Skip to Main content Skip to Navigation

Evaluation of system-on-chip devices for embedded real-time simulators of electrical systems

Abstract : This Doctoral Thesis is a detailed study of how suitable System-on-Chip (SoC) devices are for implementing Embedded Real-Time Simulators (ERTS) of electromechanical and power electronic systems. This emerging class of Real-Time Simulators (RTS) are not only expected for Hardware-in-the-Loop (HIL) validations of systems; but they also have to be embedded within the controller to play several roles like observers, parameter estimation, diagnostic, health monitoring, fault-tolerant and sensorless control, etc.The design of these Intellectual Properties (IP) must rigorously consider a set of constraints at different development stages: (i) during the modeling of the system to be real-time simulated; (ii) during the digital realization of the IP; and also (iii) during its final implementation in the digital platform. Thus, the conducted work of this Thesis focuses specially on this last stage and its aim is to evaluate the time/resource performances of recent SoC devices and study how suitable they are for implementing ERTSs. These kind of digital platforms combine powerful general purpose processors, a Field-Programmable Gate Array (FPGA) and other peripherals which make them very convenient for controlling and monitoring a complete system.One of the limitations of these devices is that control engineers are not particularly familiarized with FPGA programming, which needs extensive expertise in order to code these highly sophisticated algorithms using Hardware Description Languages (HDL). Notwithstanding, there exist High-Level Synthesis (HLS) tools which allow to program these devices using more generic programming languages such as C, C++ or SystemC. Moreover, by inserting directives and constraints to the source code, these tools can produce different hardware implementations (e.g. full-combinatorial design, pipelined design, parallel or factorized design, partition or arrange data for a better utilisation of memory resources, etc.).This dissertation is based on the implementation of two representative applications that are well known in our laboratory: a Doubly-fed Induction Generator (DFIG) commonly used as wind turbines; and a Modular Multi-level Converter (MMC) that can be arranged in different configurations and utilized for many different energy conversion purposes. Since the DFIG has low/medium system dynamics (electrical and mechanical ones), both a full-software implementation using solely the ARM processor and a full-hardware implementation using HLS to program the FPGA will be evaluated with different design optimizations and data formats (64/32-bit floating-point and 32-bit fixed-point). Moreover, it will also be investigated whether a system of these characteristics is interesting to be run as a hardware accelerator. Different data transfer options between the Processor System (PS) and the Programmable Logic (PL) have been studied as well for this matter. Conversely, because of its harsh dynamics (switching dynamics), the MMC will be implemented only with a full-hardware approach using HLS tools, as well.For the experimental validation of this Thesis work, a complete MMC test bench has been built from scratch in order to compare the real-world results with its SoC ERTS implementation.
Document type :
Complete list of metadata
Contributor : Abes Star :  Contact
Submitted on : Wednesday, September 11, 2019 - 5:30:08 PM
Last modification on : Monday, February 15, 2021 - 10:51:27 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02284435, version 1


Daniel Tormo Borreda. Evaluation of system-on-chip devices for embedded real-time simulators of electrical systems. Electronics. Université de Cergy Pontoise, 2018. English. ⟨NNT : 2018CERG0969⟩. ⟨tel-02284435⟩



Record views


Files downloads