issue.3, pp.377-96, 2009.

A. N. Erickson and A. H. Markhart, Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature, Plant, Cell & Environment, vol.25, issue.1, pp.123-153, 2002.

H. A. Ernst, N. Olsen, A. Skriver, K. Larsen, S. et al., Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors, EMBO reports, vol.5, issue.3, pp.297-303, 2004.

C. Everaert, M. Luypaert, J. Maag, Q. X. Cheng, M. E. Dinger et al., Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data, Scientific Reports, vol.7, issue.1, 2017.

A. D. Evers and D. B. Bechtel, Microscopic structure of the wheat grain, Wheat: chemistry and technology, 1988.

A. D. Evers, A. B. Blakeney, and L. O'brien, Cereal structure and composition, Australian Journal of Agricultural Research, vol.50, pp.629-50, 1999.

T. Evers and S. Millar, Cereal Grain Structure and Development: Some Implications for Quality, Journal of Cereal Science, vol.36, issue.3, pp.261-84, 2002.

K. Fan, F. Li, J. Chen, Z. Li, W. Lin et al., Asymmetric Evolution and Expansion of the NAC Transcription Factor in Polyploidized Cotton, Frontiers in Plant Science, vol.9, 2018.

Z. Fan, X. Tan, J. Chen, Z. Liu, J. Kuang et al., Regulates Leaf Senescence in Chinese Flowering Cabbage by Modulating Reactive Oxygen Species Production and Chlorophyll Degradation, Journal of Agricultural and Food Chemistry, vol.66, issue.36, pp.9399-408, 2018.

L. Fang, L. Su, X. Sun, X. Li, M. Sun et al., Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis, Journal of Experimental Botany, vol.67, issue.9, pp.2829-2874, 2016.

Y. Fang, K. Liao, H. Du, Y. Xu, H. Song et al., A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice, Journal of Experimental Botany, vol.66, issue.21, pp.6803-6820, 2015.

Y. Fang, J. You, K. Xie, W. Xie, and L. Xiong, Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice, Molecular Genetics and Genomics, vol.280, issue.6, pp.547-63, 2008.

P. Feillet, Le grain de blé: composition et utilisation. Paris: Institut national de la recherche agronomique (INRA), 2000.

H. Feng, X. Duan, Q. Zhang, X. Li, B. Wang et al., The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust: TaNAC21/22 regulates resistance of wheat to P st, Molecular Plant Pathology, vol.15, issue.3, pp.284-96, 2014.

C. Feuillet, P. Langridge, and R. Waugh, Cereal breeding takes a walk on the wild side, Trends in Genetics, vol.24, issue.1, pp.24-32, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964181

R. Flückiger, D. Caroli, M. Piro, G. Dalessandro, G. Neuhaus et al., Vacuolar system distribution in Arabidopsis tissues, visualized using GFP fusion proteins, J Exp Bot, vol.54, issue.387, pp.1577-84, 2003.

L. E. Francois, T. Donovan, and E. V. Maas, Salinity Effects on Seed Yield, Growth, and Germination of Grain Sorghum 1, Agronomy Journal, vol.76, issue.5, pp.741-745, 1984.

J. M. Franco-zorrilla, I. López-vidriero, J. L. Carrasco, M. Godoy, P. Vera et al., DNA-binding specificities of plant transcription factors and their potential to define target genes, Proc Natl Acad Sci USA, vol.111, issue.6, pp.2367-72, 2014.

D. Fu, C. Uauy, A. Blechl, and J. Dubcovsky, RNA interference for wheat functional gene analysis, Transgenic Research, vol.16, issue.6, pp.689-701, 2007.

M. Fujita, Y. Fujita, K. Maruyama, M. Seki, K. Hiratsu et al., A dehydrationinduced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway, Plant J, vol.39, issue.6, pp.863-76, 2004.

V. Gahlaut, V. Jaiswal, A. Kumar, and P. K. Gupta, Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat, Triticum aestivum L.). Theoretical and Applied Genetics, vol.129, issue.11, pp.2019-2061, 2016.

C. Gapper and L. Dolan, Control of plant development by reactive oxygen species, Plant Physiol, vol.141, issue.2, pp.341-346, 2006.

A. R. Gerken, O. C. Eller, D. A. Hahn, and T. J. Morgan, Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long-and short-term thermal acclimation, Proc Natl Acad Sci USA, vol.112, pp.4399-4404, 2015.

P. Gienapp, P. Teplitsky, J. S. Alho, J. A. Mills, and J. Merilä, Climate change and evolution: disentangling environmental and genetic responses, Mol. Ecol, vol.17, pp.167-178, 2008.

C. Girousse, J. Roche, C. Guérin, L. Gouis, J. Balzegue et al., Coexpression network and phenotypic analysis identify metabolic pathways associated with the effect of warming on grain yield components in wheat. Zhang A, éditeur, PLOS ONE, vol.13, issue.6, p.199434, 2018.

N. M. Glover, J. Daron, L. Pingault, K. Vandepoele, E. Paux et al., Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B
URL : https://hal.archives-ouvertes.fr/hal-01244498

, Genome Biol, vol.16, p.188, 2015.

M. J. Gooding, R. H. Ellis, P. R. Shewry, and J. D. Schofield, Effects of Restricted Water Availability and Increased Temperature on the Grain Filling, Drying and Quality of Winter Wheat, Journal of Cereal Science, vol.37, issue.3, pp.295-309, 2003.

S. Götz, J. M. García-gómez, J. Terol, T. D. Williams, S. H. Nagaraj et al., Highthroughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Res, vol.36, issue.10, pp.3420-3455, 2008.

D. Gouache, M. Bancal, P. Bancal, D. Solan, B. Gate et al., Tolérance du blé tendre aux stress biotiques et abiotiques, Innovations Agronomiques, vol.35, pp.75-87, 2014.

K. Greve, T. L. Cour, M. K. Jensen, F. M. Poulsen, and K. Skriver, Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization, Biochemical Journal, vol.371, issue.1, pp.97-108, 2003.

Q. Guan, X. Yue, H. Zeng, and J. Zhu, The Protein Phosphatase RCF2 and Its Interacting Partner NAC019 Are Critical for Heat Stress-Responsive Gene Regulation and Thermotolerance in Arabidopsis, The Plant Cell, vol.26, issue.1, pp.438-53, 2014.

C. Guérin, J. Roche, V. Allard, C. Ravel, S. Mouzeyar et al., Genome-wide analysis, expansion and expression of the NAC family under drought and heat stresses in bread wheat (T. aestivum L.), PLoS One, vol.14, issue.3, p.213390, 2019.

H. Guo, Q. Xie, J. Fei, and N. Chua, MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development, THE PLANT CELL ONLINE, vol.17, issue.5, pp.1376-86, 2005.

S. Guo, S. Dai, P. K. Singh, H. Wang, Y. Wang et al., A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa, Frontiers in Plant Science, vol.9, 2018.

W. Guo, J. Zhang, N. Zhang, M. Xin, H. Peng et al., The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis, Gaquerel E, éditeur. PLOS ONE, vol.10, issue.8, p.135667, 2015.

Y. Guo and S. Gan, AtNAP, a NAC family transcription factor, has an important role in leaf senescence, The Plant Journal, vol.46, issue.4, pp.601-613, 2006.

Q. Han, J. Zhang, H. Li, Z. Luo, K. Ziaf et al., Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum, Mol Biol Rep, vol.39, issue.2, pp.1713-1733, 2012.

X. Han, Z. Feng, D. Xing, Q. Yang, R. Wang et al., Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis, BMC Plant Biology, vol.15, issue.1, 2015.

J. Hansen, M. Sato, P. Hearty, R. Ruedy, M. Kelley et al., Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous, Atmospheric Chemistry and Physics, vol.16, issue.6, pp.3761-812, 2016.

Y. Hao, W. W. Song, Q. Chen, H. Zhang, Y. Wang et al., Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants, Plant J, vol.68, issue.2, pp.302-315, 2011.

M. Hasanuzzaman, K. Nahar, M. M. Alam, R. Roychowdhury, and M. Fujita, Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants, Int J Mol Sci, vol.14, issue.5, pp.9643-84, 2013.

G. He, J. Xu, Y. Wang, J. Liu, P. Li et al., Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis, BMC Plant Biology, vol.16, issue.1, 2016.

L. He, X. Shi, Y. Wang, Y. Guo, K. Yang et al., sequences to negatively regulate salt and osmotic stress tolerance, Plant Molecular Biology, vol.93, issue.4-5, pp.369-87, 2017.

X. He, B. Qu, W. Li, X. Zhao, W. Teng et al., The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield, Plant Physiol, vol.169, issue.3, pp.1991-2005, 2015.

K. Higo, Y. Ugawa, M. Iwamoto, and T. Korenaga, Plant cis-acting regulatory DNA elements (PLACE) database: 1999, Nucleic Acids Research, vol.27, issue.1, pp.297-300, 1999.

J. Hinton, Resistance of the testa to entry of water into the wheat kernel, Cereal Chemistry, vol.32, pp.296-306, 1955.

R. Höfgen and L. Willmitzer, Storage of competent cells for Agrobacterium transformation, Nucleic Acids Res, vol.16, issue.20, p.9877, 1988.

Y. Hong, H. Zhang, L. Huang, D. Li, and F. Song, Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice, Front Plant Sci, vol.7, p.4, 2016.

E. A. Howe, R. Sinha, D. Schlauch, and J. Quackenbush, RNA-Seq analysis in MeV, Bioinformatics, vol.27, issue.22, pp.3209-3219, 2011.

H. Hu, M. Dai, J. Yao, X. B. Li, X. Zhang et al., Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proceedings of the National Academy of Sciences, vol.103, issue.35, pp.12987-92, 2006.

L. Huang, Y. Hong, H. Zhang, D. Li, and F. Song, Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance, BMC Plant Biology, vol.16, issue.1, 2016.

Q. Huang and Y. Wang, Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis, Front Plant Sci, vol.7, 2016.

Q. Huang, Y. Wang, B. Li, J. Chang, M. Chen et al., NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis, BMC Plant Biol, vol.15, p.268, 2015.

S. Huang, A. Sirikhachornkit, X. Su, J. Faris, B. Gill et al., Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat, Proc Natl Acad Sci, vol.99, issue.12, pp.8133-8141, 2002.

