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Martin-Pizarro, Julien Melleray, Bruno Poizat, Pierre Simon and Frank Wagner, espe-
cially to Julien and Pierre for the courses about topological dynamics and NIP theories;
to Amador for encouraging us students to form a closer group within ourselves and take
more responsibilities; to Thomas for the friendly conversations. And I want to give my
thanks to all logic PhD students and postdocs, they are always helpful, friendly and
sympa when I was new in Lyon and I hope I have passed these spirits to the new-
comers. Thank you Benjamin Brück, Christian d’Elbée, Jan Dobrowolski, Daŕıo Garćıa,
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Gwladys, Jiao, Marion, Mickaël and Olga. I was lucky to share the office with all of you,
especially the girls. I appreciate the nice and sympa office environment where we care
each other’s feelings, share good moments and encourage each other during tough time.
I would also like to mention Pan and Caterina for being my dear friends and embracing
me with your warm heart. I would also like to give my special thanks to Luca Zamboni
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Introduction en Français

Les structures pseudo-finies sont définies comme étant des structures élémentairement
équivalentes à des ultraproduits de structures finies. En théorie des modèles, il existe une
littérature abondante consacrée à l’étude de cettes structures. Comme limites asymp-
totiques de structures finies, leurs propriétés modèle-théoriques révèlent souvent, via
le théorème de �Loś, des comportements asymptotiques des classes de structures finies
correspondantes.

La théorie des modèles moderne a commencé par l’étude du problème de la catégoricité:
à quelle(s) condition(s) une théorie complète du premier ordre ne comporte-t-elle qu’un
seul modèle d’une certaine cardinalité à isomorphisme près? Ce problème a conduit au
théorème de catégoricité de Morley, qui stipule qu’une théorie complète dénombrable a
exactement un modèle d’un certain cardinal non-dénombrable si et seulement si c’est le
cas pour tous les cardinaux non-dénombrables. Dans l’étude des théories catégoriques
non-dénombrables, Morley a développé une notion de rang: le rang de Morley. Il a
également identifié une classe de théories du premier ordre, les théories totalement tran-
scendantes, qui sont les théories avec un rang de Morley ordinal. Dès lors, les rangs
ont été l’un des outils les plus importants de la théorie des modèles pour étudier le
comportement d’ensembles définissables et d’espaces de types d’une théorie du premier
ordre.

Les rangs définis sur des ensembles ou des types définissables jouent le rôle de di-
mensions. On peut souvent définir une relation d’indépendance via les rangs. En un
sens, les deux directions principales de recherche en théorie des modèles pure sont les
suivantes: premièrement, l’analyse des relations d’indépendance provenant des rangs
(locaux), la stabilité géométrique; deuxièmement, l’extension de ces outils à d’autres
classes de théories, la néo-stabilité.

Les structures pseudo-finies ne sont pas a priori une classe de structures modérées. Un
ultraproduit de structures finies peut avoir une théorie très compliquée, mais on peut
le munir de dimensions de comptage naturelles. L’histoire commence avec [CvdDM92],
où une notion de mesure et de dimension de comptage pour les ensembles définissables
dans les corps pseudo-finis a été développée à l’aide de l’estimation de Lang-Weil. Dans
cet exemple la dimension de comptage cöıncide avec le rang SU et avec le degré de
transcendance. Inspiré par ce phénomène dans la classe des corps finis, un cadre général
pour les classes de structures finies a été proposé dans [MS08] et [Elw07], ce qui donna
naissance aux classes asymptotiques undimensionnelles et classes asymptotiques de di-
mension finie. Les ultraproduits de ces classes ont des théories modérées. En particulier,
le rang SU de ces théories est majoré par la dimension, elles sont donc supersimples de
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Introduction en Français 2

rang SU fini. De nombreux exemples appartiennent à cette catégorie, y compris des fa-
milles de groupes simples finis de type de Lie et de rang de Lie borné [Ryt07]. Cette ap-
proche a été approfondie dans [HW08] et [Hru13] en toute généralité, sans hypothèse de
modération. Deux dimensions pseudo-finies importantes y ont été développées: la dimen-
sion pseudo-finie fine qui vient avec des mesures, et la dimension pseudo-finie grossière.
Comme il a été montré dans [GMS15], les théories avec une dimension pseudo-finie fine
qui se comporte bien sont modérées et il existe un lien entre la chute de la dimension
fine et la déviation (donc la chute du rang SU dans les theories supersimples).

Plus important encore, on peut étudier, avec ces dimensions de comptage, si le comporte-
ment asymptotique (en ce qui concerne le comptage) d’ensembles finis dans une struc-
ture (éventuellement infinie) révèle certaines propriétés structurelles de ces ensembles
finis. Ce type de problèmes a été étudié de manière intensive en combinatoire ad-
ditive depuis longtemps. Par exemple, le célèbre théorème de Szemerédi stipule que
tout sous-ensemble de Z ayant une densité supérieure strictement positive contiendra
des suites arithmétiques arbitrairement longues. Cela équivaut à affirmer que dans
l’ultrapuissance

∏
n∈N(Z,+)/U , tout sous-ensemble interneB ⊆ A :=

∏
n∈N{1, . . . , n}/U

de même dimension fine que A contiendra une suite arithmétique infinie. La théorie des
modèles ayant développé de puissants outils en relation avec les notions de dimension
et d’indépendance, elle apporte de nouvelles méthodes pour étudier les problèmes liés à
la combinatoire additive. Dans [HW08] et [Hru13], quelques liens entre la combinatoire
additive et les dimensions de comptage des sous-ensembles pseudo-finis ont été étudiés,
par exemple, l’inégalité de Larsen-Pink, le phénomène de produit-somme et le théorème
de Szemerédi–Trotter. Récemment, des progrès importants ont été réalisés dans cette
direction, par exemple une généralisation du théorème de Elekes-Szabó a été présentée
en utilisant la dimension pseudo-finie grossière dans [BB18].

Le résultat le plus inspirant dans ce sens provient des travaux de Hrushovski sur les
sous-groupes approximatifs dans [Hru12]. Il a découvert une surprenante généralisation
du théorème du stabilisateur pour les groupes stables à la classe des sous-groupes ap-
proximatifs finis en utilisant la mesure de la dimension pseudo-finie fine. Cela a conduit
à la classification complète des sous-groupes approximatifs finis dans [BGT12].

Cette thèse porte sur la théorie des modèles des structures pseudo-finies en mettant
l’accent sur les groupes et les corps. Le but est d’approfondir notre compréhension des
interactions entre les dimensions de comptage pseudo-finies et les propriétés algébriques
de leurs structures sous-jacentes, ainsi que de la classification de certaines classes de
structures en fonction de leurs dimensions. Notre approche se fait par l’étude d’exemples.
Nous avons examiné trois classes de structures. La première est la classe des H-
structures, qui sont des expansions génériques. Nous avons donné une construction
explicite de H-structures pseudo-finies comme ultraproduits de structures finies. Le
deuxième exemple est la classe des corps aux différences finis. Nous avons étudié les
propriétés de la dimension pseudo-finie grossière de cette classe. Nous avons montré
qu’elle est définissable et prend des valeurs entières. Le troisième exemple est la classe
des groupes de permutations primitifs pseudo-finis. Nous avons généralisé le théorème
classique de classification de Hrushovski pour les groupes stables de permutations d’un
ensemble fortement minimal au cas où une dimension abstraite existe, cas qui inclut
à la fois les rangs classiques de la théorie des modèles et les dimensions de comptage
pseudo-finies. Dans cette thèse, nous avons aussi généralisé le théorème de Schlichting
aux sous-groupes approximatifs, en utilisant une notion de commensurabilité.
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Le chapitre 1 traite des H-structures introduites par Berenstein et Vassiliev dans [BV16].
Ce sont des expansions de structures par un ensemble algébriquement indépendant.
Moralement, dans une structure où la clôture algébrique donne une dimension qui se
comporte bien (les structures géométriques), il s’agit d’ajouter un prédicat pour un
ensemble algébriquement indépendant tel que cet ensemble et son complémentaire inter-
sectent tout ensemble définissable non-algébrique. Cette expansion conserve certaines
bonnes propriétés modèle-théoriques et les ensembles définissables peuvent être compris
à partir de ceux de la structure d’origine. Les expansions génériques ont été étudiées
intensivement en théorie des modèles (voir par exemple [Poi83], [CP98] et [BYPV03]).
Ce chapitre est motivé par la question suivante: l’expansion générique d’une structure
pseudo-finie est-elle encore pseudo-finie ? Nous avons donné une réponse négative dans
le cas des belles paires de corps pseudo-finis. C’est-à-dire qu’aucune belle paire de corps
pseudo-finis ne peut être équivalente à un ultraproduit de paires de corps finis. Cepend-
ant, nous avons donné une réponse positive en ce qui concerne les H-expansions de corps
pseudo-finis. En fait, la preuve de cette deuxième utilise uniquement le fait que la dimen-
sion fine des corps pseudo-finis a de bonnes propriétés: dans toute famille définissable
d’ensembles, la dimension fine prend des valeurs finies discrètes et les mesures et les
dimensions sont définissables. Par conséquent, le résultat s’étend à tout ultraproduit
d’une classe asymptotique undimensionnelle, puisqu’il s’agit de structures géométriques.

Théorème A. Soit C une classe asymptotique undimensionnelle dans un langage dénom-
brable. SoitM :=

∏
i∈IMi/U un ultraproduit infini d’éléments de C. Alors, pour chaque

i ∈ I, il existe Hi ⊆Mi tel que (M, H(M)) :=
∏
i∈I(Mi, Hi)/U soit une H-structure.

La deuxième partie de ce chapitre concerne les groupes définissables dans lesH-structures.
À l’aide du théorème de fragment de groupe (voir Fact 0.27), qui est une variante du
théorème de configuration de groupe, nous avons réussi à classifier tous les groupes
(type-)définissables dans les H-expansion d’une théorie supersimple de rang SU 1.

Théorème B. Soit T supersimple de rang SU 1 et (M,H(M)) une H-structure tel
que M |= T . Soit G un groupe (type-)définissable dans (M,H(M)). Alors, G est
définissablement isomorphe à un groupe (type-)interprétable dans M .

En particulier, si T élimine les imaginaires, alors tout groupe (type-)définissable dans
(M,H(M)) est définissablement isomorphe à un groupe (type-)définissable dans M .

Le chapitre 2 étudie la théorie asymptotique des corps aux différences finis. La motiva-
tion provient d’un théorème prouvé par Mark Ryten dans [Ryt07] qui stipule que pour
tout p ∈ P et m,n > 1 premiers entre eux,

Cp,m,n := {(Fpkm+n,Frobpk) : k ∈ N}

est une classe asymptotique undimensionnelle, où Frobpk est l’automorphisme de Fpkm+n

qui à x associe xp
k
. Que se passe t-il si la caractéristique des corps change également

? Est-il possible d’avoir des classes asymptotiques undimensionnelles de corps aux
différences finis à caractéristique non-fixée? La réponse s’est avérée négative. En
fait, si la caractéristique d’un ultraproduit de corps aux différences finis est 0 et que
l’automorphisme n’est pas trivial, le corps fixé par l’automorphisme sera un sous-corps
infini non trivial. Alors, le rang SU de la théorie sera strictement supérieur à 1. Mais
les ultraproduits d’une classe asymptotique undimensionnelle ont rang SU 1.
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Cependant, puisque l’endomorphisme de Frobenius Frobp est définissable dans le lan-
gage des anneaux L pour chaque nombre premier p, toute formule ϕ(x) du langage des
anneaux aux différences Lσ := L ∪ {σ} peut être traduite en une formule ϕp(x) dans
L, en remplaçont σ par Frobp. Comme les corps finis forment une classe asymptotique
undimensionnelle, ϕp(x) aura une dimension fine dp ≤ |x| pour chaque p, et lorsque p
varie, l’ultrafiltre choisira un d ≤ |x| qui deviendra la dimension grossière de ϕ lorsque
le corps est suffisamment grand. En conclusion, nous avons le résultat suivant:

Théorème C. Il existe une fonction f : N→ N telle que pour tout (F,Frob) dans

S :=

⎧⎨⎩∏
p∈P

(Fpkp ,Frobp)/U : kp ≥ f(p), U ultrafiltre non principal

⎫⎬⎭ ,

la dimension pseudo-finie grossière δδδF par rapport à F prend des valeurs entières pour
tout ensemble Lσ-définissable. De plus, δδδF est définissable dans Lσ.

En fait, l’énoncé du Théorème C est aussi vrai pour les corps aux différences pseudo-finis
de la forme

∏
i∈I(Fpiki ,Frobpiti )/U tant que pi

ki >> pi
ti pour presque tout i.

Cependant, comme nous demandons que le corps ambiant soit bien plus grand que le
sous-corps fixé par l’automorphisme, nous pouvons adapter la preuve de Duret de la
propriété d’independance pour les corps pseudo-finis [Dur80] afin de montrer que tous
les sous-ensembles internes du sous-corps fixé sont uniformément définissables. Ainsi,
aucune structure dans S n’est modérée.

Théorème D. Soit S défini comme dans le Théorème C. Supposons que (F,Frob) ∈ S
et soit T la théorie de (F,Frob) dans Lσ. Alors T a la propriété de l’ordre strict et TP2.
De plus, T n’est pas décidable.

Au vu de ce résultat, il sera difficile d’analyser les structures dans S et leurs théories
à l’aide de l’indépendance de la déviation ou avec les rangs classiques de la théorie des
modèles. Nous allons essayer de comprendre ces structures en utilisant la dimension
grossière δδδF . L’idée est de créer un lien entre δδδF et quelque chose de connu, ou de
trouver le sens algébrique de δδδF . Un candidat naturel est le degré de transcendance
transformelle. Il est facile de voir que δδδF d’un uplet fini est majoré par son degré de
transcendance transformelle. Nous pensons que ces deux dimensions sont identiques
dans toutes les structures de S. Comme le degré de transcendance transformelle d’un
uplet est entièrement déterminé par son type sans quantificateur, si notre conjecture est
vraie, tout ensemble définissable dans une structure de S est “équivalent en dimension
grossière” à un ensemble défini par une formule sans quantificateur.

Nous donnons une application de la conjecture, qui vise à comprendre les sous-groupes
définissables d’un groupe algébrique.

Théorème E. Soit (F,Frob) ∈ S. Supposons que δδδF et le degré de transcendance
transformelle sont identiques dans (F,Frob). Soit G un sous-groupe définissable d’un
groupe algébrique H(F ) ⊆ Fn. Alors il existe un groupe définissable sans quantificateur
D tel que G ≤ D ≤ H(F ) et δδδF (D) = δδδF (G).

Le chapitre 3 traite des groupes de permutations dans une théorie dimensionnelle.
L’origine de cette étude peut être retracée aux groupes de rang de Morley petit. Reineke
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a montré dans [Rei75] qu’un groupe connexe de rang de Morley 1 est abélien. Cher-
lin a continué dans [Che79] et a montré qu’un groupe connexe de rang de Morley 2 est
résoluble, et qu’un groupe simple connexe de rang de Morley 3 contenant un sous-groupe
définissable de rang de Morley 2 est isomorphe à PSL2(K) pour un corps K définissable
algébriquement clos. Sur ce sujet, Hrushovski a classifié les groupes de permutations
transtifs G sur un ensemble X fortement minimal dans une théorie stable en trois cas:

• Le rang de Morley de G est égal à 1, et G est connexe, et l’action de G sur X est
régulière;

• Le rang de Morley de G est égal à 2, et G est isomorphe à AGL1(K) pour un corps
K définissable algébriquement clos, et l’action est sur AG1(K) via les applications
x �→ ax+ b.

• Le rang de Morley de G est égal à 3, et G est isomorphe à PSL2(K) pour un corps
K définissable algébriquement clos, et l’action est sur PG1(K).

Ces résultats ont été généralisés aux groupes pseudo-finis de rang SU 1 et 2 et aux groupes
de permutations pseudo-finis définissablement primitifs sur un ensemble de rang SU 1
dans une théorie supersimple de rang SU fini dans [EJMR11].

Les résultats concernant les groupes pseudo-finis de rang SU 1 et 2 ont été généralisés
par Wagner dans [Wag18], où le rang SU est remplacé par une dimension abstraite et
l’hypothèse de modération de la théorie remplacée par certaines conditions de châıne sur
les centralisateurs, appelé la condition M̃c, tandis que l’hypothèse de pseudo-finitude est
conservée. D’une part, le but de l’introduction d’une dimension abstraite est d’unifier
plusieurs objets semblables à une dimension dans les théories modérées, par exemple
le rang de Lascar ou le rang SU dans les théories stables ou simples, la dimension
o-minimale et les dimensions de comptage pseudo-finies. Plus précisément, cette di-
mension abstraite sur des ensembles interprétables doit être additive et prendre des
valeurs entières. Mais il n’est pas nécessaire que les ensembles de dimension 0 soient
toujours finis, ce qui inclura les cas de rang SU ou de Lascar infini (dans ces cas, la
dimension est le coefficient de ωα pour un certain ordinal α), ainsi que les dimensions

pseudo-finies grossières, comme δδδF dans le chapitre 2. D’autre part, la condition M̃c,
qui stipule qu’il n’y a pas de châıne infinie de centralisateurs, chacun d’indice infini dans
son prédécesseur, est davantage axée sur les propriétés combinatoires qu’une théorie
modérée devrait avoir. Cette condition elle-même restreint la complexité des groupes et
donne quelques propriétés structurelles intéressantes pour les sous-groupes définissables
(voir [Hem15] pour plus de détails).

Basé sur le résultat de Wagner sur les groupes M̃c pseudo-finis de petite dimension,
le but du chapitre 3 est de généraliser la classification des groupes de permutations
pseudo-finis définissablement primitifs avec une dimension additive à valeurs entières et
satisfaisant certaines conditions de châıne sur les sous-groupes.

Théorème F. Soit (G,X) un groupe pur de permutations pseudo-fini définissablement
primitif, avec une dimension additive à valeurs entières dim telle que dim(X) = 1,

dim(G) <∞ et tel que G et ses quotients définissables vérifient la condition M̃c.

• Si dim(G) = 1, alors G a un sous-groupe A abelien distingué définissable, tel que
dim(A) = 1 et l’action de A sur X est régulière;
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• Si dim(G) = 2, alors G a un sous-groupe distingué définissable H de dimen-
sion 2 et un corps K pseudo-fini interprétable de dimension 1 tel que (H,X) est
définissablement isomorphe à (K+ �D,K+), où D ≤ K× est de dimension 1.

• Supposons en outre qu’il n’existe pas de châıne infinie descendante de stabilisateurs
de G chacun d’indice infini dans son prédécesseur, et que X ne puisse pas être
partitionné en une infinité de classes d’équivalence définissables de dimension 1.
Si dim(G) ≥ 3, alors dim(G) = 3, et il existe un corps K pseudo-fini interprétable
de dimension 1, tel que (G,X) est définissablement isomorphe à (H,PG1(K)), où

PSL2(K) ≤ H ≤ PΓL2(K).

En particulier, le résultat ci-dessus s’applique aux groupes pseudo-finis définissablement
primitifs de rang SU infini. Dans le cas où la dimension du groupe de permutations
est au moins deux, il existe toujours un corps pseudo-fini interprétable, avec un groupe
interprétable d’automorphismes de ce corps. Cela n’est pas possible si la théorie ambi-
ante est simple et le groupe d’automorphismes est infini. Pour cette raison, une part
importante de la classification dans les cas de rangs SU infinis se réduit au cas de rang
SU fini.

Théorème G. Soit (G,X) un groupe pur de permutations pseudo-fini définissablement
primitif dont la théorie est supersimple. Soit SU(G) = ωαn+ γ pour certains γ < ωα et
n ≥ 1. Supposons que SU(X) = ωα + β pour un certain β < ωα. Alors on est dans l’un
des cas suivants:

• SU(G) = ωα + γ, et G a un sous-groupe A abelien distingué définissable de rang
SU ωα, et l’action de A sur X est régulière;

• SU(G) = 2, et il existe un corps K pseudo-fini interprétable de rang SU 1 tel que
G est définissablement isomorphe à K+ �D où D est d’indice fini dans K×;

• SU(G) = 3 et il existe un corps K pseudo-fini interprétable de rang SU 1 tel que
G est définissablement isomorphe à PSL2(K) ou PGL2(K).

Le dernier chapitre, Chapitre 4, traite d’un analogue du théorème de Schlichting pour
les sous-groupes approximatifs. Le théorème de Schlichting pour les groupes (voir Fact
0.36) stipule que s’il existe une famille de sous-groupes uniformément commensurables,
alors il existe un sous-groupe invariant commensurable avec tous. Nous prouvons qu’il
en va de même pour les sous-groupes approximatifs, avec la commensurabilité définie de
la façon suivante: un nombre fini de translatés de l’un recouvre l’autre.

Théorème H. Si X est une famille uniforme de sous-groupes approximatifs commen-
surables dans un groupe G, alors il existe un sous-groupe approximatif H ⊆ G tel que
H est commensurable avec X et invariant par tout automorphisme de G stabilisant X
en tant qu’ensemble.

Ce résultat met encore en évidence les similitudes entre les groupes et les sous-groupes
approximatifs. Cependant, contrairement au cas des groupes, où le sous-groupe invariant
est une extension finie d’une intersection finie, nous devons ici prendre des unions infinies
ou des intersections infinies pour obtenir le sous-groupe approximatif invariant.



Introduction

Pseudofinite structures are structures that are elementary equivalent to ultraproducts of
finite structures. In the development of model theory, there is a rich literature devoted to
the study of pseudofinite structures. Since they are asymptotic limits of finite structures,
their model theoretic properties often reveal asymptotic behaviours of the corresponding
finite classes via �Loś’s Theorem.

Modern model theory started with the study of the categoricity problem: When does a
complete first-order theory have only one model of a certain cardinality up to isomorph-
ism? This problem led to Morley’s famous categoricity theorem, which states that a
complete countable theory has exactly one model of some uncountable cardinality if and
only if this is the case for all uncountable cardinalities. In the study of uncountably
categorical theories, Morley developed a notion of rank: Morley rank. He also identified
a class of first-order theories, totally transcendental theories, which are those theories
with ordinal Morley rank. From then on, ranks have been one of the main tools in model
theory to study the behaviour of definable sets and type spaces of a first-order theory,
among other powerful machineries such as forking calculus.

Ranks are dimension-like objects on definable sets or types. One can often define a well-
behaved independence relation from ranks, where independent elements correlate with
each other in a negligible way. In a sense, the two main directions in the development
of pure model theory are: firstly analysing the independence relation that comes from
(local) ranks, geometric stability theory ; and secondly extending these machinery to
other classes of first-order theories, neostability theory.

Pseudofinite structures are not a priori a tame class of structures. There can be very
complicated theories that come from ultraproducts of finite structures. But they are
equipped with natural dimensions from counting. The history began in [CvdDM92],
where a notion of counting measure and dimension of definable sets in pseudofinite
fields was developed using the Lang-Weil estimate. In fact, in this example the counting
dimension coincide with both U-rank and transcendence degree. Inspired by this phe-
nomenon in the class of finite fields, a general framework for classes of finite structures
based on counting dimension and measure of definable sets was proposed in [MS08] and
[Elw07]. This was called one/finite-dimensional asymptotic classes. The ultraproducts
of these classes turned out to be model theoretic tame structures. In particular, the SU-
rank of their theories are bounded above by the dimension, hence, they are supersimple
of finite SU-rank. A lot of natural examples fall into this category, including families
of finite simple groups of Lie type of bounded Lie rank (see [Ryt07]). This counting
approach has been further investigated in [HW08] and [Hru13] in full generality without
any tameness assumptions. Two important pseudofinite dimensions have been developed
there: fine pseudofinite dimension which comes with measures (they are the dimension

7
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and measure in one-dimensional asymptotic classes) and coarse pseudofinite dimension.
As has shown in [GMS15], theories with well-behaved fine pseudofinite dimension are
tame and there is a link between the drop of fine dimension and forking (hence dropping
of SU-rank if it exists) in the theory.

More importantly, regardless of model theoretic tameness, with these counting dimen-
sions one can study whether the asymptotic behaviour of finite sets with respect to
counting in a (possibly infinite) structure will imply any structural property of these
finite sets. This kind of problems has been intensively studied in additive combinatorics
for a long time. For example, Szemerédi’s well-known theorem states that any subset of
natural numbers with a positive upper-density contains arbitrarily long arithmetic pro-
gressions. It is equivalent to the statement that in the ultrapower

∏
n∈N(Z,+)/U , any

internal subset B ⊆ A :=
∏
n∈N{1, . . . , n}/U of the same fine dimension as A will con-

tain an infinite arithmetic progression. As model theory has developed powerful tools
using different notions of dimension and independence, it brings new methods to ap-
proach problems related to additive combinatorics. In [HW08] and [Hru13], connections
between additive combinatorics and counting dimensions of pseudofinite subsets in ul-
trapowers of tame structures for example (Z,+), linear groups or algebraic varieties over
an algebraically closed fields, have been investigated, e.g. the Larsen-Pink inequality, the
sum-product phenomenon, the Szemerédi–Trotter Theorem, and so on. Recently, signi-
ficant progress has been made following this approach, for example, a generalization of
the Elekes-Szabó Theorem has been presented using the coarse pseudofinite dimension
in [BB18].

The most inspiring result along this way is Hrushovski’s work on approximate subgroups
in [Hru12], where he discovered a surprising generalization of the Stabilizer Theorem
of groups in stable or simple theories to arbitrary finite approximate subgroups using
the measure equipped with the fine pseudofinite dimension. This led to the complete
classification of all finite approximate subgroups in [BGT12].

The Stabilizer Theorem is one of the most useful tools in model theory of groups. It
can be seen as a generalization of Zilber’s Indecomposability Theorem, where a finite
product of definable sets will generate a subgroup. The Stabilizer Theorem together
with the Group Configuration Theorem, which states that an interpretable group can
be constructed given certain data from a generic configuration that comes from an inde-
pendence notion, are often used to classify definable groups in terms of groups that are
known (e.g. linear groups, algebraic groups, semialgebraic groups) in a natural structure
which expands a field (e.g. differential fields, difference fields, o-minimal structures) see
[HP94], [KP02], [MOS18] and others. On the other hand, the existence of stabilizers as
type-definable subgroups guarantees the existence of certain connected components of
these groups. As the quotient group of G by its connected component will give rise to
a locally compact group with the logic topology, it is possible to use the knowledge of
locally compact groups to better understand G when the connected component exists.
All these explain the importance of the generalisation of Stabilizer Theorem to contexts
without tameness assumptions on the global theory. It also indicates the possible power
of pseudofinite dimensions in both model theory and other area of mathematics.

This thesis is about the model theory of pseudofinite structures with the focus on groups
and fields. The aim is to deepen our understanding of how pseudofinite counting dimen-
sions can interact with the algebraic properties of underlying structures and how we
could classify certain classes of structures according to their counting dimensions. Our
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approach is by studying examples. We treat three classes of structures: The first one is
the class of H-structures, which are generic expansions of existing structures. We give
an explicit construction of pseudofinite H-structures as ultraproducts of finite struc-
tures. The second one is the class of finite difference fields. We study properties of
coarse pseudofinite dimension in this class, show that it is definable and integer-valued.
The third example is the class of pseudofinite primitive permutation groups. We gener-
alise Hrushovski’s classical classification theorem for stable permutation groups acting
on a strongly minimal set to the case where there exists an abstract notion of dimen-
sion, which includes both the classical model theoretic ranks and pseudofinite counting
dimensions. We hope these examples can help us to gain some intuition on possible
general structural theorems for pseudofinite structures using these counting dimensions
as tools. In this thesis, we also generalise Schlichting’s Theorem for groups to the case
of approximate subgroups with a notion of commensurability.

Chapter 1 is about H-structures introduced in [BV16]. They are expansions of struc-
tures by a generic algebraically independent set. Roughly, if in a structure where al-
gebraic closure gives a well-behaved dimension (called geometric structures), we add
an algebraically independent set such that this set and its complement intersect any
non-algebraic definable set (“generic” or “random” in this sense), then the expanded
structure preserves model theoretical tameness and the definable sets and type spaces
can be understood from those of the original structure. Generic expansions have been
intensively studied in model theory (see for example [Poi83],[CP98] and [BYPV03]); they
often preserve nice properties and sometimes result in model complete theories. This
chapter is motived by the question if we start with a pseudofinite geometric structure,
do generic expansions of it preserve pseudofiniteness in general? We gave a negative an-
swer in terms of lovely pairs of pseudofinite fields. That is, no lovely pair of pseudofinite
fields can be elementary equivalent to an ultraproduct of pairs of finite fields. And we
gave a positive answer in terms of H-expansions of pseudofinite fields. In fact, the prove
uses only the fact that the fine dimension for pseudofinite fields is well-behaved: in any
definable family of definable sets, the fine dimension takes discrete finite values and both
measure and dimension are definable. Therefore, the result extends to any ultraproduct
of a one-dimensional asymptotic class, since they are geometric structures.

Theorem A. Let C be a one-dimensional asymptotic class in a countable language. Let
M :=

∏
i∈IMi/U be an infinite ultraproduct of members among C. Then for each i ∈ I

there exists Hi ⊆Mi such that (M, H(M)) :=
∏
i∈I(Mi, Hi)/U is an H-structure.

The proof uses heavily the measure that comes with the fine dimension of the original
structure, and the task of constructing a generic subset reduces to the problem of finding
a special set of vertices in a dense bipartite graph. Interestingly, the independent subset
we construct will have coarse pseudofinite dimension 0 with respect to the full structure.
It would be an interesting problem to find out the exact behaviour of both coarse and
fine dimensions in these pseudofinite H-structures.

The second part of this chapter is about definable groups in H-structures. With the
help of the Group Chunk Theorem (see Fact 0.27), which is a variant of the Group Con-
figuration Theorem, we managed to classify all (type-)definable groups in H-expansions
of SU-rank 1 supersimple theories.

Theorem B. Let T be supersimple of SU-rank 1 and (M,H(M)) an H-structure with
M |= T . Let G be a (type-)definable group in (M,H(M)). Then G is definably iso-
morphic to some (type)-interpretable group in M .
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In particular, if T eliminates imaginaries, then every (type-)definable group in (M,H(M))
is definably isomorphic to some (type-)definable group in M .

Chapter 2 studies the asymptotic theory of finite difference fields. The motivation comes
from a theorem proved by Mark Ryten in [Ryt07] which states that for any p ∈ P and
positive coprime natural numbers m,n > 1, the class

Cp,m,n := {(Fpkm+n,Frobpk) : k ∈ N}

is a one-dimensional asymptotic class, where Frobpk is the field automorphism of Fpkm+n

which maps x to xp
k
. We wondered what would happen if the characteristics of the

fields also change. Is it possible to have a one-dimensional asymptotic classes of finite
difference fields with non-fixed characteristic? The answer turned out to be negative.
In fact, if the characteristic of an ultraproduct of finite difference fields is 0 and the
automorphism is non-trivial, then the fixed field will be a non-trivial infinite subfield.
Thus the SU-rank of the theory will be strictly greater than 1. But ultraproducts from
a one-dimensional asymptotic class will have theories of SU-rank 1.

However, since the Frobenius map Frobp is definable in the ring language L for each
prime p, any formula ϕ(x) in the language of difference rings Lσ := L ∪ {σ} can be
translated into a ring formula ϕp(x) if we replace σ by Frobp. As finite fields form a
one-dimensional asymptotic class, ϕp(x) will have a fine dimension dp ≤ |x| for each p,
and when p changes, the ultrafilter will pick out one d ≤ |x|, which will become the
coarse dimension of ϕ with respect to the full field when the field is large enough. In
conclusion, we have the following result:

Theorem C. There is a function f : N→ N such that for any (F,Frob) in

S :=

⎧⎨⎩∏
p∈P

(Fpkp ,Frobp)/U : kp ≥ f(p), U non-principal ultrafilter

⎫⎬⎭ ,

the pseudofinite coarse dimension δδδF with respect to F is integer-valued for any Lσ-
definable set. Moreover, δδδF is definable in Lσ.

In fact, the only thing that matters is that the full fields grow fast enough, and the
statement holds generally for

∏
i∈I(Fpiki ,Frobpiti )/U provided pi

ki >> pi
ti for almost

all i.

