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Abstract

Massively multiplayer online games provide a large part of the global inter-
net tra�c. The tra�c is typically encapsulated in TCP segments of small
size information (the so called payload) resulting in a high volume of headers
transmitted through the network. This implies the following: 1) the packets'
size is too small for e�cient routing and; 2) the bandwidth required by the
server seems to be increasing. Therefore, it is necessary to �nd more e�-
cient transmission and routing techniques to reduce the tra�c volume and
to increase the network e�ciency in order to support the growing number
of players. On the other hand, Quality of Experience (QoE) in the context
of online games is strongly inuenced by consistency. This consistency is
inuenced by the quality of service (QoS) o�ered by the network, mainly in
terms of delay, jitter and order of the packets. As a result, a solution that en-
hances these parameters will help in satisfying more players and subsequently
improving QoE.

The goal of this thesis is to propose solutions to enhance the QoE of online
games by increasing the consistency of view, reducing the delay and increas-
ing the e�ciency of the network. For consistency, we propose a cyclic network
topology. This ordered topology facilitates the implementation of transmis-
sion management and control procedures to impose a causal order between
all players. As for the delay and the e�ciency problem, some have pro-
posed the application of Tunneling, Compression and Multiplexing (TCM)
technique. However, the transmitted packets with TCM are larger than the
original ones, which requires more delay to transmit them and increases the
risk of congestion. We propose the use of the Network Coding technique
(NC) which makes it possible to increase the bit rate of the network under
certain topological and routing conditions. This technique allows interme-
diate nodes to encode the data they receive rather than perform a simple
"store and forward" function. It can reduce the tra�c load, reduce the delay
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and increase the network e�ciency.
In this thesis, we propose some modi�cations to enhance the TCM tech-

nique and evaluate its performance. Besides, we propose to add the players
partition approach and change the topology from a tree to a forest. After-
wards, we investigate the cyclic topology. We design an optimized routing
protocol over a cycle topology based on the network coding technique and
evaluate its performance in terms of delay and order. The results show that
by using NC coding, one can gain up to 14% of latency over an optimized
routing protocol for the cycle topology without the use of network coding.
Afterwards, we propose a practical implementation scenario of this solution
over a device-to-device (D2D) infrastructure. We �nally validate the the-
oretical limits of delay using network simulations and discuss a number of
practical constraints.

Key-words: Online games, network coding, cycles, consistency, tra�c load,
QoE, QoS.
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R�esum�e

Le jeu en ligne massivement multijoueurs fournit une grande partie du tra�c
Internet global. Le tra�c est g�en�eralement compos�e d'une petite partie de
donn�ees utiles encapsul�e dans des segments TCP , entrainant un volume
�elev�e d'entêtes transmis via le r�eseau. Cela implique que: 1) la taille des
paquets est trop petite pour un routage e�cace et; 2) la bande passante
requise par le serveur augmente. Par cons�equent, il est n�ecessaire de trouver
des techniques de transmission et de routage plus e�caces a�n de r�eduire le
volume de tra�c et augmenter l'e�cacit�e du r�eseau permettant de prendre en
charge le nombre croissant des joueurs. D'autre part, la qualit�e d'exp�erience
(QoE) dans le contexte des jeux en ligne est fortement li�ee �a la consistance.
Cette consistance est inuenc�ee par la qualit�e de service (QoS) o�erte par
le r�eseau, principalement en termes de d�elai, de gigue et d'ordre de paquets.
Par cons�equent, une solution qui am�eliore ces param�etres aidera �a satisfaire
davantage de joueurs et �a am�eliorer la qualit�e de service.

L'objectif de cette th�ese est de proposer des solutions pour am�eliorer
la qualit�e d'exp�erience des jeux en ligne en augmentant la consistance de
vue, en r�eduisant les d�elais et en augmentant l'e�cacit�e du r�eseau. Pour le
probl�eme de consistance, nous proposons une topologie de r�eseau cyclique.
Cette topologie ordonn�ee facilite la mise en place des proc�edures de gestion
et de contrôle de la transmission pour imposer un ordre causal entre tous
les joueurs. Concernant le d�elai et l'e�cacit�e du r�eseau, certains ont pro-
pos�e l'application de la technique du tunnel, compression et multiplexage
(TCM). Cependant, les paquets transmis avec TCM sont plus grands que
ceux d'origine, ce qui n�ecessite plus de temps pour les transmettre et aug-
mente le risque de saturation au niveau des �les d'attente. Nous proposons
l'utilisation de la technique de codage r�eseau (NC) qui permet d'augmenter
le d�ebit dans certaines conditions de topologies et de routage. Cette tech-
nique permet aux n�uds interm�ediaires d'encoder les paquets qu'ils re�coivent
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plutôt que d'e�ectuer une simple fonction de stockage et de transfert. Cela
peut r�eduire la charge de tra�c, r�eduire les d�elais et augmenter l'e�cacit�e du
r�eseau.

Dans cette th�ese, nous proposons des modi�cations pour am�eliorer la
technique TCM et nous �evaluons ses performances. De plus, nous proposons
d'ajouter le concept de partition des joueurs et de changer la topologie d'un
arbre �a une forêt. Nous �etudions ensuite la topologie cyclique. Nous con-
cevons un protocole de routage optimis�e sur une topologie en cycle bas�ee
sur la technique de codage r�eseau. Puis, nous �evaluons ses performances en
termes de d�elai, de charge et d'ordre. Les r�esultats montrent que l'utilisation
du codage NC permet de r�eduire la charge et le nombre de paquets trans-
mis, garantir un ordre de paquet par p�eriode et de r�eduire le d�elai. En
e�et, on peut gagner jusqu'�a 14% de latence avec notre protocole par rap-
port �a un protocole de routage optimis�e sans codage r�eseau. Par la suite,
nous proposons un sc�enario de mise en pratique de cette solution sur une in-
frastructure Device-to-Device. Nous validons les limites th�eoriques du d�elai
en utilisant des simulations r�eseau et nous discutons ensuite des contraintes
pratiques qui s'imposent lors de l'impl�ementation dans un r�eseau r�eel. Fi-
nalement, nous proposons des solutions pour ces contraintes.

Mot cl�es: Jeux en ligne, codage r�eseau, cycles, consistance, charge du
tra�c, QoE, QoS.
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Overview

Internet tra�c is remarkably increasing, especially with the evolution of In-
ternet services and the ease of connecting to Internet via smartphones and
tablets. This tra�c carries di�erent types of ows for various applications.
Some of these applications, such as video streaming and multimedia �le trans-
fer, used to be the main contributors to this tra�c. Hence, the majority of
works focused on those types of applications in order to study the network's
performance, the quality of the received signal, the throughput, the delay,
etc. However, nowadays, new applications are getting more popular and con-
tribute a lot to the global Internet tra�c. One of the growing applications is
the Massively Multiplayer Online Gaming, a real-time group communication
application. The growing popularity of this application results in an increas-
ing share on the global Internet tra�c. The tra�c share of online games in the
global Internet tra�c is growing. This tra�c is composed of a large number
of small-sized packets which carry a little payload volume compared to the
overhead added by the transport protocols. This fact decreases the e�ciency
of the network. As a real-time application, online gaming presents special
constraints, which are basically the delay, the jitter and the throughput.
This is translated into the impact of the quality of service (QoS) provided
by the underlying network on the quality of experience (QoE) perceived by
the users. Depending on the nature of the game, users may be more or less
tolerant to some of these parameters. The QoE of online gamers is strongly
inuenced by the consistency of the game view which represents the synchro-
nization and the coherence of the game's state perceived by the players. The
consistency is inuenced by three main parameters: transmission latency,
the jitter introduced by the network and the order of packets. Thus, online
gaming is characterized by the following problems: 1) a low payload with
a large overhead resulting in a huge degradation of the network's e�ciency
and; 2) a picky end user that requires a certain level of quality of experience
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in order to continue the game.
Naturally, a solution that increases the e�ciency of the network by reduc-

ing the overhead and by increasing the throughput will improve the quality
of service of the network and will help it to support the growing number
of players. Besides, a routing scheme that can provide a compromise be-
tween these constraints and the consistency of the game by ordering the
game packets will o�er an acceptable QoE to online players. As for the net-
work e�ciency, the network coding technique can reduce the overhead of
online games tra�c and increase the throughput. This technique has shown
e�ciency in both wired and wireless networks, and over di�erent network
topologies such as the tree topology, the star topology or the cycle topology.
Besides, it can be applied not only to the multicast tra�c ow case, but to
multiple unicast tra�c ows as well. In some schemes, NC can also help in
reducing the transmission delay. As for the consistency issue, we propose
to use a cycle topology. With cycles, ordering mechanisms can be easily
implemented thanks to some management keys that can be added, such as
a token. The cycle topology has recently gained much interest for di�erent
applications. However, the use of the cycle topology will result in a larger
delay which can be unacceptable by certain online games. In order to exploit
cycles and make the cycle typology a practical alternative for online games,
one should reduce the delay of transmission. In this thesis, we have design a
NC-based routing protocol for online gaming applications over cycles with a
careful choice of the node transmission scheduling. This protocol reduces the
transmission delay over the cycle, reduces the tra�c load and increases the
throughput while maintaining a certain order of packets. After designing the
protocol, we evaluate its performance by calculating its theoretical bounds
and validating them via simulations. The proposed protocol reduces the load
over the cycle and decreases the latency by up to 14% compared to a simple
routing protocol with no network coding. We also propose a practical sce-
nario implementation over a device-to-device infrastructure and discuss some
constraints that can be introduced by real networks and propose solutions.

The remainder of this dissertation is organized as follows. In the �rst
part, we introduce the characteristics and problems of online games. Then
we give an overview of the related works dealing with these problems. In
the second part, we propose some enhancements to an existing solution and
evaluate its performance for an online game using simulations. The last part
is devoted to the description of our proposed solution, an illustration of a
possible implementation example, the discussion of some practical constraints
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and the proposition of some solutions. Finally, we conclude with a conclusion
and an overview of some perspectives and possible extensions of our work.
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1.1 Introduction

In this chapter, we will present the online games applications. We will in-
troduce the game types, the architectures adopted for online games, the
speci�cities of tra�c generated by online games as well as the performance
metrics usually considered for these applications.

1.2 Online games

In this section we will present the speci�cations of the online gaming appli-
cation in terms of protocols, tra�c characteristics, quality of experience and
its metrics. Finally, we will point out the problems that the actual online
games face.

1.2.1 Online game categories

Massively Multiplayer Online Games, known also as the MMOG, are at-
tracting people from all over the world and with di�erent game preferences.
Nowadays, we talk about tens of millions of players per month for some on-
line games. As a result, the Internet tra�c consumption is increasing, as
shown in Figure 1.1, with a compound annual growth rate (CAGR) of 62%
between 2016 and 2021 according to cisco1. The categories of online games
are: MMORPG (role play games), MMOFPS (�rst person shooting games),
MMORTS (real time strategy games), MMOR (racing games), MMOSG (so-
cial games), MMORG (rythm games) and many other types. In the following,
we will describe the three main categories of multiplayer online games which
are responsible for most of the gaming tra�c.

MMOFPS: MMOFPS means Massively Multiplayer Online First Person
Shooting games; one of the most well-known examples of this type is
Counter Strike. It is characterized by its fast pace. For MMOFPS,
latency is crucial and the duration of the game session is not long.

MMORPG: MMORPG stands for Massively Multiplayer Online Role Play-
ing games. This category includes the majority of the online games.

1https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html
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Figure 1.1: The online gaming Internet consumption according to Cisco's
statistics in 2017
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One of the most famous ones is the "League Of Legends". It has a
remarkably growing number of active players which rose from 11.5 bil-
lions/month in 2011 to more than 100 billions/month in 2016. These
adventurous games can create interactions and possibly social relation-
ships between players [4] which make them less restrictive on delay
compared to MMOFPS.

MMORTS: MMORTS refers to Massively Multiplayer Online Real Time
Strategy games. This type of games is slower than the other two types,
takes a longer time to be concluded and its players are more patient as
they take a long time to make their moves. Among the famous exam-
ples of MMORTS games, let us cite "starcraft".

As a real-time application, each one of these types has its own constraints in
terms of pace, maximum tolerable latency and bandwidth requirements. A
comparison of the speci�cities of each of these types is illustrated in Table
1.1 [5, 6].

Game type Game Pace Maximum latency Bandwidth requirements
MMOFPS fast 150-250 ms 40 kbps
MMORPG slow 500-1000 ms 7kbps
MMORTS very slow ^ 1.5 s N/A

Table 1.1: Comparison between the main types of MMO games.

1.2.2 Game network architecture

When it comes to massively multiplayer online games, two possible choices
of architecture are present: the Client/Server and the Peer-To-Peer (P2P)
architectures. Each of them has its advantages and disadvantages. We will
describe these points in more details in the following.

1.2.2.1 Client/Server

The client/server architecture is the favourite architecture and the one most
commonly used by games developers [7]. Indeed, almost all the multiplayer
online games are based on this model where all the players are connected to
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a central server which is responsible for calculating the states' updates based
on the actions received from di�erent players. This architecture provides
numerous advantages but also presents some disadvantages.

1.2.2.2 Peer-To-Peer

Peer-To-Peer is the architecture model in which all the nodes are connected to
one another. This architecture is widely used for di�erent applications such
as �le sharing, multimedia communications owing to the advantages that
it can a�ord. P2P implies that the tra�c circulates between these nodes
(peers) in order to update their state. Each peer, in this case, is responsible
for calculating his version of the game state based on the information received
from the other peers.

Even though P2P architecture is not very popular when it comes to online
games, some of these games are designed based on this architecture such as
MiMaz [8], Empires [9], as well as one of the famous MMORTS games: the
Starcraft series [10].

1.2.2.3 Discussion

The client/server architecture is adopted for the majority of the online games
in order to solve the capacity problem. For instance, the MMOG server can
be represented by a group of machines with dedicated responsibilities [11, 12].
The choice of the criteria used to divide the responsibilities can vary from one
game to another. It can be based on functionalities such as 'players logging
in, chatting and patching', or based on the players' interactions. As a result,
the players can be grouped depending on their local environment on the
game map or the so-calledarea of interest (AOI) [13] (This concept will be
discussed in more details later in section 3.3.1). Another solution to reduce
the bandwidth required for the server is thedelta encodingmethod [13]. This
method is based on the fact that an objects state changes just a little from
one update to another. Thus, the server can calculate the di�erence between
the last and the new update and send this di�erence to the clients. One
of the games that uses these approaches is Quake. However, despite using
these solutions, the server is always exposed to the problem of overload and
computation heaviness. In this context, the concept of cloud gaming can
solve the problem. Cloud gaming is a relatively new concept that exploits
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the ease o�ered by the cloud computing platform in order to lighten the load
on players' terminals. The objective of this concept is to open the doors to
new potential players who are using light terminals with limited performance
such as smart phones or tablets. In fact, these terminals can't provide the
minimum hardware performance requirements of traditional online games.
All the computational operations are performed by the cloud gaming system
as shown in Figure 1.2. However, this solution has its limits and challenges.
In fact, the video coding, transmission and decoding operations are costly in
terms of delay [14, 15, 16, 17]. As the client/server and the P2P architectures
present some advantages as well as some disadvantages, some researchers
proposed new architectures called hybrid architectures, where both of these
architectures are used [18, 19].

1.3 Network aspects of online games

In this section, we will focus on the tra�c of online games. Let us only
consider the client/server architecture as the most commonly used one for
online games. A presentation of a typical online game infrastructure using
the client/server architecture is illustrated in Figure 1.3.

1.3.1 Tra�c characteristics

Online gaming tra�c consists of two di�erent types of tra�c: client-to-server
and server-to-client tra�c. In the following, we will discuss the di�erence
between these two tra�cs and their speci�c features.

� Client-to-server packets
The clients of online gaming need to establish a connection to the game
session through the game server using a simple unicast transmission.
Afterwards, all their tra�c will be forwarded to that server. There-
fore, in a game session ofn players, n unicast tra�c ows are sent the
server: one per each player. Mainly, the tra�c generated by the clients
represents their actions in the game. These actions will be treated by
the server in order to generate the new game state update. Then the
server sends it to the clients so that they all apply the changes and
synchronize their game view. Besides their actions, other packets such
as TCP acknowledgments and multimedia �les for audio chatting can
be sent from the clients to the server.
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(a) Traditional online gaming model

(b) Cloud gaming model

Figure 1.2: Comparison between traditional online gaming and cloud gaming
models

� Server-to-client packets
The server is the principal component of the conventional architecture
of online gaming. It is responsible for a multitude of tasks including
authentication, clients' accounts' management, handling the requests
of joining or leaving and mainly managing the game state modi�cations
and maintaining a synchronous game state for all the players. Hence,
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Figure 1.3: Typical online game infrastructure.

the majority of the messages generated by the server represent the
game updates sent to the clients. These messages are multicasted to
all the concerned players in a periodic way. Here, the multicast is not
necessarily performed in the network layer. It can be performed using
application layer services [20, 21].