N. Huo, S. Zhang, T. Zhu, L. Dong, Y. Wang et al., Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat, Front Plant Sci, vol.9, 2018.

W. J. Hurkman, K. F. Mccue, S. B. Altenbach, A. Korn, C. K. Tanaka et al., Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm, Plant Science, vol.164, issue.5, pp.873-81, 2003.

W. J. Hurkman, W. H. Vensel, C. K. Tanaka, L. Whitehand, and S. B. Altenbach, Effect of high temperature on albumin and globulin accumulation in the endosperm proteome of the developing wheat grain, Journal of Cereal Science, vol.49, issue.1, pp.12-23, 2009.

L. D. Hurst, The Ka/Ks ratio: diagnosing the form of sequence evolution, Trends in Genetics, vol.18, issue.9, pp.486-493, 2002.

R. M. Hussain, M. Ali, X. Feng, and X. Li, The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars, BMC Plant Biology, vol.17, issue.1, 2017.

M. Z. Ihsan, F. S. El-nakhlawy, S. M. Ismail, S. Fahad, and I. Daur, Wheat Phenological Development and Growth Studies As Affected by Drought and Late Season High Temperature Stress under Arid Environment, Front Plant Sci, vol.7, p.795, 2016.

M. Ikeda, N. Mitsuda, and M. Ohme-takagi, Arabidopsis HsfB1 and HsfB2b Act as Repressors of the Expression of Heat-Inducible Hsfs But Positively Regulate the Acquired Thermotolerance, PLANT PHYSIOLOGY, vol.157, issue.3, pp.1243-54, 2011.

M. Jakoby, B. Weisshaar, W. Dröge-laser, J. Vicente-carbajosa, J. Tiedemann et al., bZIP transcription factors in Arabidopsis, Trends Plant Sci, vol.7, issue.3, pp.106-117, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00140514

M. K. Jensen, P. H. Hagedorn, M. De-torres-zabala, M. R. Grant, J. H. Rung et al., Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis, Plant J, vol.56, issue.6, pp.867-80, 2008.

M. K. Jensen, T. Kjaersgaard, M. M. Nielsen, P. Galberg, K. Petersen et al., The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling, Biochemical Journal, vol.426, issue.2, pp.183-96, 2010.

J. S. Jeong, Y. S. Kim, K. H. Baek, H. Jung, S. H. Ha et al., Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions, PLANT PHYSIOLOGY, vol.153, issue.1, pp.185-97, 2010.

X. Ji, B. Shiran, J. Wan, D. C. Lewis, C. Jenkins et al., Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat: Reproductive stage drought tolerance in wheat, Plant, Cell & Environment, vol.33, issue.6, pp.926-968, 2010.

D. Jia, X. Gong, M. Li, C. Li, T. Sun et al., Overexpression of a Novel Apple NAC Transcription Factor Gene, MdNAC1, Confers the Dwarf Phenotype in Transgenic Apple (Malus domestica), Genes, vol.9, issue.5, p.229, 2018.

C. Jin, K. Li, X. Xu, H. Zhang, H. Chen et al., A Novel NAC Transcription Factor, PbeNAC1, of Pyrus betulifolia Confers Cold and Drought Tolerance via Interacting with PbeDREBs and Activating the Expression of Stress-Responsive Genes, Frontiers in Plant Science, vol.8, 2017.

X. Jin, J. Ren, E. Nevo, X. Yin, D. Sun et al., Divergent Evolutionary Patterns of NAC Transcription Factors Are Associated with Diversification and Gene Duplications in Angiosperm, Frontiers in Plant Science, vol.8, 2017.

P. Jones, D. Binns, H. Chang, M. Fraser, W. Li et al., InterProScan 5: genomescale protein function classification, Bioinformatics, vol.30, issue.9, pp.1236-1276, 2014.

R. A. Jones and C. O. Qualset, Breeding Crops for Environmental Stress Tolerance, Collins GB, Petolino JG, éditeurs. Applications of Genetic Engineering to Crop Improvement, pp.305-345, 1984.

B. K. Karanja, L. Xu, Y. Wang, E. M. Muleke, B. M. Jabir et al., Genome-wide characterization and expression profiling of NAC transcription factor genes under abiotic stresses in radish (Raphanus sativus L.), PeerJ, vol.5, p.4172, 2017.

R. Kataoka, M. Takahashi, and N. Suzuki, Coordination between bZIP28 and HSFA2 in the regulation of heat response signals in Arabidopsis, Plant Signaling & Behavior, vol.12, issue.11, p.1376159, 2017.

T. Kawakatsu and F. Takaiwa, Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains, Plant Biotechnol J, vol.8, issue.9, pp.939-53, 2010.

J. Khedia, P. Agarwal, and P. K. Agarwal, AlNAC4 Transcription Factor From Halophyte Aeluropus lagopoides Mitigates Oxidative Stress by Maintaining ROS Homeostasis in Transgenic Tobacco, Frontiers in Plant Science, vol.9, 2018.

K. Kikuchi, M. Ueguchi-tanaka, K. T. Yoshida, Y. Nagato, M. Matsusoka et al., Molecular analysis of the NAC gene family in rice, MGG -Molecular and General Genetics, vol.262, issue.6, pp.1047-51, 2000.

N. L. Kilasi, J. Singh, C. E. Vallejos, C. Ye, S. Jagadish et al., Heat Stress Tolerance in Rice (Oryza sativa L.): Identification of Quantitative Trait Loci and Candidate Genes for Seedling Growth Under Heat Stress, Frontiers in Plant Science, vol.9, 2018.

H. J. Kim, S. H. Hong, Y. W. Kim, I. H. Lee, J. H. Jun et al., Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis, Journal of Experimental Botany, vol.65, issue.14, pp.4023-4059, 2014.

J. H. Kim, H. R. Woo, J. Kim, P. O. Lim, I. C. Lee et al., Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis, Science, vol.323, issue.5917, pp.1053-1060, 2009.

S. Kim, S. Kim, and C. Park, A membrane-associated NAC transcription factor regulates saltresponsive flowering via FLOWERING LOCUS T in Arabidopsis, Planta, vol.226, issue.3, pp.647-54, 2007.

S. Kim, A. Lee, H. Yoon, and C. Park, A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination, The Plant Journal, vol.55, issue.1, pp.77-88, 2008.

S. Kim, S. Lee, P. J. Seo, S. Kim, J. Kim et al., Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice, Genomics, vol.95, issue.1, pp.56-65, 2010.

S. Kim, S. Kim, Y. Kim, P. J. Seo, M. Bae et al., Exploring membrane-associated NAC transcription factors in Arabidopsis : implications for membrane biology in genome regulation, Nucleic Acids Research, vol.35, issue.1, pp.203-216, 2007.

Y. Kim, S. Kim, J. Park, H. Park, M. Lim et al., A membrane-bound NAC transcription factor regulates cell division in Arabidopsis, Plant Cell, vol.18, issue.11, pp.3132-3176, 2006.

T. Kobata, J. A. Palta, and N. C. Turner, Rate of Development of Postanthesis Water Deficits and Grain Filling of Spring Wheat, Crop Science, vol.32, issue.5, pp.1238-1280, 1992.

G. Kocsy, T. I. Vanková, R. Zechmann, B. Gulyás, Z. Poór et al., Redox control of plant growth and development, Plant Sci, vol.211, pp.77-91, 2013.

M. Konishi and S. Yanagisawa, Arabidopsis NIN-like transcription factors have a central role in nitrate signalling, Nat Commun, vol.4, p.1617, 2013.

S. Kotak, J. Larkindale, U. Lee, P. Von-koskull-döring, E. Vierling et al., Complexity of the heat stress response in plants, Curr Opin Plant Biol, vol.10, issue.3, pp.310-316, 2007.

L. Kottmann, P. Wilde, and S. Schittenhelm, How do timing, duration, and intensity of drought stress affect the agronomic performance of winter rye?, European Journal of Agronomy, vol.75, pp.25-32, 2016.

K. V. Krasileva, H. A. Vasquez-gross, T. Howell, P. Bailey, F. Paraiso et al., Uncovering hidden variation in polyploid wheat, PNAS, vol.114, issue.6, pp.913-934, 2017.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol Biol Evol, vol.33, issue.7, pp.1870-1874, 2016.

P. P. Langridge, D. P. Bramel, D. K. Eversole, J. Rogers, P. B. Keller et al., Achieving sustainable cultivation of wheat Volume 1: Breeding, quality traits, pests and diseases, vol.1, 2017.

C. Lata and M. Prasad, Role of DREBs in regulation of abiotic stress responses in plants, J Exp Bot, vol.62, issue.14, pp.4731-4779, 2011.

C. W. Law, Y. Chen, W. Shi, and G. K. Smyth, voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biology, vol.15, issue.2, p.29, 2014.

L. J. Leach, E. J. Belfield, C. Jiang, C. Brown, A. Mithani et al., Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat, BMC Genomics, vol.15, p.276, 2014.

M. Lee, H. S. Jeon, H. G. Kim, and O. K. Park, An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164, New Phytologist, vol.214, issue.1, pp.343-60, 2017.

S. Lee, H. Lee, S. U. Huh, K. Paek, J. Ha et al., The Arabidopsis NAC transcription factor NTL4 participates in a positive feedback loop that induces programmed cell death under heat stress conditions, Plant Science, vol.227, pp.76-83, 2014.

S. Lee, P. J. Seo, H. Lee, and C. Park, A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis: NTL4 in drought-induced leaf senescence, The Plant Journal, vol.70, issue.5, pp.831-875, 2012.

M. R. Leucci, M. S. Lenucci, G. Piro, and G. Dalessandro, Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance, Journal of Plant Physiology, vol.165, issue.11, pp.1168-80, 2008.

Q. Li, Y. Lin, Y. Sun, J. Song, H. Chen et al., Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa, Proc Natl Acad Sci, vol.109, issue.36, pp.14699-704, 2012.

X. Li, B. Feng, F. Zhang, Y. Tang, L. Zhang et al., Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response, Frontiers in Plant Science, vol.7, 2016.

X. Li, K. Zhuang, Z. Liu, Y. Ma, N. Meng et al., Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco, J Plant Physiol, vol.204, pp.54-65, 2016.