However, as we ask the full field to be much bigger than the fixed field, we can adapt the
proof that the theory of pseudofinite fields has the independence property in [Dur80]
to show that all internal subsets of the fixed field are uniformly definable. Thus, all
structures in S are not model theoretically tame.

Theorem D. Let S be defined as in Theorem C. Suppose (F,Frob) ∈ S and let T be
the theory of (F,Frob) in the language of difference rings. Then T has the strict order
property and TP2. Moreover, T is not decidable.

With this result, it would be hard to analyse these structures and their theories from
classical model theoretic forking independence or ranks on types. However, we will try
to understand these structures in terms of coarse dimension δδδF . The idea is to build a
link between δδδF and something we know, or, to find the algebraic meaning of δδδF . One
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natural candidate is the transformal transcendence degree. It is easy to see that δδδF of a
finite tuple is bounded above by its transformal transcendence degree. We suspect these
two dimensions agree in all structures in S. Since transformal transcendence degree is
totally determined by the quantifier-free type of a tuple, if our conjecture is true, then
it means that any definable set of structures in S is “coarse-dimensionally equivalent”
to a quantifier-free definable set.

We give an application of the conjecture, which is aimed to understand definable sub-
groups of algebraic groups.

Theorem E. Let (F,Frob) ∈ S. Suppose δδδF and transformal transcendence degree
coincide in (F,Frob). Let G be a definable subgroup of some algebraic group H(F ) ⊆
Fn. Then there is a quantifier-free definable group D such that G ≤ D ≤ H(F ) and
δδδF (D) = δδδF (G).

Chapter 3 is about permutation groups in a dimensional theory. The history can be
traced back to the study of groups of small Morley rank. Reineke showed in [Rei75]
that a connected group of Morley Rank 1 is abelian and is either elementary abelian or
divisible torsion-free. Cherlin proceeded in [Che79] and showed that a connected group of
Morley rank 2 is soluble, and a connected simple group of Morley rank 3 with a definable
subgroup of Morley rank 2 is isomorphic to PSL2(K) for some definable algebraically
closed field K. Related to this, in [Hru89] Hrushovski classified permutation groups G
acting transitively on a strongly minimal set X in a stable theory into the following
three cases:

• The Morley rank of G is 1, and G is connected acting regularly on X;

• The Morley rank of G is 2, and G is isomorphic to AGL1(K) for some definable
algebraically closed field K, acting on affine line by maps x �→ ax+ b.

• The Morley rank of G is 3, and G is isomorphic to PSL2(K) for some definable
algebraically closed field K, acting on the projective line PG1(K).

These results have been generalised to pseudofinite groups of SU-rank 1 and 2, and
pseudofinite definably primitive permutation groups acting on a set of SU-rank 1 in
a supersimple finite SU-rank theory in [EJMR11]. There are three key ingredients in
this generalization: The first one is that there is a finite integer-valued dimension, SU-
rank, that plays the same role as Morley rank in the original results. The second one
is the assumption of a tame ambient theory, namely a supersimple theory of finite SU-
rank. There are powerful structural theories about definable groups in such theories,
for example, the Indecomposability Theorem (see Fact 0.32) and the Stabilizer The-
orem. And the third one is the most important one in generalising Hrushovski’s result
about permutation groups, pseudofiniteness. With this assumption, it is possible to use
the knowledge about finite primitive permutation groups and use the classification of
finite simple groups via the O’Nan-Scott Theorem to analyse the structure of primitive
permutation groups of SU-rank at least 3.

The result about pseudofinite groups of SU-rank 1 and 2 have been generalised further
in [Wag18], where SU-rank is replaced by an abstract dimension and the tameness
assumption of the full theory is replaced by certain chain condition on centralizers,
called the M̃c-condition, while the pseudofiniteness assumption is kept. The aim of
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introducing an abstract dimension is to unify several different dimension-like objects
in tame theories, for example the Lascar or SU-rank in stable and simple theories, the
o-minimal dimension and the pseudofinite counting dimensions. More precisely, this
abstract dimension on interpretable sets is required to be additive and takes value in
integers. But there is no requirement that dimension 0 sets are always finite, which
will include cases of infinite Lascar or SU-rank (in this case, dimension is defined as
the coefficient of ωα for some ordinal α) and coarse pseudofinite dimensions, such as

δδδF in Chapter 2. On the other hand, the M̃c-condition, which states that there is
no infinite chain of centralizers each of infinite index in its predecessor, focuses more
on the combinatoric properties that a tame theory should have. This condition itself
decreases the complexity of groups and gives some nice structural theorems for definable
subgroups (see [Hem15] for more details). However, the powerful tools about groups in
tame theories we have mentioned before, such as the Indecomposability Theorem, is no
longer available.

Based on Wagner’s result on small dimensional pseudofinite M̃c-groups, the aim of
Chapter 3 is to generalise the classification of pseudofinite definably primitive permuta-
tion groups with similar assumptions, i.e. the existence of an additive integer-valued
dimension and certain chain conditions on subgroups.

Theorem F. Let (G,X) be a pseudofinite definably primitive permutation group with
an additive integer-valued dimension dim such that dim(X) = 1, dim(G) < ∞ and G

and its definable quotients satisfy the M̃c-condition.

• If dim(G) = 1, then G has a definable normal abelian subgroup A, such that
dim(A) = 1 and A acts regularly on X.

• If dim(G) = 2, then G has a definable normal subgroup H of dimension 2, and
there is an interpretable pseudofinite field K of dimension 1 such that (H,X) is
definably isomorphic to (K+ �D,K+), where D ≤ K× is of dimension 1.

• Suppose in addition that there is no infinite descending chain of stabilizers of G
each of infinite index in its predecessor, and that X cannot be partitioned into
infinitely many definable equivalent classes of dimension 1. If dim(G) ≥ 3, then
dim(G) = 3, and there is an interpretable pseudofinite field K of dimension 1, such
that (G,X) is definably isomorphic to (H,PG1(K)), where

PSL2(K) ≤ H ≤ PΓL2(K).

In particular, the above result applies to pseudofinite definably primitive groups of in-
finite SU-rank. In the case when the dimension of the permutation group is at least two,
there is always an interpretable pseudofinite field with a group of field-automorphisms.
This cannot happen if the ambient theory is simple and the group of automorphisms
is infinite. For this reason, a major part of the classification in infinite SU-rank cases
collapses to the finite SU-rank case.

Theorem G. Let (G,X) be a pure pseudofinite definably primitive permutation group
whose theory is supersimple. Let SU(G) = ωαn+γ for some γ < ωα and n ≥ 1. Suppose
SU(X) = ωα + β for some β < ωα. Then one of the following holds:

• SU(G) = ωα + γ, and there is a definable normal abelian subgroup A of SU-rank
ωα which acts regularly on X.
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• SU(G) = 2, and there is an interpretable pseudofinite field K of SU-rank 1 such
that G is definably isomorphic to K+ �D where D has finite index in K×.

• SU(G) = 3, and there is an interpretable pseudofinite field K of SU-rank 1 such
that G is definably isomorphic to PSL2(K) or PGL2(K).

The last chapter, Chapter 4, is about an analogue of Schlichting’s Theorem for approx-
imate subgroups. Schlichting’s Theorem for groups (see Fact 0.36) states that if there is
a family of subgroups uniformly commensurable with each other, then there is an invari-
ant one commensurable with all of them. We prove that the same holds for approximate
subgroups with the commensurability defined as finitely many translates of one covering
the other.

Theorem H. If X is a uniform family of commensurable approximate subgroups in
an ambient group G, then there is an approximate subgroup H ⊆ G such that H is
commensurable with X and invariant under all automorphisms of G stabilizing X set-
wise.

This result further highlights similarities between groups and approximate subgroups.
However, unlike the case of groups, where the invariant object is obtained by a finite
extension of a finite intersection, we need to take infinite unions or infinite intersections
to get the invariant approximate subgroup.

Remark: The four main chapters of this thesis are from four corresponding preprints
with slight modifications, such as shortening the introduction to avoid repetition and
moving some of the facts and definitions to the chapter Preliminaries. Chapter 1 is
based on [Zou18b], which is accepted by The Journal of Symbolic Logic. Chapter 2 is
from [Zou18a]. Chapter 3 corresponds to [Zou18c], which has been submitted. Chapter
4 is based on [Zou18d], which has been submitted as well.



Preliminaries

Notations

We first list some notations and conventions.

• Throughout the thesis, when we talk about languages, we always mean first-order
languages, denoted by L,L′, . . .. We write M,N, . . . and M,N , · · · for models, T
for a first-order theory and Th(M) for the theory of M , i.e. the collection of all
sentences that are true in M .

• Let M be a κ-saturated model for a regular cardinal κ. We denote by a, b, c, . . .
finite tuples of elements, A,B,C, . . . parameter sets whose size are small, that is
of size at strict less than κ. We will denote by ϕ, ψ, φ, · · · formulas (possibly with
parameters), x, y, z, · · · tuples of variables, |x| and |a| the length of the corres-
ponding tuple, and |ϕ| the length of the formula ϕ.

• Suppose M is an L-structure and ϕ(x) an L-formula with parameters in M . We
write ϕ(M |x|) to be the definable set given by ϕ(x) in M , i.e.

ϕ(M |x|) := {a ∈M |x| : M |= ϕ(a)}.

• Fq will denote the finite field with q elements, similarly, Fpn denotes the finite field
of characteristic p with pn elements. F̃p will be the algebraic closure of Fp. If F is
a field, we denote the additive group as F+ and multiplicative group as F×.

• We denote by P the set of prime numbers.

• If G is a group and g0, . . . , gn ∈ G, we will write Z(G) for the center of G and
CG(g0, · · · , gn) the centralizer of g0, . . . , gn, that is

CG(g1, · · · , gn) := {h ∈ G : hgi = gih, for all i ≤ n}.

If H ≤ G is a subgroup, and h, g ∈ G, we write hg for g−1hg and Hg for g−1Hg.
We denote NG(H) the normalizer of H in G, i.e. NG(H) := {g ∈ G : Hg = H}.
We also write the index of the subgroup H in G as [G : H].

14
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Ultraproducts and pseudofinite structures

Ultraproducts and ultrapowers are fundamental constructions in model theory. They
are useful tools to construct explicitly models of theories from existing ones in a way
that resulting models have nicer properties, e.g. saturation.

Let L be a language, I an index set and {Mi : i ∈ I} a family of L-structures. Let U
be an ultrafilter on I. We denote by M :=

∏
i∈IMi/U the ultraproduct of {Mi : i ∈ I}

with respect to U . If {ai ∈ (Mi)
n : i ∈ I} is a family of n-tuples, we denote by (ai)i∈I/U

the corresponding tuple in Mn.

The fundamental theorem about ultraproducts is �Loś’s Theorem, which gives a transfer
principle between the structures {Mi, i ∈ I} and their ultraproduct

∏
i∈IMi/U .

Fact 0.1. (Jerzy �Loś, 1955) Let M =
∏
i∈IMi/U be an ultraproduct of L-structures

{Mi, i ∈ I} with respect to an ultrafilter U on I. Then for any L-formula ϕ(x) and
a := (ai)i∈I/U ∈M |x|, we have

M |= ϕ(a) if and only if {i ∈ I : Mi |= ϕ(ai)} ∈ U .

As we have mentioned before, a certain saturation can be obtained by the ultraproduct
construction.

Fact 0.2. (see [Gar18, Proposition 1.6]) Let M =
∏
i∈IMi/U be an ultraproduct with

respect to a non-principal ultrafilter U on an infinite set I. Then M is ℵ1-saturated.

Definition 0.3. Let M =
∏
i∈IMi/U be an ultraproduct. A set A ⊆ Mn is called

internal if A =
∏
i∈I Ai/U where Ai ⊆ (Mi)

n for each i ∈ I.

Pseudofinite structures can be defined using ultraproducts.

Definition 0.4. An L-structure is called pseudofinite if M is elementary equivalent to
an ultraproduct of finite L-structures.

The following fact states that there are several equivalent definitions of pseudofinite
structures.

Fact 0.5. (see [Gar18, Proposition 1.4]) Let M be an L-structure. Then the following
are equivalent:

1. M is pseudofinite;

2. Every sentence true in M has a finite model;

3. For any sentence, if it is satisfied in all finite L-structures, then it is satisfied in
M .
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Pseudofinite counting dimensions

Fix an ultraproduct of finite structures M :=
∏
i∈IMi/U . Let R∗ :=

∏
i∈I R/U be

the non-standard reals. Then any internal set D ⊆ Mn has a non-standard cardinality
|D| ∈ R∗, as does any internal interpretable sets D ⊆Mn/E where E ⊆Mn×Mn is an
internal equivalence relation. In the following we will define the pseudofinite counting
dimension δC with respect to a convex subgroup C ⊇ R. The fine and coarse pseudofinite
dimensions are special cases of δC . We will specify them later.

Definition 0.6. Let C be a non-zero convex subgroup of (R∗,+) containing R. The
pseudofinite counting dimension δC with respect to C is a function from all interpretable
sets in M to the quotient group (R∗/C,+), defined as

δC(D) := log |D|+ C

for an interpretable set D in M.

Remark: R∗/C is an ordered Q-vector space.

Fact 0.7. ([Hru12, section 5]) Properties of δC :

• δC(X) = 0 for finite X;

• δC(X ∪ Y ) = max{δC(X), δC(Y )};
• δC(X × Y ) = δC(X) + δC(Y );

• (subadditivity) Let f : X → Y be an interpretable function. If δC(f−1(y)) ≤ α
for all y ∈ Y and δC(Y ) ≤ β, then δC(X) ≤ α+ β.

• Let X be an interpretable set. The interpretable subsets Y of X with δC(Y ) <
δC(X) form an ideal.

We now define the fine and coarse dimension.

Definition 0.8. Let Cfin be the smallest convex subgroup in (R∗,+) containing R. The
fine pseudofinite dimension or shortly fine dimension is defined as δCfin

, written as δfin.

Remark:([Hru13, section 2]) Among all δC , the characteristic feature of δfin is that any
dimension α ∈ R∗/Cfin comes with a real-valued measure μα (up to a scalar multiple)
such that

• μα(X) = 0 iff δfin(X) < α;

• μα(X) = ∞ iff δfin(X) > α;

• if δfin(X) = δfin(Y ) = α, then μα(X) = st (|X|/|Y |)μα(Y ), in which st : R∗ →
R ∪ {±∞} is the standard part map.
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If X is an internal set with δfin(X) = α, we can define μα(D) := st(|D|/|X|).
While the fine dimension is the finest pseudofinite counting dimension, coarse dimension
is the coarsest one if one has an internal set X in mind and the dimension does not give
X value 0. Let α := log |X| ∈ R∗ and C<α be the largest convex subgroup that does
not contain α. The coarse dimension normalised by α is defined as δC<α and is denoted
as δδδα. In fact, C<α has an explicit definition

C<α =
⋂
n∈N
{β : −α < nβ < α}.

Claim 0.9. Let

Vα := {β ∈ R∗ : exists n ∈ N with − nα ≤ β ≤ nα}.

Then there is a natural isomorphism (Vα/C<α,+,≤) → (R,+,≤) mapping α to 1.

Proof. Let τ : (Vα,+,≤) → (R,+,≤) be defined as τ(β) := st(β/α). It is easy to see
that τ is a surjective group homomorphism with kernel C<α. Thus we have the desired
result.

Remark: Instead of working in R∗/C<α, people are more used to dealing with R∪{±∞}
via the map τ defined before and regard elements in (R∗/C<α)\(Vα/C<α) as ±∞. Hence,
we often use the following definition for coarse dimension δδδα instead.

Definition 0.10. Let M :=
∏
i∈IMi/U be an ultraproduct of finite L-structures. The

coarse dimension onM normalised by α, denoted as δδδα, is a function from interpretable
sets of M to R≥0 ∪ {∞}, defined as

δδδα(A) := st

(
log |A|
α

)
,

for A ⊆Mn/E interpretable. When α := log |X| for some internal set X, we also write
δδδα as δδδX and call δδδX the coarse pseudofinite dimension with respect to X.

In an ultraproduct of finite L-structures, pseudofinite counting dimensions always exist.
However, if the language is not expressive enough, there might be no link between these
dimensions and the theory. In fact, δC could have different values for definable sets
defined by ϕ(x, a) and ϕ(x, b) where a and b have the same type. This is not in the
spirit of model theory where we take types rather than elements as the main objects of
study. The following definition ensures invariance for coarse dimension.

Definition 0.11. • We say δδδα is continuous if for any ∅-definable formula φ(x, y),
for any r1 < r2 ∈ R, there is some ∅-definable set D with

{a ∈M |y| : δδδα(φ(M |x|, a)) ≤ r1} ⊆ D ⊆ {a ∈M |y| : δδδα(φ(M |x|, a)) < r2}.

• We say δδδα is definable if δδδα is continuous and the set {δδδα(φ(M |x|, a)) : a ∈M |ȳ|} is
finite for any ∅-definable formula φ(x, y). By compactness, it is equivalent to the
following: for any ∅-definable formula φ(x, y) and a ∈ M |y|, there is ξ(y) ∈ tp(a)
such that

M |= ξ(b) if and only if δδδα(φ(M |x|, b)) = δδδα(φ(M |x|, a)).
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Remark: If X is ∅-definable, we can always make δδδX continuous by adding the cardinality
comparison quantifier:

(Cx)ϕ(y0, y1) ⇔ |ϕ(M, y0)| ≤ |ϕ(M, y1)|.

This is because given 0 < a < b ∈ R, let a < n
m < b with n,m ∈ N, then the ∅-definable

set D := {y : |ϕ(M, y)m| ≤ |Xn|} satisfies

{y : δδδX(ϕ(M, y)) ≤ a} ⊆ D ⊆ {y : δδδX(ϕ(M, y)) < b}.

However, expanding the language might add new definable sets to the original structure,
which could be an inconvenience.

Definition 0.12. Let M be a pseudofinite structure and α ∈ R∗. Let a be a finite tuple
in M and A ⊆M . Define

δδδα(a/A) := inf
{
δδδα(ϕ(M |x|)), ϕ(x) ∈ tp(a/A)

}
.

Fact 0.13. ([Hru13, Lemma 2.10]) If δδδα is continuous, then δδδα is additive, i.e. for any
a, b, A ⊆M we have δδδα(a, b/A) = δδδα(a/A, b) + δδδα(b/A).

One-dimensional asymptotic classes

One-dimensional asymptotic classes are classes of finite structures with a nicely behaved
dimension and counting measure on all families of uniformly definable sets. They are
introduced in [MS08] inspired by the class of finite fields. Basically, ultraproducts of one-
dimensional asymptotic classes will give rise to pseudofinite structures with well behaved
fine pseudofinite dimension. Namely, for a uniformly definable family of definable sets,
the fine dimensions of them take a finite set of discrete values and for any such value, if
we look at the measure that comes with this fine dimension, then there are only finitely
many possible values within this definable family. Moreover, both the dimension and
the measure are definable.

We start with the case of finite fields.

Fact 0.14. ([CvdDM92, Main Theorem]) Let L be the language of rings. For every
formula ϕ(x, y) ∈ L with |x| = n and |y| = m there are a constant Cϕ > 0, a finite set
Dϕ ⊂ {0, . . . , n}×Q>0 and formulas ψd,μ(y) for any (d, μ) ∈ Dϕ such that the following
holds:

• For any finite field Fq and a ∈ (Fq)
m, if ϕ((Fq)

n, a) �= ∅, then there is some
(d, μ) ∈ Dϕ such that

||ϕ((Fq)
n, a)| − μ · qd| ≤ Cϕ · qd− 1

2 . (�)

• The formula ψd,μ(y) defines in each Fq the set of tuples a such that (�) holds.

Now we recall the definition of a one-dimensional asymptotic class and list some examples
and properties of them.
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Definition 0.15. Fix a language L. A class C of finite L-structures is called a one-
dimensional asymptotic class if the following holds: For every m ∈ N>0 and every
formula ϕ(x, y) with |x| = 1 and |y| = m:

1. There is a positive constant C and a finite set E ⊆ R>0 such that for any M ∈ C
and b ∈Mm, either |ϕ(M, b)| < C or there is μ ∈ E with

||ϕ(M, b)| − μ|M || < C · |M | 12 .

2. For every μ ∈ E there is an L-formula ϕμ(y) such that for any M ∈ C and b ∈Mm

M |= ϕμ(b) if and only if ||ϕ(M, b)| − μ|M || < C · |M | 12 .

Remark: Note that the definition only requires that families of definable subsets of
structures are uniformly definable. The higher dimensional families can be obtained
from it.

Fact 0.16. ([MS08, Theorem 2.1]) Let C be a one dimensional class of finite L-structures.
For every formula ϕ(x, y) ∈ L with |x| = n, |y| = m there are a constant Cϕ > 0, a finite
set Dϕ ⊂ {0, . . . , n} × R>0 and formulas ψd,μ(y) for any (d, μ) ∈ Dϕ such that the
following holds:

• For any M ∈ C and a ∈Mm, if ϕ(Mn, a) �= ∅, then there is some (d, μ) ∈ Dϕ such
that

||ϕ(Mn, a)| − μ · |M |d| ≤ Cϕ · |M |d− 1
2 . (��)

• The formula ψd,μ(y) defines in each M the set of tuples a such that (��) holds.

Examples of one-dimensional asymptotic classes are:

• The class of finite fields.

• The class of finite-dimensional vector spaces over a fixed finite field.

• The class of finite cyclic groups.

The ultraproducts of one-dimensional classes give infinite structures that are model
theoretically tame.

Fact 0.17. ([MS08, Lemma 4.1]) Let C be a one-dimensional asymptotic class and M
an infinite ultraproduct of members of C. Then Th(M) is supersimple of SU-rank 1.

Shelah’s dividing lines

While studying the categoricity problem, Michael Morley proposed a problem concerning
the number of non-isomorphic models for a complete theory in uncountable cardinal-
ities, which was solved by Saharon Shelah in [She90]. To do this, Shelah developed
classification theory, where he drew several dividing lines in first-order theories through



Preliminaries 20

their ability to encode certain combinatorial configurations. Theories that cannot code
complicated configurations are considered tame, while theories with too strong coding
power are considered wild, for example Peano Arithmetic and ZFC.

We list the definitions of some of the important tame classes here.

Definition 0.18. A formula ϕ(x, y) has the order property in T if there is a model M
and (ai, bi)i<ω such that M |= ϕ(ai, bj) if and only if i < j.

T is stable if no formula has the order property in T .

Definition 0.19. A formula ϕ(x, y) has the independence property in T if there is a
model M and (ai)i<ω and (bI)I⊆ω such that M |= ϕ(ai, bI) if and only if i ∈ I.

T is NIP if no formula has the independence property in T .

Definition 0.20. A formula ϕ(x, y) has the tree property in T if there is (bη)η∈ω<ω and
some k ≥ 2 such that

• for all σ ∈ ωω, {ϕ(x, bσ�n) : n < ω} is consistent;

• for all η ∈ ω<ω, {ϕ(x, bη�n) : n < ω} is k-inconsistent;

T is simple if no formula has the tree property in T .

Definition 0.21. A formula ϕ(x, y) has the tree property 2 (TP2) in T if there is
(ai,j)i,j<ω and k ≥ 2 such that

• for all σ ∈ ωω, {ϕ(x, an,σ(n)) : n < ω} is consistent;

• for all n < ω, {ϕ(x, an,j) : j < ω} is k-inconsistent;

T is NTP2 if no formula has TP2 in T .

Definition 0.22. A formula ϕ(x, y) has the strict order property in T if there is a model
M and (ai)i<ω such that ϕ(M |x|, ai) � ϕ(M |x|, aj) for all i < j.

T is NSOP if no formula has the strict order property in T .

The following fact is easy to see, it indicates the inclusion of the tame classes.1

Fact 0.23. We write “property A implies property B” to denote if a formula ϕ(x, y)
has property A in T , then it also has property B in T .

• Tree property implies order property.

• Independence property implies order property.

• TP2 implies tree property and independence property.

• Strict order property implies tree property.

1For detailed inclusions of the classes and more definitions according to Shelah’s dividing lines, see
http://www.forkinganddividing.com.
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The following fact is proved by Shelah.

Fact 0.24. ([She71]) A theory T is stable if and only if it is both NSOP and NIP if only
if it is both simple and NIP.

The above facts correspond to the following diagram in terms of theories.

Universe

Stable NSOP

NIP

Simple

NTP2

Groups in simple and supersimple theories

Groups in simple theories

As we defined in the previous section, simple theories are theories that cannot define a
“tree-like” configuration (the tree property) by a formula. There are other characterisa-
tions of simple theories, notably in terms of the local rank D(·, ϕ, k) and of the existence
of an independence relation with some nice properties.

Groups in simple theories enjoy a lot of structural properties. Most of them can be de-
duced from the local rank and the well-behaved forking independence in simple theories.

To state the results about groups in simple theories in full generality, we recall the notion
of hyper-definability.

Definition 0.25. Let M be a structure. A set X is hyper-definable over A ⊆ M if
there is a type-definable set Y ⊆ Mn for some n ∈ N and a type-definable equivalence
relation E on Y both defined over A such that X = Y/E.

Now we list some facts about groups in simple theories. The following one is a very
useful tool to show certain definable sets generates a definable subgroup.
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Fact 0.26. [Wag00, Lemma 4.4.8] Let G be a type-definable/hyper-definable group in
a simple theory. Let X be a non-empty type-definable/hyper-definable subset of G.
Suppose for independent g, g′ ∈ X we have g−1 · g′ ∈ X, and put Y = X ·X. Then Y
is a type-definable/hyper-definable subgroup of G, and X is generic in Y . In fact, X
contains all generic types for Y .

We also state the Group Chunk Theorem here. Basically, it says that in a simple theory,
if there is a group-like object that are only defined partially on the “generic parts”, then
we can reconstruct a group from it.

Fact 0.27. [Wag00, Theorem 4.7.1] We fix an ambient simple theory. Let π be a
partial type and � be a partial type-definable function defined on pairs of independent
realizations of π, both over ∅ such that

1. Generic independence: for independent realizations a, b of π the product a � b
realizes π and is independent from a and from b;

2. Generic associativity: for three independent realizations a, b, c of π, we have (a �
b) � c = a � (b � c);

3. Generic surjectivity: for any independent a, b realizing π, there are c and c′ inde-
pendent from a and from b, with a � c = b and c′ � a = b.

Then there are a hyper-definable group G and a hyper-definable bijection from π to the
generic types of G, such that generically � is mapped to the group multiplication. G is
unique up to definable isomorphism.

Groups in supersimple theories

Supersimple theoreis are defined in terms of a global rank on types, called the Lascar
rank or SU-rank induced from forking extensions. We recall the definition of Lascar
rank here.

Definition 0.28. Let Ord∪{∞} be the class of ordinals together with an extra element
∞ which is greater than any element in the ordinals. The SU-rank or Lascar rank is
the least function from all types to Ord ∪ {∞} satisfying:

SU(p) ≥ α+ 1 if there is a forking extension q of p with SU(q) ≥ α.

T is called supersimple if SU(p) <∞ for any type p in T .

Let a be a tuple and A be a small set of parameters in a monster model. We denote
SU(tp(a/A)) as SU(a/A). The following inequality is the fundamental inequality for
SU-rank.

Fact 0.29. (see [Wag00, Theorem 5.1.6]) In any theory, we have the following inequality,
called the Lascar Inequality :

SU(a/bA) + SU(b/A) ≤ SU(ab/A) ≤ SU(a/bA)⊕ SU(b/A),
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where + is the ordinal sum, ⊕ is the natural sum (or the Hessenberg sum) and the
operations with ∞ are defined as ∞+α = α+∞ = ∞+∞ = ∞ and ∞⊕α = α⊕∞ =
∞⊕∞ = ∞ for any ordinal α.

Let G be an interpretable group in a theory and H ≤ G be an interpretable subgroup.
Let G/H be the left coset space, it is an interpretable set. Then the Lascar inequality
specialises to the following case for interpretable groups.

Fact 0.30. Lascar inequality for groups:

SU(H) + SU(G/H) ≤ SU(G) ≤ SU(H)⊕ SU(G/H).

In supersimple theories, often, when we study groups we only talk about properties of
them up to finite index. This gives rise to an important notion: commensurability.

Definition 0.31. Let H and D be two subgroups of G. We say G is commensurable
with H if [G : G ∩H] and [H : H ∩G] are both finite.

One of the most powerful tool in groups of finite Morley rank is the Indecomposability
Theorem. It has a corresponding generalization for groups in supersimple theories.

Fact 0.32. (Indecomposability Theorem, [Wag18, Theorem 5.4.5]) Let G be an inter-
pretable group in a simple theory with SU(G) < ωα+1, and X a family of interpretable
subsets of G. Then there exists an interpretable subgroup H of G with H ⊆ X±1

0 · · ·X±1
n

for some X0, · · · , Xn ∈ X such that SU(XH) < SU(H) + ωα for all interpretable
X ⊆ 〈X〉 (and in particular for all X ∈ X ). Moreover, H is unique up to commen-
surability.

In particular, if SU(G) < ω, then Xi/H is finite for each i ∈ I.

Moreover, if the collection X is setwise invariant under some group Σ of definable auto-
morphisms of G, then H can be chosen to be Σ-invariant.2

We list in the following three facts about groups in supersimple theories that will be
used in Chapter 3.

Fact 0.33. ([Wag00, Theorem 5.4.3]) Suppose G is an interpretable group defined in
a supersimple theory and SU(G) =

∑
j≤k ω

αjnj with α0 > α1 > · · · > αk and put
βi =

∑
j≤i ω

αjnj for i ≤ k. Then G has an interpretable normal subgroup Gi of SU-
rank βi which is unique up to commensurability.

Fact 0.34. ([Wag00, Theorem 5.4.9]) SupposeG is an interpretable, interpretably simple
(G has no interpretable proper non-trivial normal subgroup) non-abelian group in a
simple theory with SU(G) < ∞. Then G is simple and SU(G) = ωαn for some ordinal
α and n < ω.

Fact 0.35. ([Wag00, Lemma 5.5.3]) Suppose G is a type-definable group over ∅ in a
supersimple theory with SU(G) = ωαn. Then there are a definable super group G0 of
G and definable subgroups Gi of G0 for i ∈ I with G =

⋂
i∈I Gi

2This is because H is unique up to commensurability, so we can apply Schlichting’s Theorem for all
such H, see Fact 0.36.
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The last fact I want to recall about groups is a general fact that does not depend on the
theory. It is called Schlichting’s Theorem, first discovered in [Sch80] with the focus on
the existence of normal subgroups.

Fact 0.36. ([Wag00, Theorem 4.2.4]) Let G be a group and F be a family of subgroups
of G. If there is some n ∈ N such that [H : H ∩ H ′] < n for all H and H ′ ∈ F , then
there is a subgroup N which is commensurable with every member of F and invariant
under all automorphisms of G which stabilize F set-wise.

Moreover,
⋂F ≤ N ≤ 〈F〉, and N is a finite extension of a finite intersection of groups

in F . In particular, if F is a family of definable/interpretable groups, then N is also
definable/interpretable.



Chapter 1

Pseudofinite H-structures

1.1 Introduction

H-structures are introduced in [BV16]. They are based on a geometric theory, where al-
gebraic closure satisfies the exchange property and ∃∞ is eliminated. When a dense and
co-dense independent subset is added to a model of this theory, the resulting structure is
an H-structure. Strongly minimal theories, supersimple SU-rank one theories and super-
rosy thorn-rank one theories with elimination of ∃∞ are examples of geometric theories.
In these cases, the corresponding H-structures preserve ω-stability, supersimplicity or
superrosiness and the rank is either one or ω.

In the following, we will recall the definition of H-structures and some of their main
properties.

Let T be a complete geometric theory in a language L. Let H be a unary predicate
and put LH = L ∪ {H}. Let M |= T ; we say that A ⊆ M is finite dimensional if
A ⊆ aclL(a1, . . . , an) for some a1, . . . , an ∈M . For a tuple a and a set of parameters A,
we write dimaclL(a/A) as the length of a maximal aclL-independent subtuple of a over
A.

Definition 1.1. We say that (M,H(M)) is an H-expansion of M 1 if:

1. M |= T ;

2. H(M) is an aclL-independent subset of M ;

3. (Density/coheir property) If A ⊆ M is finite dimensional and q ∈ S1(A) is non-
algebraic, there is a ∈ H(M) such that a |= q;

4. (Extension property) If A ⊆ M is finite dimensional and q ∈ S1(A) is non-
algebraic, then there is a ∈M , a |= q and a �∈ aclL(A ∪H(M)).