� Packet size
Client packets and server packets di�er in terms of size. In fact, the
size of the server packets is generally larger than the size of the client
packets [22]. This is due to the correlation between the server's update
and the number of players of a game session. While the players send
only their own actions, the server should calculate the changes produced
by all the players. For instance, the size of the server packets for the
QuackIII game can be calculated depending on the number of players
as follows [23]:

Sserver =

(
81:9 + 13 � (n � 2) if n > 2;

81:9 + 13 else
(1.1)

where Sserver is the size of the server's packet in bytes andn is the
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number of players. However, compared to other Internet applications'
tra�c, both of clients' and server packets' sizes are considerably small.
For the ShenZhou Online game, 98% of the client packets have a size
smaller than 72 bytes and the average size of the server packets is 154
bytes [6]. In fact, the online gaming tra�c consists generally of a huge
number of small-size packets. These packets have a very particular
form. The length of the payload is variable but it is usually much
smaller than the length of the header. Moreover, as the most popular
transport protocol for gaming is TCP, which generates a relatively large
header, the overall header size at the transport layer represents up
to 73% of a game packet [6]. This results in an extremely ine�cient
transmission protocol for online gaming and a sharp decrease in the
quality of service (QoS) when the number of players increases. This
degradation of the QoS of the underlying network represents the main
reason for the player to decide to quit the game [24]. This leads us to
the following section where we discuss the quality of experience of the
online games.

� Periodicity and inter-packet interval
Studies on online games' tra�c showed that the packets are generally
sent in a periodic way either from the client or the server side [6, 7]. In
fact, considering the server-to-client ow, the periodicity of the server
packets is the result of its round-based behavior. The tra�c is hence
sent periodically to all the players with a server period that depends on
the concerned game [25] [6]. Let's note this period as� sc. On the other
hand, the studies on the clients' tra�c also showed a periodic pattern
of packets' arrival to the server. The periodicity of the clients' packets
is mainly due to the automatically-generated commands [25]. Actu-
ally, the player can switch to an "auto-movement" or an "auto-attack"
mode which helps the avatar to automatically move to a speci�c des-
tination in the game map or automatically shoot or hit another avatar
for several consecutive times with one click, for example. The periodic-
ity of the clients' tra�c could be canceled if the clients' timers are not
synchronized. However, the clients' timers are synchronized (though
not intentionally) because their initialization is based on the reception
of the server packets, which are sent simultaneously to all clients as it
has a round-based behavior as we mentioned. Thus, although the game
developers didn't intend to have synchronous clients, the design choice

13



of the server ensures this synchronization. We will note the period of
tra�c from the clients to the server as � cs.

1.3.2 Quality of Experience

We will present the sensitivity of online games and their Quality of service
(QoS) and quality of experience (QoE). One should note that, when the
QoS focuses on the parts between the end users but not on the end users
themselves, the QoE is in fact about the experience and the satisfaction of
the end user. In the following, we will describe the QoE of online games, its
factors and the relation between this QoE and the network QoS.

1.3.2.1 QoE parameters of online games

Several studies have been recently done in order to elaborate objective models
of the quality of experience (QoE) of players. For instance, the authors of
[26] have identi�ed three key parameters to measure the QoE which are
responsiveness, precision and fairness.

� Responsiveness: it is related to the player's perception of the overall
process of the game. It is strongly connected to the time used by the
system to undertake an event and to update the player's screen.

� Precision: it represents the player's perception of the results of his
actions. It is related to the closeness between the player's action and
the system's response.

� Fairness: refers to the degree of di�erence between all the game envi-
ronments perceived by the players.

All these parameters are inuenced by the consistency of the game which
will be detailed further in the following.

1.3.2.2 Consistency

As we move from single-player games to multiplayer games where each in-
teraction between the players has an inuence on the game result, the con-
sistency issue appears. Recently, consistency has also been identi�ed as a
critical parameter of the QoE [26, 27]. It reects the coherence and syn-
chronization of the video sequences, observed by di�erent players. A loss of

14



(a) Consistency case.

(b) Inconsistency case

Figure 1.4: Example of consistent and inconsistent actions in a game.

consistency makes the game meaningless due to the loss of causality between
inter-dependent events.

As an example, the upper picture in Figure 1.4 illustrates the consistent
case, where each action is immediately updated by all players and all of them
have the same view (game environment). The lower picture in Figure 1.4
illustrates the case where a change in the network transmission delay entails
serious causality problems. In this scenario, Player B shoots at Player A at
time t1, and Player A moves at timet2 = t1 + �. However, the packet from
Player B had larger delay than the packet from Player A. Thus, the action
of A reaches the central server faster that the action of B. As a result, even
though the action of B was taken before the action of A, Player B couldn't
hit Player A because, for the central server, he has already moved elsewhere.
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The consistency can be decomposed into three main categories [26]:

� Causal consistency: This consistency is derived from the event-based
model of online games. It assumes that, at any instant of the game, the
game state should not violate the causal-e�ect, i.e the happened-before
relationship [28], between the di�erent players' actions.

� Time-Space consistency: This category is based on the fact that the
judgments and the actions of the players on the game objects are based
not only on their relative positions, but also on the duration of this
situation. The time-space consistency metrics are de�ned in [29].

� View consistency: With a perfect network performance, all players will
perceive the same game state at the same time. All actions will be
performed in time and in order. However, the delay introduced by the
network connection between the players and the server leads to di�erent
game views for di�erent players. The View consistency is considered
the most important category of consistency as it is directly perceived
by the game's players.

If the network connecting the players to the game server was perfect, then
all actions and updates would be performed instantly (real clock) and the
game consistency would be guaranteed. Unfortunately, the network always
presents some impairments which decrease the consistency of the game. Be-
sides, consistency is proven to be also inuenced by the packets' ordering.
In fact, to ensure consistency, one needs to guarantee a causal order be-
tween client packets since player actions are dependent when the avatars are
interacting (see [30] [31]).

To explain more the e�ect of disorder in online games, we will re-use the
example illustrated in Figure 1.4. The variation of delays caused a cancel-
lation of the causal relationship between the action of Player A and that of
Player B. If some ordering mechanisms were applied, then the server would
have to execute the actions in the adequate order and inconsistency would
be avoided. Thus, Player B would hit Player A. If some solutions assuring
reordering mechanisms are implemented in the game, the inconsistency is
avoided.
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1.3.2.3 QoS metrics and relation to QoE

To improve the satisfaction of online gamers, one needs to quantify their
quality of experience. However, online games represent a special type of
application as players are very demanding: they want the best service in
terms of graphics, frames rate, speed, interactivity, sound, etc. They are in
fact very di�cult customers, which makes the evaluation of the QoE crucial
and di�cult. In fact, the satisfaction of the players can be inuenced by
the type of the game itself, by their experience or even the experience of the
other players in the team and some possible social relationships between the
players [32, 4]. Two basic techniques were proposed in order to evaluate the
QoE of online games. The �rst one is single stimulus, where the players need
to rate some speci�c parameters using the MOS tests, for example [29] [33].
The second is double stimuli, where the players need to compare two choices
based on di�erent parameters and decide which choice is better [34]. The
results of all these models have proven that the QoE of online games and
their consistency depend on the network's performance, mainly these three
major QoS parameters: latency, jitter and packet loss. In fact, it was shown
in [24] that the dissatisfaction of players caused by the degradation of these
parameters can even lead them to quit the game.

� Latency: It is de�ned as the time needed to transmit the player's ac-
tions from their application layer to the server's application layer. In
some works, it is de�ned as the round-trip time RTT but we will not
use this de�nition. If the latency is high, it will inuence the pleasure
and the satisfaction of the player during the game session. Let's note
the latency of a packetPj between the playerci and the servers as
D j

(ci ;s) and the mean latency between the playerci and the servers as
D (ci ;s) . This latency can di�er from one player to another, which will
lead, when no ordering mechanisms are present, to the inconsistency
as described in 1.3.2.2.

� Jitter: According to [35], the jitter is the mean variation of the latency
D j

(ci ;s) of two packetsPj and Pj +1 from a sourceci to a destination s.

We will note the jitter as J . It can be expressed as follows;

J = j D j +1
(ci ;s) � D j

(ci ;s) j (1.2)

It may be caused by the network's congestion or the fact that some
packets from the same source do not follow the same path. Another
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possible reason is sharing the Internet bandwidth with a TCP connec-
tion such as FTP. Some games consider the late packets as lost since
they are only interested in the newer actions. This sometimes can be
acceptable but it can cause a loss of consistency and of the logic of
game if the late packets carry crucial actions.

� Packet loss: Di�erent reasons can lead to the loss of some packets
transmitted through the network. The loss rate di�ers depending on
the network type. As a fact, the loss probability is higher for wireless
network due to possible obstacles and signal degradation during the
transmission. For wired networks, the loss is mainly caused by bu�ers
as they drop the received packets when they become full. For TCP, the
packet loss is not considered as a problem as the lost packets will be
retransmitted. However, this retransmission will delay the well received
packets until the lost ones are correctly received. When using UDP,
the lost packets will not be retransmitted. Hence, some solutions are
proposed such as predicting the lost action based on the behaviour of
the player. Although this solution is complicated since it needs adding
some new calculation and decision making procedures in the application
layer, it does not necessarily ameliorate the QoE of the game since the
prediction can be di�erent from the real actions, which will lead to
unsatis�ed clients. The packet loss rate will be noted asLoss for the
rest of the report.

� Packet ordering: The de�nition of an ordered-packet arrival given in
[36] is as follows:

De�nition 1 Ordered arrival is a property which is found in packets
that transit their path and where the packet sequence number increases
with each new arrival and there are no backward steps.

We will propose a mathematical formulation of this de�nition. Let's
consider a sourceS with k packets to send to a destinationDest. Let
the source attribute to each packetP a sequence numberNP that
represents the order of sending the packet. The index of the �rst packet
sent is 1, the second is 2, etc.Dest will receive the packetsRP1; :::; RPk

whereRPj represents thej th received packet. The receiver will check
the sequence number of the received number to calculate the disorder.
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The disorderd can be de�ned as follows:

d = max
i 2f 1;::;k � 1g

j NRP i � NRP i +1 � 1 j (1.3)

If d = 0, then the packets are received in order. Otherwise, the packets
are received in disorder, i.e a di�erent order than the order of trans-
mission by the source.

These parameters are the base of every QoE prediction model for online
games. However, they could be considered with di�erent weights and impor-
tance from one model to another and from one game to another depending
on the game category, the targeted users and the mechanisms that can be
implemented in the game in order to mask a part of these imperfections.
In [24], the authors proposed a prediction model of players' departure based
on the network conditions. They calculate the probability that the player
decides to leave the game after 10 minutes of playing as follows:

lp = 12:5 � rtt:mean + 86:1 � rtt:sd + 1:1 � log(closs) + 1 :2 � log(sloss) (1.4)

P r[stay ^ 10min ] =
exp(lp)

1 + exp(lp)
(1.5)

where rtt.mean is the round trip average RTT or 2:D (c;s) , rtt.sd is the varia-
tion of the RTT which we de�ned as the jitter, J , closs is the loss rateLoss
of the clients' packets andsloss is the loss rate of the server's packets.

1.3.3 Transport layer protocols for online games

The transport protocol used for massively multiplayers online games is either
TCP [37] or UDP [38]. However, each of these transport protocols has its
advantages as well as its disadvantages. The choice of the adequate proto-
col in this case is just a matter of prioritization that the game development
company makes. In this section, we will expose the characteristics of each
of these two transport protocols and, hence, their advantages and disadvan-
tages in the context of the online games application. In other words, we
will talk about the performance of these transport protocols based on the
requirements of the quality of service of the online games that we discussed
in 1.3.2, speci�cally the ordering, the delay and the packet loss.
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Even though TCP does not seem the best choice for a real-time application
such as the MMOG, the majority of the famous online games use TCP. In
fact, it has been considered a strange choice by many researchers such as
Griwodz et al. in [39] where they discussed the "fun fact" of using TCP
for online games. The reason simply resides in the priorities of the game
designers. As a matter of fact, both transport protocols TCP and UDP have
their advantages as well as disadvantages. Hence, neither of them can be the
best choice for online games applications. The use of either of them means
to prioritize some features over others. In fact, there are even some online
games that use both of them for di�erent phases of the game. For instance,
the famous MMOFPS game, Counter Strike, uses TCP as well as UDP. It uses
TCP during the �rst phase, the connection phase, where the client is logging
in and downloading the game maps and the environment data. Regarding
this large inuence that the transport protocol have on the quality of the
game, many researchers focused on the study of other alternatives that can
a�ord better performance than TCP and UDP for online games applications
[40, 41, 42].

1.3.4 Open problems and motivation of our work

Online games are becoming very popular, generating an increasing amount
of Internet tra�c as illustrated in Figure 1.1. This tra�c is mostly com-
posed of headers followed by very small payloads [43] [44], especially under
the TCP transport protocol. This results in a degradation of the e�ciency
of the underlying network. The second main characteristic of the tra�c is its
periodicity, which results in the ash crowds e�ect: the network receives a
huge number of packets at almost the same time. The bursty behavior brings
some challenges to the network's infrastructure in terms of processing, bu�er-
ing, delay [44] and the requirements of the server in terms of bandwidth. As
a result, the server becomes threatened by the overload problem which limits
the scalability of these games. Thus, it becomes crucial to �nd mechanisms
to decrease the network load generated by the online games and to increase
the network's e�ciency and the game's throughput.

Remark 1 The tra�c load is depending on the number of packets generated
as well as the size of these packets. When we will deal with network coding
technique, we suppose that all the packets have the same size and thus the
load depends only on the number of the transmitted packets.
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On the other hand, the QoE of online games is strongly related to the consis-
tency of the game. An inconsistent game is essentially caused by the delay,
the jitter and the packet disorder introduced by the transmission network.
Therefore, the network should provide some acceptable QoS performance to
meet the satisfaction constraints of the increasing number of online gamers.

In this context, our objective is to design a routing protocolC that pro-
vides a certain packet order with a minimum number of transmissions and
reduced bandwidth requirements for the server with the minimum latency
D (c;s) that meets the latency tolerance limitsDmax for online gamers.

In the next chapter, we will present the related works on the possible
solutions to solve online games' main problems that we identi�ed.
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2.1 Introduction

After introducing online game applications, their speci�cations and their
problems, we will present in this chapter the related works and the proposed
solutions for these problems, mainly related to the consistency and to the
tra�c load. We will discuss two possible topologies for online games: the
tree and the cycle. For each one, we will introduce possible solutions for
both consistency and load optimization.

2.2 Network support for group communica-
tions

For group communication applications, the use of multiple separate unicast
transmissions is not e�cient and can't allow the scalability of the network. As
a solution, one can use shared topologies for di�erent ows. This topology
can be either: 1) a structured topology such as a tree or a cycle or; 2) a
peer-to-peer topology. "Online games" is one of these group communication
applications. As the main architecture used for online games is a client/server
one, we are more interested in the tree and the cycle topologies. In the tree
topology model, presented in Figure 2.1, nodes from the players' layer will be
connected with the upper layers until the server, going through intermediate
nodes. The players in this case represent the leaves of the tree (see the red-
colored branch in Figure 2.1) but they can also be relays (see the blue-colored
branch in Figure 2.1). The intermediate nodes will aggregate the received
packets and send one packet to the next node over the tree. As for the cycle
topology case, the cycle will interconnect the players to the server. All the
clients' and the server's packets are transmitted to their destinations through
this cycle. However, in some cases, the cycle will be very large with a huge
latency and will not be practical to implement. Thus, in order to limit the
size and the delay of the cycle, we can focus on the players' layer and divide
the cycle into multiple cycles, composed of groups of players and a gateway
node, as illustrated in Figure 2.2. For now, we will call this gateway node a
local server and we will explain its role with more details in the next chapters.

We suppose that the same topology will be maintained for the upstream
and downstream ows. Note that the consistency and the tra�c load issues
are more critical in the upstream ow, from the players to the server. In
the following, we will discuss these two topologies and the corresponding
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Figure 2.1: Tree topology introduced to online games infrastructure

Figure 2.2: Cyclic topology introduced to online games infrastructure
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solutions for consistency and tra�c load.

2.3 Tree-based solutions

Tree topology is one of the conventional topologies when it comes to a group
communication application. Indeed, the authors in [45] and [21] have pro-
posed tree-based topologies for online games application. As the tree can be
used for online games, we will discuss tree-based solutions for online game
consistency and tra�c load issues, then we will describe their e�ect on online
video gaming.

