A. Abolghasemi, M. D. Piggott, J. Spinneken, A. Viré, and C. J. Cotter, Simulating tidal turbines with mesk optimisation and RANS turbulence models, 2015.

T. A. Adcock, S. Draper, and T. Nishino, Tidal power generation -A review of hydrodynamic modelling, In Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy, vol.229, issue.7, 2015.

R. Ahmadian, R. Falconer, and B. Bockelmann-evans, Far-field modelling of the hydro-environmental impact of tidal stream turbines, vol.38, pp.107-116, 2012.

A. Bahaj, A. Molland, J. Chaplin, and W. Batten, Power and thrust measurement of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, 2007.

L. Bai, R. R. Spence, and G. Dudziak, Investigation of the influence of array arrangement and spacing on Tidal Energy Converter (TEC) performance using a 3-dimensional CFD model, Proceedings of the 8th European Wave and Tidal Energy Conference, pp.654-660, 2009.

F. Baratchi, T. L. Jeans, and A. G. Gerber, Actuator line simulation of tidal turbine in straight and yawed flows, International Journal of Marine Energy, vol.19, pp.235-255, 2017.

A. Betz, Das maximum der theoretisch möglichen ausnutzung des windes durch windmotoren, Gesamte Turbinenwesen, Heft, vol.26, 1920.

T. Blackmore, W. M. Batten, and A. S. Bahaj, Influence of turbulence on the wake of a marine current turbine simulator, Proccedings of the royal society A, vol.470, 2014.

A. Blumberg and G. Mellor, A description of a three-dimensionnal coastal ocean circulation model. Three-dimensional coastal ocean models, vol.4, pp.1-16, 1987.

J. Boussinesq, Essai sur la théorie des eaux courantes. Imprimerie Nationale, p.1877

J. Boussinesq, Théorie analytique de la chaleur : mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, vol.2, 1903.

G. Cambon, Etude numérique de la mer d'Iroise : Dynamique, variabilité du front d'Ouessant et évaluation des échanges cross-frontaux, 2008.

D. C. Chapman, Numerical treatment of cross-shelf boundaries in a barotropic coastal ocean model, Journal of Physical Oceanography, vol.15, pp.1060-1075, 1985.

D. S. Coles, L. S. Blunden, and A. Bahaj, Experimental validation of the distributed drag method for simulating large marine current turbine arrays using porous fences, International Journal of Merine Energy, pp.298-316, 2016.

J. W. Deardoff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech, vol.41, issue.2, pp.453-480, 1970.

L. Debreu, P. Marchesiello, P. Penven, and G. Cambon, Two-way nesting in split-explicit ocean models : Algorithms, implementation and validation, pp.1-21, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690731

Z. Defne, K. A. Hass, and H. Fritz, Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics alog the Georgia coast, vol.36, pp.3461-3471, 2011.

F. Électricité-de, Direction des Études et Recherches, TELEMAC-2D Software, vol.98, 2001.

F. Électricité-de, Dossier EDF énergies marines, 2012.

G. Egbert, A. Bennett, and M. Foreman, Topex/Poseidon tides estimated using a global inverse model, Journal of Geophysical Research, vol.99, pp.24821-24852, 1994.

A. Ehrhold, L. Gall, and B. , Atlas de l'archipel de Molène -Géologie, géomorphologie et sédimentologie, p.2017

Y. Ernst, Les énergies marines renouvelables : quelles opportunités pour la France ?, Transparency report, 2012.

R. A. Flather, A tidal model of the northwest european continental chelf. Mémoire de la Société Royale des Sciences de Lièges, vol.6, pp.141-164, 1976.

C. T. Friedrichs and D. G. Aubrey, Non-linear tidal distortion in shallow well-mixed estuaries : a synthesis. Estuarines and Coastal Shelfs Sea, vol.27, pp.521-566, 1988.

R. E. Froude, On the part played in propulsion by difference in pressure. Transaction of the Institute of Naval Architects, 1889, 30, pp.390-423

C. Frost, P. S. Evans, C. E. Morris, A. Mason-jones, T. O'doherty et al., The effect of axial flow misalignment on tidal turbine performance, Proc. 1st int. conf. on renewable energies offshore, 2014.

C. H. Frost, P. S. Evans, M. J. Harrold, A. Mason-jones, T. O'doherty et al., The impact of flow misalignment on a tidal turbine, Renewable Energy, vol.113, pp.1333-1344, 2017.

P. Galloway, L. Myers, and A. Bahaj, Experimental and numerical results of rotor power and thrust ofa tidal turbine operating at yaw and in waves, Proceedings of the World Renewable Energy Congress2011-Marine and Ocean Technology, 2011.