Equivalently, we can replace density and extension properties with the following more
general ones:

1It is just called an H-structure in [BV16], we add this terminology to be more precise about the
base theory or the base model.

25
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• (Generalised density/coheir property) If A ⊆ M is finite dimensional and q ∈
Sn(A) has dimension n, then there is a ∈ H(M)n such that a |= q;

• (Generalised extension property) If A ⊆M is finite dimensional and q ∈ Sn(A) is
non-algebraic, then there is a ∈Mn, a |= q and

dimaclL(a/A,H(M)) = dimaclL(a/A).

A structure M is called an H-structure if it is an H-expansion of some model of a
geometric theory.

H-structures are closely related to lovely pairs, where, instead of an independent subset,
a dense and co-dense elementary substructure is added. We recall the definition of lovely
pairs in the special case that the base theory is geometric, see [BV10].

Definition 1.2. Let T be a geometric theory in a language L and let LP be the expansion
of L by a unary predicate P . An LP -structure (M,N) is a lovely pair of models of T , if

1. M |= T ;

2. N is an L-elementary submodel of M ;

3. (Density/coheir property) If A ⊆ M is finite dimensional and q ∈ S1(A) is non-
algebraic, there is a ∈ N such that a |= q;

4. (Extension property) If A ⊆ M is finite dimensional and q ∈ S1(A) is non-
algebraic, then there is a ∈M , a |= q and a �∈ aclL(A ∪N).

Fact 1.3. [BV16], [BV10]. Properties of H-structures and lovely pairs.

Let T be a complete geometric theory in a language L.

• H-expansions of models of T exist and all of them are LH -elementary equivalent.
Let TH be the corresponding theory. Similarly, lovely pairs of models of T exist,
and all of them are LP -elementary equivalent.

• If the geometry of T is nontrivial and T is strongly minimal/supersimple/superrosy
of rank 1, then TH is ω-stable/supersimple/superrosy of rank ω.

• Let (M,H(M)) be an H-structure. Then (M, aclL(H(M))) is a lovely pair.

Consider the theory of pseudofinite fields. It is supersimple of SU-rank one. By the fact
above, H-expansions and lovely pairs of pseudofinite fields exist. However, the proof of
existence uses general model theoretic techniques such as saturated models and union
of chains. It is not clear whether it is possible to have H-expansions or lovely pairs of
pseudofinite fields that are ultraproducts of finite structures.

The answer turns out to be negative for lovely pairs.

Lemma 1.4. If (K, k) is a lovely pair of pseudofinite fields, then it is not pseudofinite.2

2This was already noticed by Gareth Boxall (private communication).
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Proof. Let (K ′, k′) =
∏
i∈I(K

′
i, k

′
i)/U be a pair of pseudofinite fields with char(K ′) =

char(k′) such that k′i � K ′
i are finite fields for any i ∈ I.

Suppose char(K ′) �= 2. We will show that there are a1, a2 ∈ K ′ and ϕ(x; y1, y2) in the
language of rings such that ϕ(x; a1, a2) is non-algebraic, but there is no b ∈ k′ such that
ϕ(b; a1, a2) holds. However, as (K, k) is a lovely pair, the following holds in (K, k):

∀y1∀y2(∃∞x ϕ(x; y1, y2) → ∃z ∈ k ϕ(z; y1, y2)).

Therefore, (K, k) is not elementary equivalent to (K ′, k′).

As char(K ′) �= 2, we may assume that char(Ki) �= 2 for all i ∈ I. For any i ∈ I take
σi ∈ Gal(K ′

i/k
′
i) with σi �= id. Let ai1 , ai2 ∈ K ′

i be such that σi(ai1) = ai2 and ai1 �= ai2 .
Let σ = (σi)i∈I/U , a1 := (ai1)i∈I/U and a2 := (ai2)i∈I/U . Then a1 �= a2, σ(a1) = a2
and k′ ⊆ Fix(σ). Define

ϕ(x; y1, y2) := (∃z z2 = x− y1) ∧ ¬(∃z z2 = x− y2).

We claim that ϕ(x; a1, a2) is non-algebraic in K ′. Since char(K ′
i) �= 2 for any i ∈ I, we

have {x2 : x ∈ K ′
i} � K ′

i. Let ei be such that there is no x ∈ K ′
i with x2 = ei. Then by

[Dur80, Proposition 4.3], the ideal generated by {(X1)
2−(X−ai1); (X2)

2−ei(X−ai2)}
is absolutely prime and does not contain X−ai1 or X−ai2 . Let V be the corresponding
irreducible variety. Then V has dimension 1; by the Lang-Weil estimate |V ∩K ′

i| ≈ |K ′
i|.

We claim that Ki |= ϕ(x; ai1 , ai2) for any (x1, x2, x) ∈ V ∩K ′
i with x �= ai2 . Since if not,

there is some x3 such that x−ai2 = (x3)
2. As x �= ai2 , we have x3 �= 0. Then ei = (x2x3 )2,

contracting that ei is not a square-root. Therefore, we can define a function

τi : (V ∩K ′
i) \ {(x1, x2, ai2) : x1, x2 ∈ K ′

i} → ϕ(K ′
i; ai1 , ai2)

by τi(x1, x2, x) := x. As char(K ′
i) �= 2, it is easy to see that τi is a four-to-one function.

By that |V ∩K ′
i| ≈ |K ′

i|, we conclude that

|ϕ(K ′
i; ai1 , ai2)| ≈ 1

4
|V ∩K ′

i|.

Thus, ϕ(x; a1, a2) is non-algebraic.

On the other hand, for any b ∈ k′ we have

∃z(z2 = b− a1) ⇐⇒ ∃z(σ(z2) = σ(b− a1)) ⇐⇒ ∃z(σ(z)2 = b− a2) ⇐⇒ ∃z(z2 = b− a2).

Therefore, there is no b ∈ k′ such that ϕ(b; a1, a2) holds.

The case of char(K ′) = 2 is similar, using cubes instead of squares (and possibly going
to some finite extension of K ′).

In view of the close connection between H-structures and lovely pairs, we might expect
H-expansions of pseudofinite fields never to be pseudofinite. Luckily, this is not so. In
fact, we can see from the proof above that the reason (K ′, k′) is not a lovely pair is
the existence of a nontrivial automorphism σ of K ′ that fixes k′. In the case of H-
expansions, instead of a subfield we only need to add a subset. Intuitively, we might be
able to choose a pseudofinite set large enough such that no non-trivial automorphism
can fix all the points in this set.
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Definition 1.5. Let T be a geometric theory in a language L. LetM =
∏
i∈IMi/U |= T

be an infinite ultraproduct of finite structures. We call an H-expansion (M, H(M)) an
exact pseudofinite H-expansion of M if (M, H(M)) =

∏
i∈I(Mi, Hi)/U with Hi ⊆ Mi

for all i ∈ I.

Remark: Let M =
∏
i∈IMi/U |= T be pseudofinite. Then an arbitrary pseudofinite

H-expansion need not to be exact, since it need not be this particular ultraproduct. For
example, let U be a nonprincipal ultrafilter on N and V =

∏
i∈N Vn/U an ultraproduct

of finite vector spaces over F2 such that limn∈N dim(Vn) = ∞. It is easy to build an
exact pseudofinite H-expansion of V by choosing an independent set Hn ⊆ Vn for each
n ∈ N with lim

n∈N
dim(Hn) = lim

n∈N
codim(Hn) = ∞ and put (V,H) =

∏
n∈N(Vn, Hn)/U .

Let H ′ ⊆ V be a countable independent set of V . Then (V,H ′) is pseudofinite H-
expansion of V as (V,H ′) ≡ (V,H). But (V,H ′) is not ℵ1-saturated, hence cannot be
an ultraproduct over non-principal ultrafilters. Thus (V,H ′) is not exact.

Let C be a one-dimensional asymptotic class and M be an infinite ultraproduct of
members of C. In section 1.2 we show that exact pseudofinite H-expansions of M
always exist. In particular, pseudofinite H-expansions of pseudofinite fields do exist.

Section 1.3 deals with definable groups in H-structures. Our motivation is to classify
definable groups in H-expansions of pseudofinite fields. There are some results about
definable groups in H-structures when the base theory is superstable in [BV16] using
the group configuration theorem. The problem to generalise these results is that in
simple (even in supersimple) theories, there is no nice version of the group configuration
theorem available in general. However, pseudofinite fields are exceptional: the group
configuration theorem for pseudofinite fields has essentially been given in [HP94]. We can
easily deduce that definable groups in H-expansions of pseudofinite fields are virtually
isogenous to algebraic groups.

However, this is not very satisfactory. It is of course the best one could get when one
compares definable groups in H-expansions of pseudofinite fields with algebraic groups.
But as has been noticed in [BV16], “since the geometry on H is trivial, we expected
adding H should not introduce new definable groups”. With the help of the group chunk
theorem in simple theories (see Fact 0.27) we give a more satisfactory answer, namely,
there are no new definable groups in H-structures when the base theory is supersimple
of SU-rank one. Notably, Eleftheriou also got a same classification of definable groups in
H-structures in the setting of o-minimal theories using the similar strategy, see [Ele18,
Theorem 1.2].

1.2 Pseudofinite H-structures

This section deals with pseudofinite H-structures built from one-dimensional asymptotic
classes.

Notation: In this section, we will distinguish elements and tuples by denoting elements
as a, b, c, . . . and tuples as ā, b̄, c̄, . . ., same for variables and tuples of variables. We will
denote ϕ(x; ȳ) for formulas in variable x and parameters ȳ, where parameters have not
been specified yet.3

3This notation is only kept for this section, in other sections and other chapters, we use the standard
notation.
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Definition 1.6. Let C be a one-dimensional asymptotic class in a language L. Let
ϕ(x; ȳ) (ȳ non-empty) be an L-formula and E ⊆ R>0 be as in Definition 0.15. Put

ψϕ(ȳ) :=
∨
μ∈E

ϕμ(ȳ).

For a structure M ∈ C and a subset X ⊆M , we say X covers ψϕ(ȳ) inM if the following
holds: ⋃

x∈X
ϕ(x;M |ȳ|) ⊇ ψϕ(M |ȳ|).

Let φ(x; ȳ) be a formula. Suppose φ(x; ȳ) is algebraic (ȳ can be empty) over any ȳ. For
a structure M ∈ C and a linearly-ordered subset X ⊆ M , we say that X avoids φ(x; ȳ)
in M if there is no x, x1, . . . , x|ȳ| ∈ X |ȳ|+1 such that x > max{x1, . . . , x|ȳ|} and

M |= φ(x;x1, . . . , x|ȳ|).

Let M be an infinite ultraproduct of members of C. For any ϕ(x, ȳ) and ā ∈ M|ȳ|,
if M |= ψϕ(ā), then there is μ ∈ E such that |ϕ(M, ā)| ≈ μ|M|. As μ > 0 and M
is infinite, we get ϕ(M, ā) is infinite. On the other hand, if M |= ¬ψϕ(ā), then by
the definition one-dimensional asymptotic class, there must be some C ∈ N such that
|ϕ(M, ā)| ≤ C. Therefore, ψϕ(ȳ) defines the set of ā such that ϕ(x, ā) is non-algebraic
in any infinite ultraproduct of members of C.

Lemma 1.7. Let C be a one-dimensional asymptotic class, Γ be a finite set of algebraic
formulas of the form φ(x; z̄) (z̄ could be empty) and Δ any finite set of formulas of the
form ϕ(x; ȳ) (the length of ȳ can vary and ȳ is non-empty). Then there are NΔ,Γ ∈ N

and CΔ,Γ ∈ R>0 such that the following holds:

For any M ∈ C with |M | ≥ NΔ,Γ, there exists (HΔ,Γ(M),≤) with HΔ,Γ(M) ⊆ M and
|HΔ,Γ(M)| ≤ CΔ,Γ · log |M | such that for any ϕ(x; ȳ) ∈ Δ and φ(x; z̄) ∈ Γ, we have
HΔ,Γ(M) covers ψϕ(ȳ) and avoids φ(x; z̄) in M .

In particular, |M | ≥ NΔ,Γ should imply the equation (1.2) and the inequality (1.3), which
are defined throughout the proof.

Proof. By Definition 0.15, for each ϕ(x; ȳ) ∈ Δ there are finitely many μ0,ϕ, . . . , μkϕ,ϕ >

0 and Cϕ ∈ R, such that for any M ∈ C and ā ∈M |ȳ|,

ψϕ(ā) =⇒
∨
j≤kϕ

(||ϕ(M ; ā)| − μj,ϕ · |M || < Cϕ · |M | 12 ).

Take 0 < μ < min{μ0,ϕ, . . . , μkϕ,ϕ : ϕ ∈ Δ}. Let

Cμ :=
⋂
ϕ∈Δ

{M ∈ C : for any ā, ψϕ(ā) implies |ϕ(M ; ā)| ≥ μ · |M |}.

We claim that there is some N ∈ N such that for any M ∈ C and |M | > N , we have

M ∈ Cμ. Otherwise, there are ϕ(x; ȳ) ∈ Δ, μi0,ϕ > 0 and {Mi ∈ C, āi ∈ M
|ȳ|
i : i ∈ N}

such that the following holds:

• limi→∞ |Mi| = ∞;
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• Mi |= ϕμi0,ϕ(āi) for each i ∈ N;

• |ϕ(Mi; āi)| < μ · |Mi| < μi0,ϕ · |Mi| for each i ∈ N.

Therefore,

μi0,ϕ · |Mi| − |ϕ(Mi; āi)| > (μi0,ϕ − μ) · |Mi| = (μi0,ϕ − μ) · |Mi| 12 · |Mi| 12 .

By the definition of one-dimensional asymptotic class, there is some Cϕ > 0 such that

||ϕ(Mi; āi)| − μi0,ϕ · |Mi|| < Cϕ · |Mi| 12 .

Since limi→∞(μi0,ϕ − μ) · |Mi| 12 = ∞, there is clearly a contradiction.

Assume Δ = {ϕ1(x; ȳ1), . . . , ϕn(x; ȳn)}. Fix any M ∈ C with |M | > N , for 1 ≤ i ≤ n,
define inductively the following sets: Xi

j , L
i
j , H

i
j ⊆M and Y i

j ⊆ ψϕi(M
|ȳi|).

• Y 1
0 := ψϕ1(M |ȳ1|);

• X1
0 := H1

0 := L1
0 := ∅;

Suppose Y i
j , X

i
j , H

i
j , L

i
j are defined. There are two cases.

• If Y i
j = ∅ and i < n, define

– Y i+1
0 := ψϕi+1(M |ȳi+1|);

– Xi+1
0 := Li+1

0 := ∅;
– H i+1

0 := H i
j .

• If Y i
j �= ∅, define

– Lij+1 :=
⋃
φ(x;z̄)∈Γ{a ∈M : ∃z̄ ∈ (H i

j)
|z̄|,M |= φ(a; z̄)} ∪⋃φ′(x)∈Γ φ

′(M).

– Xi
j+1 := M \ (H i

j ∪ Lij+1).

– Choose an element hij+1 in Xi
j+1 such that ϕi(h

i
j+1;Y

i
j ) has the maximal

cardinality among {ϕi(a;Y i
j ) : a ∈ Xi

j+1}.
– H i

j+1 := H i
j ∪ {hij+1} and Y i

j+1 = Y i
j \ ϕi(hij+1;Y

i
j ).

The construction stops either when Y n
j is empty, that is H i

j covers ψϕi(ȳi) for any

1 ≤ i ≤ n, or when Y i
j �= ∅ and Xi

j+1 = ∅ for some 1 ≤ i ≤ n and j ∈ N.

Let Y 1
0 , . . . , Y

i
j be a maximal sequence of the construction. Define HΔ,Γ(M) := H i

j if

i = n and Y i
j = ∅.

Claim 1.8. There is NΔ,Γ ∈ N such that if M ∈ C and |M | ≥ NΔ,Γ, then HΔ,Γ(M) is
always defined.

Proof. Suppose |M | > N and M ∈ C. We first estimate the size of Y i
j+1 in terms of Y i

j

when the latter is not empty during the construction of {H i
j , Y

i
j , L

i
j , X

i
j : i ≤ n, j ≥ 0}.
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Suppose all φ(x; z̄) ∈ Γ have no more than C-many solutions over any parameter z̄ (z̄
can be empty). Let CΓ := C · |Γ| and k0 := max{|z̄| : φ(x; z̄) ∈ Γ}. Then |Lij+1| ≤
CΓ · (|H i

j |+ 1)k0 .4

Therefore,
|Xi

j+1| ≥ |M | − CΓ · (|H i
j |+ 1)k0 − |H i

j |. (1.1)

By construction, Y i
j+1 = Y i

j \{ϕi(hij+1;Y
i
j )}. As ϕi(h

i
j+1;Y

i
j ) is maximal among {ϕi(a;Y i

j ) :

a ∈ Xi
j+1}, we get

|ϕi(hij+1;Y
i
j )| ≥

|⋃a∈Xi
j+1
{(a, ȳ) : ȳ ∈ ϕi(a;Y i

j )}|
|Xi

j+1|
≥
|⋃a∈Xi

j+1
{(a, ȳ) : ȳ ∈ ϕi(a;Y i

j )}|
|M | .

Let Tot :=
⋃
x∈(M\Hi

j)
{(x, ȳ) : ȳ ∈ ϕi(x;Y i

j )}, then⋃
a∈Xi

j+1

{(a, ȳ) : ȳ ∈ ϕi(a;Y i
j )} = Tot \

⋃
a∈Li

j+1

{(a, ȳ) : ȳ ∈ ϕi(a;Y i
j )}.

As M ∈ Cμ, for each ȳ ∈ Y i
j we have |ϕi(M ; ȳ)| ≥ μ · |M |. And by the definition of Y i

j ,

for any ȳ ∈ Y i
j , if M |= ϕi(a; ȳ), then a �∈ H i

j . Hence, |Tot| ≥ μ · |M | · |Y i
j |. On the other

hand,

|
⋃

a∈Li
j+1

{(a, ȳ) : ȳ ∈ ϕi(a;Y i
j )}| ≤ ∣∣Lij+1| · |Y i

j

∣∣ ≤ CΓ · (|H i
j |+ 1)k0 · |Y i

j |.

Hence,

|ϕi(hij+1;Y
i
j )| ≥ μ · |M | · |Y i

j | − CΓ · (|H i
j |+ 1)k0 · |Y i

j |
|M | =

(
μ− CΓ · (|H i

j |+ 1)k0

|M |

)
|Y i
j |.

Let �0 := max{|ȳi| : 1 ≤ i ≤ n}. Define

hM := � �0 · log |M |
− log(1− μ/2)

�+ 1. (1.2)

Then there is some Nμ/2 such that whenever |M | ≥ Nμ/2, we have

CΓ · (n · hM + �0)
k0

|M | ≤ μ

2
. (1.3)

In particular, we have
CΓ · (n · hM + 1)k0

|M | ≤ μ

2
. (1.4)

Therefore, when |H i
j | ≤ n · hM , we have |ϕi(hij+1;Y

i
j )| ≥ μ

2 |Y i
j |, and hence,

|Y i
j+1| = |Y i

j | − |ϕi(hij+1;Y
i
j )| ≤

(
1− μ

2

)
|Y i
j |.

4Since we need to include the algebraic elements over ∅ defined by formulas in Γ, it can be that
Hi

j = ∅ but Li
j+1 �= ∅, that’s the reason we put |Hi

j |+ 1 instead of |Hi
j |.
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Consequently,

|Y i
j+1| ≤

(
1− μ

2

)
|Y i
j | ≤

(
1− μ

2

)2 |Y i
j−1| ≤ · · · ≤

(
1− μ

2

)j+1 |Y i
0 | ≤

(
1− μ

2

)j+1 · |M |�0 .

There is some NΔ,Γ > max{Nμ/2, N} such that whenever |M | > NΔ,Γ, we have (1− μ
2 ) ·

|M | > n · hM . Fix some M ∈ C with |M | > NΔ,Γ and let

Y 1
0 , . . . , Y

1
t1 ; · · · , ;Y i

0 , . . . , Y
i
ti

be a maximal sequence. We claim that for each i′ ≤ i, if |H i′
ti′ | ≤ n · hM , then ti′ ≤ hM .

Otherwise, Y i′
hM

is in the sequence. By the argument above, |Y i′
hM
| ≤ (1− μ

2 )hM · |M |�0 .
By calculation, we have

k >
�0 · log |M |

− log(1− μ/2)
=⇒

(
1− μ

2

)k · |M |�0 < 1.

Hence, Y i0
hM

= ∅. We conclude ti0 ≤ hM . Therefore, t1 ≤ hM and by induction, for each

1 ≤ i′ ≤ n, we have |H i′
ti′ | =

∑
1≤j≤i′ tj ≤ i′ · hM . Now we can see that |H i

ti | ≤ n · hM .

Consider the set Xi
ti+1. By inequality (1.1),

|Xi
ti+1| ≥ |M | − CΓ · (|H i

ti |+ 1)k0 − |H i
ti | ≥ |M | − CΓ · (n · hM + 1)k0 − n · hM .

By inequality (1.4) and (1− μ
2 ) · |M | > n · hM , we get

|Xi
ti+1| ≥ |M | −

μ

2
|M | − n · hM > 0.

Hence Xi
ti+1 �= ∅. As Y i

ti is the end term of a maximal sequence, it can only be the case
that Y i

ti = ∅ and i = n.

Therefore, if |M | > NΔ,Γ and M ∈ C, then HΔ,Γ(M) exists and

|HΔ,Γ(M)| ≤ n · hM ≤ CΔ,Γ · log |M |,

where CΔ,Γ := n ·
(
� �0
− log(1−μ/2)�+ 1

)
.

Take any M ∈ C with |M | ≥ NΔ,Γ, let HΔ,Γ(M) as defined in Claim 1.8 and for
hij , h

t
m ∈ HΔ,Γ, define hij ≤ htm if i < t or i = t and j ≤ m. By construction we have

(HΔ,Γ(M),≤) covers ψϕ(ȳ) and avoids φ(x, ȳ) in M for any ϕ ∈ Δ and φ(x, ȳ) ∈ Γ.

Theorem 1.9. Let C be a one-dimensional asymptotic class in a countable language
L. Let M :=

∏
i∈IMi/U be an infinite ultraproduct of members among C. Then exact

pseudofinite H-expansions of M exist.

Proof. Let {ϕi(x; ȳi), i ∈ N} be a list of all formulas in L such that x is in one variable
and ȳi �= ∅ is a tuple of variables. For n ∈ N, let Δn := {ϕi(x; ȳi) : i ≤ n}.
Let {ξi(x; z̄i) : i ∈ N} be a list of all formulas such that ξi(x; z̄i) is algebraic (z̄i can be
empty). Let Γn := {ξi(x; z̄i) : i ≤ n}.
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By Lemma 1.7, there are NΔn,Γn ∈ N such that for any M ∈ C with |M | ≥ NΔn,Γn there
exists (HΔn,Γn(M),≤) with HΔn,Γn(M) ⊆ M such that HΔn,Γn(M) covers ψϕ(ȳ) and
avoids ξ(x; z̄) in M for all ϕ ∈ Δn and ξ(x, z̄) ∈ Γn.

For any i ∈ I, let in := max{n : |Mi| ≥ NΔn,Γn} (set max ∅ = −∞). Define Hi :=
HΔin ,Γin

(Mi) if in �= ∞; otherwise let Hi := ∅.
Claim 1.10. (M, H(M)) :=

∏
i∈I(Mi, Hi)/U is an exact pseudofinite H-expansion of

M.

Proof. We only need to show that (M, H(M)) is an H-expansion of M. We verify the
conditions one by one.

1. M |= ThL(M): clear.

2. H(M) is an aclL-independent subset: Suppose, towards a contradiction, that there
are {a0, a1, . . . , ak} which are not aclL-independent. We may assume that any
proper subset of {a0, a1, . . . , ak} is an aclL-independent set. Suppose for 0 ≤ t ≤ k,
each at := (ait)i∈I/U . Let O := (i0i1 · · · ik) be an ordering of 0, 1, . . . , k. Define

IO := {j ∈ I : (aji0 , a
j
i1
, . . . , ajik) is increasing in (Hj ,≤)}.

Let A be the collections of all the orderings of 0, 1, . . . , k. Since A is finite and I =⋃
O∈A IO, we have exactly one IO ∈ U . We may assume that O = (0 · · · k). Suppose

ai ∈ aclL({a0, . . . , ak} \ {ai}). By assumption, ai �∈ aclL({a0, . . . , ak} \ {ai, ak}).
Since aclL satisfies the exchange property, we have ak ∈ aclL(a0, . . . , ak−1). Let
ϕ(x; z0, . . . , zk−1) witness algebraicity (i.e., ϕ(x; z0, . . . , zk−1) is algebraic andM |=
ϕ(ak; a0, . . . , ak−1)). By the list of all algebraic formulas, ϕ(x; z0, . . . , zk−1) =
ξj(x; z0, . . . , zk−1) := ξj(x; z̄j) for some j.

Let J := {i ∈ I : in ≥ j} = {i ∈ I : |Mi| ≥ NΔj ,Γj}. Since M is infinite,
J ∈ U . For any i ∈ J , we have ξj(x; z̄j) ∈ Γin , hence Hi avoids ξj(x; z̄j). As
aik > max{ai0, . . . , aik−1} in Hi, by construction, the set Hi avoids ξj(x; z̄j), we get

Mi |= ¬ξj(aik; ai0, . . . , aik−1)

for any i ∈ J . We conclude M |= ¬ξj(ak; a0, . . . , ak−1), contradiction.

3. Density/coheir property: As (M, H(M)) is pseudofinite, it is ℵ1-saturated. There-
fore, we only need to show that for any a0, . . . , ak ∈ M, if ϕ(x; a0, . . . , ak) is non-
algebraic, then there is h ∈ H(M) such that M |= ϕ(h; a0, . . . , ak). We may
assume that ϕ(x; y0, . . . , yk) = ϕj(x; ȳj).

Let J := {i ∈ I : in ≥ j} = {i ∈ I : |Mi| ≥ NΔj ,Γj}. Then J ∈ U . Note that
ϕj(x; ȳj) ∈ Δin for any i ∈ J . Therefore Hi covers ψϕj (ȳj) in Mi for any i ∈ J .

Suppose at := (ait)i∈I/U for 0 ≤ t ≤ k. Let

J ′ := {i ∈ J : Mi |= ψϕj (a
i
0, . . . , a

i
k)}.

As ϕj(x; a0, . . . , ak) is non-algebraic, J ′ ∈ U .

For any i ∈ J ′, since Hi covers ψϕj (ȳj) in Mi and Mi |= ψϕj (a
i
0, . . . , a

i
k), there

is some hi ∈ Hi such that Mi |= ϕj(hi; a
i
0, . . . , a

i
k). For i �∈ J ′, choose hi ∈ Mi

randomly. Let h := (hi)i∈I/U . Then h ∈ H(M) and M |= ϕj(h; a0, . . . , ak), i.e.,
M |= ϕ(h; a0, . . . , ak).
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4. Extension Property: Suppose A ⊆ F is finite dimensional. Let A′ = {a0, . . . , ak}
be a base of A. Suppose at := (ait)i∈I/U for each t ≤ k. Let A′

i = {ai0, . . . , aik} ⊆
Mi. Let

closi(Hi ∪A′
i) :=

⋃
j≤in, ā∈(Hi∪A′

i)
|z̄j |

ξj(Mi; ā),

and define clos(H(M′) ∪ A′) :=
∏
i∈I closi(Hi ∪ A′

i)/U . By essentially the same
argument as aclL-independence of H(M), we have

aclL(H(M) ∪A) ⊆ clos(H(M) ∪A′).

By the fact that (M, clos(H(M)∪A′)) is pseudofinite, hence ℵ1-saturated, we only
need to show that for any b0, . . . , bt ∈ A, if ϕ(x; b0, . . . , bt) is non-algebraic, then
there is a ∈M\ clos(H(M)∪A′) such that M |= ϕ(a; b0, . . . , bt). We may assume
that ϕ(x; y0, . . . , yt) = ϕj(x; ȳj). Assume bk = (bik)i∈I/U for k ≤ t. There is some
J ∈ U and μ > 0 such that for all i ∈ J , we have |ϕ(Mi; b

i
0, . . . , b

i
t)| ≥ μ · |Mi|.

Consider the size of closi(Hi ∪A′). We have

|closi(Hi ∪A′)| ≤ CΓin
· (|Hi ∪A′|)k0 ,

where as above Γin := {ξj(x; z̄j) : j ≤ in}, k0 := max{|z̄j | : j ≤ in} and CΓin
:=

(in + 1) · C with C is the largest number of solutions of ξj over parameters for
j ≤ in.

Let Δin := {ϕj(x; ȳj) : j ≤ in} and �0 := max{|ȳj | : j ≤ in}. Note that there is
some J ′ ∈ U such that for all i ∈ J ′ we have k ≤ �0. Hence

|Hi ∪A′| ≤ |Hi|+ k ≤ |Δin | · hMi + �0,

where hMi is defined as the equation (1.2). By the inequality (1.3), we have

CΓin
· (|Δin | · hMi + �0)

k0 ≤ μ

2
· |Mi|.

Therefore,

|closi(Hi ∪A′)| ≤ CΓin
· (|Hi ∪A′|)k0 ≤ μ

2
· |Mi|,

for all i ∈ J ∩ J ′.

As |ϕ(Mi; b
i
0, . . . , b

i
t)| ≥ μ · |Mi|, there must be some

ai ∈ ϕ(Mi; b
i
0, . . . , b

i
t) \ closi(Hi ∪A′)

for all i ∈ J ∩ J ′. Choose ai at random for i �∈ J ∩ J ′. Set a := (ai)i∈I/U , then
a �∈ clos(H ∪A′) and M |= ϕ(a; b0, . . . , bt).

Corollary 1.11. Let C be a one-dimensional asymptotic class in a language L and M
be an infinite ultraproduct of members of C. Suppose aclL of ThL(M) is non-trivial.
Then the exact pseudofinite H-expansion (M, H(M)) is a pseudofinite structure whose
theory is supersimple of SU-rank ω.
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Remark: Let M :=
∏
i∈IMi/U be an infinite ultraproduct of a one-dimensional asymp-

totic class. We can also make the H-expansion (M, H(M)) :=
∏
i∈I(Mi, Hi)/U satisfy-

ing

lim
i∈I

log |Hi|
log |Mi| = 0 that is δδδM(H(M)) = 0,

that is the pseudofinite coarse dimension of H(M) with respect to M is zero.

This is because by Lemma 1.7 we know that |Hi| = CΔin ,Γin
· log |Mi| where CΔin ,Γin

depends only on Δin and Γin . If we redefine

in := max{n : |Mi| > NΔn,Γn and |Mi| > (CΔn,Γn)n},

we see that additionally δδδM(H(M)) = 0.

Note that for generic element m ∈M , we have SUH(m) = ω while SUH(h) < ω for any
element h ∈ H(M). In a following project, together with other collaborators, we found
this fact generalises to all definable sets. That is, the coarse dimension of a definable
set equals to the coefficient of the ω-part of the SU-rank of generic elements. We also
wonder if (Mi)i∈I is a one-dimensional asymptotic class, then the class (Mi, Hi)i∈I we
build in Claim 1.10 forms a multidimensional asymptotic class. We expect this should
involve a more detailed treatment of definable sets in H-structures.

1.3 Groups in H-structures

This section deals with definable groups in H-structures when the base theory is su-
persimple of SU-rank one. We ask whether there are any new definable groups in H-
structures. As we said before, in [BV16] the authors have partially solved the question
by showing that in stable theories the connected component of an LH -definable group in
an H-structure is isomorphic to some L-definable group. We record their results here.

Fact 1.12. ([BV16, Proposition 6.5])

Let D be a group in a language L with RM(D) = 1 and assume that (D,H) is an
ℵ0-saturated H-structure. Let A ⊆ D be finite and let G ≤ Dn be an LH -definable
subgroup defined over A. Then G is L-definable over A.

Fact 1.13. ([BV16, Proposition 6.6])

Let M be a stable structure of U-rank one in a language L and let H be a subset of
M such that (M,H) is an ℵ1-saturated H-structure. Let A ⊆ M be countable and let
G ⊆ Mn be an LH -definable group over A. Let G0 be the connected component of G.
Then G0 is definably isomorphic to an L-definable group over A.