2.3.1 Consistency

To provide consistency, some tree-based ordering protocols have been pro-
posed in the literature such as the Tree-based Ordered Multicast (TOM) pro-
tocol in [46], a Total Ordering Multicast Protocol in [47] and a multiple-group
ordering protocol in [48]. The packet ordering concept in these propositions
is globally the same: All the packets need to go through a special node,
generally called a sequencer, which is responsible for assigning an indicator
to each packet. This indicator will help the receiver to order the received
packets. The indicator can be, for example, a sequence number or a times-
tamp that represents the time at which the packet was sent. However, these
protocols are rather complex and generate a very high signaling overhead,
which will result in an additional delay. Besides, all the packets should go
through the sequencer before being transmitted to their destination, which
causes an additional delay and a bottleneck issue at the sequencer.

2.3.2 Load optimization

To reduce the tra�c load over a tree topology, one can use several tech-
niques such as e�cient routing schemes for tra�c balancing over the links
[49], aggregation and header or data compression. Some of these solutions
have been proposed for online games. For instance, data compression has
been proposed in [50] to reduce the tra�c from the server to the players. In
[51], the authors proposed to aggregate the game tra�c and showed that this
technique can reduce the tra�c load from the clients to the server and im-
prove the game performance. A more elaborated solution, called Tunnelling,
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Compressing and Multiplexing (TCM), has been proposed in [52, 53] based
on a combination of header compression and multiplexing is adopted to op-
timize online games from the players to the server. As we believe that for
online games the uplink tra�c load issue is more crucial than the downlink
one, we are rather interested in the TCM solution. Let us describe the TCM
in more details in the following section.

2.3.2.1 Concept of Tunnelling, Compressing and Multiplexing

Packets are �rst received by a TCM agent, located at the access provider
proxies or directly at the client end as a software. The TCM agent ensures
successive header compression, multiplexing and tunnelling (see Figure 2.3)
as follows:

Header compression: Once a packet is received by a TCM agent, its UDP/IP
or TCP/IP header is compressed using a speci�ed header compression
protocol, IPHC or ROHCv2 for instance [53]. This compression re-
duces the IP header from 20 bytes to 2 bytes approximately, and the
UDP/TCP header of 8-20 bytes to 2 bytes.

Multiplexing: At this step, multiple packets are merged into one packet
(multiplexed). The multiplexing technique from [54, 53] is a periodic
one{ the TCM agent receives packets during a periodT and multiplexes
all of them into one packet. In the case where the agent receives only
one packet, no multiplexing is performed. The multiplexing procedure
is illustrated in Figure 2.4.

Tunnelling: At the last step the multiplexed packet is sent to the server
using a layer-2 tunnelling protocol.

At the receiver end (main server), the TCM packets are demultiplexed and
decompressed to their original form.
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Figure 2.4: Multiplexing method.

Figure 2.3: Intermediate functions within the TCM.

Figure 2.5 illustrates the protocol stack and the structure of one TCM
packet. The packet is composed of the following parts:

� Common Header (CH): for the whole packet.

� PPPMux header (MH): added at the beginning of each compressed
packet.

� Reduced header (RH): includes the IP/UDP compressed header of each
native packet.

� Payload (P): the UDP payload of the native packets.

The size of the multiplexed packetSmux is then expressed as follows when
the number of the multiplexed packetsk is larger than 1 [54]:

Smux = CH + k(MH + E[RH ] + E[P]) (2.1)
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Figure 2.5: Compression method.

2.3.2.2 TCM limitations

There are three limitations in the TCM approach:

1. An additional delay will be incurred given that the packets will only
be sent at the end of the multiplexing periodT, independently of their
arrival time. This delay is proportional to T and is equal in average to
T=2.

2. Since this additional delay changes from one packet to another, de-
pending on the time the initial packet was received by the TCM agent,
a variable jitter delay is also added. This is illustrated in Figure 2.6.
Given three initial packets 1, 2 and 3, the delay between the mul-
tiplexed packets, carrying packets 1 and 2, has increased, while the
delay between the multiplexed packets, carrying packets 2 and 3, has
decreased.

3. If the number of initial packets, gathered during the periodT, is large,
the size of the multiplexed packet will also become large, which may
lead to the packet segmentation at lower network layers and, thus, to
increase the delay.
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Figure 2.6: Example of a jitter caused by the TCM.

To conclude, the TCM technique can reduce the network's ine�ciency by
increasing the utility of the online games tra�c. The gain of the TCM tech-
nique is dependent on the multiplexing period and the number of connected
players. Hence, an ideal implementation should be associated with a dynamic
choice of this period based on the mentioned parameters. The disadvantage
of this technique is its additional delay which can damage the game quality
specially for games using TCP or with very interactive activities [55]. How-
ever, it was shown that even with this delay, TCM can manage to a�ord an
acceptable delay by the online gamers if well studied limits to the multiplex-
ing period are established. Certainly, these limits will reduce the throughput
gain, but it will guarantee an acceptable QoE [55, 56]. Another problem is
the variation of the delay for the online gamers which can increase the incon-
sistency of the game. Finally, the packet size can be very large which may
introduce segmentations through the transmission. Hence the probability of
packet loss, retransmission and waiting will increase.

2.3.2.3 TCM advantages

In order to decide whether the TCM is useful in online gaming scenarios,
one should evaluate the impact of the �rst two limitations onto the QoE of
players, which will be done in the next chapter. As for the third limitation, it
can be circumvented with a new version of the TCM algorithm, presented in
Section 3.2. In [53] and [54], TCM has been proposed as a solution to reduce
the tra�c charge of online games. However, there were no simulations to
con�rm the bene�ts of TCM. The gain has been demonstrated using an
emulation based on �xed values. Hence, we set up di�erent simulations to
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evaluate the e�ect of applying TCM. Besides, we will simulate the forest
topology and evaluate its performance with and without TCM.

2.4 Cycle topology

Cycle topologies o�er an appealing alternative to tree topologies for group
communications because of the attractive bene�ts that they can provide such
as ease of management, reliability and survivability. However, the use of
cycles increases the transmission latency which might not be acceptable for
delay-sensitive applications such as multiplayer online gaming.

2.4.1 Consistency

Thanks to its ordered nature and network-failure resistance, cycle topology
o�ers more simplicity and robustness when implementing ordering protocols
compared to the tree. Therefore, many researchers were interested in the
cycles when elaborating their ordering protocol. The main techniques used
in a cycle-based ordering protocol are: 1) a token: it is a short message
conveying global status and is used for the coordination of the di�erent sites
in the group and; 2) a timestamp. In this context, token-based ordering
protocols are famous and attractive considering their simplicity, exibility
and high performance. As a result, they were chosen to be deployed in many
practical messaging services such as the Spreed toolkit [57], the Corosync
cluster engine [58] and the Appia communication framework [59].

Among the �rst cycle-based ordering protocols propositions, we cite TPM
[60], where a token is used to control broadcasting and message sequencing.
It o�ers a reliable ordered multicast communication for distributed process
groups in the presence of failures and network partitions. This protocol o�ers
a limited management of group partitioning that can handle the division of
the group but not the merging of these groups.

ISIS is another protocol proposed in [61]. It provides three types of de-
livery order: unordered messages or BCAST, causal ordered messages or
CBCAST and totally ordered messages or ABCAST. Both the vector clock
and the token techniques were used in this protocol: the vector clock is used
to ensure the causal ordering and the token-based sequencer is used in order
to provide the total order. The total order is obtained by converting a par-
tial message order previously established. These protocols were the base for
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more enhanced ordering protocols. As an example, the Totem protocol was
proposed in [62] as a total ordering reliable token-based protocol that can
handle more e�ciently the failure cases, the partitioning and the merging of
groups. This protocol o�ers lower computational cost and higher throughput
than older propositions such as Trans and Total protocols [63]. With Totem,
consistency and packets ordering is maintained despite network partitioning
and remerging, or processor failure and recovery with a stable storage intact.
Totem was designed for a local area network. However, the implementation of
the Totem protocol presented some di�culties and challenges in maintaining
the total order, especially with possible topology changes.

To solve these challenges, a more general and extended version of the
Totem protocol, called The Totem multiple-ring protocol, was proposed in
[64]. This protocol is built on top of the original Totem single-ring protocol
where multi-cyclic topology is used to interconnect di�erent groups. The
protocol succeeded to provide a reliable, totally ordered and consistent mes-
sage sequencing even in the presence of network partitioning, reemerging,
processor failure and recovery. The global total order of messages across the
multiple interconnected local-area networks is conserved even between the
di�erent cycles thanks to the use of a combination of sequence numbers and
timestamps.

As the major disadvantage of using a cycle is the delay, other propositions
focused on reducing the delay and providing fast total ordering solutions. In
[65], the authors were interested in developing an e�cient and fast ordering
protocol. Considering the simplicity of cycles and token-based exible se-
mantic protocols, they chose to use a logical cycle as a topology. They then
proposed the Accelerated Ring protocol as a solution to improve the perfor-
mance of standard token-based protocols. It minimizes the delay by allowing
the processes to pass the token even before the end of their data transmis-
sion. Results showed that by using this solution, the delay is reduced and
the throughput is increased. This protocol is also e�cient for partionable
network models.

2.4.2 Load optimization

To reduce the load over cycle network links, one can use some optimized
routing protocols. Another alternative is the network coding technique. Al-
though this technique was initially introduced for acyclic networks, it has
been shown in the literature that it can provide gains in term of load and
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throughput even in cyclic topology. In the following, we will introduce the
concept of network coding and its advantages. Then we will present some
of its applications. Afterwards, we will describe how we can exploit this
technique in a cyclic network, which we will use in our proposed solution in
Chapter 4.

2.4.2.1 Introduction to network coding

Network coding (NC) has been proposed in 2000 by Ahlswedeet al. [66]
in order to achieve the maximum throughput rate in a wired network for a
simple source transmission case, which cannot be achieved by the traditional
receive-and-forward routing method. Afterwards, NC has become considered
as an e�cient solution to increase the throughput of either wired or wireless
networks and solve the min-cut max-ow problem as illustrated in De�nition
2 and Theorem 1 [67].

De�nition 2 A cut between a source S and receiver R is a set of graph edges
whose removal disconnects S from R. A min-cut is a cut with the smallest
(minimum) value. The value of the cut is the sum of the throughputs of the
edges in the cut.

Theorem 1 Consider a graph G=(V,E) with unit capacity edges, a source
vertex S, and a receiver vertex R. If the min-cut between S and R equals h,
then the information can be sent from S to R at a maximum rate of h.

The basic idea of network coding is to allow the intermediate nodes to
not simply forward the messages they receive but, instead, to algebraically
combine several received messages from its neighbors and possibly its own
messages and transmit the resulting message to the next hop. Using net-
work coding technique, the max-ow min-cut equality can be achieved for an
acyclic multicast transmission case as implied by the following main theorem
of NC [67].

Theorem 2 Consider a directed acyclic graphG = ( V; E) with unit capac-
ity edges, h unit rate sources located on the same vertex of the graph andN
receivers. Assume that the value of the min-cut to each receiver is h. Then
there exists a multicast transmission scheme over a large enough �nite �eld
Fq, in which intermediate network nodes combine their incoming information
symbols overFq, that delivers the information from the sources simultane-
ously to each receiver at a rate equal to h.
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Figure 2.7: Basic network coding example : the buttery case [1]

One of the most well-known examples that explain the advantage of the
network coding technique is the buttery example that we see in Figure 2.7
[1]. In this example, both sourcesS1 and S2 need to send their packetsa and
b respectively to both terminalsT1 and T2. These two packets need to go via
the intermediate nodesV1 and V2. As each link can only transmit one packet
at a time slot, the link between V1 and V2 becomes the bottleneck of this
network. Hence, by simple forwarding, we need 5 time units for both packets
a and b to be received by both terminals. However, if we apply the network
coding technique, the intermediate nodeV1 can XOR both packetsa and b
and generate a new packet. The resulting coded packet will be forwarded
through the bottleneck during one time slot and then will be transmitted to
the terminals. The terminals will recover their needed packet by XORing the
received coded packet with the native packets. Hence, both packetsa and b
have got through the link betweenV1 and V2 at the same time and the total
time units needed is reduced to 3 instead of 5. In this example, we can see
that the maximum throughput of the network passed from 1.5 time ows to
2 time ows thanks to the use of the network coding technique.

2.4.2.2 Network coding applications

Network coding has gained a remarkable interest and has been widely studied
thanks to its advantage in terms of increasing the network throughput and
minimizing the number of needed transmissions. Numerous network coding
based solutions have been proposed and applied for multiple areas and ap-
plications such as point-to-point communications, content distribution and
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storage applications [68], wireless mobile networks, video delivery [69], peer-
to-peer networks, sensor networks [70], device-to-device communications [71]
and even satellite networks [72]. Besides the throughput, network coding
has achieved gains in terms of energy consumption for wireless applications
where all nodes need to transmit information to all the other nodes, i.e. in a
multicast scenario [70, 73]. Some speci�c examples showing this advantage
can be found in [74] for a sensor network and in [75] for an adhoc network.
Another area of application of network coding is ensuring robustness against
transmission errors and failures. In this context, network-error-correcting
codes such as erasure codes are largely studied [76]. Network coding has
been proposed even for delay-sensitive and real-time applications such as
video streaming [77, 78], and vehicular adhoc networks [79].

2.4.2.3 Linear network coding

Linear network coding (LNC) is one of the simplest and the most-used net-
work coding types. It consists in combining the messages using some linear
combinations and the resulting message will be decoded by the receiver by
Gauss elimination after receiving a su�cient number of combinations. Prac-
tically, each node combines all the received packets using some speci�c coe�-
cients that are assigned to each input link. These coe�cients form the coding
vector of a node. Let us consider a general setup withv sourcesS1; :::; Sv.
Each sourceSi wants to send one symbolx i to a set ofw receivers. Let us note
the set of resulting transmitted symbols as the vectorX = ( x1; x2; :::; xv). If
the min-cut of the network for all the ows is equal toh, then each receiver
i will receive the vectorZ i = ( zi; 1; zi; 2; :::; zi;h ). Each symbol ofZ i is a linear
combination of the symbols sent by thev sources. Hence, we can represent
each received symbolzi;j as the multiplication of X by a coding vectorVi;j

as shown in Equation 2.2.
zi;j = X � V T

i;j (2.2)

Hence, the received vectorZ i can be represented as follows:

Z i = X � M i (2.3)

whereM i is the coding matrix corresponding to the receiveri and composed
of the di�erent coding matrix Vi;j . Note that if the symbols ofX are over the
�nite �eld Fq, then all the elements of the coding matrix must also be over
the same �eld Fq. In order to recover the original sent message, the receiver
i should calculate the inverse of the coding matrix,M i

� 1.
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The LNC method ful�lls the maximum throughput and solves the min-
cut problem as de�ned in the basic NC theorem 2. There are two well-known
types of network coding: the random linear network coding (RLNC) and the
XOR coding which we will describe in the following.

2.4.2.3.1 Random Linear Network Coding
A special case of linear network coding is the random linear network cod-
ing (RLNC). In this type of coding, the node combines the received packets
linearly as usual but using a coding matrix that is generated randomly. After-
wards, the coded packet is sent to the next node accompanied by its coding
vector. When receiving the coded packet, the sink can recover the initial
packets by calculating the inverse of the coding matrix and use it to decode
the received packet by using Gaussian elimination. When it comes to the
wireless domain, two types of networks can be distinguished: a network with
a speci�c infrastructure and a network with no infrastructure, also called
adhoc network. RLNC's advantage is the simplicity of its concept, allowing
it to be adopted to the network topology, even to adhoc networks. However,
RLNC is costly in terms of bandwidth as it requires an additional overhead
in order to transmit the coding vector, and in terms of calculation complexity
for decoding. All these characteristics make RLNC more suitable for adhoc
networks than for static networks. In [78], the authors proposed an RLNC
that can provide better trade-o�s between bandwidth e�ciency, computing
complexity and delay. On the other hand, in [80], it has been demonstrated
that instantly-decodable network coding (IDNC) is more e�cient in terms
of decoding delay. Hence, IDNC is more suitable for centralized storage net-
works. In [81], the authors preferred working with IDNC when designing
codes for real-time applications.

2.4.2.3.2 The XORing method
Network coding was initially proposed to solve congestion issues in wired
networks [66]. However, its application in the wireless network case is being
intensely investigated [82, 70, 83]. Wireless network coding (WNC) exploits
the broadcasting nature of wireless channels to provide a throughput gain as
can be shown in the example illustrated in Figure 2.8[2]. In this example,
nodesA andB need to exchange messages via the relay nodeR as they are too
distant to communicate directly. This so-called the Alice-and-Bob topology
is a simple multihop wireless network case where NC can be applied.A sends
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a message� to B while B sends a message� to A. Without the wireless
network coding, four time slots are needed to ensure the communication
betweenA and B, as shown on the left side of Figure 2.8. However, when
applying the wireless network coding, only three time slots are needed, as
illustrated on the right side of Figure 2.8.