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu et al., OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescenceassociated genes in rice, Proceedings of the National Academy of Sciences, vol.111, issue.27, pp.10013-10021, 2014.

M. Liang, H. Li, F. Zhou, H. Li, J. Liu et al., Subcellular Distribution of NTL Transcription Factors in Arabidopsis thaliana: Subcellular Distribution of AtNTLs, Traffic, vol.16, issue.10, pp.1062-74, 2015.

H. Liu, H. Liao, and Y. Charng, The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis, Plant, Cell & Environment, vol.34, issue.5, pp.738-51, 2011.

M. Liu, Z. Ma, W. Sun, L. Huang, Q. Wu et al., Genome-wide analysis of the NAC transcription factor family in Tartary buckwheat (Fagopyrum tataricum), BMC Genomics, vol.20, issue.1, 2019.

X. Liu, T. Wang, E. Bartholomew, K. Black, M. Dong et al., Comprehensive analysis of NAC transcription factors and their expression during fruit spine development in cucumber, Cucumis sativus L.). Horticulture Research, vol.5, issue.1, 2018.

Y. Liu, J. Sun, and Y. Wu, Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice, Journal of Plant Research, vol.129, issue.5, pp.955-62, 2016.

Z. Liu, M. Xin, J. Qin, H. Peng, Z. Ni et al., Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.), BMC Plant Biology, vol.15, issue.1, 2015.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, vol.25, issue.4, pp.402-410, 2001.

D. B. Lobell, W. Schlenker, and J. Costa-roberts, Climate trends and global crop production since 1980, Science, vol.333, issue.6042, pp.616-636, 2011.

H. Lu, C. Wang, T. Guo, Y. Xie, W. Feng et al., Starch composition and its granules distribution in wheat grains in relation to post-anthesis high temperature and drought stress treatments, Starch -Stärke, vol.66, issue.5-6, pp.419-447, 2014.

M. Lu, Q. Sun, D. Zhang, T. Wang, and J. Pan, Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes, Biochem Biophys Res Commun, vol.462, issue.2, pp.144-50, 2015.

P. Lu, N. Chen, A. R. Su, Z. Qi, B. Ren et al., A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stressresponsive genes in Arabidopsis, Plant Mol Biol, vol.63, issue.2, pp.289-305, 2007.

M. Lundström, M. W. Leino, and J. Hagenblad, Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat, BMC Genetics, vol.18, issue.1, 2017.

M. Luo, X. Liu, P. Singh, Y. Cui, L. Zimmerli et al., Chromatin modifications and remodeling in plant abiotic stress responses, Biochim Biophys Acta, vol.2012, pp.129-136, 1819.

E. Maestri, N. Klueva, C. Perrotta, M. Gulli, H. T. Nguyen et al., Molecular genetics of heat tolerance and heat shock proteins in cereals, Plant Mol Biol, vol.48, issue.5, pp.667-81, 2002.

S. Magadum, U. Banerjee, P. Murugan, D. Gangapur, and R. Ravikesavan, Gene duplication as a major force in evolution, Journal of Genetics, vol.92, issue.1, pp.155-61, 2013.

H. Mao, L. Yu, R. Han, Z. Li, and H. Liu, ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis, Plant Physiology and Biochemistry, vol.105, pp.55-66, 2016.

X. Mao, S. Chen, A. Li, C. Zhai, and R. Jing, Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis. Unver T, éditeur, PLoS ONE, vol.9, issue.1, p.84359, 2014.

X. Mao, H. Zhang, X. Qian, A. Li, G. Zhao et al., TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis, Journal of Experimental Botany, vol.63, issue.8, pp.2933-2979, 2012.

X. Mao, H. Zhang, S. Tian, X. Chang, and R. Jing, TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis, J Exp Bot, vol.61, issue.3, pp.683-96, 2010.

T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, and M. Pfeifer, The International Wheat Genome Sequencing Consortium, et al. Ancient hybridizations among the ancestral genomes of bread wheat, Science, vol.345, issue.6194, p.1250092, 2014.

D. J. Mares, K. Norstog, and B. A. Stone, Early Stages in the Development of Wheat Endosperm. I. The Change From Free Nuclear to Cellular Endosperm, Aust J Bot, vol.23, issue.2, pp.311-337, 1975.

M. Mascher, T. A. Richmond, D. J. Gerhardt, A. Himmelbach, L. Clissold et al., Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond, Plant J, vol.76, issue.3, pp.494-505, 2013.

I. E. Mathew and P. Agarwal, May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors, BioEssays, vol.40, issue.8, p.1800018, 2018.

I. E. Mathew, S. Das, A. Mahto, and P. Agarwal, Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size, Frontiers in Plant Science, vol.7, 2016.

A. Maugarny-calès, B. Gonçalves, S. Jouannic, M. Melkonian, K. Wong et al., Apparition of the NAC Transcription Factors Predates the Emergence of Land Plants, Molecular Plant, vol.9, issue.9, pp.1345-1353, 2016.

S. K. Mishra, J. Tripp, S. Winkelhaus, B. Tschiersch, K. Theres et al., In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato, Genes Dev, vol.16, issue.12, pp.1555-67, 2002.

T. Morishita, Y. Kojima, T. Maruta, A. Nishizawa-yokoi, Y. Yabuta et al., Arabidopsis NAC Transcription Factor, ANAC078, Regulates Flavonoid Biosynthesis under Highlight, Plant and Cell Physiology, vol.50, issue.12, pp.2210-2232, 2009.

P. Morris and B. Meleard, Production de blé tendre : des protéines pour assurer les débouchés. Perspectives agricoles n°418. Arvalis-Institut du végétal, pp.52-55, 2015.

E. Murozuka, J. A. Massange-sánchez, K. Nielsen, P. L. Gregersen, and I. Braumann, Genome wide characterization of barley NAC transcription factors enables the identification of grainspecific transcription factors exclusive for the Poaceae family of monocotyledonous plants, Kashkush K, éditeur. PLOS ONE, vol.13, issue.12, p.209769, 2018.

S. K. Muthusamy, M. Dalal, V. Chinnusamy, and K. C. Bansal, Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat, Journal of Plant Physiology, vol.211, pp.100-113, 2017.

I. Nadaud, C. Girousse, C. Debiton, C. Chambon, M. F. Bouzidi et al., Proteomic and morphological analysis of early stages of wheat grain development, PROTEOMICS, vol.10, issue.16, pp.2901-2911, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964356

H. A. Naeem, D. Paulon, S. Irmak, and F. Macritchie, Developmental and environmental effects on the assembly of glutenin polymers and the impact on grain quality of wheat, Journal of Cereal Science, vol.56, issue.1, pp.51-58, 2012.

K. Nakashima, L. Tran, D. Van-nguyen, M. Fujita, K. Maruyama et al., Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice: Rice OsNAC6 functions in stress responses, The Plant Journal, vol.51, issue.4, pp.617-647, 2007.

B. Ney, M. O. Bancal, P. Bancal, I. J. Bingham, J. Foulkes et al., Crop architecture and crop tolerance to fungal diseases and insect herbivory. Mechanisms to limit crop losses, European Journal of Plant Pathology, vol.135, issue.3, pp.561-80, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01000864

H. N. Nguyen, P. A. Sabelli, and B. A. Larkins, Endoreduplication and Programmed Cell Death in the Cereal Endosperm, pp.21-43, 2007.

M. Nicolas, R. Gleadow, and M. Dalling, Effects of Drought and High Temperature on Grain Growth in Wheat, Functional Plant Biology, vol.11, issue.6, p.553, 1984.

P. Ning, C. Liu, J. Kang, and J. Lv, Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition, PeerJ, vol.5, p.3232, 2017.

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Res, vol.33, pp.540-543, 2005.

M. Nuruzzaman, R. Manimekalai, A. M. Sharoni, K. Satoh, H. Kondoh et al., Genomewide analysis of NAC transcription factor family in rice, Gene, vol.465, issue.1-2, pp.30-44, 2010.

M. Nuruzzaman, A. M. Sharoni, and S. Kikuchi, Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants, Frontiers in Microbiology, vol.4, 2013.

M. Nuruzzaman, A. M. Sharoni, K. Satoh, M. R. Karim, J. A. Harikrishna et al., NAC transcription factor family genes are differentially expressed in rice during infections with Rice dwarf virus, Rice black-streaked dwarf virus, Rice grassy stunt virus, Rice ragged stunt virus, and Rice transitory yellowing virus, Frontiers in Plant Science, vol.6, p.676, 2015.

E. S. Ober, T. L. Setter, J. T. Madison, J. F. Thompson, and P. S. Shapiro, Enzyme Activities and RNA Transcripts of Starch and Zein Synthesis, Abscisic Acid, and Cell Division, vol.97, p.11, 1991.

C. Oda-yamamizo, N. Mitsuda, S. Sakamoto, D. Ogawa, M. Ohme-takagi et al., The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves, Scientific Reports, vol.6, issue.1, 2016.

N. Ohama, H. Sato, K. Shinozaki, and K. Yamaguchi-shinozaki, Transcriptional Regulatory Network of Plant Heat Stress Response, Trends in Plant Science, vol.22, issue.1, pp.53-65, 2017.

S. Ohno, Evolution by Gene Duplication, 1970.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, vol.28, issue.8, pp.1166-1173, 2012.

J. E. Olesen and M. Bindi, Consequences of climate change for European agricultural productivity, land use and policy, European Journal of Agronomy, vol.16, issue.4, pp.239-62, 2002.

A. N. Olsen, H. A. Ernst, L. L. Leggio, and K. Skriver, NAC transcription factors: structurally distinct, functionally diverse, Trends in Plant Science, vol.10, issue.2, pp.79-87, 2005.

H. Ooka, K. Satoh, K. Doi, T. Nagata, Y. Otomo et al., Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana, DNA Res, vol.10, issue.6, pp.239-286, 2003.

T. Osborne, Longmans, Green and Co Edition, 1924.

R. K. Pachauri and L. Mayer, Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change

A. R. Paolacci, O. A. Tanzarella, E. Porceddu, and M. Ciaffi, Identification and validation of reference genes for quantitative RT-PCR normalization in wheat, BMC Mol Biol, vol.10, p.11, 2009.