In this section, we will show that in supersimple theories, all LH -definable groups in
H-structures are definably isomorphic to L-definable groups.5

We first introduce some basic notions and facts about H-structures developed in [BV16].

5Indeed, we need to assume that the base theory has elimination of imaginaries. Fact 1.12 and 1.13
also have this assumption.
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Let (M,H(M)) be an H-structure. To simplify the notation, we write with subscript/su-
perscript H for notions in TH := ThLH

(M,H(M)) and no subscript/superscript for
T = ThL(M). We also write L-independent to denote forking independence in T
(LH -independent for TH respectively), and L-generic for generic group element in T
(LH -generic for TH respectively).

Definition 1.14. Let A be a subset of an H-structure (M,H(M)). We say that A is
H-independent if A |�A∩H(M)

H(M).

Remark: Note that this is not the same as being LH -independent in the sense of forking
in TH .

Definition 1.15. Let a be a tuple in an H-structure (M,H(M)) and let C = acl(C) be
H-independent. Define the H-basis of a over C, denoted by HB(a/C), as the smallest
tuple h in H(M) such that a |�C,h

H(M).

By [BV16, Proposition 3.9], H-bases exist and are unique up to permutation. Here is a
useful observation:

Lemma 1.16. Let (M,H(M)) be an H-structure and a be a tuple. Suppose a subset
C = acl(C) is H-independent and HB(a/C) = ∅. Then HB(a, C) = HB(C).

Proof. Suppose not, then a, C � |�HB(C)
H(M). There is a finite tuple c ⊆ C such that

a, c � |�HB(C)
H(M). Denote the dimension of the underlying geometric theory as dimacl.

Let c′ ⊆ C be a finite tuple such that dimacl(a/C) = dimacl(a/c
′). Let c′′ ⊆ C be a

tuple containing both c and c′. Then dimacl(a, c
′′/HB(C)) > dimacl(a, c

′′/H(M)). By
the choice of c′′, we have

dimacl(a/c
′′) ≥ dimacl(a/c

′′, HB(C)) ≥ dimacl(a/C) = dimacl(a/c
′′).

By assumption, dimacl(a/C,H(M)) = dimacl(a/C). Therefore,

dimacl(a/c
′′) ≥ dimacl(a/c

′′, H(M)) ≥ dimacl(a/C,H(M)) = dimacl(a/C) = dimacl(a/c
′′).

We conclude that dimacl(a/c
′′, H(M)) = dimacl(a/c

′′) = dimacl(a/c
′′, HB(C)). Since

C is H-independent, we also have dimacl(c
′′/H(M)) = dimacl(c

′′/HB(C)). By addit-
ivity of dimacl, we have

dimacl(a, c
′′/H(M)) = dimacl(a/c

′′, H(M)) + dimacl(c
′′/H(M))

= dimacl(a/c
′′, HB(C)) + dimacl(c

′′/HB(C)) = dimacl(a, c
′′/HB(C)),

a contradiction.

Fact 1.17. [BV16, Lemma 2.8, Corollary 3.14, Proposition 6.2]

Let (M,H(M)) be an H-structure.

1. Let a, b be H-independent tuples such that tp(a,HB(a)) = tp(b,HB(b)). Then
tpH(a) = tpH(b).

2. Let A be a subset of M , then aclH(A) = acl(A,HB(A)).
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3. Suppose Th(M) is superrosy of thorn-rank one and (M,H(M)) is ℵ0-saturated.
Let D be an LH -definable group over some finite H-independent set A. Let b be
a generic element of the group. Then HB(b/A) = ∅.

Fact 1.18. [BV16, Proposition 5.6] Let (M,H(M)) |= TH be a κ-saturated H-structure
and C ⊆ D ⊆ M be aclH -closed and max{|C|, |D|} < κ. Suppose T is supersimple of
SU-rank one and a ∈M . Then a |�H

C
D if and only if none of the following holds:

• a ∈ D \ C;

• a ∈ acl(H(M), D) \ acl(H(M), C);

• HB(a/C) �= HB(a/D).

We proceed by some lemmas, most of which are about the properties of generic elements
of definable groups in H-structures.

In the following we will assume κ is an cardinal with κ ≥ |L|.
Lemma 1.19. Let (M,H(M)) be a κ-saturated H-structure such that Th(M) is super-
simple of SU-rank one. Let G be an LH-(type-)definable group over some set A with
|A| < κ and aclH(A) = A. Let a, b be LH-independent and LH-generic elements in G.
Then a · b ∈ dcl(a, b, A) and a−1 ∈ dcl(a,A).

Proof. By Fact 1.17 (3), HB(a/A) = HB(b/A) = ∅. That is a |�A
H(M) and b |�A

H(M).

By assumption, a |�H
A
b. Hence, a |�A,H(M)

b. Thus, a |�A,H(M)
bH(M). Together with

a |�A
A,H(M), we get a |�A

b,H(M). Hence, a, b |�A,b
H(M). Again, as b |�A

H(M),

we have a, b |�A
H(M). SinceA |�HB(A)

H(M), we conclude that a, b, A |�HB(A)
H(M).

Therefore, HB(a, b, A) ⊆ HB(A) ⊆ A.

As c := a · b ∈ aclH(a, b, A) = acl(a, b, A,HB(a, b, A)) = acl(a, b, A), we have

a, b, c, A |�
HB(A)

H(M).

Take c′ ∈ M with tp(c′/a, b, A) = tp(c/a, b, A). As c′ ∈ acl(a, b, A), we still have
a, b, c′, A |�HB(A)

H(M). Therefore, a, b, c, A and a, b, c′, A are H-independent tuples of

the same L-type. By Fact 1.17 (1), tpH(a, b, c′/A) = tpH(a, b, c/A). As c is in the
LH -definable closure of a, b, A, we get c′ = c. Hence, c ∈ dcl(a, b, A) as we have claimed.

The proof of a−1 ∈ dcl(a,A) is similar.

Lemma 1.20. Let (M,H(M)) be a κ-saturated model of TH . Let G ⊆ Mn be an LH-
type-definable group over A with aclH(A) = A and |A| < κ. Then there are a partial
LH-type πG(x) and a partial L-type πL(x) over A such that:

1. πG(Mn) is the set of all LH-generics in G.

2. For any complete L-type q(x) over A with q(x) ⊇ πL(x), there is a complete LH-
type p(x) over A such that p(x) ⊇ q(x) ∪ πG(x);
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3. Let a, b, c be three realizations of πL(x) over A. Then there are a′, b′, c′ ∈ G such
that a′, b′, c′ realise πG(x), HB(a′, b′, c′/A) = ∅ and tp(a, b, c/A) = tp(a′, b′, c′/A).
In addition, if a, b, c are L-independent, then a′, b′, c′ are LH-independent.

Proof. Suppose G is defined by a partial type δ(x). Let πG(x) be the partial LH -type
over A which contains δ(x) and is closed under implication such that for all a ∈ Mn,
a |= πG(x) if and only if a is LH -generic in G. Let πL(x) ⊆ πG(x) be the restriction of
πG(x) in the language L.

Claim: Item 2 holds. If not, then there exists L-type q(x) over A extending πL(x)
such that q(x) ∪ πG(x) is inconsistent. By compactness, there is some ψ(x) ∈ q(x) such
that πG(x) � ¬ψ(x). As πG(x) is closed under implication, ¬ψ(x) ∈ πG(x), hence also
¬ψ(x) ∈ πL(x), which contradicts that q(x) ⊇ πL(x).

Now we prove item 3. Write a = (a1, a2), b = (b1, b2) and c = (c1, c2), where SU(a1/A) =
|a1|, a2 ∈ acl(a1, A); SU(b1/A, a) = |b1|, b2 ∈ acl(b1, a, A) and SU(c1/A, a, b) = |c1|,
c2 ∈ acl(c1, a, b, A). (We remark that b1, c1 can be empty.) As SU(a1, b1, c1/A) = |a1|+
|b1|+ |c1| and T has SU-rank 1, we get a1, b1, c1 are L-independent. By the axioms of of
TH and κ-saturation, there are a′1, b′1, c′1 in M such that tp(a1, b1, c1/A) = tp(a′1, b′1, c′1/A)
and

a′1, b
′
1, c

′
1 |�
A

H(M).

Let a′2, b′2, c′2 be such that

tp(a′1, a
′
2, b

′
1, b

′
2, c

′
1, c

′
2/A) = tp(a1, a2, b1, b2, c1, c2/A).

Define a′ := (a′1, a′2), b′ := (b′1, b′2) and c′ := (c′1, c′2).

Since a′1, b′1, c′1 |�A
H(M) and a′, b′, c′ ∈ acl(a′1, b′1, c′1, A), we get a′, b′, c′ |�A

H(M).
Therefore, HB(a′, b′, c′/A) = ∅. Hence, HB(a′/A) = HB(b′/A) = HB(c′/A) = ∅.
We only need to show that a′, b′ and c′ satisfy πG(x). Let q(x) := tp(a/A) ⊇ πL(x). By
item 2, there is a complete LH -type p(x) over A extending q(x) ∪ πG(x). Let a′′ be a
realization of p(x). By Fact 1.17 (3), HB(a′′/A) = ∅. Therefore, both a′, A and a′′, A
are H-independent and

tp(a′, A,HB(a′, A)) = tp(a,A,HB(A)) = tp(a′′, A,HB(a′′, A)).

By Fact 1.17 (1), tpH(a′/A) = tpH(a′′/A). Hence tpH(a′/A) ⊇ πG(x). Similarly, b′ and
c′ are realizations of πG(x).

In addition, if a, b, c are L-independent, then b′ = (b′1, b′2) and c′ = (c′1, c′2) are such that
SU(b′1/A) = SU(b′1/A, a′) = |b′1|, SU(c′1/A) = SU(c′1/A, a′, b′) = |c′1| and b′2 ∈ acl(b′1, A),
c′2 ∈ acl(c′1, A). As a′1, b′1, c′1 |�A

H(M) and a′1 |�A
b′1, c′1, we get

a′1 |�
A

b′1, c
′
1, H(M).

Therefore, a′ |�A
b′, c′, H(M), whence a′ |�AH(M)

b′, c′, H(M). Together withHB(a′/A) =

HB(a′/Ab′c′) = ∅ we get a′ |�H
A
b′, c′. The other LH -independences among a′, b′, c′ are

similar. Hence, a′, b′, c′ are LH -independent.
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Lemma 1.21. Let L0 ⊆ L1 be two languages. Let M be an L1-structure. Suppose Y is
L0-hyper-definable and G is L1-type-definable inM such that there is an L1-isomorphism
from Y to G, then Y is L0-type-interpretable.

Proof. Suppose G =
⋂
i∈I Gi is L1-type-definable, Y = X/R where X =

⋂
i∈I Xi and

R =
⋂
i∈I Ri are L0-type-definable and Φ(x, y) :=

⋂
i∈I Φi : Xi → Gi is L1-type-definable

which induces an isomorphism between Y and G.

As Φ is the graph of a function from X to G, we have:∧
i,j,k∈I

Xi(x) ∧Gj(y) ∧Gj(y′) ∧ Φk(x, y) ∧ Φk(x, y
′) |= y = y′.

By compactness, there are some i0, . . . , ik such that

f(x, y) :=
⋂
j≤k

Φij (x, y) ⊆
⎛⎝⋂
j≤k

Xij ×
⋂
j≤k

Gij

⎞⎠
is an L1-definable graph of a partial function.

Let R′ ⊆
(⋂

j≤kXij

)
×
(⋂

j≤kXij

)
be the L1-definable equivalence relation given by

R′(x, x′) if and only if there is some g ∈ ⋂j≤kGij such that both f(x, g) and f(x′, g)
hold. We claim that

R′ � (X ×X) = R.

Let x, x′ ∈ X. Suppose R(x, x′) holds. As Φ is an isomorphism between Y and G, there
is some g ∈ G with Φ(x, g) and Φ(x′, g). Therefore, both f(x, g) and f(x′, g) hold and
so does R′(x, x′). On the other hand, if R′(x, x′) holds, then there is g ∈ ⋂j≤kGij with
f(x, g) and f(x′, g). Let g′, g′′ ∈ G such that Φ(x, g′) and Φ(x′, g′′). Thus, we also have
f(x, g′) and f(x′, g′′). Since f is a partial function, g = g′ = g′′. Therefore, R(x, x′)
holds.

As R is defined by
⋂
i∈I Ri, by compactness, there is some {j0, . . . , jt} ⊇ {i0, . . . , ik}

such that on
(⋂

i≤tXji

)
×
(⋂

i≤tXji

)
we have

RL0(x, x′) :=
⋂
i≤t

Rji(x, x
′) ⊆ R′(x, x′).

Thus, RL0 is L0-definable and it agrees with R on X. We have∧
i∈I

(Xi(x1) ∧Xi(x2) ∧Xi(x3)) |= RL0(x1, x1)

∧(RL0(x1, x2) → RL0(x2, x1))

∧(RL0(x1, x2) ∧RL0(x2, x3) → RL0(x1, x3)).

By compactness, there are {k0, . . . , km} ⊇ {j0, . . . , jt} such that RL0 is an equivalence
relation on

⋂
t≤mXkt . Therefore, R is L0-definable.

We first consider LH -(type-)definable subgroups of L-(type-)definable groups. We gen-
eralize Fact 1.12 to supersimple theories.
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Theorem 1.22. Let T be non-trivial of SU-rank one and let (M,H(M)) |= TH be κ-
saturated. Suppose D is an L-(type-)definable group and G is an LH-(type-)definable
subgroup of D, both defined over some set A = aclH(A) with |A| < κ. Then G is
L-(type-) definable ovear A.

Proof. Suppose D ⊆ Mn. Let πG(x) and πL(x) be defined as in Lemma 1.20 with
|x| = n. Suppose D is defined by the partial L-type χ(x). As πG(x) is closed under
implication, πG(x) ⊇ χ(x). Therefore, πL(x) ⊇ χ(x).

By Fact 0.26, G = πG(Mn) · πG(Mn). We will show that πL(Mn) also satisfies the
conditions of Fact 0.26 in T .

Let X := πL(Mn). Since χ(x) ⊆ πL(x), we have X ⊆ D. Take two L-independent
realizations a, b of πL(x). By Lemma 1.20, there are a′, b′ both realising πG(x) such that
tp(a, b/A) = tp(a′, b′/A) and a′ |�H

A
b′. Therefore, (a′)−1 · b′ is also generic in G, which

implies
πL(x) ⊆ πG(x) ⊆ tpH((a′)−1 · b′/A).

As tp(a, b/A) = tp(a′, b′/A) and group operations are L-definable, we have

tp(a−1 · b/A) = tp((a′)−1 · b′/A).

Therefore, πL(x) ⊆ tp(a−1 · b/A), whence a−1 · b ∈ X. By Fact 0.26 we get an L-type-
definable group DG := X ·X such that X contains all L-generics in DG.

Clearly, G ≤ DG. Let a be an LH -generic element in DG. By Fact 1.17(3), we have
HB(a/A) = ∅. Since a is also L-generic in DG, we get a ∈ X. By Lemma 1.20 there
is an a′ satisfying πG(x) such that tp(a/A) = tp(a′/A). As a′ is LH -generic in G,
HB(a′/A) = ∅ = HB(a/A). By Fact 1.17(1), tpH(a′/A) = tpH(a/A). Hence, a realizes
πG(x), i.e., a is LH -generic in G. Therefore, every LH -generic element of DG is contained
in G, whence DG ≤ G. We conclude that G = DG.

Now we consider general LH -(type-)definable groups. The following is a generalization
of Fact 1.13.

Theorem 1.23. Let T be supersimple of SU-rank one and (M,H(M)) |= TH be κ-
saturated. Let G be an LH-(type-)definable group over a set A = aclH(A) of size less
than κ. Then G is LH-definably isomorphic to some L-(type)-interpretable group. In
particular, if T eliminates imaginaries, then every LH-(type-)definable group is LH-
definably isomorphic to some L-(type-)definable group.

Proof. Suppose G is type-definable. Let πG(x) and πL(x) be defined as in Lemma 1.20.
In the following, we will extend L-generically and L-type-definably the group operation
· of G to � on πL(x).

Let π2G(x, y) ⊇ πG(x) ∪ πG(y) be the partial LH -type over A such that a, b are LH -
independent and LH -generic inG overA if and only if (a, b) |= π2G(x, y) for any a, b ∈Mn.
For (a, b) |= π2G(x, y), we have a · b ∈ dcl(a, b) by Lemma 1.19. That is a · b = fa,b(a, b)
for some L-definable function fa,b over A. Let doma,b(x, y) be the L-formula that defines
the domain of the function fa,b. Then define the LH -formula

ϕa,b(x, y) := doma,b(x, y) ∧ x · y = fa,b(x, y).
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Then we can see that
π2G(x, y) ⊆

⋃
(a,b)|=π2

G(x,y)

ϕa,b(x, y).

By compactness, there are (a1, b1), (a2, b2), . . . , (ak, bk) such that

π2G(x, y) |=
∨

1≤i≤k
ϕai,bi(x, y).

Let (a, b), (c, d) be two pairs of realizations of π2G(x, y) such that tp(a, b/A) = tp(c, d/A).
Note that (a, b) is an LH -generic element in G × G. By Fact 1.17(3), HB(a, b/A) = ∅.
Similarly, HB(c, d/A) = ∅. Applying Fact 1.17(1), we get tpH(a, b/A) = tpH(c, d/A).
Therefore, (M,H(M)) |= ϕai,bi(a, b) ↔ ϕai,bi(c, d) for all 1 ≤ i ≤ k. The above argument
shows:

π2G(x, y) ∧ π2G(x′, y′) ∧
∧

ψ∈L(A)
ψ(x, y) ↔ ψ(x′, y′) |=

∧
1≤i≤n

(ϕai,bi(x, y) ↔ ϕai,bi(x
′, y′)).

By compactness, there is some finite set of L(A) formulas Δ such that the Δ-type of
any pair (a, b) |= π2G(x, y) determines (a, b) |= ϕai,bi(x, y) or (a, b) |= ¬ϕai,bi(x, y) for any
1 ≤ i ≤ k. Hence, there are L-formulas ψ1(x, y), . . . , ψk(x, y) such that

π2G(x, y) |=
∨

1≤i≤k
ψi(x, y)

and for any 1 ≤ i ≤ k, we have

π2G(x, y) |= ψi(x, y) →
⎛⎝ϕai,bi(x, y) ∧

∧
1≤j<i

¬ϕaj ,bj (x, y)

⎞⎠ .

Let π2L(x, y) ⊇ πL(x) ∪ πL(y) be the partial L-type over A such that (a, b) |= π2L(x, y) if
and only if a, b are L-independent over A. By Lemma 1.20, for (a, b) |= π2L(x, y), there

are a′, b′ realizing πG(x) such that a′ |�H
A
b′ and tp(a, b/A) = tp(a′, b′/A). Note that

(a′, b′) |= π2G(x, y). Hence,

(a′, b′) |= ψi(x, y) ∧ ϕai,bi(x, y) ∧
∧

1≤j<i
¬ϕaj ,bj (x, y)

for some 1 ≤ i ≤ k. As tp(a, b/A) = tp(a′, b′/A), we also have

(a, b) |= ψi(x, y) ∧ domai,bi(x, y).

Define a � b := fai,bi(a, b). As fai,bi(a
′, b′) |= πL(x) and tp(a, b/A) = tp(a′, b′/A), we

also have fai,bi(a, b) |= πL(x). Note that a � b is defined by fai,bi(x, y) if and only if
(a, b) |= ψi(x, y). Hence, � is an L-type-definable function from π2L(Mn,Mn) to πL(Mn)
and � agrees with · on π2G(Mn,Mn).

We now verify all the conditions of the group chunk theorem (Fact 0.27) in order to
obtain an L-hyper-definable group out of the generically given group operation.
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Lemma 1.24. The L-type-definable function � : π2L(Mn,Mn) → πL(Mn) satisfies all
the conditions in Fact 0.27.

Proof. Generic independence: Let a, b be L-independent realizations of πL(x) and c :=
a � b. Then there are LH -independent and LH -generic elements a′, b′ over A such that
tp(a′, b′/A) = tp(a, b/A). Let c′ := a′ · b′. Since � is L-definable and agrees with · on
π2G(Mn,Mn), we get c′ = a′ � b′. Therefore, tp(a′, b′, c′/A) = tp(a, b, c/A). As c′ |�H

A
a′,

we have c′ |�A
a′. Hence, we also have c |�A

a. Similarly, c |�A
b.

Generic associativity: Let a, b, c be L-independent realizations of πL(x). By Lemma
1.20, there are LH -generic and LH -independent realizations a′, b′, c′ such that

tp(a, b, c/A) = tp(a′, b′, c′/A).

Now we have

tp((a � b) � c), a � (b � c)) = tp((a′ � b′) � c′, a′ � (b′ � c′)) = tp((a′ · b′) · c′, a′ · (b′ · c′)).

Since (a′ · b′) · c′ = a′ · (b′ · c′) we get (a � b) � c = a � (b � c).

Generic surjectivity: for any L-independent realizations a, b of πL(x), there are LH -
independent realizations a′, b′ of πG(x) such that tp(a, b/A) = tp(a′, b′/A). Let c′ :=
(a′)−1 · b′. Then c′ is LH -independent from a′ and from b′. By Lemma 1.19, c′ ∈
dcl((a′)−1, b′, A) = dcl(a′, b′, A). Let c be the element with tp(a, b, c/A) = tp(a′, b′, c′/A).
Clearly, c realizes πL(x) and is L-independent from a and from b. Since a′ ·c′ = a′�c′ = b′

and tp(a, b, c/A) = tp(a′, b′, c′/A), we have a � c = b. Similarly, we can find c′′ realizing
πL(x), L-independent from a and from b such that c′′ � a = b.

By Fact 0.27, there are an L-hyper-definable group D over A, and an L-type-definable
embedding f : πL(Mn) → D over A such that f(πL(Mn)) contains all L-generics of D.

Consider f(πG(Mn)) ⊆ D. Take g, g′ LH -independent elements in f(πG(Mn)). Suppose
g = f(a) and g′ = f(b). As f is an LH -definable injection, we get a |�H

A
b. Hence,

a−1 � b |= πG(x) and a |�H
A
a−1 � b. Since f preserves � generically and a, a−1, b ∈ G, we

have
f(a) · f(a−1 � b) = f(a � (a−1 � b)) = f(a · (a−1 · b)) = f(b).

Hence, f(a)−1 · f(b) = f(a−1 � b) ∈ f(πG(Mn)). By Fact 0.26,

Gf := f(πG(Mn)) · f(πG(Mn))

is an LH -hyper-definable group, and f(πG(x)) contains all LH -generics in Gf .

Let X := {(g, f(g)) : g |= πG(x)} ⊆ G × Gf . Let (g1, f(g1)) and (g2, f(g2)) be LH -
independent tuples in X. Consider

xg1,g2 := (g1, f(g1))
−1 · (g2, f(g2)) = (g−1

1 , f(g−1
1 )) · (g2, f(g2)) = (g−1

1 � g2, f(g−1
1 � g2)).

As g1 |�H
A
g2 in πG(x) we get g−1

1 � g2 = g−1
1 · g2 ∈ πG(x). Therefore, xg1,g2 ∈ X. By

Fact 0.26, C := X · X is a subgroup of G × Gf . Consider the projection ρ1(C) ≤ G.
It contains πG(Mn), hence contains all LH -generics of G. Thus ρ1(C) = G. Similarly,
ρ2(C) = Gf . Let I := {g : (g, 1) ∈ C} and I ′ := {g : (1, g) ∈ C}. If g ∈ I, then there
are g1, g2 ∈ πG(Mn) such that g = g1 � g2 and f(g1) · f(g2) = f(g1 � g2) = 1. As f is an
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embedding, we get g1 � g2 = 1. Therefore, I = {1}. Similarly, I ′ = {1}. Hence, C is the
graph a group isomorphism between G and Gf .

Let a be an LH -generic in D. Then HB(a/A) = ∅. Since a is also L-generic in
D, we get that f−1(a) satisfies πL(x). As f is an LH -definable embedding, we have
HB(f−1(a)/A) = ∅. Since f−1(a) |= πL(x), by Lemma 1.20 there is a′ realizing πG(x)
such that a′ and f−1(a) have the same L-type over A. Note that HB(a′/A) = ∅. By Fact
1.17 (1), tpH(a′/A) = tpH(f−1(a)/A). Hence, f−1(a) realizes πG(x), and a = f(f−1(a))
is LH -generic in Gf . Therefore, the set of LH -generics of D is contained in Gf , whence
D ≤ Gf . Together with Gf ≤ D, we get Gf = D and G is LH -type-definably isomorphic
to D.

Now Lemma 1.21 implies that D is L-type-interpretable.

Suppose D = DG/E where E is an L-definable equivalence relation and DG is L-
type-definable. If G is definable, then DG is the image of an LH -definable function,
hence LH -definable. By compactness DG is L-definable. Therefore, G is LH -definably
isomorphic to an L-interpretable group D.

Remark: Given an LH -definable group G, without the assumption that G lives inside an
L-definable group, we cannot generally have that G is L-definable. Here is an example.

Example 1.1. Let D = (D, ·,−1) be a group without involutions of SU-rank one in the
language L = {·,−1}. Let (D,H(D)) be an H-structure.

Define σ : D → D as σ(x) = x if x �∈ H(D) ∪ (H(D))−1; and σ(x) = x−1 if x ∈
H(D) ∪ (H(D))−1. Let � : G×G→ G be defined as a � b := σ−1(σ(a) · σ(b)). Then the
group (D, �,−1) is LH-isomorphic to (D, ·,−1) via σ, but not L-definable.



Chapter 2

Pseudofinite Difference Fields

2.1 Introduction

The class of various expansions of fields is one of the key objects of study in model
theory. Examples are differentially closed fields, Henselian valued fields, algebraically
closed fields with a generic automorphism, etc. There are lots of natural examples of
such structures that are intensively investigated in other areas of mathematics, while
the model theories of them often extends well-known results to a wider context and
sometimes, model theoretic techniques can help to discover new phenomenons. For
example, the theory of differentially closed fields plays an important role in Hrushovski’s
proof of the Mordell-Lang conjecture [Hru96].

In this chapter, we will consider expansions of pseudofinite fields with a distinguished
automorphism. The model theory of pseudofinite fields has been initiated by J. Ax in
[Ax68] and subsequently developed in [Dur80], [CvdDM92], [HP94]. On the other hand,
the model theory of fields with a distinguished automorphism has also been investigated.
The best understood one is possibly ACFA: the theory of algebraically closed fields
with a generic automorphism, developed notably in [CH99], [CHP02]. It is the model
companion of the theory of difference fields and, interestingly, the fixed field of any
model of ACFA is a pseudofinite field. Based on these, one might expect a theory of
pseudofinite difference fields which is a mixture of PSF (the theory of pseudofinite fields)
and ACFA.

M. Ryten studied a specific class of pseudofinite difference fields with the motivation of
understanding the asymptotic behaviour of Suzuki groups and Ree groups. As we have
mentioned in the introduction, he showed that given any prime p and a pair of coprime
numbers m,n > 1, the class {(Fpk·m+n ,Frobpk) : k ∈ N} is a one-dimensional asymptotic
class in [Ryt07]. He also gave a recursive axiomatization of asymptotic theories of such
structures: PSF(m,n,p). In a sense, PSF(m,n,p) is a mixture of PSF and ACFA. In fact,
any model of PSF(m,n,p) can be obtained as a definable substructure of some model
of ACFA1, and the one-dimensional asymptotic class result is based on the uniform
estimate of the number of solutions of definable sets of finite σ-degree in some model of
ACFA in [RT06].

1See [Ryt07, Lemma 3.3.6].

44
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However, PSF(m,n,p) is a bit restricted in the sense that in models of PSF(m,n,p) there are
no transformally transcendental elements, i.e. elements that satisfy no non-trivial differ-
ence polynomial. And most of the nice model theoretic properties of PSF(m,n,p) come
from the tameness of ACFA. Our aim in this chapter is to study a class of pseudofinite
difference fields with transformally transcendental elements.

Another class of closely related structures is the class of pairs of pseudofinite fields,
as the fixed field of a pseudofinite difference field is finite or pseudofinite. As noticed
by Macintyre and Cherlin, there are pairs of pseudofinite fields whose theory is not
decidable. This wild phenomenon also occurs in the structures that we study. In fact,
we will show that in some ultraproduct of finite difference fields there is a definable set
such that the family of all internal subsets of it is uniformly definable, see Theorem
2.17. This means in particular that the fine pseudofinite dimension behaves badly and
the theory fails to possess tame model theoretic properties either in the sense of Shelah’s
classification theory or being decidable, see Corollary 2.21.2 However, if we allow the size
of the underlying field to grow rapidly enough, then the coarse pseudofinite dimension
with respect to the full field behaves extremely well. It takes values in the integers and
given a family of uniformly definable sets and an integer n, the set of parameters such
that the coarse dimension of the corresponding definable sets have value n is definable,
see Corollary 2.9. This coarse dimension of a definable set in difference fields essentially
comes from the fine dimension in pseudofinite fields, which is the Zariski-dimension.
Along the line of studying the interaction between counting dimensions and algebraic
properties of the underlying structures, we investigate the relation between the integer-
valued coarse dimension in our classes of pseudofinite difference fields and the transformal
transcendence degree in the algebraic closure. We prove that coarse dimension is always
bounded by transformal transcendental degree. And if they agree then it is possible to
classify existentially definable subgroups of algebraic groups, see Theorem 2.14.

We remark there that we aim to study the theory of pseudofinite difference fields, which
is different with, though closely related to, the theory of pseudofinite fields with a dis-
tinguished automorphism. Since there is the concern that the latter may not have a
model companion,3 neither of these two theories has been carefully studied.

The rest of this chapter is organized as the following. Section 2.2 starts with a quick recap
of coarse pseudofinite dimension, followed by the definition of a class of ultraproducts of
finite difference fields S. The main result is Theorem 2.5 and Corollary 2.9 which states
that for any pseudofinite difference field in S, the coarse dimension with respect to the
full field δδδF is integer-valued and definable. Section 2.3 studies the relation between δδδF
and the transformal transcendence degree and its application to definable groups. The
main result is Theorem 2.14. Section 2.4 studies the negative model theoretic aspects
of structures of S. They do not belong to any well-studied tame class, is not decidable
(Corollary 2.21) and the model theoretic algebraic closure is different from the algebraic
closure in the sense of difference algebra (Theorem 2.22).

2This does not mean that any theory of pseudofinite difference fields with transformally transcendental
elements is not tame. We think it is possible that some of them have a decidable theory. But it is not
clear which classes and what kind of theories they should be.

3It was claimed that it does not have a model companion in for example [CP98, section 3], but there
are some obstacles see [Cha15, 1.12].
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2.2 Coarse pseudofinite dimension

We will study the coarse pseudofinite dimension of a class of ultraproducts of finite
difference fields in this section. We will show that their coarse dimension with respect to
the full field behaves well. The main tool is that the fine dimension of pseudofinite fields
is integer-valued and there are only finitely many possible values of the measure for a
uniformly definable family of sets of a fixed dimension (see Fact 0.14). This allows us to
estimate the size of sets defined by difference formulas in certain finite difference fields.
We show further that the coarse dimension is definable, with only the assumptions that
the dimension is integer-valued and a field structure is included in the language.

We begin with some preliminaries on difference fields.

Definition 2.1. A difference field is a field (F,+, ·, 0, 1) together with a field auto-
morphism σ ( in particular σ is surjective).

The language of difference rings Lσ is the language of rings augmented by a unary
function symbol σ.

Definition 2.2. We fix an ambient difference field L.

• Let A be a subset. We denote by Aσ the smallest difference subfield containing A
and closed under σ and σ−1.

• Let E be a difference subfield and a be a tuple. The σ-degree, degσ(a/E), is the
transcendence degree of (E, a)σ over E.

• Let E be a difference subfield. If there is no non-zero difference polynomial over
E vanishing on a, then we say a is transformally transcendental over E if a is an
element in L and a is transformally independent over E if a is a tuple in L.

• Let E be a difference subfield and a be a tuple. The transformal transcendence
degree of a over E is defined as the maximal length of a transformally independent
subtuple of a over E.