A. J. Goward-brown, S. P. Neill, and M. J. Lewis, Tidal energy extraction in three-dimensional ocean models, vol.17, 2017.

A. J. Goward-brown and S. P. Neill, Hydrodynamic response to large scale tidal energy extraction, EWTEC, 2015.

N. Guillou, Rôles de l'hétérogénéité des sédiments de fond et des interactions houle-courant sur l'hydrodynamique et la dynamique sédimentaire en zone subtidale, vol.469, 2007.

N. Guillou, G. Chapalain, and E. Duvieilbourg, Modelling impact of bottom roughness on sea surface temperature in the Sea of Iroise, Continental Shelf Research, vol.54, pp.80-92, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116083

N. Guillou, G. Chapalain, and S. P. Neill, The influence of waves on the tidal kinetic energy resource at a tidal stream energy site, Applied Energy, vol.180, pp.402-415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01672290

N. Guillou and J. Thiébot, The impact of seabed rock roughness on tidal stream power extraction, Energy, vol.112, pp.762-773, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01673396

N. Guillou and J. Thiébot, Impact environnemental d'un parc hydrolien : sensibilité des prédictions à la rugosité de fond

N. Guillou and G. Chapalain, Assessing the impact of tidal stream energy extraction on the Lagrangian circulation, Applied Energy, vol.203, pp.321-332, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581756

N. Guillou and G. Chapalain, Evaluating the Effects of Tidal Turbines on Water-Mass Transport with the Lagrangian Barycentric Method, 6th International Conference on Estuaries and Coasts (ICEC-2018), 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865267

N. Guillou and G. Chapalain, Tidal Turbines' Layout in a Stream with, Asymmetry and Misalignment. Energies, vol.10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01672248

N. Guillou, S. P. Neill, and P. E. Robins, Characterising the tidal stream power resource around France using a high-resolution harmonic database, vol.123, pp.706-718, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01865261

X. Guo, J. Yang, Z. Gao, T. Moan, and H. Lu, The surface wave effects on the performance and the loading of a tidal turbine, Ocean Engineering, vol.156, pp.120-134, 2018.

A. Hamdi, M. Vasquez, and J. Populus, Cartographie des habitats physiques EUNIS -côte de France, Cahier de recherche, 2010.

M. O. Hansen, Aerodynamics of Wind Turbines, p.28, 2008.

M. E. Harrison, W. M. Batten, L. E. Myers, and A. S. Bahaj, Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renewable Power Generation, 2010.

K. S. Hedström, Technical Manual for Coupled Sea-Ice/Ocean Circulation Model (Version 3), 2015.

J. Hervouet, Hydrodynamics of free surface, modelling with the finite element method, 2007.

C. Hill, M. Musa, L. P. Chamorro, C. Ellis, and M. Guala, Local scour around a model hydrokinetic turbine in an erodible channel, Journal of Hydraulic Engineering, vol.140, issue.8, p.4014027, 2014.

C. Hill, M. Musa, and M. Guala, Interaction between instream axial flow hydrokinetic turbines and unidirectional bedforms, vol.86, pp.409-421, 2016.

F. W. Lanchester, A contribution to the theory of propulsion and the screw propeller, Trans. Inst. Naval Archit, issue.98116, p.1915

S. H. Lee, S. H. Lee, K. Jang, J. Lee, and N. Hur, A numerical study for the optimal arrangement of ocean current turbine generators on the ocean current power parks, Current applied physics, vol.10, pp.137-141, 2010.

M. Lewis, S. P. Neill, and P. Hashemi, Resource assessment for future generations of tidal-stream energy arrays, Energy, vol.83, pp.403-415, 2015.

M. Lewis, S. P. Neill, M. R. Robins, M. R. Hashemi, and S. Ward, Characteristics of the velocity profil at tidal-stream energy sites, vol.114, pp.258-272, 2017.

L. Xiaorong, L. Ming, M. Stuart, J. Laura-beth, A. Laurent et al., Thorne Peter Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model, vol.17, 2017.

B. Loubrieu, J. Bourillet, and E. Moussat, Bathy-morphologique régionale du Golfe de Gascogne et de la Manche, modèle numérique, Tech. rep, 2008.

L. Louvart and C. Grateau, The Litto3D project, Europe, 2005.

L. Brutto, O. A. Nguyen, V. T. Guillou, S. S. Thiébot, J. Gualous et al., Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio, Renewable Energy, vol.99, pp.347-359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02149826

A. J. Macleod, S. Barnes, K. G. Rados, and I. G. Bryden, Wake effects in tidal current turbine farms, Proceedings of the International Conference of Marine Renewable Energy, pp.49-53, 2002.

R. V. Madala and S. A. Piacsek, A semi-implicit numerical model for baroclinic oceans, Journal of Computers and Physics, vol.23, pp.167-178, 1977.