In time slot T3, the intermediate nodeR encodes the received messages,�
and � , by XORing them and generates a new message .  is then broadcast
to A and B. A decodes the received message by XORing it with its own
message� . As a result, A obtains the needed message� . The same goes
with B . It XORs  with its message� to obtain the awaited message� .
Hence, as illustrated in this example, WNC can improve the wireless network
throughput by using the broadcast transmissions to decrease the number of
total time slots needed to ensure the communication.

2.4.2.4 Use of NC in practice

As mentioned in previous section, two types of networks can be distinguished
in the wireless �eld: networks with a �xed topology and adhoc networks.
Based on the type of the network, two NC approaches, the deterministic and
the probabilistic network coding schemes, are proposed.

2.4.2.4.1 Deterministic NC schemes
In the case of a well-known (static) network infrastructure, transmitting
nodes can be selected on a permanent basis and NC can be applied by
well-determined nodes using speci�c received symbols. These parameters
are calculated in advance in an optimal way in order to guarantee the maxi-
mum possible throughput with a minimum delay. This approach is referred
to as deterministic network coding. In the case of a static network, an entire
knowledge of the network topology can be provided. However, this cannot be
always guaranteed. Hence, some researchers designed deterministic network
coding schemes for wireless networks based on local information about the
neighborhood information [84, 85]. These propositions are based on a new pa-
rameter called pruning which presents the local information about neighbors.
We di�erentiate between several types of pruning depending on the depth of
knowledge: self-pruning for 1-hop information knowledge, dominant pruning
for 2-hope information [84], called also a partial dominant pruning in [86, 85]
and �nally the total dominant pruning for 3-hop neighborhood information.
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Figure 2.8: Network coding example in a wireless network [2]

2.4.2.4.2 Probabilistic NC schemes
In the absence of any guaranteed information about the topology, other
works proposed to apply probabilistic approach to network coding. In this
approach, as we are not sure about the topology, the nodes will code the
received packets with a certain probability or coding factorPNC and send
the received packets without coding with the probability 1� PNC [87]. This
factor is calculated by taking three parameters into account: the throughput
gain, the delay and the probability threshold of a successful decoding oper-
ation [88]. Di�erent algorithms have been proposed in order to e�ciently
calculate this factor [87, 88, 73, 89, 90, 91].
RLNC can also be used in the case of topology as it does not need a full
knowledge of the topology in order to code or decode.
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As we are focused on online gaming applications, there aren't many
chances that the players will change their location after starting a game ses-
sion as they need full concentration. Actually, players are generally located
at their home or at cyber caf�es. Therefore, in our proposed solution, we will
consider a deterministic approach for online gaming, where the topology is
a logical cycle and all the coding vectors are previously calculated. How-
ever, if the players are rather mobile and change their location frequently,
then the logical cycle topology construction should be performed periodically
to guarantee the connectivity between the nodes. This construction can be
based on the neighboring information or pruning as explained in Section
2.4.2.4.1. When the topology is constructed, we can apply our deterministic
protocol. Some metrics should be set to calculate the period of the topology
construction. These metrics can include a threshold of undecodable packets,

2.4.2.5 Network coding over cycles

Network coding technique was proposed to achieve the maximum throughput
for an acyclic network as established in theorem 2. When working with an
acyclic network topology, an upstream-to-downstream ordering among the
nodes is established [92]. This ordering enables the synchronization of nodes
so that each message can be treated individually. However, if a cycle is
present in the topology, this property is no longer guaranteed. Let us consider
for instance the cycle example ABCD in Figure 2.9, where two sourcesS1

and S2 send their messages to sinksT1 and T2 respectively. In this case, an
S1 stream is transmitted fromAB to CD, while an S2 stream is transmitted
from CD to AB . Hence, no upstream-to-downstream order is preserved.

One way to deal with this issue and to make sure that the acyclic net-
work coding is still applicable in case of cycles is to actually prevent cycles
by imposing some restrictions on routing. This method is not always possi-
ble. Another way to resolve the problem is to expand the network in time
and to regain the acyclic graph characteristic by considering the transmitted
information as a pipeline of messages [93]. For instance, in [92], the authors
defended that even in case of cyclic topologies, the upstream-to-downstream
ordering can be established thanks to the time dimension. In fact, the trans-
mission medium, when observed as a space-time domain, is still acyclic. The
authors of [92] also proposed a method to converse the cyclic graph into
a layered acyclic one. However, this approach has many drawbacks such
as encoding and decoding complexity and a too large delay [94]. Besides,
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Figure 2.9: A cyclic network case in which the upstream to downstream order
is not preserved [3]

in some cases, the optimal transmission rate cannot be achieved using an
acyclic graph [93]. Thus, it may be more e�cient to exploit the recursive na-
ture of cycles instead of trying to avoid them. Also, the authors in [93, 3, 95]
proposed to switch from a delay-free model of networks and consider delays
in order to deal with cycles, which makes it natural to focus on convolutional
codes. In [94], the authors proved that it is not necessary to have a delay in
every edge of the cyclic graph. One just needs to have at least one edge in
each cycle that has a non-zero delay which can ensure stability and causality
of the information ows.

As a result, the equations proposed for linear coding over an acyclic net-
work can be adjusted to suit this new convolutional approach, taking into
account the delays introduced by the edges of the network. For instance,
Equation 2.3 can now be presented as follows :

Z i (D) = X (D) � M i (D) (2.4)

whereD is the delay operator variable.
Based on this approach, several propositions have been made for the

construction and the design of an e�cient convolutional network code for
cycles like [95, 94, 96, 97]. These works, however, have focused on one source
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node case and on achieving the maximum throughput more than on reducing
the transmission delay over the cycle. We will use this convolutional network
coding approach afterwards when we introduce the proposed routing protocol
in Section 4.3.3.2.

When it comes to case of wireless networks and wireless coding based
on broadcasting, other approaches for network coding over cycles have been
studied focusing on the multicast scenario where each node has a message
to send to all the other nodes in a time-slotted and synchronized network.
The basic idea is to allow the intermediate nodes to send the combination
of the received packet from their two neighbours. Each time a node receives
two coded packets, it uses the already-sent ones to decode them, code the
recovered packets and send them to both neighbors . Hence, the intermediate
nodes alternate between coding and decoding. The operation is a simple XOR
between the received packets with coe�cients always equal to 1 [75, 98, 74]
which reminds us of the wireless-relaying network-coding example shown in
Figure 2.8. Using network coding in this cyclic multicast setup increases the
throughput and helps to achieve the minimum number of transmission limits
over such a network that has been proved in [99] to be equal to :

Tw � n � 2 (2.5)

Tnc � (n � 1)=2 (2.6)

where n is the number of nodes of the cycle,Tw denotes the number of
transmissions required for an information unit to reach all the nodes without
network coding andTnc denotes the number of transmissions required for an
information unit to reach all the nodes with network coding. This leads us
to a maximum gain in terms of transmissions number equal to 1=2.

lim
n! + 1

Tnc=Tw = lim
n! + 1

(n � 2)=((n � 1)=2) = 1=2 (2.7)

Besides, it has been shown in [74] and [75] that network coding in a wireless
multicast cyclic transmission case provides lower energy consumption, which
is an important advantage when it comes to wireless terminals. The authors
in [98] proved that their network coding solution decreases also the delays
of transmission over the cycle. In the next chapter, we will introduce our
solution which is inspired by these works.
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2.5 Cycles versus Trees

Even though the tree topology may seem a straightforward choice for such
a group communication application, it is not necessarily the best choice for
every application. It o�ers a fast transmission and a simplicity of construc-
tion compared to the cycle-based topologies. However, when dealing with
consistency, the tree-based ordering solutions are generally costly in terms of
overhead and signaling. Besides, as they are based on a sequencer to which
all packets need to be transmitted in a �rst step, an additional delay is gen-
erated in order to reach the sequencer and the sequencer will su�er from
bandwidth issues. Moreover, if a problem occurs to the links between the
nodes and the sequencer or if the sequencer itself breaks down, then all the
ordering procedure will fail and the transmission will be interrupted. On the
other hand, it was shown in previous works by Wang et al. that providing a
reliable and survivable transmission is more complicated over a tree topology
than over the cyclic topology, as many key management schemes may be used
on the cycle [100, 101, 102]. The authors in [102] also proposed a multi-cyclic
topology design to cover the case where the transmitting nodes are distant
and to provide scalability to the network. Moreover, it has been stated in
[103] that the cyclic topology is even better than the tree topology for real
time group multicast when active nodes can change in number or in distribu-
tion as it will require signaling protocols, which is not the case with cycles.
Given their numerous advantages, cycle topologies have recently gained par-
ticular interest in adhoc networks such as energy e�cient routing for sensor
networks [104] and reliable delivery of control packets for industrial networks
[105]. Considering all these facts, it is interesting to investigate cyclic topol-
ogy further as it seems a strong possible alternative to the tree topology
for many applications, particularly for the multiplayer online video games.
However, the presence of cycles might increase the transmission latency and,
thus, worsen the QoE in terms of responsiveness. Hence, it will be interesting
to provide solutions to reduce this latency in order to make the cyclic topolo-
gies more appealing and applicable for real time applications. Note that no
researches have compared the tree and the cycle topology for the case of
online gaming. Indeed, the cycle topology has not been yet considered for
online games' application.
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2.6 Conclusion

In this chapter, we discussed the conventional topologies for group communi-
cation applications: the tree and the cycle. For each topology, we presented
possible solutions for online game issues, mainly tra�c load and consistency.
Both of these topologies are interesting given their advantages. For instance,
the tree topology is better in terms of delay but this adds a large delay
and complexity when it comes to consistency and ordering. As for cycle
topology, it is simpler when it comes to consistency and ordering, but it in-
troduces larger delay than the tree. Despite the numerous advantages of the
cycle topology, at our knowledge, no one considered this topology for online
games. One of the contributions of this thesis is the investigation of cycle
topology performance for online games.

In addition to the cycle topology, we will propose an optimized routing
protocol coupled with network coding. Network coding will not only reduce
the latency over the cycle, but will also increase the e�ciency of the network
by decreasing the tra�c load. Note that, for online game tra�c, NC cannot
be bene�cial if applied to the tree topology as the min-cut in this case is
equal to one. Hence, thanks to the cycles, we can investigate the impact of
applying the network coding technique for online games.
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Part II

Packet multiplexing for online
gaming
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Chapter 3

Performance impact of packet
multiplexing and player
partitioning on MMOG games
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3.1 Introduction

In this chapter, we will focus on the study of TCM, the solution proposed to
increase the tra�c e�ciency based on a tree topology. There are two main
contributions is this chapter. First we introduce an ameliorated version of the
TCM technique for online game and evaluate its performance via simulations.
Second, we propose to apply the player partitioning approach coupled with
the enhanced TCM. We refer to the resulting topology as a forest. This work
was published in [106].

3.2 Modi�ed TCM protocol

In Section 2.3.2, we presented the TCM technique and explained its bene�ts
in terms of throughput gain and network e�ciency. However, this gain is
not always guaranteed. In fact, the best results for TCM can be obtained
when the number of the multiplexed packets is large. Therefore, the solution
found is to increase the multiplexing delay. This will result in:

� increasing the additional delay caused by the multiplexing period;

� increasing the jitter: the delay variation between di�erent packets;

� a very large number of packets to be multiplexed and hence a large
multiplexed packet that may have to be segmented before being sent.

The segmentation procedure will cause an additional delay in order to wait
for all the segments to arrive before treating the packets and also a prob-
lem in case of packet loss: if many segments are lost, then waiting for all
the successful retransmissions induces a larger delay. Hence, if one limits
the number of multiplexed packets to a threshold calculated based on the
packets' size and the maximum MTU to be transmitted through the net-
work, the resulting multiplexed packet will not need any segmentation and
the packets can be rapidly multiplexed if enough packets are received, even if
the multiplexing period is not �nished yet. The solution we propose to avoid
the segmentation of multiplexed packets consists in a dynamic multiplexing
period that can get two possible values: 1) a �xed value,T, which is the
maximum acceptable multiplexing period calculated based on the generated
additional delay and the network's performance (the transmission delay) and;
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Figure 3.1: The modi�ed TCM version.

2) a variable value,T' , corresponding to the su�cient time needed to accu-
mulate the maximum number of packetsNmax so that Smux do not exceed
the network's MTU. The value ofNmax is calculated using (2.1) as follows:

Smux � MTU

CH + Nmax (MH + E[RH ] + E[P]) � MTU

Nmax = b
MTU � CH

(MH + E[RH ] + E[P])
c

(3.1)

An illustration of the proposed solution is presented in Figure 3.1.
The proposed modi�cations are summarized in the pseudo-code of Algo-

rithm 1. It allows multiplexing and sending packets by the TCM agent after
having receivedNMax initial packets even before waiting for the end of period
T. In this way, the maximum size of the multiplexed packet is controlled by
the TCM agent, and the additional delay is reduced.

3.3 Forest topology

As discussed in 1.2.2, the main architecture used for online games is the
client/server one. However, it was defended in many works that hybrid ar-
chitectures where the server is distributed can be more e�ective for online
games [107]. One way to distribute the server is to partition the players as
we see in the following.
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Algorithm 1 Our TCM protocol

1: procedure TCM routing
2: De�ne
3: TT CM as the multiplexing period
4: Timer is set to be equal toTT CM

5: NP ackets as the number of packets received at the TCM Agent
6: NMax as the max. number of packets to multiplex
7: loop (forever):
8: start Timer
9: while ! Timer timeout do

10:

11: if receive packetthen
12: NP ackets = NP ackets + 1
13: if NP ackets = NMax then
14: compression and multiplexing of packets
15: send packet to server
16: NP ackets = 0
17: start Timer
18:

19: wait until Timer timeout
20:

21:

22: end while
23: if timer timeout then
24: if NP ackets = 1 then
25: send original packet
26: else
27: compression and multiplexing of packets
28: send packet to server
29: NP ackets = 0
30: start Timer
31: end if
32: end if
33: end of loop forever
34: end procedure
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3.3.1 Client partitioning

In order to distribute an online game system and balance the tra�c load,
players should be divided into subgroups. The partitioning criteria is gener-
ally the Area Of Interest (AOI) of the players. In fact, in virtual environment
systems, each participant is usually represented by an avatar. This avatar is
only concerned by what is happening in his proximity, which is referred to
as the Area of Interest. Hence, the actions can be sent based on this crite-
rion resulting in a remarkable decrease in the tra�c overhead. In fact, based
on the de�ned AOI of each avatar, the decision of sending some updates to
that avatar will be made. Using this concept, a virtual world can be divided
into sub-worlds where every sub-world contains a set of the avatars' area
of interest. The number of sub-worlds can be calculated depending on the
popularity (the density of the population) of some areas and on the available
resources that will be controlling these sub-worlds. An example of a dis-
tributed architecture based on the AOI concept is illustrated in Figure 3.2.

This approach can be easily applied in the case of online games. In fact,
in online games, each player has a certain range of vision of the game world.
This range includes a limited number of environmental objects and other
avatars. As an example, Figure 3.3 represents the game view of one player
of the League of Legends (LoL) game. As we can see in the �gure, the player
has only the vision of the nearby objects, with a limited global vision of the
rest of the game map with very few details (the zone limited by a dashed red
line). The vision range is the same for each player and it can be calculated
based on the avatar's position on the map and the parameters of the game
[13].

3.3.2 Our proposition: the forest

The partitioning procedure reduces the bandwidth required by the server
and increases the game throughput and the server's interactivity. Others
considered partitioning the players based on their geographical location in
the real world in order to bring some services such as the audio e�ects of
online games closer [108], which can reduce the round trip delay. When the
TCM was proposed for online games, it was based on the possibility of having
a number of players located in approximately the same geographical area.
One possible scenario is the case of cyber co�ees where a group of players are
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Figure 3.2: Example of distributed architecture for a virtual world based on
the AOI criteria.
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Figure 3.3: Illustration of the global vision and the detailed vision of League
of Legends players.

playing the same game at the same time, or a game party where friends are
gathered to play against each other. In this case, one can partition the players
based on their location in the game world as well as their location in the real
world. A subgroup of players in our model is a set of players that are located
in the same geographical area and the same area in the game. Each subgroup
is associated with a local server. A local server is a server that treats the
messages of its subgroup and calculates local updates. Then, it sends their
updates to the subgroup in order the change the game's state. These updates
are calculated locally without the central server's intervention. However, a
global vision of the game and a synchronous view for all the players should
be provided. Therefore, the local servers are still connected to the central
server. The local servers send their new states to the central server from
time to time. Afterwards, the central server will calculate the global game's
state's update and send it to all the local servers. Thus, all the players get
the same global view of the entire game world. Note that the tra�c between
the servers is less frequent than the tra�c between the local servers and
their subgroup members. We call the resulting architecture a "forest" and
we represent it in �gure 3.4.