E. Paux, P. Sourdille, J. Salse, C. Saintenac, F. Choulet et al., A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B, Science, vol.322, issue.5898, pp.101-105, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964135

M. M. Peet, D. H. Willits, and R. Gardner, Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress, Journal of Experimental Botany, vol.48, issue.1, pp.101-112, 1997.

H. Pei, N. Ma, J. Tian, J. Luo, J. Chen et al., An NAC transcription factor controls ethyleneregulated cell expansion in flower petals, Plant Physiol, vol.163, issue.2, pp.775-91, 2013.

A. Pellegrineschi, L. M. Noguera, B. Skovmand, R. M. Brito, L. Velazquez et al., Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants, Genome, vol.45, issue.2, pp.421-451, 2002.

X. Peng, Y. Zhao, X. Li, M. Wu, W. Chai et al., Genomewide identification, classification and analysis of NAC type gene family in maize, Journal of Genetics, vol.94, issue.3, pp.377-90, 2015.

C. Pieterse, D. Van-der-does, C. Zamioudis, A. Leon-reyes, and S. Van-wees, Hormonal modulation of plant immunity, Annu Rev Cell Dev Biol, vol.28, pp.489-521, 2012.

G. Pinheiro, C. Marques, M. Costa, A. B. Reis, P. Alves et al., Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response, Gene, vol.444, pp.10-23, 2009.

R. S. Pinto, M. P. Reynolds, K. L. Mathews, C. L. Mcintyre, J. Olivares-villegas et al., Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects, Theoretical and Applied Genetics, vol.121, issue.6, pp.1001-1022, 2010.

A. Plessis, C. Ravel, J. Bordes, F. Balfourier, and P. Martre, Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions, Journal of Experimental Botany, vol.64, issue.12, pp.3627-3671, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964453

C. Pont, F. Murat, S. Guizard, R. Flores, S. Foucrier et al., Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo-and neoduplicated subgenomes, The Plant Journal, vol.76, issue.6, pp.1030-1074, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00964421

K. B. Porter, W. D. Worrall, J. H. Gardenhire, E. C. Gilmore, M. E. Mcdaniel et al., Registration of 'Tam 107' Wheat, Crop Science, vol.27, issue.4, pp.818-827, 1987.

D. Qin, H. Wu, H. Peng, Y. Yao, Z. Ni et al., Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array, BMC Genomics, vol.9, issue.1, p.432, 2008.

F. Qin, Y. Sakuma, L. Tran, K. Maruyama, S. Kidokoro et al., Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress-Responsive Gene Expression, THE PLANT CELL ONLINE, vol.20, issue.6, pp.1693-707, 2008.

A. Qu, Y. Ding, Q. Jiang, and C. Zhu, Molecular mechanisms of the plant heat stress response, Biochemical and Biophysical Research Communications, vol.432, issue.2, pp.203-210, 2013.

S. Rasmussen, P. Barah, M. C. Suarez-rodriguez, S. Bressendorff, P. Friis et al., Transcriptome Responses to Combinations of Stresses in Arabidopsis, Plant Physiol, vol.161, issue.4, pp.1783-94, 2013.

M. Reguera, Z. Peleg, and E. Blumwald, Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops, Biochim Biophys Acta, vol.1819, issue.2, pp.186-94, 2012.

E. Rey, M. Abrouk, G. Keeble-gagnère, M. Karafiátová, J. Vrána et al., Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat, Plant Biotechnology Journal, vol.16, issue.10, pp.1767-77, 2018.

J. L. Riechmann, J. Heard, G. Martin, L. Reuber, C. Jiang et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science, vol.290, issue.5499, pp.2105-2115, 2000.

J. L. Riechmann and E. M. Meyerowitz, The AP2/EREBP family of plant transcription factors, Biol Chem, vol.379, issue.6, pp.633-679, 1998.

H. Rimbert, B. Darrier, J. Navarro, J. Kitt, F. Choulet et al., High throughput SNP discovery and genotyping in hexaploid wheat. Zhang A, éditeur, PLOS ONE, vol.13, issue.1, p.186329, 2018.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, issue.7, p.47, 2015.

M. D. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, issue.3, p.25, 2010.

S. O. Rogers and R. S. Quatrano, Morphological Staging of Wheat Caryopsis Development, American Journal of Botany, vol.70, issue.2, pp.308-319, 1983.

P. J. Rushton, M. T. Bokowiec, S. Han, H. Zhang, J. F. Brannock et al., Tobacco Transcription Factors: Novel Insights into Transcriptional Regulation in the Solanaceae, PLANT PHYSIOLOGY, vol.147, issue.1, pp.280-95, 2008.

A. Saad, X. Li, H. Li, T. Huang, C. Gao et al., A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses, Plant Science, pp.33-40, 2013.

P. A. Sabelli, Replicate and die for your own good: Endoreduplication and cell death in the cereal endosperm, Journal of Cereal Science, vol.56, issue.1, pp.9-20, 2012.

P. A. Sabelli and B. A. Larkins, The development of endosperm in grasses, Plant Physiol, vol.149, issue.1, pp.14-26, 2009.

R. W. Sablowski and E. M. Meyerowitz, A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA, Cell, vol.92, issue.1, pp.93-103, 1998.

M. N. Saidi, D. Mergby, and F. Brini, Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum), Plant Physiology and Biochemistry, vol.112, pp.117-145, 2017.

H. S. Saini, M. Sedgley, and D. Aspinall, Development Anatomy in Wheat of Male Sterility Induced by Heat Stress, Water Deficit or Abscisic Acid, Functional Plant Biol, vol.11, issue.4, pp.243-53, 1984.

Y. Sakuraba, Y. Kim, S. Han, B. Lee, and N. Paek, The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP, The Plant Cell, vol.27, issue.6, pp.1771-87, 2015.

J. Salse, S. Bolot, M. Throude, V. Jouffe, B. Piegu et al., Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution, THE PLANT CELL ONLINE, vol.20, issue.1, pp.11-24, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964148

J. Sambrook, D. W. Russell, and C. Laboratory, Molecular cloning : a laboratory manual, 2001.

R. Sánchez-montesino, L. Bouza-morcillo, J. Marquez, M. Ghita, S. Duran-nebreda et al., A Regulatory Module Controlling GA-Mediated Endosperm Cell Expansion Is Critical for Seed Germination in Arabidopsis, Molecular Plant, vol.12, issue.1, pp.71-85, 2019.

A. Sanjari-pireivatlou and A. Yazdansepas, Evaluation of Wheat (Triticum aestivum L.) Genotypes under Pre-and Post-anthesis Drought Stress Conditions, Journal of Agricultural Science and Technology, vol.10, issue.0, pp.109-130, 2010.

H. Sato, J. Mizoi, H. Tanaka, K. Maruyama, F. Qin et al., Arabidopsis DPB3-1, a DREB2A Interactor, Specifically Enhances Heat Stress-Induced Gene Expression by Forming a Heat Stress-Specific Transcriptional Complex with NF-Y Subunits

, Plant Cell, vol.26, issue.12, pp.4954-73, 2014.

W. Scheible, R. Morcuende, T. Czechowski, C. Fritz, D. Osuna et al.,

. Genome-wide, Reprogramming of Primary and Secondary Metabolism, Protein Synthesis, Cellular Growth Processes, and the Regulatory Infrastructure of Arabidopsis in Response to Nitrogen, Plant Physiol, vol.136, issue.1, pp.2483-99, 2004.

H. Schnyder and U. Baum, Growth of the grain of wheat (Triticum aestivum L.). The relationship between water content and dry matter accumulation, European Journal of Agronomy, vol.1, issue.2, pp.51-58, 1992.

M. A. Semenov, P. Stratonovitch, F. Alghabari, and M. J. Gooding, Adapting wheat in Europe for climate change, Journal of Cereal Science, vol.59, issue.3, pp.245-56, 2014.

N. H. Shah and G. M. Paulsen, Interaction of drought and high temperature on photosynthesis and grain-filling of wheat, Plant and Soil, vol.257, issue.1, pp.219-245, 2003.

S. Shahnejat-bushehri, B. Mueller-roeber, and S. Balazadeh, Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions, Plant Signaling & Behavior, vol.7, issue.12, pp.1518-1539, 2012.

Z. Shangguan, M. Shao, and J. Dyckmans, Interaction of Osmotic Adjustment and Photosynthesis in Winter Wheat Under Soil Drought, Journal of Plant Physiology, vol.154, issue.5-6, pp.753-761, 1999.

H. Shen, Y. Yin, F. Chen, Y. Xu, and R. A. Dixon, A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production, BioEnergy Research, vol.2, issue.4, pp.217-249, 2009.

P. R. Shewry and . Wheat, J Exp Bot, vol.60, issue.6, pp.1537-53, 2009.

P. R. Shewry and S. J. Hey, The contribution of wheat to human diet and health, Food and Energy Security, vol.4, issue.3, pp.178-202, 2015.

P. R. Shewry, R. Mitchell, P. Tosi, Y. Wan, C. Underwood et al., An integrated study of grain development of wheat (cv. Hereward), Journal of Cereal Science, vol.56, issue.1, pp.21-30, 2012.

P. R. Shewry, Y. Popineau, D. Lafiandra, and P. Belton, Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project, Trends in Food Science & Technology, vol.11, issue.12, pp.433-474, 2000.

P. R. Shewry, A. S. Tatham, J. Forde, M. Kreis, and B. J. Miflin, The classification and nomenclature of wheat gluten proteins: A reassessment, Journal of Cereal Science, vol.4, issue.2, pp.97-106, 1986.

K. Shinozaki and K. Yamaguchi-shinozaki, Gene Expression and Signal Transduction in WaterStress Response. Plant Physiology, vol.115, issue.2, pp.327-361, 1997.

P. Shrivastava and R. Kumar, Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation, Saudi Journal of Biological Sciences, vol.22, issue.2, pp.123-154, 2015.

G. A. Slafer, R. Savin, and V. O. Sadras, Coarse and fine regulation of wheat yield components in response to genotype and environment, Field Crops Research, vol.157, pp.71-83, 2014.