F. Maganga, G. Germain, J. King, G. Pinon, and E. Rivoalen, Experimental characterisation of flow effects on marine turbine behavior and on its wake properties, Renewable Power Generation, IET, vol.4, 2010.

R. Martin-short, J. Hill, S. C. Kramer, A. Avdis, P. A. Allison et al., Tidal ressource extraction in the Pentland Firth, UK : Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma, Renewable Energy, vol.76, pp.596-607, 2015.

E. Mason, J. Molemaker, A. F. Shchepetkin, F. Colas, J. C. Mcwilliams et al., Procedures for offline grid nesting in regional ocean models. Ocean modelling, vol.35, pp.1-15, 2010.

P. Mycek, B. Gaurier, G. Germain, G. Pinon, and E. Rivoalen, Experimental study of the turbulence intensity effects on marine current turbines behavior. Part II : Two interacting turbines, Renewable Energy, vol.68, pp.876-892, 2014.

L. E. Myers and A. Bahaj, Experiment analysis of the flow field arouns horizontal axis tidal turbines by use of scale mesh disk rotor simulators, Ocean Engineering, vol.37, pp.218-227, 2010.

S. P. Neill and A. J. Elliott, Observations and simulations of an unsteady island wake in the Firth of Forth, Scotland. Ocean Dynamics, vol.54, pp.324-332, 2004.

P. S. Neill, R. J. Jordan, and J. Couche, impact of the tidal energy converter (TEC) arrays on the dynamics of the headland sand banks, Renewable Energy, vol.37, pp.387-397, 2012.

P. S. Neill, R. M. Hashemi, and J. Lewis, The role of tidal assemetry in characterizing the tidal energy ressource of Orkney, vol.68, pp.337-350, 2014.

S. P. Neill, R. M. Hashemi, and J. M. Lewis, Tidal energy leasing and tidal phasing, Renewable Energy, vol.85, pp.580-587, 2016.

V. T. Nguyen, Modélisation de l'interaction entre hydroliennes et le courant dans un courant de marée comme celui du Raz Blanchard, 2015.

V. T. Nguyen, S. Guillou, J. Thiébot, S. Cruz, and A. , Modelling turbulence with an Actuator Disc representing a tidal turbine, Renewable Energy, vol.97, pp.625-635, 2016.

V. T. Nguyen, S. S. Guillou, S. Cruz, A. Shiekh-elsouk, M. N. Thiébot et al., Effect of the current direction on the energy production of a tidal farm, Proceedings of the 12th European Wave and Tidal Energy Conference, 2017.

L. Y. Oey and P. Chen, A model simulation of circulation in the northeast atlantic shelves and seas, Journal of Geophysical Research, vol.97, pp.20087-20115, 1992.

I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, vol.21, issue.3, pp.251-269, 1976.

N. A. Phillips, A coordinate system having some special advantages for numerical forecasting, J. Meteor, vol.14, pp.184-185, 1957.

M. Piano, S. P. Neill, M. J. Lewis, P. E. Robins, M. R. Hashemi et al., Tidal stream ressource assessment uncertainty due to flow asymmetry and turbine yaw misalignment, Renewable Energy, vol.114, pp.1363-1375, 2017.

M. Piggott, G. Gorman, C. Pain, P. Allison, A. Candy et al., A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, Internation Journal for Numerical Methods in Fluids, vol.56, pp.1003-1015, 2008.

R. D. Pingree and D. K. Griffiths, Sand transport paths around the British Isles resulting from the M2 and M4 tidal interactions, J Mar Bio Assoc, vol.59, pp.497-513, 1979.

R. D. Pingree and D. K. Griffiths, Tidal friction for semidiurnal tides, Continental Shelf Research, vol.7, pp.1181-1209, 1987.

D. R. Plew and C. L. Stevens, Numerical modelling of the effect of turbines on currents in a tidal channel -Tory Channel, New Zeland. Renewable Energy, vol.57, pp.269-282, 2013.

A. Rabain and Y. D. Roeck, La variabilité économique des énergies marin comme condition nécessaire de leur développement en France et à l'international. XIIèmes Journées Nationales Génie Côtier -Génie Civil, pp.837-844, 2012.

R. Ramirez-mendoza, L. O. Amoudry, P. D. Thorne, R. D. Cooke, S. J. Mclelland et al.,

S. M. Simmons, D. R. Parsons, and L. Murdoch, Laboratory study on the effects of hydrokinetic turbines on hydrodynamics and sediment dynamics, Renewable Energy, vol.129, pp.271-284, 2018.

P. E. Robin, S. P. Neill, and M. J. Lewis, Impact of tidal stream arrays in relation to the natural variability of sedimentary processes, vol.72, pp.311-321, 2014.