Now we start to define a special class of ultraproducts of finite difference fields and study
their coarse pseudofinite dimension with respect to the full field. The main observation
is that given a difference formula ϕ(x) and we want to estimate the size of the set that
ϕ(x) defines in a finite difference field (Fpk ,Frobpm). If we allow k grow while keep p
and m fixed, then the set defined by ϕ(x) has a dimension which comes from the fine
pseudofinite dimension in the classes of pseudofinite fields. The trick is that we translate
the difference formula ϕ(x) into a ring formula ϕpm(x) by replacing terms σ(t) with tp

m
.

If k is big enough compared to p and m, then the set defined by ϕ(x) in (Fpk ,Frobpm)

will be roughly propositional to (pk)d, where d ≤ |x| is the fine dimension of ϕpm , which
depends on ϕ, p and m. If we take an ultraproduct of {(Fpk ,Frobpm) : p ∈ P, k,m ≥ 1}
over some non-principal ultrafilter U , then U will pick one of the dimension d ≤ |x|.
Suppose almost all k in (Fpk ,Frobpm) are big enough compared to p and m, then d will
be the coarse pseudofinite dimension with respect to the full field of the set defined by
ϕ in the ultraproduct.

Definition 2.3. Let Lσ be the language of difference rings. Let ϕ(x, y) be a formula
defined in Lσ without parameters. For any prime p, define ϕp(x, y) as the result of
replacing each occurrence of σ(t) in ϕ(x, y) by tp. Clearly, ϕp(x, y) is a formula in the
language of rings L.
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Recall that we denote by P the set of all primes. For any formula ϕ(x, y) in Lσ and
p ∈ P, consider ϕp(x, y) ∈ L. There are Cϕp and the finite set Dϕp as stated in Fact
0.14. Let

Eϕp :=
⋃

0≤d≤|x|
{μ : (d, μ) ∈ Dϕp}.

Define

Np
ϕ(x,y) := max

{
μ,

1

μ
, 2 logp

(
2Cϕp

μ

)
: μ ∈ Eϕp

}
.

Let
f(�, p) := max{Np

ϕ(x,y) : |ϕ(x, y)| ≤ �}. (2.1)

Definition 2.4. Define the family S of pseudofinite difference fields as

S :=

⎧⎨⎩∏
p∈P

(Fpkp ,Frobp)/U : kp ≥ f(p, p) for all p ∈ P, U a non-principal ultrafilter

⎫⎬⎭ .

Theorem 2.5. Let (F,Frob) :=
∏
p∈P(Fpkp ,Frobp)/U ∈ S. Then the coarse pseudofinite

dimension with respect to F is integer-valued on all Lσ-definable sets.

Proof. Let ϕ(x, y) be an Lσ-formula. Consider a parameter a = (ap)p∈P/U ∈ F |y|. For
any p ∈ P, we know that there are (dkp , μkp) ∈ {0, . . . , |x|}×R>0 and Cϕp ≥ 0 such that

for ap ∈ (Fpkp )|y|, we have

||ϕp((Fpkp )|x|, ap)| − μkp · pkp·dkp | ≤ Cϕp · pkp(dkp−
1
2
).

We say that ϕp(x, ap) has dimension dkp in Fpkp . As dkp ≤ |x|, there is exactly one
d ∈ {0, . . . , |x|} with {p ∈ P : ϕp(x, ap) has dimension d in Fpkp} ∈ U . We claim that

δδδF (ϕ(F |x|, a)) = d.

Proof of the claim: Note that for any p ∈ P and c ∈ (Fpkp )|x|, we have

Fpkp |= ϕp(c, ap) if and only if (Fpkp ,Frobp) |= ϕ(c, ap).

Let I = {p ∈ P : p > |ϕ(x, y)| and ϕp(x, ap) has dimension d in Fpkp}. Clearly, I ∈ U .
Then for any p ∈ I,

||ϕp((Fpkp )|x|, ap)| − μkp · pkp·d| ≤ Cϕp · pkp(d−
1
2
),

and kp ≥ f(p, p) ≥ max{μkp ,
1

μkp
, 2 logp

(
2Cϕp

μkp

)
}.

As kp ≥ 2 logp

(
2Cϕp

μkp

)
, we get

Cϕp · pkp(d−
1
2
) ≤ 1

2
μkp · pkp·d.

Therefore,
1

2
μkp · pkp·d ≤ |ϕp((Fpkp )|x|, ap)| ≤ 3

2
μkp · pkp·d.
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Furthermore, by the definition of kp, we have 1
kp
< μkp < kp. Hence,

1

2kp
· pkp·d ≤ |ϕp((Fpkp )|x|, ap)| ≤ 2kp · pkp·d.

This implies

d− log(2kp)

kp · log p
≤ log |ϕp((Fpkp )|x|, ap)|

log(pkp)
≤ d+

log(2kp)

kp · log p
.

Since limp→∞
log(2kp)

kp · log p
= 0, we have

lim
p→∞, p∈I

log |ϕp((Fpkp )|x|, ap)|
log(pkp)

= d.

Therefore, δδδF (ϕ(F |x|, a)) = d.

Remark: This proof works also for pseudofinite difference fields of characteristic p > 0,
that is, for

∏
i∈I(Fpki ,Frobpmi )/U provided ki >> mi for almost all i. More precisely, in

the proof of Theorem 2.5, instead of translating ϕ to ϕp for each prime p, we translate
it to ϕpmi for each i ∈ I. That is, given a difference formula ϕ(x, y) we consider the
following ring formula ϕpmi (x, y) obtained by replacing each occurrence of σ(t) in ϕ(x, y)
by tp

mi . Then we use Fact 0.14 and the same strategy to get the desired result.

In the following, we will show that the coarse dimension δδδF is definable using the field
structure. To prove this, we first need a lemma.

Lemma 2.6. Let M be an ultraproduct of finite structures in the language L′ and X
be an internal subset of M . Let ϕ(x, y) be an L′-formula with |x| = m and |y| = n.
Suppose there is some r ∈ R≥0 such that for all b ∈ Mm we have δδδX(ϕ(Mn, b)) = r
whenever ϕ(Mn, b) �= ∅. Then

δδδX(ϕ(Mn+m)) = r + δδδX(∃xϕ(x,Mm)).

Proof. Suppose (M,X) =
∏
i∈I(Mi, Xi)/U for some ultrafilter U on an index set I

and Xi ⊆ Mi finite sets. For each i ∈ I pick bmaxi and bmini in (Mi)
m such that

|ϕ((Mi)
n, bmaxi )| is maximal and |ϕ((Mi)

n, bmini )| is minimal non-zero respectively. Clearly,
we have

|ϕ((Mi)
n, bmini )| · |∃xϕ(x, (Mi)

m)| ≤ |ϕ((Mi)
n+m)| ≤ |ϕ((Mi)

n, bmaxi )| · |∃xϕ(x, (Mi)
m)|.

Let bmax := (bmax
i )i∈I/U ∈ M and bmin := (bmini )i∈I/U ∈ M respectively. By assump-

tion, δδδX(ϕ(Mn, bmax)) = δδδX(ϕ(Mn, bmin)) = r. Therefore, for any ε > 0, there is some
J ∈ U such that for all i ∈ J , we have

|Xi|r−ε ≤ |ϕ((Mi)
n, bmini )| ≤ |ϕ((Mi)

n, bmaxi )| ≤ |Xi|r+ε.

Multiplying each term by |∃xϕ(x, (Mi)
m)| and combining the inequality before, we get

|Xi|r−ε · |∃xϕ(x, (Mi)
m)| ≤ ϕ((Mi)

n+m) ≤ |Xi|r+ε · |∃xϕ(x, (Mi)
m)|.
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Therefore,

r − ε+
log |∃xϕ(x, (Mi)

m)|
log |Xi| ≤ log |ϕ((Mi)

n+m)|
log |Xi| ≤ r + ε+

log |∃xϕ(x, (Mi)
m)|

log |Xi| .

By the definition of δδδX we conclude that

r + ε+ δδδX(∃xϕ(x,Mm)) ≤ δδδX(ϕ(Mn+m)) ≤ r − ε+ δδδX(∃xϕ(x,Mm)).

Since ε is arbitrary, we get the desired result.

Corollary 2.7. Let M be a pseudofinite structure in the language L and let X ⊆ Mn

be an internal set. Suppose there is some r ∈ N such that for any L-formula ϕ(x, y)
with |x| = 1 over ∅ and any b ∈M |y|, we have δδδX(ϕ(M, b)) ∈ {0, 1, . . . , r} and for each
i ≤ r, the set

{b ∈M |y| : δδδX(ϕ(M, b)) = i}
is ∅-definable. Then for any formula ψ(x, y) and any tuple c ∈M |y|, we have

δδδX(ψ(M |x|, c)) ∈ {0, . . . , |x| · r}.

Moreover, δδδX is definable.

Proof. We use induction on the length of |x|. The case |x| = 1 is given by assumption.

Suppose the conclusion holds for |x| = n, we prove it for |x| = n+1. Let ψ(x0, . . . , xn, y)
be a formula with |xi| = 1 for 0 ≤ i ≤ n. We know that there are formulas without
parameters θ�(x1, . . . , xn, y) for � ∈ {0, 1, . . . , r} which define respectively the sets

{(x1, . . . , xn, y) ∈Mn+|y| : δδδM (ψ(M,x1, . . . , xn, y)) = � and ψ(M,x1, . . . , xn, y) �= ∅}.

For any c ∈M |y|, note that ψ(Mn+1, c) is the disjoint union of

{ψ(Mn+1, c) ∧ θ�(Mn, c) : � ∈ {0, 1, . . . , r}},

and Lemma 2.6 applies to each of these formulas. Hence,

δδδX(ψ(Mn+1, c)∧θ�(Mn, c)) = �+δδδX(∃x0(ψ(x0,M
n, c)∧θ�(Mn, c)) = �+δδδX(θ�(M

n, c)).

By induction hypothesis, δδδX(θ�(M
n, c)) ∈ {0, . . . , r · n}. Therefore,

δδδX(ψ(Mn+1, c)) = max{�+ δδδX(θ�(M
n, c)) : 0 ≤ � ≤ r} ∈ {0, . . . , r · (n+ 1)}.

Again by induction hypotheses, for any k ∈ {0, . . . , r ·n} there are ∅-definable ξk� (y) with
� ∈ {0, . . . , r}, which define the corresponding sets

{y ∈ F |y| : δδδX(θ�(M
n, y)) = k and θ�(M

n, y) �= ∅}.

Then the formula
∨

0≤�≤r, 0≤j≤r·n, �+j=t
ξj� (y) defines the set

{y ∈Mn+1 : δδδM (ψ(Mn+1, y)) = t and ψ(Mn+1, y) �= ∅}
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for any t ∈ {0, . . . , r · (n+ 1)}.
Lemma 2.8. Let M = (F,+, ·, 0, 1, . . .) be a pseudofinite field with some extra struc-
tures. Let δδδF be the coarse pseudofinite dimension normalised by |F |. Suppose for
any formula ϕ(x, y) with |x| = 1 we have δδδF (ϕ(F, b)) ∈ {0, 1} for any tuple b ∈ F |y|.
Then δδδF is definable and for any formula ψ(x, y) and any tuple c ∈ F |y|, we have
δδδF (ψ(F |x|, c)) ∈ {0, . . . , |x|}.

Proof. By Corollary 2.7, we only need to show definability when |x| = 1.

For each ψ(x, y), consider the formula

θψ(y) := ∀z∃x1∃x2∃x3∃x4
⎛⎝ ∧

1≤i≤4

ψ(xi, y) ∧ x3 �= x4 ∧ z = (x1 − x2) · (x3 − x4)−1

⎞⎠ .

We claim that θψ(c) holds if and only if δδδF (ψ(F, c)) = 1 for all c ∈ F |y|. Suppose θψ(c)
hold. Then there is a map from (ψ(F, c))4 to F defined by sending (x1, x2, x3, x4) to
(x1−x2)(x3−x4)−1 if x3 �= x4, otherwise we map (x1, x2, x3, x4) to 0. The formula θψ(c)
holds means exactly that the map is surjective. Therefore, δδδF (ψ(F, c)) ≥ 1

4δδδF (F ) = 1
4 .

By assumption, δδδF (ψ(F, c)) ∈ {0, 1}. Hence, δδδF (ψ(F, c)) = 1. On the other hand,
if ¬θψ(c) holds, there is a ∈ F such that for any x1, x2, x3, x4 ∈ ψ(F, c) we have a �=
(x1−x2)(x3−x4)−1 whenever x3 �= x4. Let f : (ψ(F, c))2 → F be defined as f(x1, x2) :=
x1 + ax2. Then f is an injection. Therefore, δδδF (ψ(F, c)) ≤ 1

2 . We conclude that
δδδF (ψ(F, c)) = 0.

Hence, the set {c ∈ F |y| : δδδF (ψ(F, c)) = 0 and ψ(F, c) �= ∅} is defined by ¬θψ(y)∧∃xψ(x, y),

and θψ(y) defines the set {c ∈ F |y| : δδδF (ψ(F, y)) = 1}.
Corollary 2.9. For any pseudofinite difference field (F,Frob) ∈ S, the coarse dimension
δδδF is definable and integer-valued for all Lσ-definable sets. Moreover, δδδF is additive in
the language Lσ.

Proof. By Theorem 2.5, for any Lσ-formula ψ(x, y) with |x| = 1, any b ∈ F |y| we have

δδδF (ψ(F, b)) ∈ {0, 1}.

Applying Lemma 2.8 we get the desired result.

Remark: In general, the coarse dimension does not have the property that a definable
set has dimension 0 if only if it is finite. Similarly, in a pseudofinite group, a subgroup
of infinite index does not necessarily have smaller dimension, as we show in the next
example.

Example 2.1. Let (F,Frob) =
∏
p∈P(Fpkp ,Frobp)/U ∈ S. Define a function f : F× →

F× as
f(x) := x−1 · Frob(x).

It is easy to see that f is a group homomorphism. Therefore, the image T := f(F×) is
a definable subgroup of F×. There is a corresponding fp : (Fpkp )× → (Fpkp )× and Tp :=

fp((Fpkp )×) for any p ∈ P. Since the kernel of fp is (Fp)
×, we get [(Fpkp )× : Tp] = p− 1.

Hence, T has infinite index in F×, though δδδF (T ) = δδδF (F×).
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2.3 Coarse dimension and transformal transcendence de-
gree

In the following, we will study some algebraic properties of difference fields that are
intrinsic to the coarse dimension δδδF . Our aim is to understand the theory of difference
fields in S in terms of δδδF .

Let us start with an observation. Given (F,Frob) = (Fpkp ,Frobp)/U ∈ S. Let

(F̃ ,Frob) :=
∏
p∈P

(F̃p,Frobp)/U ,

then by [Hru04, Theorem 1.4] we have (F̃ ,Frob) is a model of ACFA, which contains
(F,Frob) as a substructure.

In ACFA, there is a notion of dimension which is also integer-valued, and it is induced
by SU-rank.

Let k be a saturated model of ACFA.

Definition 2.10. Let a be a finite tuple in k and A ⊆ k. Then SU(a/A) = ω · k+n for
some 0 ≤ k ≤ |a|. Define the rank-dimension dimrk of tp(a/A) as dimrk(a/A) := k.

Remark: dimrk(a/A) coincides with the transformal transcendence degree of a over Aσ
(the difference field generated by A).

Now we have two integer-valued additive dimensions on types: the rank-dimension dimrk

and the coarse dimension δδδF . It is natural to ask whether they coincide. One of the
inequalities is obvious.

Lemma 2.11. Let (F,Frob) ∈ S. For any tuple a ∈ F and subset A ⊆ F we have
δδδF (a/A) ≤ dimrk(a/A).

Proof. Note that by the additivity of both dimrk and δδδF , we only need to prove the
inequality when a is a single element. We may assume that A = Aσ. By [CH99],
we know that SU(a/A) = ω if and only if a is transformally transcendental over A if
and only if degσ(a/A) = ∞. Therefore, we need to show that if degσ(a/A) < ∞ then
δδδF (a/A) = 0.

Suppose degσ(a/A) <∞. Then there is somem and a non-trivial polynomial f(x; y1, . . . , ym)
with coefficients in A, such that f(σm(a);σm−1(a), . . . , a) = 0. Take any prime p ∈ P

and let gp(x) := f(xp
m

;xp
m−1

, . . . , x). Then

|{a′ ∈ Fpkp : gp(a
′) = 0}| ≤ pC·m

for some constant C depending on f . Let ϕ(x) := f(σm(x);σm−1(x), . . . , x) = 0. Then
ϕ(x) defines exactly the set of zeros of gp in (Fpkp ,Frobp). Therefore, δδδF (ϕ(F )) = 0. As
a ∈ ϕ(F ), we get δδδF (a/A) = 0.

We conjecture that in general the two dimensions coincide.
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In the following we will demonstrate an application with the assumption that dimrk

is controlled by δδδF . The strategy is the following: we start with a definable object in
(F,Frob). If we have the control over dimrk of elements in it, then we work in (F̃ ,Frob).
As it is a model of ACFA, we can use all the model theoretic tools there. Finally, we
transfer the results from (F̃ ,Frob) back to (F,Frob).

Fact 2.12. [Cha05, Section 6.5] Let (k, σ) be a model of ACFA. Let G be a definable
subgroup of some algebraic group H(k). Let aclσ denote the algebraic closure in ACFA.
Suppose G is definable over E = aclσ(E). Then G is contained in a group G̃ which is
quantifier-free definable over E and has the same SU-rank as G.

Notation: For a difference formula ϕ(x) with parameters A ⊆ (F̃ ,Frob). Let

d = max{dimrk(a/A) : a ∈ ϕ(F̃ |x̄|)}
= max{n ≤ |x| : SU(a/A) = ω · n+m, for some a ∈ ϕ(F̃ |x|)}.

We define dimrk(ϕ(x)) := d.

Lemma 2.13. Let (F,Frob) ∈ S, a ∈ Fn and A ⊆ F . Suppose dimrk(a/A) = k. Then
there is a finite set {P1(x), . . . , Pm(x)} of difference polynomials with parameters in A
such that (F,Frob) |= ∧

i≤m Pi(a) = 0 and dimrk(
∧
i≤m Pi(x) = 0) = k.

Proof. We may write a into two parts a1 and a2 where dimrk(a1/A) = |a1| = k, and
dimrk(a2/Aa1) = 0. Let (Aa1)σ be the difference field generated by A ∪ {a1}. Suppose
a2 := a12 · · · am2 with each |ai2| = 1. Since dimrk(a

i
2/Aa1) = 0 for each i ≤ m, we get

degσ(ai2/(Aa1)σ) < ∞. Therefore, there is a difference polynomial Pi(yi, bi) with bi ⊆
(Aa1)σ such that ai2 vanishes on it. Write bi = fi(a1) where fi is a difference polynomial
with parameters in A. We should rearrange the order of variables such that x0, . . . , x|a|−1

corresponds to the order of a. Suppose a1 = a�1 · · · a�|a1| and a2 = at1 · · · at|a2| where aj

is the jth component of the tuple a. Now it is easy to see that a satisfies the formula

ϕ(x) :=
∧
i≤m

Pi(xti , fi(x�1 , . . . , x�|a1|)) = 0,

and dimrk(ϕ(x)) = k.

Theorem 2.14. Let (F,Frob) ∈ S. Suppose G is a definable over a finite set A ⊆ F
subgroup of some algebraic group H(F ) ⊆ Fn. If for any g ∈ G we have dimrk(g/A) ≤
δδδF (G), then there is a quantifier-free definable group Ḡ ≥ G (defined with parameters in
F ), such that δδδF (Ḡ) = δδδF (G).

Proof. Suppose G is defined by the formula ϕG. Let k := δδδF (G).

Let ΠA denote the set of difference polynomials in n-variables with coefficients in A.

By Lemma 2.13, for any element a ∈ G, there are some {Pa,i(x) : 1 ≤ i ≤ ma} ⊂ ΠA

such that (F,Frob) |= ∧
i≤ma

Pa,i(a) = 0 and dimrk(
∧
i≤ma

Pa,i(x) = 0) = dimrk(a/A).
By assumption, dimrk(a/A) ≤ δδδF (G) = k. Therefore, ϕG(x) is covered by the collec-
tion of formulas {∧i≤ma

Pa,i(x) = 0 : a ∈ G}. Since [ϕG] is closed in the compact
space Sn(F ), we have by compactness, there is some finite set a0, . . . , a� such that
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ϕG(x) |= ∨
j≤�
(∧

i≤maj
Paj ,i(x) = 0

)
. Let Φ(x) :=

∨
j≤�
(∧

i≤maj
Paj ,i(x) = 0

)
. As

dimrk(
∧
i≤maj

Paj ,i(x) = 0) ≤ k for each j ≤ �, we get dimrk(Φ(x)) ≤ k.

Write Φ(x) into the conjunctive normal form
∧
u≤N

∨
v≤Mu

(Pu,v(x) = 0) for some natural

numbers N,Mu, and each Pu,v(x) ∈ {Paj ,i(x) : j ≤ �, i ≤ maj}. Hence, for each u ≤ N ,
we have ϕG(x) |= (

∏
v≤Mu

Pu,v(x)) = 0.

Let GF̃ be the σ-Zariski closure of G in H(F̃ ), that is, if we define IF̃ (G) = {p ∈ F̃ [x]σ :
p(g) = 0 for all g ∈ G}, then

GF̃ := {h ∈ H(F̃ ) : p(h) = 0 for all p ∈ IF̃ (G)}.

As prime σ-ideals are finitely generated, GF̃ is quantifier-free definable. Note that∏
v≤Mu

Pu,v(x) ∈ IF̃ (G) for each u ≤ N . Since

dimrk

⎛⎝ ∧
u≤N

⎛⎝ ∏
v≤Mu

Pu,v(x)

⎞⎠ = 0

⎞⎠ = dimrk

⎛⎝∨
j≤�

∧
i≤maj

Paj ,i(x) = 0

⎞⎠ ≤ k,

we get dimrk(GF̃ ) ≤ k.

Take an automorphism α of (F̃ ,Frob) fixing F . Then G = α(G) ⊆ α(GF̃ ). As α(GF̃ ) is

also closed under the σ-Zariski topology in (F̃ ,Frob), we get GF̃ ⊆ α(GF̃ ) which implies
GF̃ = α(GF̃ ). Therefore, GF̃ is invariant under automorphisms fixing F , hence it is
definable over F . Let E = aclσ(F ) = F alg, then by Fact 2.12, there is GE which contains
GF̃ , has the same SU-rank as GE and is quantifier-free definable over E. In fact, GE is
the smallest closed set containing GF̃ in the σ-Zariski topology in (F alg,Frob �Falg).

Suppose GE is defined by ∧
0≤j≤�′

P ′
j(x, σ(x), . . . , σm(x), cj) = 0,

where P ′
j are polynomials in the language of rings and cj ⊆ F alg. For any 0 ≤ j ≤ �′,

let {c0j , . . . , cNj

j } ⊆ (F alg)|cj | be the set of all field conjugates of cj over F . Note that for
any g ∈ G we have g, σ(g), . . . , σm(g) ⊆ F . Hence, P ′

j(g, σ(g), . . . , σm(g), cj) = 0 if and

only if P ′
j(g, σ(g), . . . , σm(g), cij) = 0 for any g ∈ G and 0 ≤ i ≤ Nj .

Let Bj be the set in H(F̃ ) vanishing on {P ′
j(x, σ(x), . . . , σm(x), cij) : 0 ≤ i ≤ Nj}. Then

from the above argument, we know Bj ⊇ G. As Bj is closed under the σ-Zariski topology
in (F̃ ,Frob), we get Bj ⊇ GF̃ . Similarly, by Bj being closed under the σ-Zariski topology
in (F alg,Frob �Falg), we get Bj ⊇ GE .

Now consider the formula∧
0≤j≤�′

∧
0≤i≤Nj

P ′
j(x, σ(x), . . . , σm(x), cij) = 0.

It defines
⋂
j≤�′ Bj . As before, we know that

⋂
j≤�′ Bj ⊇ GE . Clearly, we also have⋂

j≤�′ Bj ⊆ GE . Hence, the formula above also defines GE in H(F̃ ). Now we show that
GE can be made quantifier-free definable over F .
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Fix 0 ≤ j ≤ �′ and consider the formula∧
0≤i≤Nj

P ′
j(x, x1, . . . , xm, c

i
j) = 0,

where x1, . . . , xm are distinct tuples of variables all have the same length as x. For
1 ≤ k ≤ Nj + 1, let ek(t0, . . . , tNj ) be the k-elementary symmetric polynomials in
Nj + 1-variables, i.e.

ek(t0, . . . , tNj ) :=
∑

0≤i1<···<ik≤Nj

ti1 · · · tik .

Then we have
∧

0≤i≤Nj
P ′
j(x, x1, . . . , xm, c

i
j) = 0 if and only if∧

1≤k≤Nj+1

ek(P
′
j(x, x1, . . . , xm, c

0
j ), . . . , P

′
j(x, x1, . . . , xm, c

Nj

j )) = 0.

For each 1 ≤ k ≤ Nj + 1, as {cij : 0 ≤ j ≤ Nj} is the set of all field conjugates of cj in

F alg over F and that ek is symmetric, we get

Qkj (x, . . . , xm, b
k
j ) := ek(P

′
j(x, x1, . . . , xm, c

0
j ), . . . , P

′
j(x, x1, . . . , xm, c

Nj

j ))

is invariant under field automorphisms in Gal(F alg/F ). Therefore, since F is a pseudofin-
ite field, F is perfect and we have bkj ⊆ F for all 1 ≤ j ≤ �′ and 1 ≤ k ≤ Nj + 1.

Let ϕH(x) be the quantifier-free formula with parameters in A that defines the algebraic
group H. Now consider

ψ(x) := ϕH(x) ∧
⎛⎝ ∧

0≤j≤�′

∧
1≤k≤Nj+1

Qkj (x, σ(x), . . . , σm(x), bkj ) = 0

⎞⎠ .

It is easy to see that ψ(x) defines GE in (F̃ ,Frob). Note that ψ(x) is quantifier-free
and defined over F , so we can consider Ḡ := {g ∈ F t : (F,Frob) |= ψ(g)}. Since H(F )
is an algebraic group and F is definably closed in F̃ in the language of rings, Ḡ is a
quantifier-free definable group in (F,Frob) and contains G. Note that dimrk(GE) =
dimrk(GF̃ ) ≤ k. Hence, δδδF (Ḡ) ≤ dimrk(ψ(x)) = dimrk(GE) ≤ k. On the other hand,
since Ḡ ⊇ G and δδδF (G) = k, we get δδδF (Ḡ) ≥ k. Therefore, δδδF (Ḡ) = δδδF (G) = k, which
concludes the proof of Corollary 2.14.

2.4 Wildness of S

This section will be some discussions about negative model theoretic properties of the
class S defined in Section 2.2. We will first investigate whether this family S is tame
in terms of the properties in Shelah’s classification theory [She90]. It turns out that
the answer is negative. As we have mentioned before, we will show that if a structure
expands a pseudofinite field with a “logarithmically small” definable subset, then all the
internal subsets of this definable set will be uniformly definable.4 Therefore, theories of

4This result is known among experts. As we could not find a proof in the literature, we include it
here for completeness.
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structures in S have TP2 and the strict order property and is not decidable. We proceed
by an example in S where the model theoretic algebraic closure does not coincide with
the algebraic closure in the sense of difference algebra. We conclude with some general
remarks and questions.

2.4.1 Non-tameness

In this subsection we will show that the theory of any member of S has TP2 and the
strict order property and is not decidable.

The proof is based on the result that the theory of pseudofinite fields has the independ-
ence property in [Dur80]. The strategy is to modify Duret’s proof to show that when
an internal set is very small compared to the size of the field, then every internal subset
of it can also be coded uniformly.

Fact 2.15. ([Dur80, Proposition 4.3]) Let k be a field and p a prime different from
char(k) such that k contains a pth-root of unity. Let k̃ be the algebraic closure of k.
Suppose fi ∈ k[Y1, . . . , Ym] and Fi = Xp − fi ∈ k[Y1, . . . , Ym, X] for 1 ≤ i ≤ n. If there
exist gi, hi ∈ k̃[Y1, . . . , Ym] and qi ∈ N such that:

• for all i, fi = gqii hi;

• for all i, gi is prime in k̃[Y1, . . . , Ym]

• for all i �= j, gi �= gj

• for all i and j, gi does not divide hj

• for all i, p does not divide qi.

Then the ideal J in k[Y1, . . . , Ym, X1, . . . , Xn] generated by {Fi(Xi) : 1 ≤ i ≤ n} is
absolutely prime, and does not contain any non-zero element in k[Y1, . . . , Ym].

Fact 2.16. ([CM06, Theorem 7.1]) Let V ⊆ (F̃q)
n be an absolutely irreducible Fq-variety

of dimension r > 0 and degree �. If q > 2(r + 1)�2, then the following estimate holds:

||(V ∩ (Fq)
n)| − qr| ≤ (�− 1)(�− 2)qr−

1
2 + 5�

13
3 qr−1.

Theorem 2.17. Let F =
∏
i∈I Fqi/U be a pseudofinite field and A =

∏
i∈I Ai/U an

infinite internal subset of F . Suppose there is a positive constant C such that {i ∈ I :
|Ai| ≤ C log2 qi} ∈ U . Then all internal subsets of A are uniformly definable.

Proof. Consider the finite algebraic extension F ′ of F of degree 14�C�. As F is pseudofin-
ite, there is only one such extension and is definable. To see the definability, suppose
F ′ = F (α). Let f be the minimal polynomial of α over F . Then we can define F ′ as
the 14�C�-dimensional vector space over F with multiplication defined according to the
minimal polynomial f .

We distinguish two cases according to pi := char(Fqi). First, let us suppose pi �= 2 and

qi = pni
i . Since xp

14�C�ni
i −1 = 1 for all x ∈ F

p
14�C�ni
i

, the square root of unity exists

in F
p
14�C�ni
i

. As the multiplicative group of F
p
14�C�ni
i

is cyclic, take αi ∈ F
p
14�C�ni
i

a

generator, then αi is not a square in F
p
14�C�ni
i

.
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Claim 2.18. Let ϕ(y, u) be the formula ∃x(x2 = y + u). Then for all i ∈ I with pi �= 2
and for all Ei ⊆ Ai, there is yi ∈ Fp14�C�ni

i

such that

Ei = ϕ(yi,Fp14�C�ni
i

) ∩Ai.

Proof. Let i ∈ I with pi �= 2, Ei ⊆ Ai and ti := |Ai| ≤ Cni log2 pi. Let J be the ideal in
F
p
14�C�ni
i

[X1, . . . , Xti , Y ] generated by

{X2
j − (Y + cj) : cj ∈ Ei} ∪ {X2

j − αi(Y + dj) : dj ∈ Ai \ Ei},

where αi is a generator of F×
p
14�C�ni
i

as defined before. Let V (J) be the corresponding

F
p
14�C�ni
i

-variety. Then V (J) is absolutely irreducible by Fact 2.15,

Suppose V (J) ∩ (F
p
14�C�ni
i

)ti+1 �= ∅. Let (x1, . . . , xti , yi) be a solution. Then clearly

Ei ⊆ ϕ(yi,Fp14�C�ni
i

). On the other hand, if there is d ∈ Ai \Ei, such that ϕ(yi, d). Then

there are xj , x ∈ F
p
14�C�ni
i

such that:

x2j = αi(yi + d);

x2 = yi + d;

yi − d �= 0,

where the last inequality follows from Fact 2.15, as Y − d �∈ J . Hence, αi =
(xj
x

)2
,

contradicting that αi is not a square root. Therefore, Ei = ϕ(yi,Fp14�C�ni
i

) ∩Ai.

So we only need to show V (J) ∩ F
p
14�C�ni
i

�= ∅.

Let |Ai| = ti ≤ Cni log2 pi. We calculate the dimension and the degree of V (J). It is
clear that the dimension of V (J) is 1, as all Xj are algebraic over Y . Let c1, . . . , cti be
a list of all elements in Ai, and for 1 ≤ j ≤ ti, let Vj be the variety defined by either
the set of solutions of X2

j − (Y + cj) if cj ∈ Ei, or X2
j − αi(Y + cj) if cj �∈ Ei. Then

V (J) =
⋂

1≤j≤ti Vj and each Vj has degree 2. Therefore, by the Bézout inequality, the

degree of V (J) is less than or equal to 2ti .