N. A. Smith, S. P. Singh, M. Wang, P. A. Stoutjesdijk, A. G. Green et al., Gene expression: Total silencing by intron-spliced hairpin RNAs, Nature, vol.407, issue.6802, pp.319-339, 2000.

I. Sofield, L. T. Evans, M. G. Cook, and I. F. Wardlaw, Factors Influencing the Rate and Duration of Grain Filling in Wheat, Functional Plant Biol, vol.4, issue.5, pp.785-97, 1977.

D. Soltner, Les grandes productions végétales, Collection sciences et techniques agricoles), 1988.

F. W. Sosulski and G. I. Imafidon, Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods, Journal of Agricultural and Food Chemistry, vol.38, issue.6, pp.1351-1357, 1990.

E. Souer, A. Van-houwelingen, D. Kloos, J. Mol, and R. Koes, The No Apical Meristem Gene of Petunia Is Required for Pattern Formation in Embryos and Flowers and Is Expressed at Meristem and Primordia Boundaries, Cell, vol.85, issue.2, pp.159-70, 1996.

N. Sreenivasulu and T. Schnurbusch, A genetic playground for enhancing grain number in cereals, Trends in Plant Science, vol.17, issue.2, pp.91-101, 2012.

R. Srivastava, Y. Deng, and S. H. Howell, Stress sensing in plants by an ER stress sensor/transducer, bZIP28, Frontiers in Plant Science, vol.5, 2014.

S. Stael, P. Kmiecik, P. Willems, K. Van-der-kelen, N. S. Coll et al., Plant innate immunity -sunny side up?, Trends Plant Sci, vol.20, issue.1, pp.3-11, 2015.

D. Subrahmanyam, N. Subash, A. Haris, and A. K. Sikka, Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought, Photosynthetica, vol.44, issue.1, pp.125-134, 2006.

L. Sun, L. Huang, Y. Hong, H. Zhang, F. Song et al., Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses, International Journal of Molecular Sciences, vol.16, issue.2, pp.4306-4332, 2015.

L. Sun, H. Zhang, D. Li, L. Huang, Y. Hong et al., Functions of rice NAC transcriptional factors, ONAC122 and ONAC131, in defense responses against Magnaporthe grisea, Plant Molecular Biology, vol.81, issue.1-2, pp.41-56, 2013.

A. Surget and C. Barron, Histologie du grain de blé, Industrie des Céréales, vol.145, pp.4-7, 2005.

F. Sutton, D. Chen, X. Ge, and D. Kenefick, Cbf genes of the Fr-A2 allele are differentially regulated between long-term cold acclimated crown tissue of freeze-resistant andsusceptible, winter wheat mutant lines, BMC Plant Biology, vol.9, issue.1, p.34, 2009.

N. Suzuki, S. Koussevitzky, R. Mittler, and G. Miller, ROS and redox signalling in the response of plants to abiotic stress, Plant Cell Environ, vol.35, issue.2, pp.259-70, 2012.

F. Tubiello, C. Rosenzweig, R. Goldberg, S. Jagtap, and J. Jones, Effects of climate change on US crop production: simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus, Climate Research, vol.20, pp.259-70, 2002.

C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat, Science, vol.314, issue.5803, pp.1298-301, 2006.

Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki et al., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proc Natl Acad Sci USA, vol.97, issue.21, pp.11632-11639, 2000.

M. Valente, J. Faria, J. Soares-ramos, P. Reis, G. L. Pinheiro et al., The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco, Journal of Experimental Botany, vol.60, issue.2, pp.533-579, 2009.

S. Vanderauwera, N. Suzuki, G. Miller, B. Van-de-cotte, S. Morsa et al., Extranuclear protection of chromosomal DNA from oxidative stress, Proceedings of the National Academy of Sciences, vol.108, issue.4, pp.1711-1717, 2011.

J. Vincent, P. Martre, C. Ravel, A. Baillif, and M. Agier, A weboriented platform for gene regulatory network inference. Application to seed storage proteins in wheat, Institut Pasteur, pp.293-294, 2011.

C. W. Vroemen, A. P. Mordhorst, C. Albrecht, M. Kwaaitaal, S. C. Vries et al., The CUP-SHAPED COTYLEDON3 Gene Is Required for Boundary and Shoot Meristem Formation in Arabidopsis, The Plant Cell, vol.15, issue.7, pp.1563-77, 2003.

A. Wahid, S. Gelani, M. Ashraf, and M. Foolad, Heat tolerance in plants: An overview, Environmental and Experimental Botany, vol.61, issue.3, pp.199-223, 2007.

Y. Wan, R. L. Poole, A. K. Huttly, C. Toscano-underwood, K. Feeney et al., Transcriptome analysis of grain development in hexaploid wheat, BMC Genomics, vol.9, issue.1, p.121, 2008.

B. Wang, J. Wei, N. Song, N. Wang, J. Zhao et al., A novel wheat NAC transcription factor, TaNAC30, negatively regulates resistance of wheat to stripe rust: TaNAC30 negatively regulates wheat resistant to Pst, Journal of Integrative Plant Biology, vol.60, issue.5, pp.432-475, 2018.

C. Wang, R. Jing, X. Mao, X. Chang, and A. Li, TaABC1, a member of the activity of bc1 complex protein kinase family from common wheat, confers enhanced tolerance to abiotic stresses in Arabidopsis, J Exp Bot, vol.62, issue.3, pp.1299-311, 2011.

D. Wang, Y. Yu, Z. Liu, S. Li, Z. Wang et al., Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response, Plant Science, vol.250, pp.30-39, 2016.

F. Wang, H. Chen, Q. Li, W. Wei, W. Li et al., GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants, The Plant Journal, vol.83, issue.2, pp.224-260, 2015.

F. Wang, R. Lin, J. Feng, W. Chen, D. Qiu et al., TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana, Front Plant Sci, vol.6, p.108, 2015.

G. Wang, S. Zhang, X. Ma, Y. Wang, F. Kong et al., A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses, Physiol Plant, vol.158, issue.1, pp.45-64, 2016.

H. Wang, M. Wang, and Q. Cheng, Capturing the Alternative Cleavage and Polyadenylation Sites of 14 NAC Genes in Populus Using a Combination of 3?-RACE and High-Throughput Sequencing, Molecules, vol.23, issue.3, p.608, 2018.

J. Wang, L. Zhang, Y. Cao, C. Qi, S. Li et al., CsATAF1 Positively Regulates Drought Stress Tolerance by an ABA-Dependent Pathway and by Promoting ROS Scavenging in Cucumber, Plant Cell Physiol, vol.59, issue.5, pp.930-975, 2018.

L. Wang, X. Li, S. Chen, and G. Liu, Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA 3, Biotechnology Letters, vol.31, issue.2, pp.313-322, 2009.

W. Wang, Y. Yuan, C. Yang, S. Geng, Q. Sun et al., Characterization, Expression, and Functional Analysis of a Novel NAC Gene Associated with Resistance to Verticillium Wilt and Abiotic Stress in Cotton. G3&#58, Genes|Genomes|Genetics, vol.6, issue.12, pp.3951-61, 2016.

W. Wang, H. Zheng, C. Fan, J. Li, J. Shi et al., High Rate of Chimeric Gene Origination by Retroposition in Plant Genomes, Plant Cell, vol.18, issue.8, pp.1791-802, 2006.

Y. Wang, F. Sun, H. Cao, H. Peng, Z. Ni et al., TamiR159 Directed Wheat TaGAMYB Cleavage and Its Involvement in Anther Development and Heat Response, PLoS One, vol.7, issue.11, 2012.

I. F. Wardlaw and L. Moncur, The Response of Wheat to High Temperature Following Anthesis. I. The Rate and Duration of Kernel Filling, Functional Plant Biol, vol.22, issue.3, pp.391-398, 1995.

D. H. Welner, S. Lindemose, J. G. Grossmann, N. E. Møllegaard, A. N. Olsen et al., DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors, Biochemical Journal, vol.444, issue.3, pp.395-404, 2012.

T. Wicker, J. P. Buchmann, and B. Keller, Patching gaps in plant genomes results in gene movement and erosion of colinearity, Genome Res, vol.20, issue.9, pp.1229-1266, 2010.

C. L. Wiegand and J. A. Cuellar, Duration of Grain Filling and Kernel Weight of Wheat as Affected by Temparature 1, Crop Science, vol.21, issue.1, pp.95-101, 1981.

M. Wright, J. Dawson, E. Dunder, J. Suttie, J. Reed et al., Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker, Plant Cell Reports, vol.20, issue.5, pp.429-465, 2001.

A. Wu, A. D. Allu, P. Garapati, H. Siddiqui, H. Dortay et al., JUNGBRUNNEN1, a Reactive Oxygen Species-Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis, THE PLANT CELL ONLINE, vol.24, issue.2, pp.482-506, 2012.

N. Xia, G. Zhang, X. Liu, L. Deng, G. Cai et al., Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses, Molecular Biology Reports, vol.37, issue.8, pp.3703-3715, 2010.

N. Xia, G. Zhang, Y. Sun, L. Zhu, L. Xu et al., TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses, Physiological and Molecular Plant Pathology, vol.74, issue.5-6, pp.394-402, 2010.

W. Xiao, Y. Yang, and J. Yu, ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.), Plant Science, vol.266, pp.83-94, 2018.

Y. Xiao, X. Huang, Y. Shen, and Z. Huang, A novel wheat ?-amylase inhibitor gene, TaHPS, significantly improves the salt and drought tolerance of transgenic Arabidopsis, Physiologia Plantarum, vol.148, issue.2, pp.273-83, 2013.

Q. Xie, G. Frugis, D. Colgan, and N. Chua, Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development, Genes Dev, vol.14, issue.23, pp.3024-3060, 2000.

Q. Xie, A. P. Sanz-burgos, H. Guo, J. A. García, and C. Gutiérrez, GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein, Plant Mol Biol, vol.39, issue.4, pp.647-56, 1999.

B. Xu, M. Ohtani, M. Yamaguchi, K. Toyooka, M. Wakazaki et al., Contribution of NAC Transcription Factors to Plant Adaptation to Land, Science, vol.343, issue.6178, pp.1505-1513, 2014.