According to the graph theory, a forest is de�ned as follows:

De�nition 3 A forest is a collection of trees which are not necessarily in-
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Figure 3.4: The forest topology for online games.

terconnected.

In this work, we only use interconnected subtrees which represent a tree
from a topological point of view. However, each subtree connects a group of
players chosen based on their location on the game's map. Since the tra�c in
one subtree may be di�erent from another subtree, we will call this topology
a forest with respect to the tra�c independence.

The forest is then composed of multiple subtrees having the local servers
as roots. These subtrees are connected to the central server which represents
the root of the forest as shown in Figure 3.4.

Such a partition is expected to minimize the tra�c to the central server
and also to reduce the delay in local updates among the players of the same
group. In the forest topology, there are four types of tra�c:

1. Local unicast: from players in a group to their local server. This tra�c
is similar to unicast tra�c for the tree.
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2. Local multicast: from the local server to the players in the group. It
has the characteristics of the multicast tra�c in the tree topology.

3. Global unicast: from the local servers to the central server. In order
to conserve the 80/20 rate relation between the local and the global
tra�c, we set up the local server to send an update packet about its
group after having received the packets from 4 players. The size of the
global unicast packet is calculated using (3.2) [23].

Sserver =

(
81:9 + 13 � (n � 2) if n > 2;

81:9 + 13 else
(3.2)

whereSserver is the size of the server packet in bytes andn is the total
number of players

4. Global multicast: from the central server to all players. Once the server
receives a global unicast packet, it generates the update packet whose
size is given in (3.2).

3.4 Simulations and Results

In order to evaluate the impact of TCM on online games and to measure
the e�ect of the group partition, we set up four simulation scenarios: 1) tree
topology without TCM; 2) tree topology with the TCM; 3) forest topology
without TCM and 4) forest topology with the TCM. For each input param-
eter, 10 simulations are run and the average of their results is taken.

3.4.1 Simulation setup

For simulations, we use the NS-3 simulator. The graphs are generated ran-
domly using the GT-Itm graph generator. Then, a tree or forest topology
is generated with the help of the Dijkstra algorithm, based on the short-
est path calculation. Finally, the adjacency matrix is generated, to be used
within NS-3. The used tree and forest topologies are given in Figure 3.5 and
3.6 respectively. Further, an FTP client is added to the NS-3 simulation. It
generates a Poisson background tra�c at the level of 50% of link capacities.
The link capacities are set as follows. Access links are set to 1 Mbps, metro
links to 5 Mbps and core links to 10 Mbps. These values have been chosen
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Figure 3.5: Tree topology with NS-3.

so that one could reach the network congestion when the number of players
increases. The players send their packets periodically with a small random
delay, representing the di�erence between their processors.

3.4.2 End-to-End delay

We investigate the impact of the TCM on the end-to-end delay when the
number of players increases (and so does the tra�c load). Fig. 3.7 summarizes
our simulation results. The following comments can be made.

For tree topologies, the TCM induces a larger delay, given that there are
only a few players in the game. In fact, in this case the throughput gain
of the TCM is not very important. Besides, the additional delay caused by
the multiplexing period T is added. When the number of players increases,
the delay increases exponentially. However, it grows without the TCM faster
than with the TCM. Indeed, the TCM allows to have a better performance
at heavy network loads. Note that the di�erence in delay increases with the
number of players. Also, note the big impact of the multiplexing period {
the delay decreases for larger values ofT. Clearly, this may not be a general
trend, and one of the �gures below will illustrate the delay behaviour w.r.t
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Figure 3.6: Forest topology with NS-3.

the multiplexing period.
As for forest topologies, the end-to-end delay is on average 400 ms lower

than for the tree topology, even with the TCM. Moreover, we note the ad-
vantage of the partition onto the overall network load { for the same number
of players, there is not much di�erence between the cases with and without
the TCM because the tra�c load has been greatly reduced, especially on the
bottleneck links.

Finally, let us investigate the impact of the multiplexing period on the
delay performance. Let the number of players be 500 and let us increase the
value of the TCM period from 0 to 100 ms. Fig. 3.8 shows the behaviour
of the delay w.r.t. the TCM period for a tree topology. It can be noted,
that, when T increases, the delay decreases since the occupied bandwidth
is reduced. However,T cannot grow in�nitely. Indeed, at some point the
delay saturates and becomes constant. This matches well with the result
presented in [54]. Actually, when the period or the number of players is
large, the bandwidth gain meets the following asymptotic limit:

BWRa =
MH + E[RH ] + E[P]

NH + E[P]
(3.3)
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Figure 3.7: End-to-end delay vs. number of players, with/without TCM.

whereBWR is the ratio of bandwidths with and without multiplexing, MH
is the PPPMux header included at the beginning of each compressed packet,
RH is the reduced header,NH is the UDP/IP header and P is the payload
of initial (uncompressed) packets. Given all that was said above, there is no
interest in multiplexing periods of more thanT = 50 ms.

3.4.3 Jitter

Let us study the jitter { the second QoE parameter in online gaming. To do
this, we evaluate the jitter variation with the number of online players, see
Figure 3.9 for results. For tree topologies, the TCM tra�c has a larger jitter
for a small number of players. This is is due to the TCM multiplexing period
as explained above. However, when the number of players is larger than
200, the jitter for the initial tra�c becomes too important. Indeed, when
there are many players, there are more successive packets, and the average
jitter caused by the TCM decreases. Moreover, since the tra�c throughput
is reduced with the TCM, the jitter becomes smaller. As for the TCM, and

56



Figure 3.8: End-to-end delay vs.T.

with a small number of players, the largerT is, the larger the jitter is. The
situation only changes when the number of players is more than 300, i.e.,
when the number of multiplexed packets becomes larger (see Figure 3.10).
The jitter also experiences an asymptotic limit.

As for forest topologies, the jitter behaves even better than for a tree
topology with the TCM for a large number of players. With the TCM, the
jitter is very low, and thus the QoE of players is high.

3.4.4 Arrival order of packets

Since consistency is a critical requirement for online players, we are interested
in evaluating the number of out-of-order packets delivered by the network.
Here we assume that the inconsistency is due to the packets displayed in
the wrong order. First, we evaluate the number of packets delivered out of
order as the number of players increases. Fig. 3.11 shows that the number
of out-of-order packets increases with the number of players for the tree
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Figure 3.9: Jitter variation vs. the number of players.

topology. Even though the TCM reduces the tra�c load, its number of out-
of-order packets is always larger than with the initial tra�c. This result
can be explained by the fact that for the TCM, if a packet is not received
by the server in a good order, it will be the same for all the native packets
multiplexed in that packet, thus leading to a burst of out-of-order packets.
For forest topologies, the group partition can considerably decrease the rate
of out-of-order packets, and the situation gets even better with the TCM.
This di�erence between the tree and the forest topology is explained by the
di�erence in the network load.

Next, let us set up the number of players to 200 and simulate the rate
of out-of-order packets for various TCM periods. Fig. 3.12 shows that the
disorder increases withT. In fact, with the TCM, the disorder is important
since one out-of-order packet implies the disorder of all the multiplexed pack-
ets. Moreover, for a largerT, more packets are multiplexed to one packet.
Thus, the disorder increases withT and reaches the case where almost all the
packets are out-of-order, requiring an important e�ort of reordering which
induces an additive processing delay.
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Figure 3.10: Jitter as a function of the TCM periodT for 600 online players.

3.5 Conclusion

In this chapter we investigated the e�ect of packet multiplexing on the QoE of
online multiplayer games. The three major QoE metrics have been studied:
delay, jitter and packets order. Our simulations show that the modi�ed TCM
behaves better than the simple routing in terms of delay and of jitter when
the number of players is large. However, the TCM behaves worse in terms
of disorder. Moreover, we studied the scenario when, in addition to TCM,
the online players are partitioned into groups based on their location on the
game's map. This led us to introduce the so-called forest topology. The use
of the forest topology decreases the delay and the disorder, and thus improves
the QoE of online game for a large number of players.
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Figure 3.11: Number of out-of-order packets vs. the number of players.
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Figure 3.12: Variation of the number of out-of-order packets vs.T.

61



Part III

Network coding for online
gaming

62



Chapter 4

Network coding for online
video gaming over a cyclic
network topology
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4.1 Introduction

In the previous chapter, we studied TCM, a tree-based solution to enhance
the online games' throughput and reduce their latency, then we studied TCM
coupled with the forest topology after dividing the players. In this chapter,
we will also divide the players into subgroups but we will connect the local
servers to their subgroups using a cycle topology. Besides, we will apply the
network coding technique over the cycle in order to reduce the transmission
delay and increase the network e�ciency and the tra�c throughput.

The topology interconnecting the local server with the central server is not
the focus of our work. We are interested in the design and the performance
evaluation of an adequate routing protocol for online games over a cycle.

As we will only treat the tra�c of one subgroup and for the sake of
simplicity, we will refer to the local server by "the server" for the rest of the
chapter.

This work in an object of one journal article [109].

4.2 System model

For the sake of simplicity, the network with a single cycle corresponding to
one proximity-de�ned logical subnetwork within a game will be considered.
The designed protocol will focus only on the routing of the data packets.
The construction and the control of the cycle topology are outside the scope
of this work. In [110], a sequential algorithm for constructing multi-cycles
for massive group communications under delay constraint is proposed. This
algorithm can serve as an inspiration for our case.

Let the logical network of an online game contain a single cycle repre-
senting one subgroup of the players, connecting the local game serverS and
n game players located in the same proximity on the game map. It is rep-
resented by a cycleG = ( V; E) as illustrated in Figure 4.1 with the set of
nodesV = f V0 = S; V1; : : : ; Vng, and the set of linksE. For simplicity, let
the network be homogenous so that each linke 2 E may transmit one packet
per time unit (t.u.). Online game tra�c is periodic with a communication
period T [t.u.] and containsn + 1 ows as follows:

� a broadcast ow from V0 to all Vi 2 VnV0 to communicate the current
game instance;
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Figure 4.1: A cycle topology withn = 5 and V0 = S. Node subsetsV1, V2

and V3 are given by blue, red and green.

� n unicast ows from any Vi 2 VnV0 to V0 carrying the players' actions.

Also, let L denote the total number of packets transmitted through the net-
work during onecommunication periodT.

The directions of the n + 1 ows described above imply two source-
destination sets:

� S 1 = f V0g and D1 = f V1; : : : ; Vng: the nodeV0 broadcasts a common
messageM 0 to the set D1;

� S 2 = f V1; : : : ; Vng and D2 = f V0g: each nodeVi in S2 has a private
messageM i to send to V0.

Given n, S1, D1, S2 and D2 de�ned above, we distinguish therouting problem
which aims to �nd a routing R minimizing the couple (T; L), and the network
coding (NC) problemwhich consists in �nding a network codeCand a routing
protocol R C minimizing (T; L). Finally, for later use, let D , dn=2e and
d , bD=2c = bn+1

4 c.
Given this system model, we need an e�cient routing protocol that min-

imizesT and the number of packets sentL.
We propose a transmission protocol inspired by the wireless network case.

We consider a general transmission case where packets are eligible to colli-
sions. Hence, when a nodeVi sends a packet, the neighbor nodesVi � 1 and
Vi +1 (the nodes located inVi 's coverage area as shown in Figure 4.1) must
neither receive nor send a packet in order to avoid collisions.
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This scheduling is organized by the server by initializing the transmission
itself with a special messageM 00 carrying all the information needed for the
nodes to establish their transmission pattern. Afterwards, every node will
follow a synchronized pattern and alternate between three states: sending,
receiving from the right and receiving from the left.

The transmission protocol rules are summarized as follows:

� when a nodeVi sends a packet, it broadcasts it to its two closest neigh-
bors V(i � 1) and V(i +1) ;

� the system is half duplex, so each node is either in the receiving or in
the sending state during one time unit;

� a node cannot receive two simultaneous messages from its neighbors in
order to avoid collisions.

� we can �nd intermediate nodes which are not game players but are
needed to relay between the cycle nodes.

Considering the transmission rules de�ned above, the best transmission sched-
ule with the highest collision avoidance is determined as follows [98]. Ifn + 1
is divisible by 3 ((n + 1) j3), then the set of nodesV is divided into 3 disjoint
subsetsV1, V2 and V3 with the condition that a node from a subsetVi is
at least 3 hops away from any other node from the same subset. Figure 4.1
illustrates this condition where each color represents nodes that can be mem-
ber of the same subset. Afterwards, the transmission is organized inrounds,
each lasting 3 t.u. where everyVi is allowed to broadcast during one t.u. in
order to avoid collisions.

Remark 2 If (n + 1) 6 j3, then 4 disjoint groupsV1; : : : ;V4 are formed as
follows.

Let r = ( n + 1) mod 3 and let V4 = ; if r = 0, V4 = f Vdn=2eg if r = 1 and
V4 = f Vbn=2c; Vdn=2eg if r = 2. Then

V1 = ( f Vi : i mod 3 = 0; i � b n=2cg[

f Vi : i mod 3 = r; i > bn=2cg) nV4

V2 = ( f Vi : i mod 3 = 1; i � b n=2cg[

f Vi : i mod 3 = ( r + 1) mod 3; i > bn=2cg) nV4

V3 = ( f Vi : i mod 3 = 2; i � b n=2cg[

f Vi : i mod 3 = ( r + 2) mod 3; i > bn=2cg) nV4
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Also, Algorithm 3 is modi�ed accordingly: the roundt = 0 lasts 4 t.u. (each
Vi broadcasts during 1 t.u. and stays silent during 3 t.u.). Thanks to the
careful choice ofV4, the rounds for t > 0 stay unchanged. Note that, if
jV4j = 2, it seems there will be be a collision in transmittingM bn=2c and
M dn=2e at t = 0. However there is no loss forM bn=2c and M dn=2e, as they are
successfully received byVbn=2c� 1 and Vdn=2e+1 respectively.

4.3 Routing protocols

In this section, we present three di�erent routing protocols over cycle. The
�rst one is proposed in the literature and is designed based on NC for a multi-
cast tra�c case. The second and the third protocols are our propositions. As
for the second, it is a shortest-path-based routing protocol for online games
over a cycle. Finally , the third protocol is an enhanced version of the second
that we proposed in which the network coding technique is applied.

4.3.1 NC-based multicast routing protocol

4.3.1.1 Description

The state-of-the-art of network-coded communication protocols over cyclic
topologies is mostly based on the multicast scenario, where each nodeVi has
a messageM i to send to all other nodes in the network, for all possible values
of i . In this case the use of NC is bene�cial. Let us illustrate it on Examples
1 and 2 below, one with and one without NC.

Example 1 Consider the circular routing for multicast over a single-cycle
network with n + 1 nodesV0; : : : ; Vn . Here the messages are forwarded over
the cycle in one direction (clockwise or counter-clockwise), following the 3-
phase or 4-phase transmission schedule described above. The transmission
continues until any messageM i reaches all the nodes inVnVi .

In this scenario, a routing protocol based on Network Coding was pro-
posed and a gain of nearly 50% of the communication period was proven [98].
This leads us to the second example.

67



Example 2 Consider the multicast problem over the single-cycle network,
where the nodes are allowed to perform NC operations. Let Algorithm 2
below be used. Note that the algorithm was �rst described in [98] and here
we give it when(n + 1) j3 only, for the sake of simplicity.

Algorithm 2 Multicast with NC [98] when (n + 1) j3
Initialisation: Vi is allocated to the subsetVj , j = ( i mod 3)+1, 0 � i � n.
Each Vi has a messageM i to multicast.
For 0 � t � d n=2e, perform the 3-phase transmission:
During 3 t.u., a nodeVi (0 � i � n) does the following (the order of opera-
tions depends on its subset indexj ):

1) Reception of a message from the rightM !
i +1 (t);

2) Reception of a message from the leftM  
i � 1(t);

3) Broadcast of the current messageM i (t), where

M i (t) =

(
M i ; t = 0;

M  
i � 1(t � 1) � M !

i +1 (t � 1); t > 0:

4.3.1.2 Performance regarding delay and transmitted packets

The following Lemma1 and Lemma2 summarize the performance of the mul-
ticast algorithm with and without NC respectively in terms of communication
period T size and the number of transmitted packetsL.