Suppose, towards a contradiction, that V (J) ∩ (F
p
14�C�ni
i

)ti+1 = ∅. Then by Fact 2.16,

p
14�C
ni

i ≤ (2ti − 1)(2ti − 2)p
7�C
ni

i + 5× 2
13
3
ti

≤ (pCni
i − 1)(pCni

i − 2)p
7�C
ni

i + 5× p
13
3
Cni

i

< p2Cni
i p

7�C
ni

i + p8Cni
i = p

9�C
ni

i + p8Cni
i

< p
14�C
ni

i ,

contradiction.

The case char(qi) = 2 is similar. Suppose qi = 2ni . Since 3 divides 214�C
ni − 1 for
each i, there exists x ∈ F214�C�ni such that x3 = 1. Take βi to be the generator of the
multiplicative group of F214�C�ni . Then there is no y ∈ F214�C�ni such that y3 = βi.
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Claim 2.19. Let ψ(y, u) be the formula ∃x(x3 = y + u). Then for all i ∈ I and Ei ⊆ Ai,
there is yi ∈ F214�C�ni such that Ei = ψ(yi,F214�C�ni ) ∩Ai.

Proof. Fix some i and Ei ⊆ Ai. Let J be the ideal in F214�C�ni [X1, . . . , Xti , Y ] generated
by

{X3
j − (Y + cj) : cj ∈ Ei} ∪ {X3

j − βi(Y + dj) : dj ∈ Ai \ Ei}.

As in the previous argument, the variety V (J) is absolutely irreducible of dimension 1
and of degree less than or equal to 3ti . To prove the claim, we only need to show that
V (J) ∩ (F214�C�ni )

ti+1 �= ∅. Suppose not, then by Fact 2.16,

214�C
ni ≤ (3ti − 1)(3ti − 2)27�C
ni + 5× 3
13
3
ti ≤ 32Cni27�C
ni + 37Cni < 214�C
ni ,

contradiction.

Let A =
∏
i∈I Ai/U . Assume A is defined by χ(x). Define φ(x, y) := ψ(y, x)∧χ(x) if the

characteristic of F ′ is 2, and φ(x, y) := ϕ(y, x)∧χ(x) otherwise. Let E =
∏
i∈I Ei/U ⊆ A

be any internal subset. By the previous two claims, there is yE ∈ F ′ such that E =
φ(F ′, yE) in F ′. Remember that we regard F ′ as 14�C�-dimensional vector space over
F and A ⊆ F . So as F ′ is definable in F , let φ′(x̄, ȳ) be the corresponding translation
of φ(x, y) in F and put θ(x, ȳ) := φ′(x, 0, . . . , 0, ȳ). We see that θ(x, ȳ) codes uniformly
all internal subsets of A.

Remark:

• From the proof we know that if char(F ) �= 2 and qi ≥ 214|Ai| for all large enough i,
then we can take θ(x, ȳ) := ∃z2(z2 = x+ y) ∧ χ(x) where x, y are single variables
and χ(x) is the formula defining A.

• The above proof of Theorem 2.17 is purely algebraic. However, it is possible to
use the Paley graphs (Pq, R) constructed from Fq and the Bollobás-Thomason
inequalities to give a combinatoric and more neat proof when q ≡ 1 (mod 4).5 The
idea is that suppose we have a small subset A ⊆ Fq with |A| = m and E ⊆ A. Let
V (E,A\E) be set of vertices in Fq not in A which connect to everything in E and
nothing in A \ E. Then the Bollobás-Thomason inequality will give∣∣|V (E,A \ E)| − 2−mq

∣∣ ≤ 1

2

(
m− 2 + 2−m+1

)
q

1
2 +

m

2
.

Hence, when q >> 2m, then V (E,A\E) �= ∅. And any element in V (E,A\E) will
code the subset E inside A, and the coding is uniform by the formula ϕ(x, y) :=
x ∈ A ∧ xRy.

Corollary 2.20. Let F =
∏
i∈I Fqi/U be a pseudofinite field and B =

∏
i∈I Bi/U an

infinite internal subset of F . Suppose there is a positive constant C such that {i ∈ I :
|Bi| ≤ C log2 qi} ∈ U . Then (F,B) interprets the structure N =

∏
i∈I(Ni,+,×)/U ,

where Ni = {j ∈ N : 0 ≤ j ≤ mi} for some mi ∈ N, and +,× are the addition and
multiplication truncated on Ni respectively.

5We would like to thank the referee to point out this observation. In fact, the Bollobás-Thomason
inequality will give a better bound than the bound we use for the Lang-Weil estimate in Fact 2.16. But
the author has not yet found the equivalent Bollobás-Thomason inequality in the characteristic 2 case.
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Proof. For each i ∈ I, pick Yi ⊆ Bi such that |Bi| 14 ≤ |Yi| ≤ |Bi| 13 . Let Y =
∏
i∈I Yi/U .

By Theorem 2.17, Y is definable and all subsets of Yi are uniformly definable by some

ψ1(y, u). For each i ∈ I, consider the set Wi :=

{
y1 − y2
y3 − y4 : y1, y2, y3, y4 ∈ Yi, y3 �= y4

}
.

The set Wi has size at most |Yi|4 << |Fqi |. Take any a �∈ Wi ∪ {0}. Then the set
Ti := {y1 + ay2 : y1, y2 ∈ Yi} is in definable bijection with Yi × Yi and of size less than
log2 qi. By Theorem 2.17, all subsets of Ti, hence of Yi × Yi, are uniformly definable
by some ψ2(y, u). Similarly, we can show that all subsets of Yi × Yi × Yi are uniformly
definable by some ψ3(y, u).

For a ∈ Fqi , we write S1
a ⊆ Yi for the set ψ1(a,Fqi) and S2

a ⊆ Yi × Yi, S3
a ⊆ Yi × Yi × Yi

for ψ2(a,Fqi), ψ3(a,Fqi) respectively.

Now define a relation R+ ⊆ (Fqi)
3 by: R+(a, b, c) if there exist g ∈ Fqi and y �= y′ ∈ Yi

such that

• either S3
g is the graph of a bijective function from (S1

a × {y}) ∪ (S1
b × {y′}) to S1

c ;

• or S1
c = Yi and S3

g is the graph of a surjective function from (S1
a×{y})∪(S1

b ×{y′})
to Yi;

Similarly, we define R× ⊆ (Fqi)
3 by: R×(a, b, c) if there exists g ∈ Fqi such that

• either S3
g is the graph of a bijective function from S1

a × S1
b to S1

c ;

• or S1
c = Yi and S3

g is the graph of a surjective function from S1
a × S1

b to Yi;

We also define an equivalence relation E ⊆ (Fqi)
2 by: E(a, b) if and only if there exists

g ∈ Fqi such that S2
g is the graph of a bijective function from S1

a to S1
b .

It is easy to see then that R+, R× respect the equivalence relation E and

(|Yi|,+,×) � ((Fqi)
2/E,R+/E,R×/E).

Corollary 2.21. Let (F,Frob) ∈ S and T := Th(F,Frob). Then T has the strict order
property and TP2. Moreover, T is not decidable.

Proof. As the fixed field Fix(F ) := {x ∈ F : σ(x) = x} is definable and satisfies the
condition in Theorem 2.17, every internal subset of Fix(F ) can be coded uniformly by
some formula ϕ(x, t). In particular, it will code some infinite strictly increasing chain
A1 � A2 � A3 � · · · of subsets of Fix(F ). Therefore, T has the strict order property.

Let ϕ(x, t) be the same formula. To see that T has TP2, by compactness, we only need
to show that given any n ∈ N, there is some (aij)1≤i,j≤n such that for any 1 ≤ i ≤ n, we
have {ϕ(x, aij) : 1 ≤ j ≤ n} is 2-inconsistent and {ϕ(x, aif(i)) : 1 ≤ i ≤ n} is consistent
for any f : {1, . . . , n} → {1, . . . , n}.
Given n ∈ N, let An ⊆ Fix(F ) be a set with nn-many elements. Fix a bijection η :
An → {1, . . . , n}{1,...,n} where {1, . . . , n}{1,...,n} is the set of all functions from {1, . . . , n}
to itself. Let (aij)1≤i,j≤n be such that ϕ(x, aij) codes the set

Bij := {a ∈ An : η(a)(i) = j} ⊆ An.
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For any 1 ≤ i ≤ n, as Bi1, . . . , Bin form a complete partition of An, we get {ϕ(x, aij) :
1 ≤ j ≤ n} is 2-inconsistent. On the other hand, for any f : {1, . . . , n} → {1, . . . , n} the
element η−1(f) ∈ An witnesses that {ϕ(x, aif(i)) : 1 ≤ i ≤ n} is consistent.

Finally, as (F,Frob) interprets ultraproducts of initial segments of natural numbers with
truncated addition and multiplication by Corollary 2.21, the undecidability follows from
[KZ05, Section 4].

2.4.2 Algebraic closure

We now turn out attention to the study of the algebraic closure for a structure (F,Frob) ∈
S. Let F be a pseudofinite field and F alg be the smallest algebraically closed field
containing F . Take a tuple a ∈ F . Then the algebraic closure in the pseudofinite
field aclF (a) is simply the algebraic closure in F alg intersected with F , i.e. aclF (a) =
aclFalg(a) ∩ F .

As ACFA is the model companion of the theory of difference fields, we can embed
(F,Frob) into some (K,σ) |= ACFA. We might wonder if similarly, the algebraic closure
in the theory of (F,Frob) is the same as the algebraic closure in (K,σ) intersected with
F , i.e. the algebraic elements are defined by difference polynomials. The following results
provide a negative answer to this.

Theorem 2.22. For any n > 0, there is some (F,Frob) ∈ S, an element an ∈ Fand a
tuple bn such that an belongs to the definable closure of bn in (F,Frob), but degσ(an/bn) =
n.

We need a lemma first.

Lemma 2.23. Let ϕ(x; y1, . . . , yn) := ∃z(z2 = x+ y1) ∧
∧

2≤i≤n
∀z¬(z2 = x+ yi). There

is Cn ∈ R>0 such that for any Fq with char(Fq) �= 2 and b1, . . . , bn distinct n-elements
in Fq, we have ∣∣∣|ϕ(Fq, b1, . . . , bn)| − q

2n

∣∣∣ ≤ Cn · q 1
2 .

Proof. Given distinct elements b1, . . . , bn ∈ Fq. Take an element a ∈ Fq such that a is
not a square. Let J be the ideal in Fq[X,X1, . . . , Xn] generated by

{X2
1 − (X + b1)} ∪ {X2

i − a(X + bi) : 2 ≤ i ≤ n}.

By Fact 2.15, J is absolutely prime, whence V (J) is an absolutely irreducible variety of
dimension 1. By the Lang-Weil estimate

||V (J) ∩ (Fq)
n+1| − q| ≤ Nn · q 1

2 ,

where Nn is a constant only depends on the degree and dimension of the variety, which
in our case is independent from b1, . . . , bn, a and Fq and only depends on n. Let

π : V (J) ∩ (Fq)
n+1 → Fq
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be the projection on the the first coordinate. Clearly, π is a 2n-to-one function. There-
fore,

|ϕ(Fq, b1, . . . , bn)| = |π(V (J) ∩ (Fq)
n+1)| =

1

2n
· |V (J) ∩ (Fq)

n+1|.

Let Cn := Nn
2n . We conclude that∣∣∣|ϕ(Fq, b1, . . . , bn)| − q

2n

∣∣∣ ≤ Cn · q 1
2 .

Now we prove Theorem 2.22.

Proof. Given n ∈ N, for each p ∈ P, let kp ∈ N be such that

• kp > max{f(p, p), 14pn} where f(p, p) is given by Equation 2.1 in Definition 2.3;

• n! divides kp;

• pkp

2pn
> 2Cpn · p

kp
2 .

Let (F,Frob) :=
∏
p∈P(Fpkp ,Frobp)/U where U is a non-principal ultrafilter on P. Clearly,

(F,Frob) ∈ S and Fix(σn) := {x ∈ F : σn(x) = x} �= Fix(σk) for any k < n.

Take an element an ∈ Fix(σn) such that degσ(an) = n. Let

ξ(x, an) := ∃z(z2 = an + x) ∧ ∀y(σn(y) = y ∧ (y �= an → ¬∃z(z2 = y + x))).

As kp > 14pn, for each prime p ∈ N we know by Theorem 2.17 and the subsequent remark
that Yn := ξ((F,Frob), an) �= ∅. We claim that δδδF (Yn) = 1. Suppose an = (ap)p∈P/U .
For each p ∈ P, let ap, b1, . . . , bpn−1 be a list of all elements in Fpn ⊆ Fpkp . Let

ϕ(x, y1, . . . , ypn) := ∃z(z2 = x+ y1) ∧
∧

2≤i≤pn
∀z¬(z2 = x+ yi).

Note that for any b ∈ Fpkp we have

ξ((Fpkp ,Frobp), ap) = ϕ(Fpkp , ap, b1, . . . , bpn−1).

By Lemma 2.23,

||ϕ(Fpkp , ap, b1, . . . , bpn−1)| − pkp

2pn
| ≤ Cpn · p

pkp

2 ,

for all p > 2. Therefore,

|Yn| ≥ pkp

2pn
− Cpn · p

pkp

2 >
1

2
· p

kp

2pn
.

Since

lim
p→∞

log(pkp/2 · 2pn)

log pkp
= 1,
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we get δδδF (Yn) = 1.

Take an element bn ∈ Yn such that δδδF (bn) > 0. Note that an ∈ dcl(bn) and δδδF (an) = 0.
Thus, using additivity of δδδF ,

δδδF (bn/an) = δδδF (an, bn)− δδδF (an) = δδδF (bn) + δδδF (an/bn)− δδδF (an) = δδδF (bn) > 0.

Therefore, SUACFA(bn/an) = ω. By our choice, we also have SUACFA(bn) = ω. Hence,
an is independent from bn in (F̃ ,Frob). Again, by our choice, degσ(an) = n. But if
degσ(an/bn) < n, then an and bn will not be independent in (F̃ ,Frob) in the theory of
ACFA. We conclude that degσ(an/bn) = n and an is in the definable closure of bn.

2.4.3 Further remarks:

We conclude this chapter with some remarks.

1. As we have mentioned in the remark after Theorem 2.5, we can easily generalise the
results of this chapter to other classes, provided the fields grow fast enough. Let
(F, σ) :=

∏
i∈I(Fpiki ,Frobpimi )/U , with pkii >> pmi

i for all i ∈ I, then all the results
in Section 2.2 and Section 2.3 are true for (F, σ) as well. Corollary 2.21 will also be
true if the fixed field of (F, σ) is infinite. However, if (F, σ) :=

∏
i∈I(Fpki ,Frobpmi )

with ki and pi coprime for all i ∈ I, then it is not clear whether its theory will
always be wild.

2. One of the main open problems of this chapter is that whether the coarse dimension
δδδF for structures in S coincide with the transformal transcendence degree. The
first step towards proving this is to prove this holds for quantifier-free formulas.
We might need tools from other areas of mathematics to prove this.



Chapter 3

Pseudofinite Primitive
Permutation Groups

—————————————————————————————

3.1 Introduction

Finite primitive permutation groups have been classified into several types by the well-
known O’Nan-Scott Theorem. This classification reduces most problems concerning
finite primitive permutation groups to problems of finite simple groups. Together with
the classification of finite simple groups (CFSG), it gives a good understanding of finite
primitive permutation groups. As pseudofinite groups can be seen as limits of finite
groups, we might wonder if it is also possible to give a nice description of pseudofinite
permutation groups. There have been some attempts. In [LMT10], pseudofinite defin-
ably primitive permutation groups have been extensively studied via the O’Nan-Scott
Theorem. In [EJMR11], under the additional assumption that (G,X) lives in a su-
persimple theory of finite SU-rank and that the SU-rank of X is one, Elwes, Jaligot,
Macpherson and Ryten managed to get a complete classification, which is analogous to
the well-known classification of stable permutation groups acting on strongly minimal
sets in [Hru89].

We recall the classification in [EJMR11].

Fact 3.1. ([EJMR11, Theorem 1.3])

Let (G,X) be a pseudofinite definably primitive permutation group. Let T be the theory
of (G,X) in the language L. Suppose T is supersimple of finite SU-rank such that T eq

eliminates ∃∞ and SU(X) = 1. Then the socle of G (the subgroup generated by all
minimal non-trivial normal subgroups), soc(G), exists and is definable, and one of the
following holds:

1. SU(G) = 1, and soc(G) is abelian of finite index in G and acts regularly on X;

2. SU(G) = 2, and there is an interpretable pseudofinite field F of SU-rank 1 such
that (G,X) is definably isomorphic to (F+ �H,F+), where H ≤ F× is of finite
index.

62
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3. SU(G) = 3, and there is an interpretable pseudofinite field F of SU-rank 1 such that
(G,X) is definably isomorphic to (H,PG1(F )), where PSL2(F ) ≤ H ≤ PΓL2(F ).1

Moreover, soc(G) is definably isomorphic to PSL2(F ).

This result is based on the investigation of pseudofinite groups of small SU-rank in the
same paper [EJMR11]. Basically, they showed that pseudofinite groups of SU-rank 1
are finite-by-abelian-by-finite, and those of SU-rank 2 are soluble-by-finite. We list them
here.

Fact 3.2. ([EJMR11, Lemma 3.1(i)]) Let G be an infinite group definable in a su-
persimple theory T such that T eq eliminates ∃∞. Let H ≤ G be an infinite finite-by-
abelian subgroup. ThenH is contained in an infinite definable finite-by-abelian subgroup
K ≤ G.

Fact 3.3. ([EJMR11, Theorem 1.2]) Let G be a pseudofinite group definable in a su-
persimple theory T such that T eq eliminates ∃∞. Suppose SU(G) = 2. Then G is
soluble-by-finite.

The analysis of pseudofinite groups of small SU-rank has been generalised in [Wag18]
to a wider context which includes the pseudofinite supersimple and superrosy groups of
infinite rank. Basically, Wagner replaces finite SU-rank by an abstract dimension which
satisfies some nice properties, together with some chain condition on centralizers.

In this chapter, we generalize Fact 3.1 to the same context as in [Wag18], which in par-
ticular includes the pseudofinite definably primitive permutation groups in supersimple
or superrosy theories of infinite rank. Interestingly, as we do not assume supersimplicity
of the ambient theory, the Indecomposability Theorem is not available. However, in one
main step of the proof, we go to a subgroup of the permutation group, whose theory
in the pure group language is supersimple. Via this, we use the powerful structural
theorems in supersimple theories to get the desired result.

Let us introduce the general context that we will work with and state our main theorem.

Definition 3.4. A dimension on a theory T is a function dim from all interpretable
subsets of a monster model to R≥0 ∪ {∞}, satisfying:

1. Invariance: If a ≡ a′, then dim(ϕ(x, a)) = dim(ϕ(x, a′));

2. Algebraicity: If X is finite, then dim(X) = 0;

3. Union: dim(X ∪ Y ) = max{dim(X), dim(Y )};
4. Fibration: If f : X → Y is an interpretable surjection and dim(f−1(y)) = r for all
y ∈ Y , then dim(X) = dim(Y ) + r;

We define the dimension of a tuple of elements a over a set B as

dim(a/B) := inf{dim(ϕ(x)) : ϕ ∈ tp(a/B)}.
1In fact, we think H should be contained in PGL2(F ), there shouldn’t be any non-trivial automorph-

ism of F induced by G, see Lemma 3.36 and Corollary 3.57.
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When the equation dim(a, b/C) = dim(a/b,C) + dim(b/C) holds for any tuples a, b and
any set C, we say that the dimension dim is additive.

When dim has its range in N then we say that the dimension dim is integer-valued.

Example 3.1. In ultraproducts of finite structures the coarse pseudofinite dimension
satisfies all the conditions for the dimension we defined above and is additive (in a
certain expansion of the language, see the remark after Definition 0.11). But it is not
necessarily integer-valued.

Another family of examples of dimensions is the following. Take a superstable (or su-
persimple, or superrosy) theory, suppose rk(T ) = ωα · n+ β for some ordinals α, β with
β < ωα and some integer n, where rk is lascar, SU or thorn-rank. Then for any inter-
pretable set X, define dim(X) := k if rk(X) = ωα · k + γ for some k ∈ N and γ < ωα.
With this definition, dim is an additive integer-valued dimension.

Remark: Note that in the definition of a dimension, it is not required that dimensional
0 sets are finite. In fact, in the examples above where the dimension comes from the
coefficient of ωα of lascar/SU/thorn-rank with α �= 0, we will always have infinite defin-
able sets of dimension 0. This is one of the major difficulties in generalizing Fact 3.1,
3.2 and 3.3.

Definition 3.5. Let G be a group. We say that G satisfies the M̃c-condition or G is an
M̃c-group if the following holds:

∃d ∈ N, ∀g0, · · · , gd ∈ G,
∨
i<d

([CG(g0, · · · , gi) : CG(g0, · · · , gi+1)] ≤ d) .

Fact 3.6. ([Wag00, Theorem 4.2.12, Proposition 4.4.3]) All interpretable groups in

simple theories satisfy the M̃c-condition.

Here is the generalization of Fact 3.2 and 3.3 in [Wag18].

Fact 3.7. ([Wag18, Theorem 4.11, Corollary 4.14]) Let G be a pseudofinite M̃c-group
with an additive dimension dim such that dim(G) > 0.

1. Then G has a definable finite-by-abelian subgroup C with dim(C) > 0.

2. If dim is integer-valued and dim(G) = 1, then G has a definable characteristic
finite-by-abelian subgroup C such that dim(C) = 1.

Fact 3.8. ([Wag18, Theorem 5.1, Corollary 5.2]) Let G be a pseudofinite M̃c-group with
an additive integer-valued dimension dim such that dim(G) = 2.

1. Then G has a definable finite-by-abelian subgroup C such that dim(C) ≥ 1 and
dim(NG(C)) = 2.

2. If definable sections of G also satisfy the M̃c-condition, then G has a definable
soluble subgroup D with dim(D) = 2.
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Remark: The proof of Fact 3.8, more precisely, of Theorem 5.1 in [Wag18] uses the
CFSG. But the assumption of Theorem 5.1 in [Wag18] is slightly weaker than the one
we stated. We refer to an earlier version of this proof, [Wag15, Theorem 13, Corollary
14], which does not use the CFSG.

We specify the language for permutation groups: L contains two sorts G and X, with the
group language {·, (−)−1, id} on G and a function (−)(−) : X×G→ X which represents
the action of G on X. For x ∈ X and g ∈ G, we denote xg the value of the action of g
on x. We will also denote the conjugation g−1hg inside a group G as hg.

We recall the definition of a (definably) primitive permutation group.

Definition 3.9. A permutation group G acting on a non-empty set X is called primitive
if G acts transitively on X and preserves no non-trivial partition of X. If G is transitive
and preserves no non-trivial definable partition of X, then G is called definably primitive.

Remark: A transitive permutation group G is primitive if and only if any point stabilizer
StabG(x) := {g ∈ G : xg = x} is a maximal proper subgroup of G. Similarly, G is
definably primitive if and only if any StabG(x) is a definably maximal proper subgroup
of G, that is there is no definable subgroup D ≤ G such that StabG(x) � D � G.

Definition 3.10. We define S to be the class of all pseudofinite definably primitive
permutation groups (G,X) with an additive integer-valued dimension dim such that

dim(X) = 1, and such that G satisfies the M̃c-condition.

By Example 3.1 and Fact 3.6, S contains all pseudofinite definably primitive permutation
groups (G,X) in supersimple finite SU-rank theories such that SU(X) = 1. The aim
of this chapter is to get a classification of S similar to Fact 3.1. It turned out that
the restrictions on S are enough for us to classify members of S of dimension 1 and 2.
However, we need more combinatorial assumptions for dimension greater or equal to 3,
one of which is similar to the M̃c-condition but for stabilizers, and the other one is a
minimality condition on X. We list them here.

Notation: Let G be a group acting on some structure X, for x ∈ X we write StabG(x)
for the point-stabilizer {g ∈ G : xg = x}, and for B ⊆ X we write

PStabG(B) :=
⋂
x∈B

StabG(x)

as the point-wise stabilizer.

1. M̃s-condition on (G,X):

∃d ∈ N, ∀g0, . . . , gd ∈ G,
∨
i<d

([PStabG(g0, . . . , gi) : PStabG(g0, . . . , gi+1)] ≤ d) .

2. (EX)-condition on X:

X contains no infinite set of 1-dimensional equivalence classes for any definable
equivalence relation on X.
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Fact 3.11. ([Wag00, Theorem 4.2.12, Proposition 4.4.3]) All interpretable groups in

simple theories satisfy the M̃s-condition.

Now we are able to state our main result.

Theorem 3.12. Let (G,X) ∈ S.

1. If dim(G) = 1, then G has a definable normal abelian subgroup A, such that
dim(A) = 1 and A acts regularly on X.

2. If dim(G) = 2 and definable sections of G satisfy the M̃c-condition. Then there
is a definable subgroup H � G of dimension 2, and an interpretable pseudofinite
field F of dimension 1, such that (H,X) is definably isomorphic to (F+ �D,F+)
for some D ≤ F× of dimension 1.

3. If dim(G) ≥ 3. Suppose definable sections of G satisfy the M̃c-condition, G satisfies

the M̃s-condition and X satisfies the (EX)-condition. Then dim(G) = 3 and there
is a definable subgroup D ≤ G of dimension 3 and an interpretable pseudofinite
field F of dimension 1 such that D is definably isomorphic to PSL2(F ) and (G,X)
is definably isomorphic to (H,PG1(F )), where PSL2(F ) ≤ H ≤ PΓL2(F ).

This theorem enables us to analyse the pseudofinite definably primitive permutation
groups of infinite SU-rank, which is an immediate generalization of Fact 3.1.

Corollary 3.13. Let (G,X) be a pseudofinite definably primitive permutation group
in a supersimple theory. Suppose SU(G) = ωαn + γ and SU(X) = ωα + β for some
γ, β < ωα and n ∈ N. Then one of the following holds:

1. SU(G) = ωα+γ, and there is a definable abelian subgroup A of SU-rank ωα acting
regularly on X.

2. SU(G) = 2, and there is an interpretable pseudofinite field F of SU-rank 1 with
(G,X) definably isomorphic to (F+ � H,F+), where H is a subgroup of F× of
finite index.

3. SU(G) = 3, and there is an interpretable pseudofinite field F of SU-rank 1 such
that (G,X) is definably isomorphic to (PSL2(F ),PG1(F )) or (PGL2(F ),PG1(F )).

Remark: Fact 3.1 uses the CFSG for SU-rank greater or equal to 3, so do our results
for dimension greater or equal to 3, in particular Section 3.4 and Section 3.5 uses the
CFSG without mentioning it explicitly.

The rest of this chapter is organised as the following. Section 3.2 gives some general
analysis of the basic properties of M̃c-groups with an additive integer-valued dimension.
Section 3.3 deals with pseudofinite definably primitive permutation groups of dimensions
1 and 2. The main results are Theorem 3.27 and Theorem 3.35. Section 3.4 handles
the rest, i.e. permutation groups of dimension greater or equal to 3. The corresponding
result is obtained in Theorem 3.53. The last part, Section 3.5 studies the special case of
pseudofinite definably primitive permutation groups in supersimple theories of infinite
rank. Theorem 3.58 concludes this section.
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3.2 M̃c-groups with a dimension

In this section we will first establish some general results about M̃c-groups with an
additive integer-valued dimension.

In the following lemmas, we assume that dim is an additive integer-valued dimension on
a group G.

Definition 3.14. We say a subgroup H ≤ G is broad if dim(H) > 0. And we say H is
wide in G if dim(H) = dim(G).

Lemma 3.15. Let H0, . . . , Hn be a finite family of wide definable subgroups of G. Then⋂
i≤nHi is also wide in G.

Proof. It suffices to prove the claim when n = 1, the rest follows by induction. By the
properties of dimension, we have that dim(G/H0) = dim(G) − dim(H0) = 0. Similarly,
dim(G/H1) = 0.

Note that there is a definable injection from G/(H0 ∩ H1) to G/H0 × G/H1 sending
g(H0 ∩ H1) to (gH0, gH1). Hence dim(G/(H0 ∩ H1)) ≤ dim(G/H0) + dim(G/H1) = 0.
We obtain

dim(H0 ∩H1) = dim(G)− dim(G/(H0 ∩H1)) = dim(G).

Lemma 3.16. Suppose G is finite-by-abelian. Then for any g0, . . . , gn ∈ G, the central-
izer CG(g0, . . . , gn) is wide in G.

Proof. Since G is finite-by-abelian, the derived subgroup G′ is finite. For any g ∈ G,
the set g−1gG = {g−1h−1gh : h ∈ G} is a subset of G′, hence is finite. Therefore, gG

is finite and is of dimension 0. Note that there is a definable bijection between gG and
G/CG(g). Thus, dim(CG(g)) = dim(G)− dim(gG) = dim(G).

As CG(gi) is definable and wide in G for each i ≤ n, so is CG(g0, . . . , gn) by Lemma
3.15.

Lemma 3.17. Let B1 � A1 and B2 � A2 be subgroups of G. If both A1/B1 and A2/B2

are finite-by-abelian, then so is (A1 ∩A2)/(B1 ∩B2).

Proof. For the derived subgroups, we have

((A1∩A2)/(B1∩B2))
′ = ((A1∩A2)

′(B1∩B2))/(B1∩B2) ⊆ ((A′
1∩A′

2)(B1∩B2))/(B1∩B2).

Since both A′
1B1/B1 = (A1/B1)

′ and A′
2B2/B2 = (A2/B2)

′ are finite, so is the product
(A′

1B1/B1)× (A′
2B2/B2). Define a function

f : ((A′
1 ∩A′

2)(B1 ∩B2))/(B1 ∩B2) −→ (A′
1B1/B1)× (A′

2B2/B2)

by sending a(B1 ∩ B2) to (aB1, aB2). It is easy to check that f is injective. Therefore,
((A′

1 ∩ A′
2)(B1 ∩ B2))/(B1 ∩ B2) is finite. We conclude that ((A1 ∩ A2)/(B1 ∩ B2))

′ is
finite and (A1 ∩A2)/(B1 ∩B2) is finite-by-abelian.
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From now on, we assume further that G is M̃c.

Definition 3.18. Let H1 and H2 be two subgroups of G. We say H1 is almost contained
in H2, denoted as H1 � H2, if [H1 : H2∩H1] <∞. If both H1 � H2 and H2 � H1 hold,
then H1 and H2 are called commensurable.

For two subgroups H,K ≤ G, the almost centralizer of K in H is defined as

C̃H(K) := {h ∈ H : [K : CK(h)] <∞}.

The almost center is defined as Z̃(H) := C̃H(H).

Let D be an infinite family of subgroups of G. We say D is uniformly commensurable if
there is some N ∈ N such that [D : D ∩D′] ≤ N for all D,D′ ∈ D.

Fact 3.19. ([Hem15, Proposition 3.3 ]) When G is M̃c and H,K are definable subgroups
of G, then C̃H(K) is also definable.

We list a useful fact for almost centralizers here.

Fact 3.20. [Hem15, Theorem 2.10] Let H and K be two definable subgroups of G.
Then H � C̃G(K) if and only if K � C̃G(H).

Lemma 3.21. Let D := CG(ḡ) be the centralizer of some finite tuple ḡ ∈ Gn. Suppose
D is wide in G. Then there is a wide definable normal subgroup N of G such that N is
commensurable with E :=

⋂
i≤kD

ti for some k ∈ N and t0, . . . , tk ∈ G.

Proof. By the M̃c-condition, there are t0, . . . , tk ∈ G and d ∈ N such that for any
t ∈ G we have [

⋂
i≤kD

ti :
⋂
i≤kD

ti ∩ Dt] ≤ d. Let E :=
⋂
i≤kD

ti . Since E is a finite
intersection of wide subgroups, E is also wide by Lemma 3.15. For any h1, h2 ∈ G,

[Eh1 : Eh1 ∩ Eh2 ] = [E : E ∩ Eh2h−1
1 ] ≤

∏
i≤k

[E : E ∩Dtih2h
−1
1 ] ≤ dk+1.

Therefore E := {Et : t ∈ G} is a family of uniformly commensurable definable subgroups
of G. By Schlichting’s Theorem (Fact 0.36), there is a definable subgroup N of G, which
is invariant under all automorphisms of G stabilizing E setwise, and is commensurable
with all members of E . In particular, N is normal in G and is commensurable with E,
hence is also wide.