C. Xu, M. Wang, L. Zhou, T. Quan, and G. Xia, Heterologous Expression of the Wheat Aquaporin Gene TaTIP2;2 Compromises the Abiotic Stress Tolerance of Arabidopsis thaliana, Ali J, éditeur. PLoS ONE, vol.8, issue.11, p.79618, 2013.

G. Xu, J. Zhang, H. M. Lam, Z. Wang, and J. Yang, Hormonal changes are related to the poor grain filling in the inferior spikelets of rice cultivated under non-flooded and mulched condition, Field Crops Research, vol.101, issue.1, pp.53-61, 2007.

Z. Xu, . Gongbuzhaxi, C. Wang, F. Xue, H. Zhang et al., Wheat NAC transcription factor TaNAC29 is involved in response to salt stress, Plant Physiology and Biochemistry, vol.96, pp.356-63, 2015.

Z. Xu, L. Liu, Z. Ni, P. Liu, M. Chen et al., W55a Encodes a Novel Protein Kinase That Is Involved in Multiple Stress Responses, Journal of Integrative Plant Biology, vol.51, issue.1, pp.58-66, 2009.

G. Xue, S. Sadat, J. Drenth, and C. L. Mcintyre, The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes, J Exp Bot, vol.65, issue.2, pp.539-57, 2014.

G. Xue, H. M. Way, T. Richardson, J. Drenth, P. A. Joyce et al., Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat, Mol Plant, vol.4, issue.4, pp.697-712, 2011.

K. Yamasaki, T. Kigawa, M. Inoue, S. Watanabe, M. Tateno et al., Structures and evolutionary origins of plant-specific transcription factor DNA-binding domains, Plant Physiology and Biochemistry, vol.46, issue.3, pp.394-401, 2008.

J. Yang, J. Zhang, Z. Wang, Q. Zhu, and W. Wang, Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling, Plant Physiol, vol.127, issue.1, pp.315-338, 2001.

X. Yang, K. He, C. X. Chai, G. Wang, Y. Jia et al., Miscanthus NAC transcription factor MlNAC12 positively mediates abiotic stress tolerance in transgenic Arabidopsis, Plant Science, vol.277, pp.229-270, 2018.

C. Yanhui, Y. Xiaoyuan, H. Kun, L. Meihua, L. Jigang et al., The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family, Plant Mol Biol, vol.60, issue.1, pp.107-131, 2006.

T. Yoshida, N. Ohama, J. Nakajima, S. Kidokoro, J. Mizoi et al., Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression, Molecular Genetics and Genomics, vol.286, issue.5-6, pp.321-353, 2011.

T. E. Young and D. R. Gallie, Programmed cell death during endosperm development, Plant Mol Biol, vol.44, issue.3, pp.283-301, 2000.

X. Yu, Y. Liu, S. Wang, Y. Tao, Z. Wang et al., NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis, Plant Cell Reports, vol.35, issue.3, pp.613-640, 2016.

J. C. Zadoks, T. T. Chang, and C. F. Konzak, A decimal code for the growth stages of cereals, Weed Research, vol.14, issue.6, pp.415-436, 1974.

A. Zhang, N. Li, L. Gong, X. Gou, B. Wang et al., Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat, Plant Physiology, p.819, 2017.

B. Zhang and S. Horvath, A General Framework for Weighted Gene Co-Expression Network Analysis, Statistical Applications in Genetics and Molecular Biology, vol.4, issue.1, 2005.

B. Zhang, W. Li, X. Chang, R. Li, and R. Jing, Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat, PLoS ONE, vol.9, issue.7, p.102917, 2014.

H. Zhang, X. Mao, R. Jing, X. Chang, and H. Xie, Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses, J Exp Bot, vol.62, issue.3, pp.975-88, 2011.

H. Zhang, X. Mao, C. Wang, and R. Jing, Overexpression of a Common Wheat Gene TaSnRK2.8 Enhances Tolerance to Drought, Salt and Low Temperature in Arabidopsis, PLOS ONE, vol.5, issue.12, p.16041, 2010.

L. Zhang, L. Zhang, C. Xia, G. Zhao, J. Jia et al., The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants, Front Plant Sci, vol.6, 2016.

L. Zhang, C. Leng, H. Luo, X. Wu, Z. Liu et al., Sweet Sorghum Originated through Selection of Dry, a Plant-Specific NAC Transcription Factor Gene, The Plant Cell, vol.30, issue.10, pp.2286-307, 2018.

R. Zhang, S. Geng, Z. Qin, Z. Tang, C. Liu et al., The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat, BMC Genomics, vol.20, issue.1, 2019.

D. Zhao, A. P. Derkx, D. Liu, P. Buchner, and M. J. Hawkesford, Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat, Plant Biol (Stuttg), vol.17, issue.4, pp.904-917, 2015.

X. Zhao, X. Yang, P. S. He, G. Wang, X. Tang et al., The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis, Gene, vol.586, issue.1, pp.158-69, 2016.

Y. Zhao, X. Tian, F. Wang, L. Zhang, M. Xin et al., Characterization of wheat MYB genes responsive to high temperatures, BMC Plant Biology, vol.17, issue.1, 2017.

X. Zheng, B. Chen, G. Lu, and B. Han, Overexpression of a NAC transcription factor enhances rice drought and salt tolerance, Biochemical and Biophysical Research Communications, vol.379, issue.4, pp.985-994, 2009.

Y. Zheng, Z. Wang, X. Sun, A. Jia, G. Jiang et al., Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage, Environmental and Experimental Botany, vol.62, issue.2, pp.129-167, 2008.

X. Zheng, S. Tang, S. Zhu, Q. Dai, and T. Liu, Identification of an NAC Transcription Factor Family by Deep Transcriptome Sequencing in Onion (Allium cepa L.). Min XJ, éditeur, PLOS ONE. 22 juin, vol.11, issue.6, p.157871, 2016.

R. Zhong, C. Lee, and Z. Ye, Global Analysis of Direct Targets of Secondary Wall NAC Master Switches in Arabidopsis, Molecular Plant, vol.3, issue.6, pp.1087-103, 2010.

S. Zhou, W. Hu, X. Deng, Z. Ma, L. Chen et al., Overexpression of the Wheat Aquaporin Gene, TaAQP7, Enhances Drought Tolerance in Transgenic Tobacco, éditeur. PLoS ONE, vol.7, issue.12, p.52439, 2012.

G. Zhu, G. Chen, J. Zhu, Y. Zhu, X. Lu et al., Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L, PLOS ONE, vol.10, issue.10, p.139794, 2015.

M. Zhu, G. Chen, S. Zhou, Y. Tu, Y. Wang et al., A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation, Plant Cell Physiol, vol.55, issue.1, pp.119-154, 2014.

M. Zhu, Z. Hu, S. Zhou, L. Wang, T. Dong et al., Molecular Characterization of Six TissueSpecific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum), Journal of Plant Growth Regulation, vol.33, issue.4, pp.730-774, 2014.

T. Zhu, E. Nevo, D. Sun, and J. Peng, Phylogenetic analyses unravel the evolutionnary history of NAC proteins in plants, Evolution, vol.66, issue.6, pp.1833-1881, 2012.

X. Zhu, J. Chen, Z. Xie, J. Gao, G. Ren et al., Jasmonic acid promotes degreening via MYC2/3/4-and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes, The Plant Journal, vol.84, issue.3, pp.597-610, 2015.

X. Zhu, S. Liu, C. Meng, L. Qin, L. Kong et al., WRKY Transcription Factors in Wheat and Their Induction by Biotic and Abiotic Stress, Plant Molecular Biology Reporter, vol.31, issue.5, pp.1053-67, 2013.

X. Zhuo, T. Zheng, Z. Zhang, Y. Zhang, L. Jiang et al., Genome-Wide Analysis of the NAC Transcription Factor Gene Family Reveals Differential Expression Patterns and Cold-Stress Responses in the Woody Plant Prunus mume, Genes, vol.9, issue.10, p.494, 2018.

K. E. Zinn, M. Tunc-ozdemir, and J. F. Harper, To clarify the nature and the extent of duplications, we identified all the duplicated fragments with a minimal length of 2 Kb and at least 80% identity. A total of 119 non-overlapping duplicated fragments were identified, of which 54 fragments correspond to intrachromosomal duplications (31 on chromosome 4B and 23 on 5A). The remaining 65 duplicated fragments correspond to interchromosomal duplications. The majority of these duplications (66.7%) represents a length less than 4 Kb, but a fragment has the maximum size of 9,006 bp. Duplications between loci of these genomic regions are presented in Fig 3. About 41% of these fragments (49) are duplicated in the sense orientation (S5 Table). To test whether some duplicated genes could evolve differently, we compared the normalized expression patterns of duplicated genes in five wheat organs during three developmental stages: root (harvested at seedling, three leaves and meiosis), stem (harvested at spike at 1 cm, two nodes and anthesis), leaf (seedling, three tillers avec 50?Cd after anthesis), spike (harvested at two nodes, meiosis and anthesis), and grain, 278 Kb long (666499425 to 666708703 bp) locus from the 5A containing four TaNAC genes, vol.61, p.56, 2010.

, Circos diagram of chromosomes 4B (red, 396.990 Kb) and 5A (blue, 209.278 Kb) genomic regions containing nine TaNAC genes (yellow features). Green bands link two chromosomal regions with more than 80% of homology and a minimal length of 2 Kb, vol.3

,

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 20199-03-06.

, Pearson correlations between duplicated genes of the studied 4B-4D-7B-5A chromosomal regions during development (A) and stress (B)

,

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201910-03-06.