Lemma 1 The minimum communication periodT for Example 1 is bounded
as 3n � T � 4n, while the total numberL of messages to transmit over the
network is L � b (n + 1) =3cT.

Proof. If (n + 1) j3, then exactlyn rounds of the 3-phase transmission are
needed so thatM i reaches all its destinations. Otherwise,n rounds of the
4-phase transmission will be used. As for the result onL, note that at most
b(n + 1) =3c messages are sent at each t.u.

Lemma 2 Given the NC-based multicast protocol from Example 2, the min-
imum communication periodTNC is bounded as3dn

2 e � TNC � 4dn
2 e; and the

number of messagesLNC � b (n + 1) =3cTNC .
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Figure 4.2: A Communication Period with the Multicast-NC protocol for
n = 5.

Proof. At round t = 0, Vi receivesM i � 1 from the left and M i +1 from the
right 1. At round t > 0, Vi possesses already the messagesM i � t and M i + t . Vi

receivesM i � 1(t) = M i � t � 1 � M i � t+1 and M i +1 (t) = M i + t � 1 � M i + t+1 . So it
decodesM i � t � 1 and M i + t+1 by XOR-ing: M i � t � 1 = M i � 1(t) � M i � t . At round
t = dn=2e, Vi receives the last missing message from its farthest node(s). The
calculation of lower and upper bounds onTNC , as well as the upper bound
on LNC follow directly from this procedure.

Note that the NC-based multicast routing protocol can be applied to on-
line games and it reduces the communication period as explained in Lemma2.
However, as this tra�c is not fully multicast and contains also unicasts, it is
possible to �nd a more e�cient routing protocol for online games that takes
into account these speci�cities. Therefore, we propose �rst an optimized
routing protocol based on the shortest-path routing approach and second an
enhanced version of this protocol by applying the Network Coding when pos-
sible. This protocol also minimizes the number of transmitted packets, which
reduces the load of the links. In the following, we will give a description of
these two protocols.

1here and below the index addition/subtraction is performed modulo (n + 1)
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Algorithm 3 Routing protocol when (n + 1) j3
Initialisation : Vi is allocated to the subsetVj , j = i mod 3, 0 � i � n.
Each Vi has a messageM i to transmit.
3-phase round for t = 0: A node Vi (0 � i � n) performs the operations
as in Algorithm 2 for t = 0.
4-phase round for 1 � t � d:
During �rst 3 t.u., at each time unit ` (` = 1; 2; 3) the setVi broadcasts while
the other sets are silent. Moreover,

� if Vi 2 S! = f V0; : : : ; VD � tgnV0, it broadcasts
M i (t) = M !

i +1 (t � 1);

� if Vi 2 S = f Vn� D + t+1 ; : : : ; Vn+1 = V0gnV0, it broadcasts M i (t) =
M  

i � 1(t � 1).

During the last t.u., nodesVt and Vn+1 � t broadcastM 0.
3-phase round for d + 1 � t < D :
During �rst 3 t.u., at each time unit ` (` = 1; 2; 3) the setVi broadcasts while
the other sets are silent. Moreover,

� if Vi 2 S! = f V0; : : : ; VD � tgnV0, it broadcasts
M i (t) = M !

i +1 (t � 1);

� if Vi 2 S = f Vn� D + t+1 ; : : : ; Vn+1 = V0gnV0, it broadcasts M i (t) =
M  

i � 1(t � 1);

� Vt and Vn+1 � t broadcastM 0.

4.3.2 Shortest-path routing protocol

4.3.2.1 Description

We propose Algorithm 3 as a routing algorithm without NC for online gam-
ing. It is in fact an optimised version of theshortest-path routingalgorithm.
For simplicity, the algorithm is described when (n + 1) j3. For an illustration,
Fig.4.3 presents a time diagram forn = 5 ( D = 3 and d = 1). At t = 0, the
nodes send their own messages in 3 t.u. Att = 1, V0 and V3 remain silent,
V1 and V5 send two messages each, andV2 and V4 send messages of their
neigbours. Duringt = 2, the nodesV2; : : : ; V5 should remain silent, except
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(a) Round t = 0. V0 receivesM 1 and M 5. M 0 is received byV1 and V5. At this instance
all nodes possess their own messages.

(b) Round t = 1 = d. V0 and V3 do not transmit. V0 receivesM 2 and M 4. M 0 is received
by V2 and V4.

(c) Round t = 2 ( t > d ). V0; V2; V3 and V5 do not transmit. V0 receivesM 3. M 0 is
received byV3. End of the communication period T.

Figure 4.3: Example forn = 5. Similar to Fig.4.1, V1 = f V0; V3g, V2 =
f V1; V4g, V3 = f V2; V5g.

V4 which communicatesM 0 to V3. V1 forwards M 3 to V0.

4.3.2.2 Performance

Theorem 3 The period T of Algorithm 3 is bounded as
3dn=2e+ bn+1

4 c � 2 � T � 3dn=2e+ bn+1
4 c + 1;

and L = dn=2e(bn=2c + 3) � 1.
Proof. Let (n + 1) j3. By shortest-path routing over the cycle withn + 1

nodes, a messageM i will be received by a destination in at mostD hops. The
hops are part of the rounds of Algorithm 3, thus, fort = 0, 3 t.u. will be used

71



for one hop. The total number of messages sent att = 0 is n + 1. Moreover,
for 1 � t � d, the nodesVi with 1 � i � d and with n+1 � d � i � n have two
messages to forward: a messageM j , j 2 f i + 1; : : : ; i + dg \ f i � d; : : : ; i � 1g,
and M 0. These nodes will use one additional t.u. so all the rounds will last 4
t.u. Note that the rest of nodes will be silent as they have no new messages
to send. As for the rounds withd + 1 � t < D , M 0 is now to be transmitted
by nodes with indices inf d + 1; : : : ; dn=2e � 1g \ fb n=2c + 2; : : : ; n � dg.
These nodes have no other messages to forward, thus they sendM 0 within 3
t.u. during which the nodesVi with 1 � i � d and with n + 1 � d � i � n
forward messages toV0. Also, it can be shown that at any round 1� t < D ,
n + 2 � 2t messages will be sent in total. Finally, if (n + 1) 6 j3, one extra
t.u. will be used at t = 0, and the rest of the protocol will be unchanged.
This gives us the upper bound onT, T � 4d + 3( D � d � 1) + 4, as well as
L = n + 1 +

P D � 1
t=1 (n + 2 � 2t).

Also, if for t = D � 2 and t = D � 1 there are many silent nodes in the
network, and the simultaneous transmission by nodes from di�erent subsets
does not create collisions, one can save up to 3 t.u. by a careful transmission
scheduling.

4.3.3 NC-based routing protocol

4.3.3.1 Description

Let the nodes perform NC operations. Then the routing protocol above can
be modi�ed for rounds 1� t � d, as it is stated in Algorithm 4. To illustrate
the new protocol, let us again consider the example in Fig. 4.3. The new
protocol only modi�es the transmission att = 1 (see Fig.4.4), and allows to
save 1 t.u. due to NC operations. More generally:

Theorem 4 For Algorithm 4, one has3dn=2e � 2 � TNC � 3dn=2e+ 1; and
LNC = dn=2e(bn=2c + 3) � 2bn+1

4 c � 1.
Proof. Owing to NC operations, the nodes, having two messages to for-

ward, send their XORs. Note that the nodes receiving XORs are always
able to decode new messages. Thus the rounds with 1� t � d last 3 t.u.
instead of 4, and the number of transmitted messages is decreased by 2 in
each round. By counting, as in the proof of Theorem 3, one obtains results
on TNC and LNC .
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Algorithm 4 NC-based protocol when (n + 1) j3
Initialisation : Vi is allocated to the subsetVj , j = i mod 3, 0 � i � n.
Each Vi has a messageM i to transmit.
3-phase round for t = 0: A node Vi (0 � i � n) performs the operations
as in Algorithm 2 for t = 0.
3-phase round for 1 � t � d: At each time unit ` (` = 1; 2; 3) the set Vi

broadcasts while the other sets are silent.

� if Vi 2 S� = f Vt ; Vn+1 � tg, it broadcasts
M i (t) = M  

i � 1(t � 1) � M !
i +1 (t � 1);

� if Vi 2 S! = f V0; : : : ; VD � tgnV0, it broadcasts
M i (t) = M !

i +1 (t � 1);

� if Vi 2 S = f Vn� D + t+1 ; : : : ; Vn+1 = V0gnV0, it broadcasts M i (t) =
M  

i � 1(t � 1).

3-phase round for d + 1 � t < D :
During �rst 3 t.u., at each time unit ` (` = 1; 2; 3) the setVi broadcasts while
the other sets are silent. Moreover,

� if Vi 2 S! = f V0; : : : ; VD � tgnV0, it broadcasts
M i (t) = M !

i +1 (t � 1);

� if Vi 2 S = f Vn� D + t+1 ; : : : ; Vn+1 = V0gnV0, it broadcasts M i (t) =
M  

i � 1(t � 1);

� Vt and Vn+1 � t broadcastM 0.
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(a) Round t = 0. V0 receivesM 1 and M 5. M 0 is received byV1 and V5. At this instance
all nodes possess their own messages.

(b) Round t = 1 = d. V0 and V3 do not transmit. V0 receivesM 2 and M 4 (encoded). M 0

is received byV2 and V4.

(c) Round t = 2 ( t > d ). V0; V2; V3 and V5 do not transmit. V0 receivesM 3. M 0 is
received byV3. End of the communication period T.

Figure 4.4: Example of using the NC protocol forn = 5 with V1 = f V0; V3g,
V2 = f V1; V4g, V3 = f V2; V5g.

Remark 3 Both Algorithms 3 and 4 can be easily adapted to imperfect trans-
mission conditions, namely to erasures of messages during the transmission.

Note that, if a receiving node treats an erased message as a trivial all-0's
packet, the sending node auto-detects that the message was lost and can
retransmit it at the next round. This is true for all receiving nodes except
V0, Vbn=2c and Vdn=2e; these exceptions are to be treated separately. Thus
a message erasure would create an extra delay of one round but would not
corrupt the functioning of the whole transmission scheme.

To guarantee that our protocol remains functional even in case of packet
loss and transmission delay variation, each state will take exactly one t.u.
(a timeout). If during this time no packet is received, then the packet is
considered lost and is replaced by an all-zero packet. The recovery of lost
packets is assumed to be handled by the reliable transport layer protocols.
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Figure 4.5: A convolutional code representation of NC-based multicast pro-
tocol.

Hence, in case of a lossy network, the end of thecommunication period can
be detected by a second factor. As the nodes may not receive all the packets
they are supposed to receive due to packet loss, one should add a second
possible condition to stop the current communication period and start a new
one. This condition is reaching a maximum communication period size that
corresponds to the maximum size ofT in the case of a lossless network (i.e
the maximum number oft:u: during oneT corresponding ton client nodes).

Remark 4 Note that the NC-based multicast algorithm can be considered as
a non-systematic recursive convolutional code of rate 1 (m/n where m is the
number of the old inputs used and n is the number of the output symbols)
and with constraint length k=2 as shown in Figure 4.5.

If we note the input sequence asu and the output sequence asv then
the generator sequence corresponding to this code is given as:g = (1 ; 1)
verifying v = u:g and the generator matrix G verifying the equationv = u:G
is as follows:
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G=

0

B
B
B
B
B
B
@

0 0 0 :::::::::
0 1 1 0 ::::::::
0 0 1 1 0 :::::::
::: ::: 0 1 1 0 ::::::
::: ::: ::: 0 1 1 0 :::::
::: ::: ::: ::: ::: ::: ::: :::::

1

C
C
C
C
C
C
A

(4.1)

We notice that the �rst row is an all-zero row which corresponds to the initial-
ization period where the nodes send their own packets and not the received
ones. As for the optimized routing protocol, it has no coding operations.
It uses the memorized information but sends them in their original form.
However, we can represent it as a convolutional code of rate 1 and constraint
length k = 2. The corresponding generator sequence in this case is either
g = (0 ; 1) or g = (1 ; 0) depending on the group to which the concerned node
belongs.

The NC-based routing protocol that we �nally developed is a combination
of both of these codes with three possible cases: coding withga = (1 ; 1),
sending without coding withgb = (0 ; 1) or gb = (1 ; 0) or not sending at all or
sending its own packet independently of the input packets (during the �rst
periodt = 0), corresponding to agc = (0 ; 0). Each case can occur for a certain
number of time slots. The resulting code is then a rate 1 non-systematic, non
recursive time-variant convolutional code with a constraint length k=2. Let's
note the set of periods t where the generating vectorsga, gb and gc is used by
A, B and C respectively. As a result,A = Ta, B = ff 1; :::; Tbg [ f T0

bggnfTag
and C = ff Tb + 1; :::; D � 1g [ f 0ggnfTbg where the valuesTa, Tb, T0

b and
Tc represent the limits of time slots using each of the vectorsga, gb and gc

respectively. The corresponding generating matrix has the following general
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subset Ta Tb T0
b Tc

P1� 1 i bn=2c � i + 1 / D � Tb

P1� 2 (n + 1) � i i � d n=2e / D � Tb

P2� 1 / bn=2c � i + 1 i D � Tb

P2� 2 / i � d n=2e (n + 1) � i D � Tb

Table 4.1: Ta, Tb, T0
b and Tc values depending of the node indexi and its

subset

form:

G =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

0 g(1)
c g(2)

c 0 ::::
1 0 g(1)

b g(2)
b 0 :::

: 0 0 g(1)
b g(2)

b 0 ::
: 0 0 0 g(1)

b g(2)
b 0 :::

Ta 0 0 0 0 g(1)
a g(2)

a 0 :::
: ::: ::: :: ::: ::: ::: ::: ::::::::
: ::: ::: :: ::: ::: ::: ::: ::::::::

Tb 0 0 : : 0 g(1)
b g(2)

b 0 :::::::
: 0 0 : : : 0 g(1)

c g(2)
c 0 ::::::

: 0 0 : : : : 0 g(1)
c g(2)

c 0 :::::
: ::: ::: :: ::: ::: ::: ::: ::::::::
: ::: ::: :: ::: ::: ::: ::: ::::::

Tc 0 0 : : : : : : 0 g(1)
c g(2)

c 0 ::

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

The values Ta, Tb, T � b0 and Tc depend of the node's indexi . We
note that the generating matrix of the server, as well as the nodesVbn=2c

and Vdn=2e have a special form. As they do not resend the received packets,
they only use thegc generating vector resulting in an all-zero-matrix. To
illustrate the di�erence between the di�erent nodes, we can divide the cycle
into 4 subsets of nodesP1� 1 = f V1; :::; Vbn=4cg, P1� 2 = f Vdn=4e; :::; Vbn=2c� 1g,
P2� 1 = f Vdn=2e + 1g; :::; Vb3n=4c and P2� 2 = f Vd3n=4e; :::; Vng as illustrated in
Figure 4.6. The occurrence index of each subset is summarized in Table 4.1.
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Figure 4.6: The division of the cycle nodes into 4 subsets based on their
location.

4.3.3.2 Comparison of three protocols

Table 4.2 gives the values ofT and L for the four protocols described pre-
viously (multicast circular routing, NC-based multicast from Algorithm 2,
optimised protocols without and with NC from Algorithms 3 and 4).

Note that Algorithm 3 has a better performance in terms ofT and L,
compared to the NC-based multicast protocols. Moreover, Algorithm 4 al-
lows us to obtain even larger gains. In particular, the gain in terms ofT is up
to 20% compared to Algorithm 2 and 14% compared to Algorithm 3 whenn
is su�ciently large. As for the number of transmitted packetsL, it is reduced
by up to 34% compared to Algorithm 2 and 12% considering Algorithm 3.
The NC gain of Algorithm 4 is due to the possibility to broadcast messages
to close neighbours (transmission rule 1). This condition is easy to satisfy
in some kinds of networks, i.e., in wireless mesh networks [98]. In wireline
networks, broadcast may be implemented by means of the IP-multicast [111].
But, if broadcast is not an option and one sends messages to the neighbours
sequentially (i.e., classical routing in wireline networks), Algorithm 4 behaves
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Figure 4.7: Generating matrix for nodesV1, V2, V3 and V5 for a cycle with
n=5

like Algorithm 3. On the other hand, the half-duplex constraint (transmis-
sion rule 2) does not limit the usefulness of NC, Algorithms 3 and 4 can be
adapted for full-duplex.