P. E. Robins, S. P. Neill, M. J. Lewis, and S. Ward, Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas, Apply Energy, vol.147, pp.510-522, 2015.

T. Roc, D. C. Conley, and D. Greaves, Methodology for tidal turbine representation in ocean circulation model, vol.51, pp.448-464, 2013.

T. Roc, D. Greaves, K. M. Thyng, and D. C. Conley, Tidal turbine representation in an ocean circulation model : Towards realistic application. Ocean engineering, vol.78, pp.95-111, 2014.

S. Rose, S. Ordonez, K. H. Lee, C. Johnstone, C. H. Jo et al., Tidal turbine wakes : small scale experimental and initial computational modelling. Ninth European wave and tidal energy conference, 2011.

P. G. Saffman, A model for inhomogeneous turbulent flow, Proc. R. Soc., A, vol.317, pp.417-433, 1970.

A. F. Shchepetkin and J. Mcwilliams, Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Monthly Weather Review, vol.126, issue.6, pp.1541-1580, 1998.

A. F. Shchepetkin and J. Mcwilliams, The regional oceanic modeling system (ROMS) : a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, vol.9, pp.347-404, 2005.

Y. P. Sheng, Mahtematical modeling of three-dimensional coastal currents and sediment dispersion : model development and application, Aeronautical Research Associates of Princeton, p.30, 1984.

A. Shields, Anwendung der Ähnlichkeits-Mechanik und der Turbulenz-forschung auf die Geschiebebewegung, Preussische Versuchsansalt für Wasserbau und Schiffbau, vol.26, 1936.

M. Shives and C. Crawford, Validation of a practical CFD Method for Predicting Hydrokynetic Turbine Performance in wake Shadow, EWTEC, 2015.

, SHOM, catalogue SHOM des courants de marée et des hauteurs d'eau : la Manche de Dunkerque à Brest, p.564, 2000.

C. Shom, . De-marée-en-mer-d'iroise, and . Shom-:-l'océan-À-la-carte, , 2016.

T. J. Simons, Verification of numerical models of Lake Ontario, Part I. Circulation in spring and early summer, Journal of Physical Oceanography, vol.4, pp.507-523, 1974.

J. Smagorinsky, General circulation experiments with the primitive equations, Monthly weather review, vol.91, issue.3, pp.99-164, 1963.

R. Soulsby, Physical oceanography of coastal and shelf seas, pp.189-266, 1983.

R. L. Souslby, R. J. Whitehouse, S. F. New-zeland-sufian, M. Li, and B. O'connor, 3D modelling of impacts from waves on tidal turbine wake characteristics and energy output, Proc. Pacific Coasts and Ports '97 Conf., Christchurch, 1, vol.114, pp.308-322, 2017.

X. Sun and J. P. Chick, Bryden IG Laboratory-scale simulation of energy extraction from tidal currents, vol.33, pp.1267-74, 2008.

T. S. Frost, C. H. Allmark, M. O'doherty, D. M. Mason-jones, A. Prickett et al., Wave-current interaction effects on tidal stream turbine performance and loading characteristics, Internation Journal of Marine Energy, vol.14, pp.161-179, 2016.

S. C. Tedds, I. Owen, and R. J. Poole, Near-wake characteristics of a model horizontal axis tidal stream turbine, vol.63, pp.222-235, 2014.

M. Thiébaut, Énergie marine renouvelable : caractérisation des ressources hydrocinétiques en Manche et étude d'impact de la turbulence sur l'efficacité de systèmes de récupération d'énergie tidale, 2017.

M. Thiébaut and A. Sentchev, Estimation of tidal potential in the Iroise sea from velocity observation by high frequency radars, Energy Procedia, vol.76, pp.17-26, 2015.

M. Thiébaut and A. Sentchev, Assymetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island, Renewable Energy, 105, pp.735-747, 2017.

J. Thiébot, P. Bailly-du-bois, and S. Guillou, Numerical modelling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport -Application to the Alderney Race, vol.75, pp.356-365, 2015.

J. Thiébot, S. Guillou, and V. T. Nguyen, Modelling the effect of large arrays of tidal turbines with depthaveraged Actuator Disk, Ocean Engineering, vol.126, pp.267-275, 2016.

L. Umlauf and H. Burchard, Island wakes in shallow coastal water, Journal of Geophysical research atmospheres, vol.61, pp.235-265, 2003.

J. C. Warner, C. R. Sherwood, H. G. Arango, and R. P. Signell, Performance of four turbulence closure models implemented using a generic length scale method. Ocean modelling, vol.89, pp.81-113, 2005.

C. Willmot, On the validation of models, Physical Geography, vol.2, p.119, 1981.