. Allez-y, four of these transcripts (TraesCS3A01G077900.1, TraesCS5A01G245900.2, TraesCS7B01G056300.1 and TraesCS7B01G100300.1) were down-regulated and the last one was up-regulated (TraesCS7A01G569100 .1) only at 450?Cd (Fig 9B, Fig 9C)

. Zhao, In this work, the authors highlighted an increase in nitrogen concentration in wheat grains from lines over-expressing the TaNAC-S protein (TaNAC1) and a stay-green phenotype. These authors concluded that NAC TFs, expressed mainly in the leaves, may participate to delay post-anthesis foliar senescence (stay-green phenotype) size. Among the seven up-regulated TaNAC grain-specific genes, one gene (TraesCS7A01G569100.1) was found to be homologous to ONAC20 and ONAC026 described in rice [24]. In this latter study, the authors showed that three NAC genes (ONAC020, ONAC026 and ONAC023) are expressed specifically during seed development at a very high level, suggesting a potential role of these genes, via their heteromerization capability, in the regulation of the grain size/weight. Another gene, TraesCS3A01G077900.1, was found to be homologous to a barley HvNAC019 gene which is preferentially expressed in grain, grain filling stage (450?Cd), was found to be similar to TaNAC1/TaNACS already described by, vol.37

, Drought stress during grain filling stimulates leaf senescence and enhances remobilization to the grains. For example, the three members of the same homoeologous group, located on chromosome 5 (TraesCS5A01G143200.1 (Fig 9A), TraesCS5B01G142100.1 and TraesCS5D01G148800.1) were found similar to TaNAC69. This gene has been well-characterized as a drought stress regulator [85], and was shown to improve grain yield. However, its expression was found mainly in roots compared to leaves, TaNAC genes are up-regulated at the grain filling stage in response to drought, vol.87

, Fig 8C) was up-regulated in leaves under drought at 450?Cd in our field conditions. In contrast, its homolog, TaGRAB2, which was involved in response to biotic stress (a plant DNA virus Geminiviridae), showed an expression pattern barely detectable in leaves, These findings suggest that the same gene could be expressed or not in leaves, depending on the stress. Finally, no characterized homolog has been found in the literature for TraesCS3B01G303800.1 and TraesCS6D01G390200.1. These genes may be interesting candidates for field drought tolerance and require further investigations, vol.39, 201101100.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201919-03-06.

, Grain-specific TaNAC genes respond differentially to drought according to the genotype. Five TaNAC genes (TraesCS3A01G077900.1, TraesCS5A01G245900.2, TraesC-S7A01G569100.1, TraesCS7B01G056300.1, and TraesCS7B01G100300.1) are grain-specific

, These results suggest that, depending on the genetic background, those genes may harbor different alleles that could affect their drought tolerance. Four of these five genes (TraesCS7A01G569100.1, TraesCS5A01G245900.2, TraesCS7B01G056300.1, and TraesCS7B01G100300abiotic stresses (drought and high temperature), such as other NAC genes like MlNAC9, whereas they are down-regulated (4 genes) or up-regulated later during the grain filling stage (TraesCS7A01G569100.1), in the other genotype

, References 1. Harmer SL. The circadian system in higher plants, Annu Rev Plant Biol, vol.60, p.19575587, 2009.

S. Khan, M. Li, S. Wang, and H. Yin, Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress, Int J Mol Sci. 31 mai, vol.19, issue.6, 2018.

J. M. Franco-zorrilla, I. Ló-pez-vidriero, J. L. Carrasco, M. Godoy, P. Vera et al., DNA-binding specificities of plant transcription factors and their potential to define target genes, Proc Natl Acad Sci, vol.111, issue.6, p.24477691, 2014.

J. L. Riechmann, J. Heard, G. Martin, L. Reuber, C. Jiang et al., Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes, Science. 15 dé c, vol.290, issue.5499, p.11118137, 2000.

V. Gahlaut, V. Jaiswal, A. Kumar, and P. K. Gupta, Transcription factors involved in drought tolerance and their possible role in developing drought tolerant cultivars with emphasis on wheat

, Theor Appl Genet, vol.129, issue.11, p.27738714, 2016.

J. L. Riechmann and E. M. Meyerowitz, The AP2/EREBP family of plant transcription factors, Biol Chem. juin, vol.379, issue.6, p.9687012, 1998.

Y. Uno, T. Furihata, H. Abe, R. Yoshida, K. Shinozaki et al., Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions, Proc Natl Acad Sci, vol.97, issue.21, p.11005831, 2000.

M. Jakoby, B. Weisshaar, W. Drö-ge-laser, J. Vicente-carbajosa, J. Tiedemann et al., bZIP transcription factors in Arabidopsis, Trends Plant Sci. mars, vol.7, issue.3, p.11906833, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00140514

H. Abe, T. Urao, T. Ito, M. Seki, K. Shinozaki et al., Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) Function as Transcriptional Activators in Abscisic Acid Signaling, The Plant Cell. 1 janv, vol.15, issue.1, p.12509522, 2003.

M. Fujita, Y. Fujita, K. Maruyama, M. Seki, K. Hiratsu et al., A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway, Plant J. sept, vol.39, issue.6, pp.863-76, 2004.

L. Tran, K. Nakashima, Y. Sakuma, S. D. Simpson, Y. Fujita et al., Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive ciselement in the early responsive to dehydration stress 1 promoter, Plant Cell. sept, vol.16, issue.9, pp.2481-98, 2004.

L. Tran, K. Nakashima, Y. Sakuma, Y. Osakabe, F. Qin et al., Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis, Plant J. janv, vol.49, issue.1, p.17233795, 2007.

C. Yanhui, Y. Xiaoyuan, H. Kun, L. Meihua, L. Jigang et al., The MYB Transcription Factor Superfamily of Arabidopsis: Expression Analysis and Phylogenetic Comparison with the Rice MYB Family, Plant Mol Biol. 1 janv, vol.60, issue.1, p.16463103, 2006.

C. Lata and M. Prasad, Role of DREBs in regulation of abiotic stress responses in plants, J Exp Bot, vol.62, issue.14, p.21737415, 2011.

X. Zhu, S. Liu, C. Meng, L. Qin, L. Kong et al., WRKY Transcription Factors in Wheat and Their Induction by Biotic and Abiotic Stress, Plant Molecular Biology Reporter, vol.31, issue.5, pp.1053-67, 2013.

Q. Huang, Y. Wang, B. Li, J. Chang, M. Chen et al., NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis, BMC Plant Biol, vol.15, p.26536863, 2015.

M. Nuruzzaman, R. Manimekalai, A. M. Sharoni, K. Satoh, H. Kondoh et al., Genome-wide analysis of NAC transcription factor family in rice, Gene, vol.465, issue.1-2, p.20600702, 2010.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201922-03-06.

G. Zhu, G. Chen, J. Zhu, Y. Zhu, X. Lu et al., Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L, PLOS ONE, vol.10, issue.10, p.26444425, 2015.

G. Pinheiro, C. Marques, M. Costa, A. B. Reis, P. Alves et al., Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response, Gene. 1 juill, vol.444, p.19497355, 2009.

M. Lu, Q. Sun, D. Zhang, T. Wang, and J. Pan, Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes, Biochem Biophys Res Commun. 26 juin, vol.462, issue.2, p.25937463, 2015.

M. N. Saidi, D. Mergby, and F. Brini, Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum), Plant Physiol Biochem. mars, vol.112, p.28064119, 2017.

E. Moyano, F. J. Martínez-rivas, R. Blanco-portales, F. J. Molina-hidalgo, R. -. Varas et al., Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria î ananassa fruits, PLOS ONE. 3 mai, vol.13, issue.5, p.29723301, 2018.

H. Ooka, K. Satoh, K. Doi, T. Nagata, Y. Otomo et al., Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana, DNA Res. 31 dé c, vol.10, issue.6, p.15029955, 2003.

I. E. Mathew, S. Das, A. Mahto, and P. Agarwal, Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size, Front Plant Sci, vol.7, p.27872632, 2016.

Q. Xie, G. Frugis, D. Colgan, and N. H. Chua, Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development, Genes Dev. 1 déc, vol.14, issue.23, p.11114891, 2000.

Y. Hao, W. W. Song, Q. Chen, H. Zhang, Y. Wang et al., Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants, Plant J. oct, vol.68, issue.2, p.21707801, 2011.

A. N. Olsen, H. A. Ernst, L. L. Leggio, and K. Skriver, NAC transcription factors: structurally distinct, functionally diverse, Trends Plant Sci. févr, vol.10, issue.2, p.15708345, 2005.

S. Kim, S. Lee, P. J. Seo, S. Kim, J. Kim et al., Genome-scale screening and molecular characterization of membrane-bound transcription factors in Arabidopsis and rice, Genomics. janv, vol.95, issue.1, p.19766710, 2010.

E. Souer, A. Van-houwelingen, D. Kloos, J. Mol, and R. Koes, The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell. 19 avr, vol.85, issue.2, p.8612269, 1996.

R. W. Sablowski and E. M. Meyerowitz, A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA, Cell. 9 janv, vol.92, issue.1, p.9489703, 1998.

Y. Guo and S. Gan, AtNAP, a NAC family transcription factor, has an important role in leaf senescence, Plant J. mai, vol.46, issue.4, p.16640597, 2006.

N. Mitsuda, M. Seki, K. Shinozaki, and M. Ohme-takagi, The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell, vol.17, p.16214898, 2005.

Y. Kim, S. Kim, J. Park, H. Park, M. Lim et al., A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, vol.18, p.17098812, 2006.

S. Kim, A. Lee, H. Yoon, and C. Park, A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination, Plant J. juill, vol.55, issue.1, p.18363782, 2008.

C. Uauy, A. Distelfeld, T. Fahima, A. Blechl, and J. Dubcovsky, A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat, Science, vol.314, issue.5803, p.17124321, 2006.

C. Liang, Y. Wang, Y. Zhu, J. Tang, B. Hu et al., OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice

, Proc Natl Acad Sci USA. 8 juill, vol.111, issue.27, p.24951508, 2014.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201923-03-06.

D. Zhao, A. P. Derkx, D. Liu, P. Buchner, and M. J. Hawkesford, Overexpression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat, Plant Biol (Stuttg). juill, vol.17, issue.4, pp.904-917, 2015.

X. He, B. Qu, W. Li, X. Zhao, W. Teng et al., The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. Plant Physiol, vol.169, p.26371233, 2015.

Q. Xie, A. P. Sanz-burgos, H. Guo, and J. A. García, Gutié rrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein, Plant Mol Biol. mars, vol.39, issue.4, p.10350080, 1999.

F. Wang, R. Lin, J. Feng, W. Chen, D. Qiu et al., TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana, Front Plant Sci, vol.6, p.25774162, 2015.

H. Hu, M. Dai, J. Yao, X. B. Li, X. Zhang et al., Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice, Proc Natl Acad Sci USA. 29 août, vol.103, issue.35, p.16924117, 2006.