4.4 Conclusion

In this chapter, we proposed an optimized routing protocol for online games
over a cycle topology, where the NC technique is applied. The proposed pro-
tocol reduces the number of transmitted packets over the cycle as well as the
end-to-end delay. Indeed, with NC one can gain up to 14% of the communi-
cation period size an 12% of the number of transmitted packets considering
a shortest-path routing protocol, adopted for online games, without NC. The
transmission model we proposed for the cycle is based on three main char-
acteristics: broadcast, half-duplex and collision. However, the protocol can
be adopted for other transmission cases as shown in Section 4.3.3.2. The
network here is chosen to be deterministic and the coding vectors are pre-
determined, as we assumed that the players are �x and the logical cycle
topology is constructed and conserved during the game session. If the play-
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n T (LB/UB), L
Circular routing Algorithm 2 Algorithm 3 Algorithm 4

7 21/28, 42 12/16, 24 12/15, 23 10/13, 19
8 24/32, 72 12/16, 36 12/15, 27 10/13, 23
9 27/36, 81 15/20, 45 15/18, 34 13/16, 30

Table 4.2: Comparison ofT (lower bound and upper bound) andL for the
three routing protocols.

ers are mobile, then the topology construction algorithm must be performed
many times during the game session. The frequency of the topology con-
struction depends on the mobility of the players. Each time, we calculate
the adequate cycle members. After the construction, the di�erent sets of
nodes are recalculated and the routing protocol is applied normally.
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Chapter 5

Network coding
implementation: Cycle-based
routing protocol for online
games over a D2D
infrastructure
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5.1 Introduction

We chose to study the deployment and the performance of our protocol over
a device-to-device (D2D) communication infrastructure. D2D is an emerging
technology that is more and more appreciated. It will be largely exploited by
the 5G technology due to its numerous advantages. Hence, it is interesting to
chose this infrastructure for a possible future implementation of the proposed
NC-based routing protocol. Part of this work is an object of one conference
paper [112].

5.2 Device-to-Device network

We consider the case of online games where the servers are generally lo-
cated far away from the players (example in the cloud network in the case of
cloud gaming). The players need to communicate with this server through
an Internet connection provided by the gateway node (for example a base
station). Therefore, we will consider the network composed by the players
and the gateway connecting them to the Internet (i.e to the distant server).
This connection can be established via either a wired or wireless network.
In this chapter we are more interested in a wireless network, speci�cally a
Device-to-Device (D2D), where the players need to communicate with the
gateway using consecutive wireless transmissions.

The D2D network is composed of interconnected user terminals. These
devices can communicate with each other for di�erent possible reasons. As
an example, the D2D devices can help the relaying of distant devices to
the base station with the minimum energy consumption and the maximum
throughput [113]. Hence the online player devices can be interconnected
with each other and with the base station connecting them to the game
server. In this case, the cycle can be composed of the player devices, possible
relay devices and the base station. The relay nodes can be chosen using
the social-position relationship as proposed in [114] in order to maximize the
cooperation probability. An example of a cycle over a D2D infrastructure is
represented in Figure 5.1 where the dashed black lines represent the possible
connections between devices and the dashed red lines represent the cycle
linking the players to the base station. As for the technologies used for the
communication between D2D devices, there are two approaches. We will
detail them in the following.
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5.2.1 Inband D2D

In this type of device-to-device infrastructure, the communication between
the devices or user equipments UEs exploits the cellular spectrum and the
radio interface such as LTE, LTE-A, WiMax and 5G [113]. In this type, we
di�erentiate between the underlay and overlay D2D model.

� Underlay model: both the cellular and the D2D tra�cs use the cellular
spectrum at the same time. In this model, interference is a crucial issue.
Thus, solutions must be applied to avoid it. Interference management
algorithms have been widely studied for this purpose. [115, 116].

� Overlay model: In this model, the cellular spectrum is divided be-
tween the D2D and the cellular communications. Each communication
has its dedicated resources. Hence, the interference between these two
communications is avoided. In this case, the partition of the spectrum
should be well studied and optimized in order to preserve the resources.
Besides, with the base station's assistance, the scheduling and power
control can be controlled, which reduces the interference between the
D2D ows [117].

5.2.2 OutBand D2D

OutBand D2D, also referred to as D2D-u, is the model where D2D com-
munication is transmitted over an unlicensed spectrum using other wireless
technologies such as WiFi Direct, ZigBee, bluetooth and LTE-u [113, 118].
In this case, the cellular and the D2D tra�cs are separated and interference
problems between these two tra�cs do not exist anymore. However, using
this spectrum, the devices should compete to access the medium and avoid
collisions. As the devices are connected to both spectrums, the coordination
between the radio interfaces is important and di�erent solutions can be used.
In this context, we di�erentiate between :

� The controlled D2D model: where the coordination between the radio
interfaces of the user's equipment is controlled by the base station.

� The autonomous D2D model: in this model, the coordination between
the radio interfaces of the user's device is performed without the in-
tervention of the base station. Instead, it is controlled by the users
themselves.
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Figure 5.1: Single-cycle topology using D2D technology

We are interested in the OutBand case and speci�cally the WiFi Direct
technology [119].

Since the studies which focus on proposing e�cient and exible medium
access schemes that avoid D2D tra�cs collision are still in progress, we have
chosen the safest solution by applying our proposed scheduling scheme, ex-
ploiting the possible synchronization of the devices using, for example, the
highway addressable remote transducer (HART) protocol [120] or the adap-
tive distributed network synchronization (ARES) algorithm [121]. The sys-
tem's model's description will be illustrated in the next section.

5.3 System model

Let the logical network of an online game be represented by a single cycle as
illustrated in Figure 4.1 in Section 4.2, connecting the game serverS= V0 and
n game playersf V1; : : : ; Vng. As the server is generally located far away from
the players, the nodeS in our model represents the gateway node between
the players and the server. Hence, the server packets will reach the players
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Figure 5.2: The coverage area of each node on the cycle.

in the cycle through that gateway nodeS. If we consider the partition of
players described in Section 3.3, thenS is the local server of the subgroup
of players sharing the same area on the game map. Our cycle is composed
of n + 1 nodes where the coverage area of each node is limited to its two
neighbors. The neighbors of a node are its closest two nodes in the cycle as
shown in Figure 5.2.

As we always consider the case where collisions are possible, the system
model will be based on the scheduling presented in Section 4.2. We call to
mind here that the main transmission rules are as follows:

� when a nodeVi sends a packet, it broadcasts it to its two closest neigh-
bors V(i � 1) and V(i +1) ;

� the system is half duplex, so each node is either in the receiving or in
the sending state during one time unit;

� a node cannot receive two simultaneous messages from its neighbors in
order to avoid collisions.

� we can �nd intermediate nodes which are not game players but are
needed to relay between the cycle nodes.

As a result, we apply the node partition into 3 or 4 subsets depending on the
number of nodesn + 1 as shown in Section 4.2.
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5.4 Communication period size

In this section, we present the set up as well as the results of the simulations
we run in order to measure the communication period's size.

5.4.1 Simulation setup

To simulate the proposed routing protocol over a cycle topology, we used
the network simulator NS3. In this chapter, we are interested in the WiFi
Direct wireless technology. However, as we are not interested yet in the
discovery of devices and for the sake of simplicity, we ran our simulations over
a WiFi Adhoc topology which can a�ord the point to point communications
between the nodes and provide the needed results such as the size of the
communication period and the impact of the time unit size on the packet
loss rate. The device discovery as well as the topology construction will be
addressed in future works. The simulation parameters are set as follows:

� The wireless network is set to be lossless, with WiFi nodes and link
throughput of 100 kb/s;

� The transmission delay from one node to its neighbors is of the order
of 2ms, which has been �xed as thet:u;

� The number of players varies fromn = 5 to n = 50;

� The transmission/reception power and the gains are set so that the
coverage range of each node is nearly 250m;

� The nodes have been distributed on the graph so that the coverage of
each node reaches only its two neighbors;

� The client packet's size is set to 70 bytes while the server packet's size
is set to 110 bytes.

5.4.2 Simulation results

As we mentioned earlier, the NC multicast protocol can minimize the com-
munication period for online games' tra�c over a cycle topology. However,
we argued that a more adopted routing protocol for online games' speci�ca-
tions, as ours, will provide a better performance. In order to validate this
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Figure 5.3: The mean communication periodT

assumption, we ran multiple simulations of our protocol using the simulator
NS3 for di�erent values of n and compared the results found to those of the
NC multicast protocol. The results are presented in Figure 5.3. The �gure
shows that the mean communication period of our protocol is almost equal to
the lower bound of the communication period of theNC multicast protocol.
Note that the lower bound of theNC multicast protocol is reachable only
if (n + 1) j3. Otherwise, for the rest of the values ofn, the communication
period will reach the upper bound. However, with the NC-based routing
protocol, the communication period remains near the lower bound for any
value of n. As a result, we are not interested in some values ofn which can
provide better latency than other possible values. For instance, we are not
obliged to �x a cycle size that is divisible by 3 to guarantee lower latency
as the case of the NC-based Multicast protocol. Hence our protocol is more
exible in terms of cycle size.

5.5 Constraints and solutions

In this section, we present and discuss some possible solutions for di�erent
constraints that are evoked when implementing the NC-based routing proto-
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col over the cycle.

5.5.1 Packet size

The client packets and server packets have di�erent sizes. In fact, The server
packets' size depends of the number of players in the game. However, to
perform network coding, the packets' size should be the same. This problem
of sizes can be solved by applying fragmentation to the server's packets to
meet the size of those of the clients. If we suppose that the server packet's
size is approximatelyk � S whereS is the size of one client packet, then the
server packet will be divided intok sub-packets and each sub-packet will be
sent during a communication period. Hence the time unitt:u will depend
only on the size of the clients' packetsS and the communication period will
be shorter.

Figure 5.4: Fragmentation of the server packet to encode with the client
packets
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5.5.2 Delay variation

Each node in the cycle has three possible states. It is either waiting for a
packet from the right, waiting for a packet from the left or sending. Each
state will last for one t:u. When the t:u allowed to each state expires, the
node will change the state and will ignore any actions related to the previous
state. In other words, if a packet is received from the right after the expiration
of the t:u allocated to the waiting from the right, then it will not be taken
into account; it will be rejected and considered lost. If we are to apply our
routing protocol within a perfect network, we can use the transmission delay
of one packet from one node of the cycle to its neighbor as ourt:u. Let's
note DM as being the maximum transmission delay between two successive
nodes in the cycle so that:

DM = max
i;j

(D (i;j )) (5.1)

where i and j are the indexes of the cycle's nodes. Before starting the �rst
communication period, the server will initialize the transmission in order to
synchronize the nodes. Hence, it is possible to determine an approximation
of the maximum transmission delayDM between two successive nodes in
the cycle and �x t:u such that t:u= DM . However, the transmission delay
over the cycle's links may change depending on some network speci�cations
such as transmission window modi�cation in case of TCP tra�c, additional
charge from other applications to be transmitted by the cycle's nodes, etc.
As a result, if the transmission delay of a node's packet over a link increases
signi�cantly, the neighbor nodes will consider the packet as lost and the
packet loss rate will increase accordingly. In order to minimize the number
of lost packets, we should add an additional delay or a jitter delayDJ to DM

when calculating the time unit of the cycle :

t:u = DM + DJ (5.2)

Once the t:u's value is �xed, each node will wait to receive packets during
onet:u (timeout) from each side. Hence, even if the packet is received before
the end of the timeout, the node cannot change the state. It will wait until
the expiration of the timeout. As a result, while the values of transmission
delay between two successive nodes on the cycleD and the jitter delay added
by the node can vary from one node to another and from one transmission
to another, the time unit's size t:u is always the same, as shown in Figure
5.5.
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Figure 5.5: t:u calculation taking into account the jitter delay D j
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Figure 5.6: Loss rate depending of theDJ used for two variation of the jitter
: up to 0.01ms and up to 0.02ms.

In order to evaluate the e�ect of the D j choice on the packet loss rate,
we implemented the simulations inNS3 considering di�erent distributions of
the delay variations. The network used is a lossless network so that a packet
loss can only occur in case the packet is discarded when received after the
timeout expiration. Figure 5.6 sums up the simulation results. We can see
that the packet loss rate decreases whenDJ increases, but at some point,
it becomes meaningless to increaseDJ as we will have 0% packet loss rate.
Let's note this maximum delay jitter by DJmax . It may seem intuitive to
chooseDJmax and prevent any loss. However, we are dealing with a real-time
application where delay is a crucial factor. For online games, a maximum
tolerable delay has been estimated for di�erent types of games [5]. Let's
note this maximum asDmax . Besides, we showed in Section 5.4.2 that the
delay depends also on the size of the cycle. Hence, the choice ofDJ should
be carefully studied and calculated depending on the network's quality, the
network's size or the number of clientsn and the maximum delayDmax .
The maximum value of delay jitter no longer corresponds to the 0% packet
loss, but rather to all the mentioned factors and can be calculated using
Equation (5.4). Figures 5.7 and 5.8 illustrate the calculation ofDJmax for a
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�xed n and a variablen respectively. In Figure 5.7,DJmax corresponds to the
intersection of the graphs. In Figure 5.8, the red line represents the possible
couple (DJmax ; n) representing theDJmax value for each number of players
n. The �rst transmission period will take DJ = DJmax at the beginning.
Afterwards, the rate of packet loss is calculated, theDJ value will be reduced
from one transmission period to another until reaching the threshold of packet
loss rate Lossmax . This value can be decided depending on the type of
game and the tolerance of the players [24]. UsingLossmax , we can de�ne
another limit of the DJ value, noted asDJmin . Hence, DJ is chosen so
that DJmin � DJ � DJmax using Algorithm 5, whereK denotes the pace of
variation of DJ . Let's �x K as follows:

K = ( DJmax � DJmin )=5 (5.3)

DNC � Dmax (5.4)

TNC � t:u � Dmax (5.5)

TNC � (DM + DJmax ) = Dmax (5.6)

(3dn=2e+ 1) � (DM + DJmax ) = Dmax (5.7)

DJmax =
(Dmax � (3dn=2e+ 1) � DM )

(3dn=2e+ 1)
(5.8)

Algorithm 5 DJ calculation
Initialization : DJ = DJmax

Dynamic calculation :
While (DJ � DJmax )
If (Loss � Lossmax )
DJ = DJ � K
Else If (DJ + K � DJmax )
DJ = DJ + K
EndIf
EndIf
EndWhile

Using the example of Figure 5.8, we can determine also the maximum
number of clients or playersnmax for each value ofDJ . With no delay jitter,
DJ = 0, the value of nmax corresponds to approximately 68 players. If we
add more players, we will exceed the maximum tolerable delay by the game
players.
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Figure 5.7: D j max calculation for n = 25
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Figure 5.8: DJmax calculation depending onn
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5.5.3 Packet loss

When dealing with lossy networks, feedback-based transmission protocols are
the intuitive solution to recover the packet losses. In this context, TCP is
widely used when a reliable transmission is needed, including online gam-
ing applications. On the other hand, NC has been proven to be e�cient
even in the case of lossy networks. In fact, some researchers considered net-
work coding schemes in order to resolve the loss issue [122, 123]. Based on
these results, NC-based protocols have been proposed for various applications
[123, 124], even real-time ones such as video streaming [125, 126] when the
transmission channel is lossy. These propositions included wired networks
[127, 126] as well as wireless networks [128, 124, 129], for unicast [128, 130],
multicast [124, 131] and broadcast [132] transmissions. The approaches pro-
posed are mostly based on either random network coding[122, 133, 123] or re-
dundancy [128, 126, 134]. Besides, the classi�cation of the packets into gener-
ations or batches has gained interest in this context [122, 133, 135, 136]. Some
of these works were also based on the feedback information [128, 133, 129, 135]
while others made it possible to deal with the packet losses without any feed-
back [122, 132, 136]. As for our case, we believe that the proposed NC-based
routing algorithm can be naturally adopted to deal with packet losses. For
this purpose, we propose two possible modi�cations for two di�erent ap-
proaches:

1. Solution 1: TCP retransmission
As the reliability of packet transmission is important for some of the
game's tra�c [137], many game developers choose to use the TCP
protocol to guarantee the reception of the packets by their destination
through successive retransmissions. Thus, our �rst solution is based on
the belief that the lost packets will be detected and retransmitted using
the transport-layer reliable transmission. In this case, we should only
guarantee that the other packets (not lost packets) will be transmitted
in time. To do so, the algorithm can be adopted by specifying the
following:

� For each nodeVi , if the node is supposed to sendM  
i � 1(t � 1) or

M !
i +1 (t � 1) but that packet was not received (a lost packet) then

no packet is sent.

� For each nodeVi , if the node is supposed to sendM  
i � 1(t � 1) �

M !
i +1 (t � 1) and one of these packets was not received (resp both
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of them), then it sends only the received one (resp no packet is
sent).

As we already estimated the communication period's size using our
protocol for a lossless network case, we can �xT to match the upper
bound of TNC . Then, after T time units, the current communication
period will stop and a new communication period with new native
packets will start. Hence the delay will always be under control.