Lemma 3.22. Let M,N be subgroups of G. Then

Z̃(M) ∩ Z̃(N) ≤ Z̃(M) ∩N ≤ Z̃(M ∩N).

Proof. Clearly, we have Z̃(M) ∩ Z̃(N) ≤ Z̃(M) ∩N for any M,N ≤ G.

If g ∈ Z̃(M) ∩N , then g ∈M ∩N and [M : CM (g)] <∞. Hence,

[M ∩N : CM∩N (g)] = [M ∩N : CM (g) ∩N ] ≤ [M : CM (g)] <∞,

and we get g ∈ Z̃(M ∩N). Therefore, Z̃(M) ∩N ≤ Z̃(M ∩N).

Lemma 3.23. Let M,N be subgroups of G. If M is commensurable with N , then Z̃(M)
is commensurable with Z̃(N).
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Proof. If g ∈ Z̃(M ∩N), then

[M : CM (g)] ≤ [M : CM∩N (g)] ≤ [M : M ∩N ][M ∩N : CM∩N (g)] <∞,

hence, g ∈ Z̃(M). Similarly, Z̃(M ∩N) ≤ Z̃(N). Therefore, Z̃(M ∩N) ≤ Z̃(M)∩ Z̃(N).
Together with Lemma 3.22, we have

Z̃(M ∩N) = Z̃(M) ∩ Z̃(N) = Z̃(M) ∩N = Z̃(N) ∩M.

Since M,N are commensurable,

[Z̃(M) : Z̃(M) ∩ Z̃(N)] = [Z̃(M) : Z̃(M) ∩N ] ≤ [M : M ∩N ] <∞.

Similarly, Z̃(N) and Z̃(M) ∩ Z̃(N) are commensurable.

Lemma 3.24. Let H,D be definable subgroups of G. Define

HD
0 := {h ∈ H, dim(hD) = 0}.

Then there are d ∈ N and a definable group T ≤ D such that

HD
0 = {h ∈ H, [T : CT (h)] ≤ d}.

In particular, HD
0 is a definable subgroup of H.

Proof. It is easy to see that 1 ∈ HD
0 and that it is closed under inverse. Note that

(h1h2)
D ⊆ hD1 h

D
2 . Therefore, if h1, h2 ∈ HD

0 , then

dim((h1h2)
D) ≤ dim(hD1 ) + dim(hD2 ) = 0.

Hence, h1h2 ∈ HD
0 .

By the M̃c-condition, there are h0, · · · , hn ∈ HD
0 and d ∈ N such that [T : CT (h)] ≤ d

for all h ∈ HD
0 , where T := CD(h0, · · · , hn). Since for each hi, dim(CD(hi)) = dim(D),

we have dim(T ) = dim(CD(h0, · · · , hn)) = dim(D). Let

M := {h ∈ H, [T : CT (h)] ≤ d}.

Then M is definable. We claim that M = HD
0 . By definition, HD

0 ⊆ M . On the
other hand, if h ∈ M , then dim(CD(h)) ≥ dim(CT (h)) = dim(T ) = dim(D). Hence,
dim(hD) = 0 and h ∈ HD

0 .

3.3 Permutation groups of dimension 1 and 2

In this section, we analyse the permutation groups in S of dimension 1 or 2.

Here is a useful lemma for (definably) primitive permutation groups that we will use a
lot without referring to it explicitly.

Lemma 3.25. Let (G,X) be a (definably) primitive permutation group and A a (defin-
able) normal subgroup of G. Then A is either trivial or acts transitively on X.
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Proof. Fix x ∈ X. If xA �= X, then by normality of A, the set of orbits of A forms a
(definable) G-invariant partition of X. By (definable) primitivity, xA = {x}. As the
action is transitive, for any y ∈ X, there is some g ∈ G such that y = xg. Thus,
yA = xgA = xAg = {x}g = {y}. Therefore, A = {id}.
Lemma 3.26. Let (G,X) be a definably primitive permutation group. If G has a defin-
able non-trivial normal abelian subgroup A, then A acts regularly on X and A is either
divisible torsion free or elementary abelian.

Moreover, G = A � Gx where Gx = StabG(x) for some x ∈ X, and Gx acts on X =
xA � A by conjugation.

In particular if (G,X) ∈ S, then we have in addition dim(A) = 1.

Proof. As G acts definably primitively on X and A � G is non-trivial, A acts transitively
on X. If xa = xb for some x ∈ X and a, b ∈ A, then for any y ∈ X, by transitivity,
y = xc for some c ∈ A. As A is abelian, we get

ya = xca = xac = xbc = xcb = yb.

Hence, a = b. Therefore, A acts regularly on X. Fix some x ∈ X. Then a �→ xa is a
definable bijection from A to X. Thus, if (G,X) ∈ S, then dim(A) = dim(X) = 1.

For any n ∈ ω let nA := {an : a ∈ A}. Then nA is a definable characteristic subgroup of
A, hence definable abelian normal in G. If dim(nA) = 1, then nA also acts regularly on
X, whence nA = A. Otherwise, dim(nA) = 0, and nA is trivial by definable primitivity
of G. Therefore, A is either divisible torsion free or elementary abelian.

Let Gx := StabG(x). As A acts regularly on X, we have A ∩Gx = {1}. For any g ∈ G
there is a unique element a ∈ A such that xa = xg. Hence, x = xga

−1
, so ga−1 ∈ Gx and

g ∈ AGx. As A ∩Gx = {1}, we obtain G = A�Gx.

Note that for any g ∈ Gx and any a ∈ A, we have (xa)g = xg
−1ag. Therefore, if we

identify A with X via a �→ xa, then Gx acts on A by conjugation.

Combining the two lemmas above, we get the first part of our main result.

Theorem 3.27. Let (G,X) ∈ S. If dim(G) = 1, then G has a definable wide abelian
normal subgroup A such that A acts regularly on X. Moreover, A is either divisible
torsion-free or elementary abelian.

Proof. By Fact 3.7(2), G has a definable wide normal finite-by-abelian subgroup A.
Consider the derived subgroup A′. It is finite and characteristic in A, hence is a definable
normal subgroup of G. Since G acts definably primitively on X, either A′ is trivial or
A′ acts transitively on X. If A′ acts transitively on X, then dim(A′) ≥ dim(X) = 1,
contradicting that A′ is finite. Hence A′ is trivial and A is a definable wide abelian
normal subgroup of G. By Lemma 3.26, A acts regularly on X and is either divisible
torsion free or elementary abelian.

We now proceed to analyse the groups in S of dimension greater than 1. The following
lemma gives a key property of them.
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Lemma 3.28. Let (G,X) ∈ S with dim(G) ≥ 2. If K � G and dim(K) ≥ 2, then there
is no element a ∈ K \ {1}, such that CK(a) is wide in K.

Proof. Suppose, towards a contradiction, that there is a ∈ K \ {1} and dim(CK(a)) =

dim(K) ≥ 2. By the M̃c-condition, there are g0, · · · , gn ∈ G such that

{(
⋂
i≤n

CK(agi))g : g ∈ G}

is a uniformly commensurable family. SinceK � G, we have agi ∈ K and (
⋂
i≤nCK(agi))g

is a subgroup of K for any g ∈ G. Note that CK(agi) = (CK(a))gi is wide in K for each
gi. Thus, dim(

⋂
i≤nCK(agi)) = dim(K) ≥ 2.

By Schlichting’s Theorem there is a definable subgroup N of K such that N � G and
is commensurable with

⋂
i≤nCK(agi), whence wide in K. Consider the group Z̃(N).

We claim that dim(Z̃(N)) ≥ 1. Since N is commensurable with
⋂
i≤nCK(agi), we

have agi ∈ C̃K(N) and agi �= 1. As C̃K(N) is definable normal in G, by definable
primitivity of G, it is of dimension at least 1 (otherwise, it would be trivial). Note that
Z̃(N) = N ∩ C̃K(N). Then

dim(Z̃(N)) = dim(K)− dim(K/Z̃(N)) ≥ dim(K)− (dim(K/N) + dim(K/C̃K(N)))

≥ dim(K)− 0− dim(K) + dim(C̃K(N)) = dim(C̃K(N)) ≥ 1.

Therefore Z̃(N) acts transitively on X.

By [Hem15, Proposition 3.28], the commutator group E := [Z̃(N), C̃N (Z̃(N))] is finite.
Since N is normal in G and E is characteristic in N and definable of dimension zero, E
is trivial. Therefore, C̃N (Z̃(N)) ⊆ CN (Z̃(N)).

We claim that C̃N (Z̃(N)) is wide in K. Indeed, by Fact 3.20, we have N � C̃N (Z̃(N))
if and only if Z̃(N) � C̃N (N) = Z̃(N). Thus, N is commensurable with C̃N (Z̃(N)).

Let H := CN (Z̃(N)). Then H is a definable wide subgroup of K and is normal in G.
Fix x ∈ X. For all h ∈ Z̃(N),

StabH(xh) = (StabH(x))h = StabH(x).

Since Z̃(N) acts transitively on X, we get StabH(x) = {1}. However, as |xH | = [H :
StabH(x)] (the Orbit-Stabilizer Theorem) we have

dim(StabH(x)) = dim(H)− dim(OrbH(x)) = dim(K)− dim(X) ≥ 2− 1 = 1,

contradicting that StabH(x) = {1}.

In the following, we will show that if we have a finite-by-abelian group acting on a one-
dimensional abelian group, then under certain conditions, we can define a pseudofinite
field.

Theorem 3.29. Let A be an abelian group of dimension 1 and D a broad definable
group of automorphisms of A. Suppose that A0 ≤ A is definable of dimension 0 and D
acts on A/A0. Let D0 := {d ∈ D : ∀a ∈ A, ad ∈ a + A0}, a definable normal subgroup
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of D. Write a + A0 ∈ A/A0 as [a] and dD0 ∈ D/D0 as [d]. Suppose D satisfies the
following condition:

(♣) If [a] �= [0] then dim([a]CD/D0
([d1],...,[dn])) = 1 for any n ∈ N, d1, . . . , dn ∈ D.

Then there is an interpretable pseudofinite field F such that F+ is isomorphic to A/A0

and D/D0 embeds into F× with dim(D/D0) = 1.

Remark: If D is finite-by-abelian and A0 := {a ∈ A : dim(aD) = 0} is of dimension 0,
then condition (♣) is satisfied. Indeed, CD(d1, . . . , dn) has finite index in D when D is
finite-by-abelian. As a �∈ A0 by assumption, dim(aD) = 1. Hence, dim(aCD(d1,...,dn)) =
dim(aD) = 1 and

dim([a][CD(d1,...,dn)]) = dim([a]CD/D0
([d1],...,[dn])) = 1.

Also note that condition (♣) implies that dim(aD) = 1 for a �∈ A0.

Let RD(A/A0) be the ring of endomorphisms of A/A0 generated by D, with addition
being the component-wise addition on A and multiplication being composition. Then
any r ∈ RD(A/A0) is equal to some

∑
i≤n(−1)εidi, but this representation need not be

unique.

Lemma 3.30. For all r ∈ RD(A/A0), either r is the constant [0] function 0, or r is an
automorphism of A/A0.

Proof. We first prove the following claim: if there is some [a] ∈ A/A0 such that
[a] �= [0] and [a]r = [0], then dim(ker(r)) = 1. Indeed, let d1, . . . , dn be the elements
of D which appear in a representation of r. Then ([a][h])r = ([a]r)[h] = [0] for any
[h] ∈ CD/D0

([d1], . . . , [dn]). As a consequence, [a]CD/D0
([d1],...,[dn]) ⊆ ker(r). We have

dim([a]CD/D0
([d1],...,[dn])) = 1 by condition (♣). Therefore, ker(r) has dimension 1.

Now we prove a similar assertion for the dimension of the image: if there is some
[a] �= [0] such that [a]r �= [0], then dim(im(r)) = 1. Let d1, . . . , dn be all the elements in
D which appear in a representation of r. For any [d] ∈ CD/D0

([d1], . . . , [dn]), we have

([a][d])r = ([a]r)[d], i.e. ([a]r)[d] ∈ im(r). Hence, ([a]r)CD/D0
([d1],...,[dn]) ⊆ im(r). Then

1 ≥ dim(im(r)) ≥ dim(([a]r)CD/D0
([d1],...,[dn])) = 1.

Since dim(ker(r)) + dim(im(r)) = dim(A/A0) = 1, we can conclude that either ker(r) =
{[0]} or im(r) = {[0]}. If im(r) = {[0]}, then r = 0. Otherwise r is injective. As (G,X)
is a pseudofinite structure, r must also be surjective, hence an automorphism.

We can now see that RD(A/A0) is a division ring. To get an interpretable pseudofinite
field, we need to define another ring. Let R̃D(A/A0) be the ring of endomorphisms of
A/A0 generated by D and the definable set

{(d− d′)−1 : d, d′ ∈ D, d− d′ �= 0}

(the existence of (d− d′)−1 as automorphisms of A/A0 is guaranteed by Lemma 3.30).
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By exactly the same proof, we can show that every non-zero element of R̃D(A/A0) is
an automorphism of A/A0.

Lemma 3.31. The division ring R̃D(A/A0) is interpretable.

Proof. Pick some [a] �= [0]. For any r ∈ R̃D(A/A0) with r �= 0, consider the set [a]Dr

which is the image of [a]D under r. Since dim([a]D) = dim(aD) = 1 and ker(r) is of
dimension 0 (as r �= 0), we have that [a]Dr is of dimension 1. We claim that

([a]D − [a]D) ∩ ([a]Dr − [a]Dr) �= {[0]}.

Indeed, if ([a]D − [a]D)∩ ([a]Dr − [a]Dr) = {[0]}, then [a]d1 + [a]d2r = [a]d3 + [a]d4r if and
only if [a]d1 = [a]d3 and [a]d2r = [a]d4r for any d1, d2, d3, d4 ∈ D. Hence any element in
[a]D + [a]Dr can be uniquely written as the sum. Therefore,

dim([a]D + [a]Dr) = dim([a]D) + dim([a]Dr) = 2,

which contradicts the fact that [a]D+[a]Dr is a subset of A/A0 and A/A0 is of dimension
1. Hence, there is some d1, d2, d3, d4 ∈ D such that [a]d1−d2 = [a](d3−d4)r �= [0], i.e.
[a](d3−d4)(d3−d4)−1(d1−d2) = [a](d3−d4)r. Since [a] �= [0] and d3 − d4 is an automorphism,
[a]d3−d4 �= [0]. Thus, r = (d3 − d4)−1(d1 − d2).
Therefore, R̃D(A/A0) is a subset of

E/ ∼:= {(d3 − d4)−1(d1 − d2) : d1, d2, d3, d4 ∈ D, d3 − d4 �= 0}/ ∼,

where r ∼ r′ if r and r′ induces the same endomorphism on A/A0 for r, r′ ∈ E. On the
other hand, E/ ∼ is clearly a subset of R̃D(A/A0). Since E is definable, R̃D(A/A0) is
interpretable.

Now we prove Theorem 3.29.

Proof. By Lemma 3.31, R̃D(A/A0) is a pseudofinite interpretable domain. Any finite do-
main is a field (Wedderburn’s Little Theorem). Therefore, it is also true for all pseudofin-
ite domain and we get F := R̃D(A/A0) is a field. It is an interpretable pseudofinite field.

Consider D0 = {d ∈ D : ∀a ∈ A, ad ∈ a + A0}. Take any a �∈ A0, we know the set
[a]D ⊆ A/A0 has dimension 1. Hence, D/D0 has dimension at least 1.

By definition of F = R̃D(A/A0) we know that D/D0 embeds into F×. Hence dim(F ) ≥ 1
and D/D0 is commutative.

For any [a] �= [0], let [a]F := {[a]r : r ∈ F}. Define a map ia : F+ → [a]F by sending
r to [a]r. It is clearly well-defined, surjective and is a group homomorphism. It is also
injective. Indeed, if [a]r = [a]r

′
for some r, r′ ∈ F , then [a](r−r′) = [0]. Hence r− r′ = 0,

and we get r = r′. Therefore, F+ is isomorphic to [a]F . Note that [a]F is a definable
subgroup of A/A0. Moreover, it is of dimension 1, since dim(F ) ≥ 1. We claim that
aF = A/A0. If there is [b] ∈ (A/A0) \ [a]F , then [b]F is also isomorphic to F+ and
of dimension 1. As [a]F and [b]F are wide subgroups of A, we have [a]F ∩ [b]F is of
dimension 1. In particular, there is [c] �= [0]. such that [c] = [b]r1 = [a]r2 for some

r1, r2 �= 0. Therefore, [b] = [a]r2r
−1
1 and [b] ∈ [a]F , a contradiction.
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Finally, we check that dim(D/D0) = 1. By the proof before, we know that D/D0 is
of dimension at least 1. On the other hand, we also have dim(D/D0) ≤ dim(F×) =
dim(F+) = dim(A) = 1. Hence, dim(D/D0) = 1 as we have claimed.

Lemma 3.32. Suppose A is an abelian group of dimension 1 and M is a group of
automorphisms of A. Let D � M be a broad definable finite-by-abelian subgroup such
that A0 := {a ∈ A : dim(aD) = 0} is of dimension 0. Then D satisfies the condition
(♣). Let F := R̃D(A/A0) be the interpretable pseudofinite field defined as in Theorem
3.29. Then M acts naturally by automorphisms on F and PStabM (F )/M0 embeds into
F× with dim(PStabM (F )/M0) = 1, where PStabM (F ) is the point-wise stabilizer of F
and

M0 := {m ∈ PStabM (F ) : ∀a ∈ A, am ∈ a+A0}.

Proof. Note that A0 is definable by Lemma 3.24. And clearly, it is a D-invariant sub-
group of A, so the induced action of D on A/A0 is well-defined. By the remark following
Theorem 3.29, we have that D satisfies the condition (♣).

Note that for any a ∈ A and m ∈M , if dim(aD) = 0, then dim((am)D) = dim((aD)m) =
0. Therefore, M also acts by automorphisms on A/A0.

We define an action of M on F = R̃D(A/A0) by conjugation, i.e. for any h ∈ M and
r ∈ F , define rh := h−1rh (as the composition of automorphisms of A/A0). We claim
that rh ∈ F for any r ∈ F and h ∈M .

We prove by induction on the construction of r ∈ F :

1. If r = d ∈ D, then dh = h−1dh ∈ D, as D is normal in M .

2. If r = (d1 − d2)−1 for some d1d
−1
2 �∈ D0, then for any [x], [y] ∈ A/A0, we have

[x]r
h

= [y] if and only if [x]h
−1(d1−d2)−1h = [y]

if and only if [x] = [y]h
−1(d1−d2)h

if and only if [x] = [y](d1)
h−(d2)h

if and only if [x]((d1)
h−(d2)h)−1

= [y].

Thus, rh = ((d1)
h − (d2)

h)−1 ∈ F .

3. If r = r1 + r2, then rh = h(r1 + r2)h
−1 = (r1)

h + (r2)
h. By induction hypothesis

(r1)
h, (r2)

h ∈ F , hence rh ∈ F .

4. If r = r1r2, then rh = hr1r2h
−1 = (r1)

h(r2)
h. Again by induction hypothesis

(r1)
h, (r2)

h ∈ F , hence rh ∈ F .

Clearly, for any h ∈M the map (·)h is a field endomorphism, whence by pseudofiniteness,
(·)h is surjective, whence a field automorphism of F .

Consider the group T := PStabM (F ). Let T0 := {t ∈ T : ∀a ∈ A, at ∈ a + A0}. Note
that T0 is normal in T as T acts on A0. Since D/D0 is abelian and D0 ⊆ T0, we have
DT0/T0 ≤ Z(T/T0). For any m1, . . . ,mn ∈ T and a �∈ A0, we have [a]CT/T0

([m1],...,[mn]) ⊇
[aD], thus dim([a]CT/T0

([m1],...,[mn])) = 1. Therefore, we may apply Theorem 3.29 with
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A,A0 and T and get an interpretable pseudofinite field F̄ such that A/A0 � F̄+, T/T0
embeds into F̄× and dim(T/T0) = 1. Note that F ⊆ F̄ and F+ � A/A0 � F̄+, by
pseudofiniteness F̄ = F .

We now specify the case for (G,X) ∈ S with dim(G) = 2. Basically, we will apply
Theorem 3.29 to get the interpretable field. However, we still need to find a definable
normal abelian subgroup in G. This is the aim of the following two lemmas.

Lemma 3.33. Let (G,X) ∈ S with dim(G) = 2. Then G has no definable wide finite-
by-abelian subgroup.

Proof. Suppose G has such a subgroup A. By the M̃c-condition, we can take D := CG(ḡ)
minimal up to finite index for some finite tuple ḡ in G such that [A : A ∩D] <∞.

We claim that A ∩ D ≤ Z̃(D). As A is finite-by-abelian, we have [A : CA(a)] < ∞
for any a ∈ A ∩ D. Together with [A : A ∩ D] < ∞, we get [A : CA(a) ∩ D] < ∞.
Since CA(a) ∩ D ≤ CD(a), also [A : A ∩ CD(a)] < ∞. By minimality of D we have
[D : CD(a)] < ∞. Hence, a ∈ Z̃(D) and A ∩ D ≤ Z̃(D) as claimed. Since A ∩ D has
finite index in A and A is wide, Z̃(D) is also wide in G.

By Lemma 3.21, there is a definable wide normal subgroup N � G such that N is
commensurable with

⋂
i≤kD

gi for some g0, . . . , gk ∈ G. By Lemma 3.22, we have⋂
i≤k Z̃(D)gi ≤ Z̃(

⋂
i≤kD

gi). Since Z̃(D) is wide, so is
⋂
i≤k Z̃(D)gi , hence also Z̃(

⋂
i≤kD

gi).

Since N is commensurable with
⋂
i≤kD

gi , we get dim(Z̃(N)) = dim(Z̃(
⋂
i≤kD

gi)) = 2 by

Lemma 3.23. Thus, Z̃(N) is a definable normal finite-by-abelian subgroup of G. Since
Z̃(N)′ is finite and normal in G, it is trivial by definably primitivity. Thus, Z̃(N) is a
definable normal abelian subgroup of G. By Lemma 3.26, dim(Z̃(N)) = 1, contradicting
that dim(Z̃(N)) = 2.

Lemma 3.34. Let (G,X) ∈ S with dim(G) = 2. Assume that the definable sections of

G also satisfy the M̃c-condition. Then G has a definable normal abelian subgroup A of
dimension 1.

Proof. By Fact 3.8(1), G has a broad definable finite-by-abelian subgroup C whose
normalizer is wide. We refer to the proof in [Wag15, Theorem 13], see also Appendix A.
From the construction of C in the proof, there are two cases. The first case is that C is
normal in G. Then C is not wide by Lemma 3.33, so dim(C) = 1. Since C ′ is definable
normal in G of dimension 0, it is trivial. Therefore, A := C is a definable normal abelian
group of dimension 1.

The second case is that C := Z̃(D) where D is commensurable with E = CG(b̄) for

some b̄ ∈ Gn and dim(D) ≥ 1. By the M̃c-condition and Schlichting’s Theorem, there
is a definable normal subgroup H of G, such that H is commensurable with

⋂
i≤k E

gi ,

for some g0, . . . , gk ∈ G. We may assume that dim(Z̃(H)) = dim(Z̃(
⋂
i≤k E

gi) = 0, for

otherwise, we are in the previous case. Since H is normal in G and Z̃(H) is characteristic
in H, Z̃(H) is a definable normal subgroup of G of dimension 0. Hence Z̃(H) cannot act
transitively on X and is trivial by Lemma 3.25. By Lemma 3.22 and Lemma 3.23, we
get

⋂
i≤k Z̃(Egi) ≤ Z̃(

⋂
i≤k E

gi) and Z̃(
⋂
i≤k E

gi) is commensurable with Z̃(H). Hence⋂
i≤k Z̃(Egi) =

⋂
i≤k Z̃(E)gi is finite. As D is commensurable with E, we have Z̃(D) is
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commensrable with Z̃(E). We may assume [Z̃(D) : Z̃(D) ∩ Z̃(E)] ≤ � for some � ∈ N.
Then ⎡⎣⋂

i≤k
Z̃(D)gi :

⎛⎝⋂
i≤k

Z̃(D)gi

⎞⎠ ∩
⎛⎝⋂
i≤k

Z̃(E)gi

⎞⎠⎤⎦
≤
∏
j≤k

⎡⎣⋂
i≤k

Z̃(D)gi :

⎛⎝⋂
i≤k

Z̃(D)gi

⎞⎠ ∩ Z̃(E)gj

⎤⎦
=
∏
j≤k

⎡⎣⋂
i≤k

Z̃(D)gi :

⎛⎝⋂
i �=j

Z̃(D)gi

⎞⎠ ∩ (Z̃(D)gj ∩ Z̃(E)gj
)⎤⎦

=
∏
j≤k

[
Z̃(D)gj : Z̃(D)gj ∩ Z̃(E)gj

]
≤ �k+1.

As
⋂
i≤k Z̃(E)gi is finite, we get

⋂
i≤k Z̃(D)gi is also finite.

By assumption, NG(Z̃(D)) is wide, hence dim(NG(Z̃(D))/Z̃(D)) = 1. By Fact 3.7, there
is a definable B ≤ NG(Z̃(D)) such that B/Z̃(D) is broad finite-by-abelian. Hence,
B is wide in G. Clearly, Bgi/Z̃(D)gi is also broad finite-by-abelian for any gi. By
Lemma 3.17, the group

⋂
i≤k B

gi/
⋂
i≤k Z̃(D)gi is finite-by-abelian. Since

⋂
i≤k Z̃(D)gi

is finite,
⋂
i≤k B

gi is finite-by-abelian. However,
⋂
i≤k B

gi is definable and wide in G,
contradicting Lemma 3.33.

Now we can conclude the dimension 2 case.

Theorem 3.35. Let (G,X) ∈ S with dim(G) = 2. Suppose the definable sections of G

satisfy the M̃c-condition. Then G = A � Gx and there is an interpretable pseudofinite
field F such that A � F+ and D embeds into F× for some wide definable subgroup
D � Gx.

Moreover, Gx induces a group of automorphisms on F .

Proof. By Lemma 3.34, G has a definable normal abelian subgroup A. By Lemma 3.26
we have G = A�Gx and Gx acts on A by conjugation, where Gx is the point-stabilizer
StabG(x). By Fact 3.7(2), Gx has a definable finite-by-abelian normal subgroup D. For
any a ∈ A, if dim(aD) = 0, then dim(CD(a)) = dim(D) = 1. Since A× CD(a) ⊆ CG(a),
we get dim(CG(a)) ≥ dim(A � CD(a)) = 2 = dim(G). So a = 0 by Lemma 3.28.
Therefore, A0 := {a ∈ A : dim(aD) = 0} = {0}. Applying Theorem 3.29 and Lemma
3.32 with A0 = {0} and D0 = {1}, we get the desired result.

If we add some extra condition on sets of dimension 0, we can also make the full stabilizer
Gx embeds into F× as in Fact 3.1.

Lemma 3.36. Suppose an infinite field F and a group B of field-automorphisms of F
are interpretable in a theory with an additive integer-valued dimension dim such that
dim(F ) = 1. Then B is either trivial or infinite.

Proof. If B is finite, then any σ ∈ B must have finite order. Thus, the fixed field fix(σ)
is of finite index in F . As 1 = dim(F ) = [F : fix(σ)] ·dim(F ), we get fix(σ) = F . Thus,
B is trivial.
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Corollary 3.37. Let (G,X) ∈ S with dim(G) = 2. Suppose the definable sections of G

satisfy M̃c-condition, and that the dimension-0 group EF := Gx/PStabGx(F ) is finite.
Then Gx embeds into F×.

Proof. By the argument before, (G,X) interprets a pseudofinite field F of dimension 1
and a group of field automorphisms EF := Gx/PStabGx(F ). By assumption, the group
EF is finite, hence is trivial by Lemma 3.36. By Lemma 3.32, Gx = PStabGx(F ) embeds
into F×.

3.4 Permutation groups of dimension ≥ 3

This section deals with permutation groups in S of dimension greater or equal to 3.
The general strategy will be different from the previous sections. All the proofs before
rely mostly on the M̃c-condition and properties of dimensions. From now on we will
use pseudofiniteness to go directly to finite structures, and then use the well-established
results of finite groups, such as CFSG.

Remark: From now on we will often assume that we work in an ultraproduct of finite
permutation group (G,X) =

∏
i∈I(Gi, Xi)/U for some non-principal ultrafilter U on

an infinite set I. Since our main results (Theorem 3.53 and Theorem 3.58) are about
interpretable properties of (G,X), any permutation group with the same theory will
share these properties. And by the definition of pseudofinite structures, the main results
hold for any pseudofinite permutation group satisfying the corresponding requirements.

As mentioned in the introduction, we need two extra assumptions: the M̃s-condition on
(G,X), and the (EX)-condition on X.

While we need these two additional assumptions in the main result, we still make our
statements as general as possible.

The following lemma only assume pseudofiniteness and the M̃c-condition.

Lemma 3.38. Let G =
∏
i∈I Gi/U be an ultraproduct of finite groups. Suppose G

satisfies the M̃c-condition. Then there is some n < ω and J ∈ U such that for all i ∈ J
we cannot find subgroups Di

0, . . . , D
i
n−1 of Gi which are center-less and commute with

each other.

Proof. This is standard. Fix any d ∈ N. Let n = (d + 1) · m such that 2m > d. If
the claim is not true, then for all J ∈ U there is i ∈ J such that there are subgroups
Di

0, . . . , D
i
n−1 in Gi as claimed. Let

J0 := {i ∈ I : Gi has centerless subgroups Di
0, . . . , D

i
n−1 which commute with each other.}

Then J0 ∈ U , since otherwise the complement would be in the ultrafilter which contra-
dicts our assumption.



Chapter 3. Pseudofinite primitive permutation groups 78

For i ∈ J0, choose 1 �= gij ∈ Di
j for each j < n, and put hik =

∏
j<m(gikm+j) for k ≤ d.

Clearly, for each i ∈ J0 and for any 1 ≤ k ≤ d we have

[CGi(h
i
0, . . . , h

i
k−1) : CGi(h

i
0, . . . , h

i
k)]

≥ [
∏
j<m

Di
km+j : CDi

km
(gikm)CDi

km+1
(gikm+1) · · ·CDi

km+m−1
(gikm+m−1)]

≥
∏
j<m

[Di
km+j : CDi

km+j
(gikm+j)] ≥ 2m > d.

Hence, G does not satisfy the M̃c-condition, a contradiction.

Suppose G =
∏
i∈I Gi/U . Let Hi be a non-trivial minimal normal subgroup in Gi

for i ∈ I. Then Hi is a direct product of isomorphic simple groups. Suppose Hi =
Ti " T

gi1
i " · · · " T

gini
i with gi1 , . . . , gini

∈ Gi and Ti simple. If Hi is not abelian, then
neither is Ti. Let H :=

∏
i∈I Hi/U and T =

∏
i∈I Ti/U .

Lemma 3.39. Let (G,X) ∈ S. In particular, G is a pseudofinite M̃c-group. Let H be
defined as above. If H is not abelian, then T is infinite and there is m ∈ N such that
H = T " T g1 " · · · " T gm for some g1, . . . , gm ∈ G.
Moreover, T and H are definable, and T is a simple pseudofinite group.

Proof. By Lemma 3.38, there is m ∈ N and J ∈ U such that Hi is m+ 1-fold product of
conjugates of Ti for all i ∈ J . Hence, H = T " T g1 " · · · " T gm for some g1 . . . , gm ∈ G.
We claim that T is infinite. Otherwise, if T is finite, then H is finite, hence definable.
Since H is non-trivial, it acts transitively on X. Hence, dim(X) ≤ dim(H) = 0, a
contradiction.

For each i ∈ I, since Ti is non-abelian, we may assume it is either an alternating group
Altni or a classical group of Lie type of rank ni over some field Fqi , denoted as clni(qi).
We claim that ni is bounded. If not, then for any n, for all large enough ni, the group
Altni will contain at least n commuting copies of Alt5, and clni(qi) will contain at least
n commuting copies of PSL2(Fpi), where pi is the characteristic of Fqi . Both cases
contradict Lemma 3.38. Thus, we may assume {Ti : i ∈ I} are classical groups of Lie
type of bounded Lie rank.