X. Mao, S. Chen, A. Li, C. Zhai, and R. Jing, Novel NAC transcription factor TaNAC67 confers enhanced multiabiotic stress tolerances in Arabidopsis, PLoS ONE, vol.9, issue.1, p.24427285, 2014.

Y. Fang, K. Liao, H. Du, Y. Xu, H. Song et al., A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice, J Exp Bot, vol.66, issue.21, pp.6803-6820, 2015.

A. Haudry, A. Cenci, C. Ravel, T. Bataillon, D. Brunel et al., Grinding up wheat: a massive loss of nucleotide diversity since domestication, Mol Biol Evol. juill, vol.24, issue.7, p.17443011, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00697942

P. Borrill, S. A. Harrington, and C. Uauy, Genome-Wide Sequence and Expression Analysis of the NAC Transcription Factor Family in Polyploid Wheat. G3 (Bethesda), vol.07, pp.3019-3048, 2017.

B. J. Clavijo, L. Venturini, C. Schudoma, G. G. Accinelli, G. Kaithakottil et al., An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations, Genome Res, vol.27, issue.5, p.28420692, 2017.

R. Appels, K. Eversole, C. Feuillet, and B. Keller, Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, Consortium (IWGSC) TIWGS, Investigators IR principal, vol.361, p.30115783, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01885399

P. Borrill, R. Ramirez-gonzalez, and C. Uauy, expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform, Plant Physiol, vol.170, issue.4, p.26869702, 2016.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics. 15 avr, vol.28, issue.8, p.22368248, 2012.

P. Jones, D. Binns, H. Chang, M. Fraser, W. Li et al., InterProScan 5: genome-scale protein function classification, Bioinformatics. 1 mai, vol.30, issue.9, p.24451626, 2014.

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, p.20709691, 2010.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol Biol Evol, vol.33, issue.7, p.27004904, 2016.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, issue.5, p.15034147, 2004.

L. Noé and G. Kucherov, YASS: enhancing the sensitivity of DNA similarity search, Nucleic Acids Res. 1 juill, vol.33, p.15980530, 2005.

F. Choulet, A. Alberti, S. Theil, N. Glover, V. Barbe et al., Structural and functional partitioning of bread wheat chromosome 3B, Science. 18 juill, vol.345, issue.6194, p.1249721, 2014.

Z. Liu, M. Xin, J. Qin, H. Peng, Z. Ni et al., Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.), BMC Plant Biol. 20 juin, vol.15, p.26092253, 2015.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201924-03-06.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res. 20 avr, vol.43, issue.7, p.25605792, 2015.

E. A. Howe, R. Sinha, D. Schlauch, and J. Quackenbush, RNA-Seq analysis in MeV, Bioinformatics, vol.27, issue.22, p.21976420, 2011.

R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper, vol.56, p.15

G. A. Slafer, R. Savin, and V. O. Sadras, Coarse and fine regulation of wheat yield components in response to genotype and environment, Field Crops Research. 15 févr, vol.157, pp.71-83, 2014.

D. Capron, S. Mouzeyar, A. Boulaflous, C. Girousse, C. Rustenholz et al., Transcriptional profile analysis of E3 ligase and hormone-related genes expressed during wheat grain development, BMC Plant Biol. 14 mars, vol.12, p.22416807, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01189698

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods. dé c, vol.25, issue.4, p.11846609, 2001.

Y. Tang, M. Horikoshi, and L. W. Ggfortify, Unified Interface to Visualize Statistical Results of Popular R Packages, vol.8, p.12, 2016.

M. C. Baloglu, M. T. Oz, H. A. Oktem, and M. Yucel, Expression Analysis of TaNAC69-1 and TtNAMB-2, Wheat NAC Family Transcription Factor Genes Under Abiotic Stress Conditions in Durum Wheat (Triticum turgidum), Plant Mol Biol Rep, vol.30, issue.5, pp.1246-52, 2012.

M. C. Baloglu, B. Inal, M. Kavas, and T. Unver, Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species, Gene, vol.550, issue.1, p.25130909, 2014.

X. Li, B. Feng, F. Zhang, Y. Tang, L. Zhang et al., Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Front Plant Sci, vol.7, p.27899926, 2016.

X. Peng, Y. Zhao, X. Li, M. Wu, W. Chai et al., Genomewide identification, classification and analysis of NAC type gene family in maize, J Genet. sept, vol.94, issue.3, pp.377-90, 2015.

N. Huo, S. Zhang, T. Zhu, L. Dong, Y. Wang et al., Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. Front Plant Sci, vol.9, p.29875781, 2018.

P. Ning, C. Liu, J. Kang, and J. Lv, Genome-wide analysis of WRKY transcription factors in wheat (Triticum aestivum L.) and differential expression under water deficit condition, PeerJ. 4 mai, vol.5, p.28484671, 2017.

J. Salse, S. Bolot, M. Throude, V. Jouffe, B. Piegu et al., Identification and Characterization of Shared Duplications between Rice and Wheat Provide New Insight into Grass Genome Evolution, The Plant Cell. 1 janv, vol.20, issue.1, p.18178768, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964148

T. Wicker, J. P. Buchmann, and B. Keller, Patching gaps in plant genomes results in gene movement and erosion of colinearity, Genome Res. sept, vol.20, issue.9, pp.1229-1266, 2010.

N. M. Glover, J. Daron, L. Pingault, K. Vandepoele, E. Paux et al., Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B, Genome Biol. 9 sept, vol.16, p.26353816, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01244498

S. Magadum, U. Banerjee, P. Murugan, D. Gangapur, and R. Ravikesavan, Gene duplication as a major force in evolution, Journal of Genetics. avr, vol.92, issue.1, p.23640422, 2013.

J. Brosius, Retroposons-seeds of evolution, Science. 15 fé vr, vol.251, issue.4995, 1991.

X. Mao, H. Zhang, X. Qian, A. Li, G. Zhao et al., TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis, J Exp Bot. mai, vol.63, issue.8, p.22330896, 2012.

Y. Tang, M. Liu, S. Gao, Z. Zhang, X. Zhao et al., Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco, Physiol Plant. mars, vol.144, issue.3, p.22082019, 2012.

Q. Huang and Y. Wang, Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Front. Plant Sci, vol.7, p.27933076, 2016.

D. Chen, S. Chai, C. L. Mcintyre, and G. Xue, Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance, Plant Cell Rep. fé vr, vol.37, issue.2, p.29079898, 2018.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201925-03-06.

L. Zhang, L. Zhang, C. Xia, G. Zhao, J. Jia et al., The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants. Front Plant Sci, vol.6, p.26834757, 2016.

H. Shen, Y. Yin, F. Chen, Y. Xu, and R. A. Dixon, A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production, BioEnergy Research. dé c, vol.2, issue.4, pp.217-249, 2009.

I. E. Mathew and P. Agarwal, May the Fittest Protein Evolve: Favoring the Plant-Specific Origin and Expansion of NAC Transcription Factors, Bioessays. 25 juin, p.29938806, 2018.

H. Pei, N. Ma, J. Tian, J. Luo, J. Chen et al., An NAC transcription factor controls ethylene-regulated cell expansion in flower petals, Plant Physiol, vol.163, issue.2, pp.775-91, 2013.

M. W. Christiansen, P. B. Holm, and P. L. Gregersen, Characterization of barley (Hordeum vulgare L.) NAC transcription factors suggests conserved functions compared to both monocots and dicots, BMC Res Notes. 19 aoû t, vol.4, p.21851648, 2011.

B. Zhang, W. Li, X. Chang, R. Li, and R. Jing, Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat. Ali J, é diteur, PLoS ONE. 18 juill, vol.9, issue.7, p.25036550, 2014.

G. Xue, H. M. Way, T. Richardson, J. Drenth, P. A. Joyce et al., Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat, Mol Plant. juill, vol.4, issue.4, p.21459832, 2011.

D. Chen, T. Richardson, S. Chai, L. Mcintyre, C. Rae et al., Drought-Up-Regulated TaNAC69-1 is a Transcriptional Repressor of TaSHY2 and TaIAA7, and Enhances Root Length and Biomass in Wheat, Plant Cell Physiol. oct, vol.57, issue.10, p.27440550, 2016.

J. S. Jeong, Y. S. Kim, K. H. Baek, H. Jung, S. Ha et al., Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions, Plant Physiol. mai, vol.153, issue.1, p.20335401, 2010.

C. Girousse, J. Roche, C. Guerin, L. Gouis, J. Balzegue et al., Coexpression network and phenotypic analysis identify metabolic pathways associated with the effect of warming on grain yield components in wheat, PLoS ONE, vol.13, issue.6, p.29940014, 2018.

X. Zhao, X. Yang, P. S. He, G. Wang, X. Tang et al., The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis, Gene. 15 juill, vol.586, issue.1, p.27085481, 2016.

Q. Han, J. Zhang, H. Li, Z. Luo, K. Ziaf et al., Identification and expression pattern of one stressresponsive NAC gene from Solanum lycopersicum, Mol Biol Rep. fé vr, vol.39, issue.2, p.21637957, 2012.

Y. Hong, H. Zhang, L. Huang, D. Li, and F. Song, Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice, Front Plant Sci, vol.7, p.26834774, 2016.

A. Conesa, S. Gö, and . Blast2go, A comprehensive suite for functional analysis in plant genomics, Int J Plant Genomics, p.18483572, 2008.

N. Xia, G. Zhang, Y. Sun, L. Zhu, L. Xu et al., TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses, Physiological and Molecular Plant Pathology. 1 sept, vol.74, issue.5, pp.394-402, 2010.

A. Macovei and N. Tuteja, microRNAs targeting DEAD-box helicases are involved in salinity stress response in rice, Oryza sativa L.). BMC Plant Biol, vol.12, p.23043463, 2012.

H. Takasaki, K. Maruyama, S. Kidokoro, Y. Ito, Y. Fujita et al., The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice

, Mol Genet Genomics. sept, vol.284, issue.3, p.20632034, 2010.

Y. Fang, K. Xie, and L. Xiong, Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice, J Exp Bot. mai, vol.65, issue.8, p.24604734, 2014.

, Genome-wide analysis, expansion and expression of the NAC family under abiotic stresses in wheat, PLOS ONE, 201926-03-06.