2. Solution 2 : Loss detection and retransmission
The retransmission procedure with TCP costs much time as it is only
detected by the receiver. Hence, a solution to treat the packet loss
while transmitting the tra�c will reduce the additional delay caused
by the packets' retransmission when using TCP and will guarantee a
reliable transmission with the minimum cost if UDP is used. For this
purpose, the second solution is proposed. It consists in detecting the
loss of a packet and retransmitting it within the same communication
period. In fact, the loss detection is quite natural with our protocol
as the packets are implicitly acknowledged by all the nodes except the
server and the extreme nodes (Vdn=2e and Vbn=2c). In the following, we
summarize this solution.

5.5.3.1 Protocol modi�cations

Let us incorporate a packet loss event into our system model. As explained
before, the nodes of the cycle have a reception timeout parameter equal
to 1t:u: Therefore, each node listens to its neighbor's transmission during
1t:u:. If the reception of a messageM i was expected but no packet has been
correctly received during this time interval, thenM i is considered as lost.
The modi�cations to add in order to recover a packet loss are summarized
as follows:

� If a node has one packet to send, then no coding

� If a node has no packet to code, then an all-zero packetP00 is sent.

� If a node does not receive back the packet it has sent during the previous
round from its neighbours, then the loss is detected.
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� If a node detects a packet loss then it would retransmit the same packet
(if coded then resend the coded packet, if not resend the native packet).

� If a packet is sent as a retransmission after a loss, then we should
distinguish this packet (we add an indicator to the header) so that
other nodes do not suppose that their own sent packets, which are
supposed to be received back at that period, are lost.

As a result, the NC-based routing protocol , Algorithm 4, should be modi�ed
in order to adopt it to packet loss by incorporating the two following points:

1. Generation of messages M i (t) to be sent by a node Vi at round
t

� If Vi 2 S� and Vi was expecting to receiveM  
i � 1(t � 1) andM !

i +1 (t �
1) at previous ruondt � 1, let it broadcast

M i (t) =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

I M  
i � 1(t � 1) � M !

i +1 (t � 1);

if no losses

I M  
i � 1(t � 1);

if M !
i +1 (t � 1) is lost

I M !
i � 1(t � 1);

if M  
i +1 (t � 1) is lost

I M i (t-1) if M i (t-1) is lost

I P00 otherwise

(5.9)

� If Vi 2 S! (or Vi 2 S! ) and Vi was expecting to receiveM !
i +1 (t � 1)

(or M  
i � 1(t � 1)) at previous round t � 1, let it send the message

M i (t) = M !
i +1 (t � 1) (or M i (t) = M  

i � 1(t � 1)) if there has been no
loss; let it sendP00 otherwise.

When using (1.1), one needs to let the receiving node know which
of these possible transmission options has been chosen (coded packet,
uncoded packet, retransmitted packet). This can be done by adding
several extra bits to the message header ofM i (t). Also note that if
M i (t) is lost, its source nodeVi can auto-detect the loss at the next
round t +1 in the case when it overhears the transmissions of its neigh-
bours (see Figure 5.9 for illustration). Thus the neighbours' broadcasts
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a) b)

c)

Figure 5.9: Illustration of possible loss scenarios: a) transmission protocol
without losses; b) a loss of messageM 1, detected byV1 after the reception of
M 3 (in red) and followed by retransmission ofM 1 (blue); c) a loss of messages
M 1 and M 3, detected by V1 and V3 after the reception ofP00 from V2 and
followed by retransmissions ofM 1 and M 3 (blue).

implicitly serve as a natural ACK feedback and can be used to correct
message losses by retransmissions (see Point 3 below). Note that the
only packets that are not protected by the implicit ACK are the ones
which have as destination the server nodeV0 or the end nodesVbn=2c

and Vdn=2e. These three cases are treated apart (see Point 2 below).

2. Transmission of ACK messages by nodes V0, Vbn=2c and Vdn=2e:

Let, at round t� 1 a nodeVi with i 2 f 0; bn=2c; dn=2egreceivesM  
i � 1(t �
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1) and/or M !
i +1 (t � 1). Then, at round t, it broadcasts

M i (t) =

8
>>>>>>>><

>>>>>>>>:

I M  
i � 1(t � 1) � M !

i +1 (t � 1);

if both messages received

I M  
i � 1(t � 1);

if M  
i � 1(t � 1) received

I M !
i +1 (t � 1);

if M !
i +1 (t � 1) received

(5.10)

The messagesM i (t) serve to acknowledge the reception and the neigh-
bour nodes become able to detect their packets' loss.

3. Retransmission of lost messages :
When, at some roundt, a nodeVi detects that its messageM i (t � 1) has
been lost, it will retransmit it at the next transmission, i.e., M i (t) =
M i (t � 1). The messages received byVi at round t � 1, that were
supposed to be transmitted forward at roundt, will be stored in the
memory and transmitted at the next roundt + 1.

5.5.3.2 Performance impact

Let us discuss the behavior of the modi�ed algorithm. It can be seen from
Figure 5.9 that one message loss delays the whole transmission by at most
one round (i.e., 3 or 4 t.u. depending on the current protocol and topology
state). In fact, thanks to the cycle topology and the broadcast transmission,
the packets are sent to their destinations in two directions. Hence, even
if a packet is lost, resulting in a transmission delay of other packets, it is
possible to receive a copy of those delayed packets from the second direction
without waiting for the delayed ones. As a result, the loss may result in
a delay that varies between 1 and 3 (or 4) time units. Therefore, if some
numberk of message losses happens during one communication periodT, the
communication periodT increases by at mostk rounds. The upper bound is
only attained in case the message losses occurred during a di�erent periodt
each, and the lost packets are not yet received from the other direction of the
ring. Also note that the number of transmitted messagesL is also increased.
In the presence ofk losses,L is increased by 2 +dn=2e+ k messages, where
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the term 2+ dn=2e comes from the implementation of ACK messages at Point
2 above, andk comes from the Point 3.

Taking into account the impact of the packet losses' recovery on the com-
munication period size and the latency, the calculation of the maximum
delay jitter value should be revised. If we note one packet loss cost in terms
of latency as DLoss then we can calculate the maximum total number of
retransmissions allowedRTmax as follows:

RTmax =
Dmax � DNC

DLoss
(5.11)

where

DNC = TNC � (DM + DJ ) (5.12)

DNC =(3 dn=2e+ 1) � (DM + DJ ) (5.13)

Hence,RTmax = f (n; DM ; DJ ) and the choice ofRTmax and the corresponding
DJmax value is to be decided based on a compromise depending on the quality
of the network and the tolerance to the packet loss.

The value ofRTmax should be equally divided between the players. Hence,
each node will have a maximum number of retransmissionsRmax = RTmax

n+1
to recover from packet losses. As not all the packets of online games require
reliability, we can associate with each packet a priority indicator to tell the
cycle nodes if they need to try to retransmit this packet in case of loss or
not. In this way, we give more chance to the most important packets.

5.5.4 Packet ordering

As explained in the �rst chapter, consistency is a major factor inuencing the
QoE of the online games' players [26]. To ensure this consistency, we need
to guarantee a causal order between the clients' packets since the actions of
the players are interdependent when the avatars are interacting.

De�nition 4 A tra�c is causally ordered if the packets sent by a client at
time t are received by the server before a packet sent by any client at time
t0 > t .

Implementing some ordering mechanisms in the end users' application
layer may help to treat the packets in the right order. However, this solution
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is complex and induces large delays. If the routing protocol can help in
ordering the packets, then a simpler and faster reordering can be performed.

As we already stated, the client tra�c is periodic. Let's note its period
asP. Using this characteristic, one can consider a new de�nition of "order".

De�nition 5 The tra�c is considered causally ordered if the packets sent at
a period P are received by the server before the packets sent at periodP + 1
and after the packets sent at periodP � 1.

In other words, packetM k
i must be received by the server beforeM k

j for
each communication periodk > 0 and each couple of nodes (Vi ; Vj ) where
(i; j ) 2 (1; :::; n + 1) � (1; :::; n + 1). Otherwise, the sequence is said to be
disordered. Note that we assume that packets sent within the same period
will be ordered by the server. Hence, our objective now is to �nda well-
ordering network codeC that ensures this order.

Proposition 1 For a codeC, if a node sends more than one packet during a
communication period (i.e. a new packet is sent before all packets from client
nodes generated at periodP are received by the server), then the code in not
well-ordered and the causal order is not preserved.

Proof. Let's consider our proposed code. Assume that a client is allowed
to send a new packet each time it is in the transmitting state (without waiting
for the end of the communication period). Hence, after the initialization step,
each node will send two types of packets: a coded packet and its own new
packet (see Figure 5.10). In this case, the new packets generated by the
closest nodes to the server will be received by the serverV0 before the old
packets generated by the furthest nodes to the server. In Figure 5.10, we
can see that the second packet from nodesV1 and Vn (surrounded by blue
circles) is received before the �rst packet sent by other nodes such as nodes
V3 and Vn� 2 (surrounded by red dashed circles) ).

5.6 Conclusion

In this chapter, we proposed a practical implementation scenario for the
proposed NC-based routing protocol and discussed some of the constraints
imposed by real network conditions. We present a solution for packet size
di�erence between the server and the client packets. Besides, we discussed
how the network jitter can inuence the size of the time unit of the protocol.
Moreover, we proposed a solution to detect packet loss and retransmit the lost
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Figure 5.10: Simulation results for the modi�ed code.

packets in a reasonable rate in order to guarantee a certain level of reliability
exploiting the cycle topology. Moreover, using this solution, the lost packets
will be detected and retransmitted as soon as the loss occurs and not at the
receiver's side, which decreases the delay caused by packets' retransmission.
Note that, using this solution, the game developers can avoid TCP disad-
vantages and use UDP over the cycle, which is faster and lighter in terms
of tra�c load due to the larger headers, the acknowledgments' transmission
and the transmission window variation.

In this scenario, we conserved our proposed transmission model that al-
lows collision avoidance. This model consists of a �xed transmission schedul-
ing, based on the position of the node over the cycle. It uses an alternation
between the three di�erent states: sending, receiving from the right and re-
ceiving from the left. This alternation is important for our routing protocol
so that each node has the packets it needs in each step. To avoid collision, we
divided the nodes into subgroups and adopted a slotted synchronous trans-
mission. If collision can be avoided using some other available transmission
and resource-allocation schemes, then an asynchronous transmission can be
adopted, but using the same alternation pattern between the states. In this
case, the timeout concept will also be used: the nodes will wait for one time
unit for the packets to be received. However, when sending, if the node has
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already received the needed information and has a packet to send, it can send
this packet as soon as the transmission control protocol allows it, without
waiting for the expiration of the timeout. For instance, the proposed protocol
in [138] for an inband d2d infrastructure, can be adopted by imposing the
order of transmissions of the neighbor nodes when selecting the transmitter
by the receivers. This asynchronous approach can provide gains in terms of
delay in some cases.
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Chapter 6

Conclusion and prospective
work

In this thesis, we were focused on enhancing the quality of experience of
massively multiplayer online games. The tra�c of these games is composed
of bursts of small sized packets with a reduced amount of data. This char-
acteristic degrades the network e�ciency and creates an overload problem
at the server side, especially with the growing number of players. Besides,
the online gamers are hard to satisfy and may quit the game if the Quality
of Experience is not acceptable. The QoE is inuenced by the consistency
of the game which can degrade due to some network imperfections like high
latency, excessive jitter and packets disorder.

As a solution for the consistency issue, we proposed to use a cycle topology
where packet's order can be easily maintained using some adequate trans-
mission management procedures. Then, in order to reduce the cycle size, we
propose to partition the players into subgroups connected to local servers.
Each local server is connected to the central server.

Our �rst accomplishment in this thesis is the investigation of how a cycle
topology can deal with online game tra�c while conserving an acceptable
end to end delay for the gamers. First, we designed an optimized routing
protocol over cyclic topologies, while considering the speci�c nature of the
online games tra�c. Second, in order to reduce the tra�c load and the
latency over the cycle, we added network coding operations to the routing
protocol.

Our second accomplishment is the evaluation of the impact of NC on
online game applications, which has not been investigated yet. The NC gain
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was evaluated in terms of tra�c load and end to end delay, using theoretical
calculation as well as simulations.Concerning the delay, the achieved gain
of NC, when n is su�ciently large, amounts to 20% compared to the NC-
based multicast routing protocol over cycle and to 14% compared to the
optimized shortest path protocol. As for the number of transmitted packets,
it decreased by 34% compared to the NC-based multicast protocol and by
12% compared to the optimized shortest path protocol.

We also described a possible implementation scenario of the proposed
protocol in a D2D infrastructure. Finally, to adopt this protocol to realistic
network conditions, we discussed solutions and enhancement possibilities to
solve the problem of packet size di�erence, network jitter and packet's loss.

As a result of the player partition procedure, the game delay calculation
will be divided into two categories. For instance, let's call them local delay
and global delay. The local delay corresponds to the delay over the subgroup:
between players and the local server. It concerns the perception of the game
state in the local area of the player. As for the global delay, it represents
the delay between the players and the central server. It concerns the global
game state perception. To each of these delays, one can associate an adequate
maximum value acceptable by the players, since the global and the local view
are di�erent in terms of importance for the players. For the local delay, the
bounds can be the same as the conventional maximum delays for online
games. As for the global delay, it should be investigated and estimated. But
generally it is less strict than the �rst type.

We note that, due to time constraints, we were not able to compare the
performance of the TCM-based solution proposed in the literature, and the
NC-based routing solution that we proposed in this thesis. In fact we simu-
lated the TCM solution and the initial version of the NC-based routing over
cycles, without the proposed modi�cations in section 5.5. In the future, we
will continue the implementation of the �nal version of the protocol, evaluate
its performance, propose enhancement in case of problems and compare it to
TCM.

As for prospective work, it can cover the following points:

� Global infrastructure: In this thesis, we were interested in connecting
the players of the subgroups to their local server and proposed the
NC-based routing protocol over a cycle topology. As for the connec-
tion between the local servers and the central server, it was out of our
scope. There are three possible ways to deal with this part of the infras-
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tructure: a star topology where a point to point connection between
each local server to the central server is established, a tree topology
with TCM or a cycle topology with the proposed routing protocol. To
decide between these solutions, one should evaluate their performance
considering the speci�city of the tra�c between the local servers and
the central server, in terms of packet size and frequency as well as the
delay constraints.

� Packets order: The proposed protocol provides a periodic ordering for
packets as we suppose that the server will order the packets of the
same period. Further work can be done to extend this solution to a
fully ordered one by adding some of the ordering keys usually used over
cycles such as a token or a timestamp.

� Transmission model: A synchronous transmission has been adopted
in this work in order to guarantee a safe access to the channel and
avoid any collision. However, if the technology used presents collision
avoidance solutions and the involved terminals in the cycle support
these solutions, then an asynchronous transmission can be considered
and the protocol can be adopted.

� Data compression: Beside the headers compression proposed in the
TCM technique, some works considered data compression for the server
packets [50]. They were interested in the server tra�c as it represents
the ow with the largest packets size. Simulations proved that, ap-
plying data compression for these packets can help reducing the on-
line game tra�c. In fact, they found that using some speci�c coding
schemes, they can achieve interesting results. For online games, the
upstream tra�c load poses more problems than downstream tra�c.
However, compressing the data of the client tra�c was not considered
because of the small size of the packets. We were interested in inves-
tigating the data compression for client packets. Our �rst tests over
real traces of an online game proved that a certain level of correlation
between these packets exists and can be exploited using some joint-
source compression schemes. This compression will reduce the tra�c
charge and increase the network e�ciency. Thus, we plan to continue
studying this approach and evaluate its inuence in terms of the QoE of
online games. If the bene�ts of the data compression for client packets
is con�rmed, it can be added to the proposed solutions.
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� Construction cost: In this work, we did not focus on the construc-
tion of the logical cycle topology. However, this construction has its
own cost in terms of delay depending on the computation complexity.
For instance, the computation cost of the Multiring Construction Al-
gorithm (MCA) proposed in [110] was estimated to be equal to several
minutes for a network composed of 400 nodes. This cost should be con-
sidered while choosing the adequate construction algorithm for online
games application.

� Security: With wireless networks, providing security becomes crucial.
For online games, one should protect some information, such as the
players account identi�ers and their chatting texts. As many online
games are paid, hackers are interested in stealing players accounts and
play for free. Besides, online games players can chat with each other
during a game session. Their discussion can include some personal
details. In this thesis we didn't treat security issues for online games.
For now, we suggest to apply one of the well known encryption protocols
for wireless networks, such as WEP, WPA and WPA2 [139]. Further
investigation and work can determine if there are more e�cient security
solutions for online games or not.
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