By [Wil95], T is a simple pseudofinite group. Hence, the theory of T in the language
of pure group is supersimple of finite SU-rank by [Ryt07]. As T is infinite nonabelian
simple, there is some x ∈ T such that the set xT is infinite. By the Indecomposability
Theorem (Fact 0.32), there is some infinite definable group D ≤ xT · · ·xT which is
normal in T , where xT · · ·xT is a k-fold product for some k ∈ N. Denote the k-fold
product of X as X · (k) ·X. Since T is simple, D = T . Therefore, xT · (k) · xT = T . As
H is normal and x ∈ H, we have

H ⊇ (xG · (k) ·xG)" (xG · (k) ·xG)g1 " · · ·" (xG · (k) ·xG)gm ⊇ T "T g1 " · · ·"T gm = H.

Consequently, H is definable. Moreover, since xH · (k) · xH = xT · (k) · xT = T , we also
get T definable.

Lemma 3.40. Let (G,X) ∈ S. Suppose G satisfies the M̃s-condition. Let H be a
normal definable subgroup of G. Suppose dim(H) = n. Then there are x1, . . . , xn ∈ X
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such that for all 1 ≤ i ≤ n we have

dim(PStabH(x1, . . . , xi)) = n− i.

Moreover, there are x1, . . . , xt ∈ X such that PStabH(x1, . . . , xt) = {1}.

Proof. We only need to show there are x1, . . . , xn ∈ X with dim(PStabH(x1, · · · , xn)) =

0. Since (G,X) satisfies M̃s-condition, so does (H,X). By the M̃s-condition, there are
x1, . . . , xm ∈ X and d ∈ N such that

[PStabH(x1, . . . , xm) : PStabH(x1, . . . , xm, x)] ≤ d,

for any x ∈ X. As H is normal in G, we get {(PStabH(x1, . . . , xm))g : g ∈ G} is
a uniformly commensurable family of definable subgroups. By Schlichting’s Theorem,
there is definable H0 � G such that H0 is commensurable with PStabH(x1, . . . , xm). By
Lemma 3.25, either xH0 = X or H0 is trivial. If xH0 = X, then

dim(xPStabH(x1,...,xm)) = dim(xH0) = 1.

By the Orbit-Stabilizer Theorem

|xPStabH(x1,...,xm)| = [PStabH(x1, . . . , xm) : PStabH(x1, . . . , xm, x)] ≤ d,

a contradiction. Therefore, H0 is trivial. As PStabH(x1, . . . , xm) is commensurable with
H0, we deduce PStabH(x1, . . . , xm) is finite. So we only need finitely many more points,
say xm+1, . . . , xt ∈ X, to distinguish 1 from other elements in PStabH(x1, . . . , xm).
Therefore, PStabH(x1, . . . , xt) = {1}.
To finish the proof we show that there is a subsequence xi1 , . . . , xin of x1, . . . , xm with
dim(PStabH(xi1 , . . . , xin)) = 0. Consider the dimensions of the following sequence

PStabH(x1),PStabH(x1, x2), . . . ,PStabH(x1, . . . , xm).

By the Orbit-Stabilizer Theorem, the dimension can drop at most 1 in each step. Hence,
m ≥ n. Take n elements, say xi1 , . . . , xin with i1 < i2 < · · · < in, such that each of the
corresponding dimension drops. By our choice,

1 ≥ dim((xij )
PStabH(xi1 ,...,xij−1

)) ≥ dim((xij )
PStabH(x1,x2,...,xij−1)) = 1,

for each 1 ≤ j ≤ n. Therefore, dim(PStabH(xi1 , . . . , xin)) = 0.

Lemma 3.41. Suppose (G,X) ∈ S satisfies the M̃s-condition. Let H be a non-trivial
normal definable subgroup of G. For any x ∈ X, define Lx := {y ∈ X : dim(xHy) = 0}.
Then Lx is uniformly definable with respect to x.

Proof. First note that since H is a definable subgroup of G, we have (H,X) also satisfies

M̃s-condition. Assume dim(H) = n. Note that since H is non-trivial, definable and
normal, it acts transitively on X. Thus, dim(StabH(x)) = n− 1 for any x ∈ X. By the

M̃s-condition, there are x1, . . . , xk ∈ X and d ∈ N such that dim(PStabH(x1, . . . , xk)) =
n− 1 and for any y ∈ X, we have either dim(PStabH(x1, . . . , xk, y)) = n− 2 or

[PStabH(x1, . . . , xk) : PStabH(x1, . . . , xk, y)] ≤ d.
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As dim(Hx1) = dim(PStabH(x1, . . . , xk)) = n − 1, we get dim(zHx1 ) = 0 if and only if
[PStabH(x1, . . . , xk) : PStabH(x1, . . . , xk, z)] ≤ d for any z ∈ X.

For any y ∈ X, let g ∈ H be such that (x1)
g = y. Then y ∈ Lx if and only if

dim(xH(x1)
g ) = 0 if and only if dim((xg

−1
)Hx1 ) = 0 if and only if there is g ∈ H such that

(x1)
g = y and

[PStabH(x1, . . . , xk) : PStabH(x1, . . . , xk, x
g−1

)] ≤ d.

Theorem 3.42. Suppose (G,X) ∈ S with dim(G) ≥ 3 satisfies the M̃s-condition and
X satisfies the (EX)-condition. Then G does not contain any nontrivial abelian normal
subgroup.

Proof. The theorem follows from the claims below.

Claim 3.43. If G has a nontrivial normal abelian subgroup H, then G has a definable
nontrivial normal abelian subgroup A.

Proof. If G has a non-trivial normal abelian subgroup, then G has a definable finite-by-
abelian subgroup A, which is normal in G and contains H, by [Hem15, Theorem 3.3(1)].
Since A′ is definable and of dimension 0, by definable primitivity, A′ is trivial, hence A
is abelian. Since A contains H, we get A is nontrivial.

Suppose the conclusion of Theorem 3.42 fails, then G has a nontrivial definable normal
abelian subgroup A. By Lemma 3.26, G = A � Gx where Gx := StabG(x) for some
x ∈ X. We identify A with X. Then Gx acts on A by conjugation, while A acts on itself
by addition. Our aim is to derive a contradiction.

Claim 3.44. Suppose (G,X) ∈ S and dim(G) ≥ 2. Assume G = A � Gx. Let C � Gx
with C definable and dim(C) ≥ 1. Then A� C also acts definably primitively on X.

Proof. We may assume that (G,X) is an ultraproduct of finite permutation groups and
A � Gx =

∏
i∈I Ai � (Gx)i/U for some ultrafilter U on I. The formula defining C also

defines Ci � (Gx)i for each i ∈ I. Let Wi ≤ Ai be a nontrivial Ci-irreducible subgroup,
that is a minimal nontrivial Ci-invariant subgroup. Consider W :=

∏
i∈IWi/U . Then

W is nontrivial and C-invariant. If there is V :=
∏
i∈I Vi/U with each Vi �= Wi non-

trivial and Ci-irreducible, then W ∩ V = ∅. Take a ∈ W \ {0} and b ∈ V \ {0}.
Note that A � C � G and dim(A � C) ≥ 2. By Lemma 3.28, we have CA�C(a) and
CA�C(b) are not wide in A�C. Therefore, dim(aC) = dim(bC) = 1. Moreover, we have
(aC − aC) ∩ (bC − bC) ⊆ W ∩ V = ∅. Hence, dim(aC + bC) = dim(aC) + dim(bC) = 2,
contradiction. Hence, we may assume that there is only one nontrivial Ci-irreducible
subgroup in any Ai.

Let H be any non-trivial definable C-invariant subgroup of A. Then each Hi is non-
trivial and C-invariant. Thus, Wi ⊆ Hi and we get W ⊆ H. Since C is normal in Gx,
Hg is also C-invariant for any g ∈ Gx. By the same argument, W ⊆ Hg. Therefore,
W ⊆ ⋂

g∈Gx
Hg. The group M :=

⋂
g∈Gx

Hg ≤ A is non-trivial, definable and Gx
invariant. As M ≤ A is Gx invariant and G = A � Gx, we have M is normal in G.
Since M is nontrivial, it must act transitively on X by Lemma 3.25. As A acts on
X regularly by Lemma 3.26, we deduce M = H = A. Therefore, A is the minimal
non-trivial definable C-invariant subgroup of A.



Chapter 3. Pseudofinite primitive permutation groups 81

Clearly, StabA�C(x) = C. Suppose there is a definable group C ≤ D ≤ A � C, then
D ∩ A ≤ A. Moreover, as (D ∩ A)C ≤ DC ∩ AC = D ∩ A, we have (D ∩ A)C = D ∩ A.
As A is the minimal non-trivial definable C-invariant subgroup of A, we conclude either
D ∩A = A or D ∩A = {0}. Therefore, either D = C or D = A� C.

By Lemma 3.40, we can find x̄ = (x1, . . . , xn−2) such that dim(PStabG(x̄)) = 2. We may
assume PStabG(x̄) ⊆ Gx and we write PStabG(x̄) as Gx̄. By Fact 3.8(1), Gx̄ has a broad
definable finite-by-abelian subgroup D such that NGx̄(D) has dimension 2.

Consider the group AD0 := {a ∈ A : dim(aD) = 0}. The dimension of AD0 is either 0 or
1. We will show that neither of them holds.

Claim 3.45. The dimension of AD0 is not 1.

Proof. Suppose dim(AD0 ) = 1. By Lemma 3.24, there are d ∈ N and a definable group
T ≤ D such that AD0 = {a ∈ A : [T : CT (a)] ≤ d} and dim(T ) = dim(D). Therefore

AD0 ≤ C̃G(T ). Since A is in definable bijection with X, by the (EX)-condition, AD0 has

finite index in A. Hence, A � C̃G(T ). By Fact 3.20, T � C̃G(A).

Let M := C̃G(A) ∩ Gx. Then dim(M) ≥ dim(T ) ≥ 1. Note that C̃G(A) is normal in
G, hence, M is normal in Gx. By Lemma 3.44, A �M = C̃G(A) also acts definably
primitively on X.

As C̃G(A) � C̃G(A), we have A � C̃G(C̃G(A)) by Fact 3.20. Thus, there is 0 �= a ∈
A such that [C̃G(A) : C

˜CG(A)
(a)] < ∞, which means C

˜CG(A)
(a) is wide in C̃G(A),

contradicting Lemma 3.28.

Claim 3.46. The dimension of AD0 is not 0.

Proof. Let M := NGx̄(D). As the normalizer of D is wide in Gx̄, we have dim(M) =
2. Suppose dim(AD0 ) = 0. We can apply Theorem 3.29 and Lemma 3.32 to get an
interpretable pseudofinite field F such that A/AD0 � F+ and M extends to a group of
automorphisms of F . Consider the point-wise stabilizer PStabM (F ). Let

M0 := {m ∈ PStabM (F ) : ∀a ∈ A, am ∈ a+AD0 }.

By Lemma 3.32, dim(PStabM (F )/M0) = 1. By the second part of Lemma 3.40, the
value of m ∈M0 is determined by its value on some a1, . . . , at ∈ A. Hence,

dim(M0) ≤ tdim(AD0 ) = 0.

Thus, dim(PStabM (F )) = 1.

Therefore, T := M/PStabM (F ) is a group of automorphisms of F such that the action
is faithful and dim(T ) = dim(M)− dim(PStabM (F )) = 2− 1 = 1.

Consider F T0 := {k ∈ F : dim(kT ) = 0}. By the fact that T is a group of automorphisms
of F , we can check easily that F T0 is a subfield of F . Note that F T0 is definable (apply
Lemma 3.24 to the group (F+ � T )). We claim that either F T0 = F or dim(F T0 ) = 0.
Indeed, if dim(F T0 ) = 1, then

1 = dim(F ) = [F : F T0 ] · dim(F T0 ) = [F : F T0 ],
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and we get F = F T0 .

If F T0 = F , then by the M̃c-condition of the interpretable group F+ � T , there are
k0, · · · , kt ∈ F and n ∈ N such that if we define H := CT (k0, · · · , kt), then for all k ∈ F
we have [H : CH(k)] ≤ n, that is |kH | ≤ n. Consider the group F+�H. From the above
argument we know that F+ � C̃F+�H(H). By Fact 3.20, we have H � C̃F+�H(F+).
Therefore, there is h �= id such that [F+ : CF+(h)] < ∞. Since CF+(h) is a definable
subfield of F and dim(F ) = 1, we have CF+(h) = F+, contradicting h �= id.

Thus F T0 is of dimension 0. We may assume we are working in an ultraproduct of finite
structures. Suppose F :=

∏
i∈I Fi/U . Let Y := F \F T0 . Clearly, there is J ∈ U such that

|Yi| ≥ |Fi|/2 for all i ∈ J . If Fi = Fpni
i

, then |Ti| ≤ ni. Therefore, there are infinitely

many T -orbits on Y and each of them has dimension 1. Note that X is in definable
bijection with F+, contradicting the (EX)-condition.

This finishes the proof of Theorem 3.42.

Corollary 3.47. Suppose (G,X) ∈ S with dim(G) ≥ 3 satisfies the M̃s-condition and
X satisfies the (EX)-condition. Then G has a definable subgroup T and a definable
normal subgroup H such that H = T × T g1 × · · · × T gm for some g1, . . . , gm ∈ G and T
is definably simple and non-abelian.

Proof. We first take an ultraproduct of finite permutation groups (G∗, X∗) such that
(G,X) ≡ (G∗, X∗). By Lemma 3.39 and Theorem 3.42, we deduce that G∗ has a
definable normal subgroup H∗ = T ∗×(T ∗)g′1×· · ·×(T ∗)g′m with T ∗ definable and simple
non-abelian. Hence, G also has definable subgroups H,T and elements g1, . . . , gm ∈ G
such that T is definably simple and H = T × T g1 × · · · × T gm is normal in G.

In the following we will show that actually T is normal in G, hence H = T .

The following three lemmas all assume that (G,X) ∈ S satisfies the M̃s-condition and
the (EX)-condition.

Lemma 3.48. Let H be a non-trivial definable normal subgroup of G. Suppose dim(H) ≥
2. Then for any x ∈ X, the group Hx := StabH(x) has only finitely many orbits on X.

Proof. Note that H is definable normal and non-trivial. It acts transitively on X.
Therefore, dim(H) ≥ dim(xH) = 1 and dim(Hx) = dim(H)− dim(xH) = dim(H)− 1 ≥ 1
for any x ∈ X.

Define a relation ∼ on X as: x ∼ y if dim(xHy) = 0. Clearly, ∼ is reflexive. It is
symmetric. If dim(xHy) = 0, then dim(Hy/Hyx) = 0. Therefore, dim(Hyx) = dim(Hy) =
dim(Hx), and yHx has dimension 0. It is also transitive. If both xHy and yHz have
dimension 0, then dim(Hx) = dim(Hxy) = dim(Hy) = dim(Hyz). That is, both Hxy and
Hyz are wide in Hy. Therefore, Hxyz = Hxy∩Hyz is also wide in Hy. Hence dim(Hxyz) =
dim(Hy) = dim(Hz). We get dim(xHz) = dim(Hz/Hxz) ≤ dim(Hz/Hxyz) = 0.

Moreover, ∼ is G-invariant and definable. It is definable by Lemma 3.41. For G-
invariance, if x ∼ y, then for any g ∈ G, we have (xg)Hyg = (xg)(Hy)g = (xHy)g. Thus,
dim((xg)Hyg ) = dim(xHy) = 0. Consequently, xg ∼ yg.
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By definable primitivity, ∼ is either trivial or the universal congruence. By Lemma
3.40, there is y ∈ X such that dim(PStabH(x, y)) = dim(Hx) − 1. Thus, ∼ is not the
universal congruence. Therefore, every Hx orbit on X \ {x} has dimension 1. By the
(EX)-condition, there can be only finitely-many such orbits.

Lemma 3.49. Let H be a normal definable subgroup of G with dim(H) ≥ 2. Sup-
pose there is a definable subgroup E such that StabH(x) ≤ E ≤ H and dim(E) =
dim(StabH(x)). Then E = StabH(x).

Proof. LetHx := StabH(x). As dim(E) = dim(Hx), we have dim((Hx)m∩Hx) = dim(Hx)
for any m ∈ E. Note that dim((Hx)m ∩Hx) = dim(Hx) if and only if dim(Hxm ∩Hx) =
dim(Hx) if and only if dim(xHxm ) = 0 if and only if x ∼ xm. By Lemma 3.48, x ∼ y if
only if x = y. Therefore, xm = x and m ∈ Hx. We conclude that E = Hx.

Lemma 3.50. If D is a definable normal subgroup of G of finite index and that dim(D) ≥
2, then D also acts definably primitively on X.

Proof. Let M be a definable subgroup of D such that Dx ≤ M ≤ D, where Dx :=
StabD(x). Then either dim(M) = dim(Dx) = n− 1 or dim(M) = dim(G).

If dim(M) = dim(D) = dim(G), then

dim(xM ) = dim(M/Mx) = dim(M/M ∩Dx) ≥ dim(D/Dx) = 1.

Consider the right coset space of M in D. Assume D =
⋃
i∈IMdi with Mdi �= Mdj

for i �= j. Let E := {xMdi : i ∈ I}. We claim that xMdi ∩ xMdj = ∅ for any i �= j.
Suppose xMdi ∩ xMdj �= ∅, then there are mi,mj ∈ M with xmidi = xmjdj . Therefore,
midi(dj)

−1(mj)
−1 ∈ Dx. As Dx ≤ M , we get di(dj)

−1 ∈ M , hence i = j. Note that
dim(xMdi) = dim(xM ) = 1 for all i ∈ I. By the (EX)-condition, I must be finite.
Consequently, M has finite index in D, hence [G : M ] <∞. By Poincaré’s Theorem, M
contains a definable normal subgroup S of G which also has finite index in G. Therefore,
xS = X and xM ⊇ xS = X. For any d ∈ D, there is m ∈ M such that xd = xm. Thus,
dm−1 ∈ Dx ≤M and d ∈M . Therefore, D = M .

Suppose dim(M) = dim(Dx), then by Lemma 3.49, we get M = Dx. Therefore, D acts
definably primitively on X.

Lemma 3.51. Let H = T × T g1 × · · · × T gm be as above. Then H = T and CG(H) is
trivial. If (G,X) is an ultraproduct of finite structures, say (G,X) =

∏
i∈I(Gi, Xi)/U ,

then H =
∏
i∈I soc(Gi)/U where soc(Gi) is the socle of Gi.

Proof. Consider GT := {g ∈ G : T g = T}. As {T, T g1 , . . . , T gm} is permuted by G,
the index of GT in G is finite. By Schlichting’s Theorem, there is a definable normal
subgroup G0 :=

⋂
g∈G(GT )g, which also has finite index in G. By definition, H ≤ G0.

By Lemma 3.50, G0 also acts definably primitively on X.

Note that T is normal in G0. Consider S := CG0(T ). It is definable and normal in G0. If
S is non-trivial, then T and S centralize each other and both act transitively on X. Fix
x ∈ X. For any h ∈ T , we have StabS(xh) = (StabS(x))h = StabS(x). Since xT = X,
we get StabS(x) = {1}. Similarly, StabT (x) = {1}. We conclude that both S and T
act regularly on X. Therefore, T has dimension 1. By Fact 3.7(2), T has a definable



Chapter 3. Pseudofinite primitive permutation groups 84

broad finite-by-abelian normal subgroup. As T is definably simple, it is abelian, which
contradicts Theorem 3.42.

Therefore, CG0(T ) is trivial and H = T . By the same reason, CG(H) = CG(T ) is
also trivial. Suppose (G,X) =

∏
i∈I(Gi, Xi)/U then H =

∏
i∈I Hi/U where each Hi is

a minimal normal subgroup in the finite group Gi. Suppose {Di : i ∈ I} is another
collection of minimal normal subgroups of Gi such that {i ∈ I : Di �= Hi} ∈ U . Then
Di and Hi centralize each other for all Di �= Hi. Therefore,

∏
i∈I Di/U ≤ CG(H), which

entails that
∏
i∈I Di/U is trivial. Hence, H =

∏
i∈I soc(Gi)/U .

Now, we can finish our analysis of higher dimensional cases. We state here a result
concerning finite simple groups.

Fact 3.52. ([EJMR11, the Claim in Lemma 5.15]) Let G(q) be a group of Lie type
(possibly twisted) over a finite field Fq, with G �= PSL2(Fq), and let P (q) be a parabolic
subgroup of G(q). Then |G(q) : P (q)| > O(q).

Theorem 3.53. Let (G,X) be a pseudofinite definably primitive permutation group
satisfies the following conditions:

1. there is an additive integer-valued dimension on (G,X) with dim(X) = 1 and
dim(G) ≥ 3;

2. G and its definable sections satisfy the M̃c-condition;

3. X satisfies the (EX)-condition;

4. (G,X) satisfies the M̃s-condition.

Then dim(G) = 3, there is a definable subgroup s(G) and an interpretable pseudofinite
field F of dimension 1 such that we can identify X ∼= PG1(F ), s(G) ∼= PSL2(F ) and
PSL2(F ) ≤ G ≤ PΓL2(F ). Moreover, if (G,X) =

∏
i∈I(Gi, Xi) is an ultraproduct of

finite structures, then s(G) :=
∏
i∈I soc(Gi)/U .

Proof. Let Hi := soc(Gi) and H :=
∏
i∈I soc(Gi)/U . By the lemmas above, we know

that H = s(G) is definable and H is a pseudofinite simple group. By the main theorem
of [Wil95], there is J ∈ U such that Hj is a finite Chevalley group of a fixed Lie type
and of fixed Lie rank n for all j ∈ J . Take x =

∏
i∈I xi/U ∈ X. By Lemma 3.48, the

number of orbits of (Hi)xi is bounded. Hence, we may apply [Sei74, Theorem 2]. It
follows that there is J ′ ∈ U such that J ′ ⊆ J and for all i ∈ J ′ the following holds:
there is a parabolic subgroup Pi of Hi and xi ∈ Xi such that (Hi)xi ≤ Pi. Let P ′

i be
the maximal parabolic subgroup which contains Pi. Let P :=

∏
i∈I P

′
i/U . By [DS11,

Lemma 6.2], P � H is definable in the language of pure groups with parameters in H.
Note that P is infinite as H is. Also note that [H : P ] = ∞, since otherwise, H would
have a definable normal subgroup of finite index, contradicting that H is a pseudofinite
simple group.

By [Ryt07, Chapter 5], H is uniformly bi-interpretable with a pseudofinite field F or a
pseudofinite difference field (F, σ). More precisely, there is J ∈ U such that the following
holds:
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• For all j ∈ J , we have Hj bi-interprets a finite field Fj , and the bi-interpretation
is uniform in j;

• For all j ∈ J , we have Hj bi-interprets a finite difference field (F22ki+1 ,Frob2ki ) for

some ki, where Frob2ki is the map x �→ x2
ki , and the bi-interpretation is uniform

in j;

• For all j ∈ J , we have Hj bi-interprets a finite difference field (F32ki+1 ,Frob3ki ) for

some ki, where Frob3ki is the map x �→ x3
ki , and the bi-interpretation is uniform

in j.

We may assume F :=
∏
i∈I Fi/U and (F, σ) :=

∏
i∈I(F22ki+1 ,Frob2ki )/U or (F, σ) :=∏

i∈I(F32ki+1 ,Frob3ki )/U .

By [Hru91, Corollary 3.1] and [Ryt07, Proposition 3.3.19], the theory of F or (F, σ)
eliminates imaginaries after adding parameters for an elementary submodel. Since both
P and H are interpretable in F or in (F, σ), so does the right-coset space P\H. By
elimination of imaginaries, we may suppose that P\H is a definable subset of Fm for
some m.

Now we work in F or (F, σ). We denote the SU -rank in F or (F, σ) as SUF . And
we call a definable set defined in the language of (difference) rings with parameters
in F as F -definable. Note that F is an ultraproduct of a one-dimensional asymptotic
class by [CvdDM92] for a pure field, and so is (F, σ) by [Ryt07, Theorem 3.5.8]. Thus,
SUF (F ) = 1.

We claim that for any infinite F -definable set Y ⊆ Fn, we have Y has positive dimension
in (G,X).

Indeed, since Y is infinite, SUF (Y ) ≥ 1. For 1 ≤ i ≤ m, consider the projection πi of
Fn onto the ith co-ordinate. There must be some i such that πi(Y ) is an infinite set,
i.e., SUF (πi(Y )) ≥ 1. Since SUF (F ) = 1 and πi(Y ) ⊆ F , we get SUF (πi(Y )) = 1. By
the Indecomposability Theorem, there is a definable subgroup B of F+ such that B ⊆
(±πi(Y ))k for some k-fold sum of ±πi(Y ), and finitely many translates of B cover πi(Y ).
Hence, SUF (B) = SUF (F+) = 1, and B has finite index in F+. As B ⊆ (±πi(Y ))k we
get dim(B) ≤ kdim(πi(Y )). Therefore,

dim(Y ) ≥ dim(πi(Y )) ≥ 1

k
dim(B) =

1

k
dim(F+) ≥ 1

k
> 0,

where the penultimate inequality is by the fact that H ⊆ Fm for some m ≥ 1 and
dim(H) �= 0, hence dim(F ) ≥ 1.

Therefore, dim(P\H) ≥ 1 and dim(P ) ≥ 1. Note that

dim(P\H) ≤ dim(Hx\H) = dim(xH) = 1.

Hence, 1 ≤ dim(P ) = dim(Hx). And we get dim(H) ≥ 2. Since H is a definable normal
subgroup of G, by Lemma 3.49, we get P = Hx.

Note that X is in definable bijection with Hx\H = P\H. As P is definable in the
language of pure groups with parameters in H, the action of H on X is interpretable in
H itself, hence also interpretable in F or (F, σ).
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By elimination of imaginaries, we may assume X is definable subset of Fm. Consider
SUF (X), i.e., SUF (P\H). We claim that SUF (X) = 1.

Recall that any infinite F -definable set has positive dimension. Therefore, any non-
algebraic F -type can be completed to a (G,X)-type of positive dimension. Take a
generic element ā = (a1, . . . , am) ∈ Fm in X. Then there is some i such that tpF (ai) is
non-algebraic. Suppose towards a contradiction that SUF (X) ≥ 2. Then

2 ≤ SUF (ā) = SUF (ā/ai) + SUF (ai) = SUF (ā/ai) + 1.

We get SUF (ā/ai) ≥ 1. By the claim above, we have dim(ā/ai) ≥ 1 and dim(ai) ≥ 1. By
the additivity of dimension, dim(X) ≥ dim(ā) = dim(ā/ai)+dim(ai) ≥ 2, a contradiction.
Therefore, SUF (X) = 1.

We conclude that
SUF (P\H) = SUF (X) = 1 = SUF (F ).

Recall that both F and (F, σ) is an ultraproduct of a one-dimensional asymptotic class.
There is a nature notion of dimension that comes from counting for all definable sets,
we denote this dimension as dimF . By the fact that 1 = SUF (F ) = dimF (F ), we must
have that SUF and dimF coincide for all definable sets. Therefore, by the definition of
one dimensional asymptotic class, there is r ∈ R>0 such that

st.

( |P\H|
|F |

)
= r.

By Fact 3.52, we must have H ∼= PSL2(F ), and X is definably isomorphic to the
projective space PG1(F ).

Consider CG(H) � G. It is trivial by Lemma 3.51. Therefore, the action of G on H by
conjugation is faithful.

AsH ∼= ∏
i∈I PSL2(Fqi)/U and the largest automorphism group of PSL2(Fqi) is PΓL2(Fqi),

we get PSL2(F ) ≤ G ≤ PΓL2(F ) where PΓL2(F ) = PGL2(F ) �Aut(F ).

3.5 Permutation groups of infinite SU-rank

In this section, we treat the special case when (G,X) is supersimple of infinite SU-rank.
It is a natural candidate where our classification can be applied. However, the main
result of this section is negative. More precisely, we will show that all these groups of
dimension greater or equal to 2 will have SU-rank 2 or 3. Hence, there are no interesting
infinite SU-rank case.

By Example 3.1, Fact 3.6 and Fact 3.11, we can take the dimension as the coefficient
of some term ωα of the SU-rank and the M̃c and M̃s-conditions always hold in super-
simple theories. To apply our classification, it remains to show that when the dimension
is greater or equal to 3, X satisfies the (EX)-condition with the assumption of super-
simplicity.

Lemma 3.54. Suppose (G,X) ∈ S and its theory is supersimple. Let A be a definable
abelian normal subgroup of G and SU(A) = ωα + β with β < ωα. Then SU(A) = ωα.
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Proof. By Fact 0.33, A has a type-definable subgroup C of SU-rank ωα unique up to
commensurability. Since A is normal in G, for any g ∈ G we have Cg ≤ A. Then C
and Cg are commensurable, as SU(Cg) = ωα and Cg ≤ A. By Fact 0.35, there is a
definable group D with C ≤ D ≤ A such that SU(D) = ωα. Since C ∩ Cg ≤ D ∩ Dg

and SU(C ∩ Cg) = ωα = SU(D) = SU(Dg) for any g ∈ G, we get D and Dg are
commensurable. By Schlichting’s Theorem, we may assume D is normal in G. By
definably primitivity D = A. Therefore, SU(A) = SU(D) = ωα.

Corollary 3.55. Let (G,X) be a pseudofinite definably primitive permutation group
whose theory is supersimple. Let SU(G) = ωαn + γ for some γ < ωα. Suppose n ≥ 3
and SU(X) = ωα + β for some β < ωα. Then all the conditions in Theorem 3.53 are
satisfied. Hence, there is an interpretable pseudofinite field F such that X ∼= GL1(F )
and

PSL2(F ) ≤ G ≤ PΓL2(F ).

Moreover, G is bi-interpretable with (F,B) where B is a group of automorphisms of F .

Proof. For any interpretable set S with SU(S) = ωαk + β for some β < ωα and
k ≥ 0, we put dim(S) := k. By Example 3.1, this is an additive integer-valued di-

mension. Moreover, by supersimplicity G and its definable sections satisfy the M̃c and
M̃s-conditions. We only need to check the (EX)-condition. Indeed, we claim that
SU(X) = ωα. Hence, by the Lascar Inequality, X satisfies the (EX)-condition.

Claim 3.56. SU(X) = ωα.

Proof. We may assume (G,X) =
∏
i∈I(Gi, Xi)/U is an ultraproduct of finite structures.

Let H :=
∏
i∈I Hi/U , where Hi is a nontrivial minimal normal subgroup of Gi. We

distinguish two cases: H is abelian and H is non-abelian.

If H is abelian. Then by [Hem15, Theorem 3.3(1)] G has a definable finite-by-abelian
normal subgroup A ≥ H. By definably primitivity, A is abelian. By Lemma 3.26, A
acts regularly on X. Since dim(X) = 1, we know that SU(A) = SU(X) = ωα + β for
some β < ωα. By Lemma 3.54, SU(A) = ωα. Thus, SU(X) = ωα.

If H is non-abelian. Then H is definable and H = T × T g1 × · · · × T gm for some m ≥ 0
by Lemma 3.39. As T is definable and simple, by Fact 0.34, SU(T ) = ωαk, for some
k ≥ 1. Therefore, SU(H) = ωαk(m + 1). Suppose SU(X) = ωα + β with β < ωα. By
the Lascar Inequality (Fact 0.30), for any x ∈ X, we have

SU(StabH(x)) + SU(xH) ≤ SU(H) ≤ SU(StabH(x))⊕ SU(xH).

As xH = X, we must have SU(StabH(x)) = ωα(km+ k− 1) + γ for some γ < ωα. Then

ωαk(m+ 1) = SU(H) ≥ SU(StabH(x)) + SU(xH) = ωαk(m+ 1) + β.

We deduce β = 0 and SU(X) = ωα.

By Theorem 3.53 there is an interpretable pseudofinite field F such that PSL2(F ) ≤
G ≤ PΓL2(F ).
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Now we prove thatG is bi-interpretable with (F,B) where B is a group of automorphisms
of F . We identify G with a group between PSL2(F ) and PΓL2(F ) through definable
isomorphism. Suppose (F,B) is given and F =

∏
i∈I Fqi/U . As

PΓL2(Fqi) = PGL2(Fqi) �Gal(Fqi/Fpi)

where pi = char(Fqi) and [PGL2(Fqi) : PSL2(Fqi))] ≤ 2 for any i ∈ I, we have either G :=(∏
i∈I PSL2(Fqi)/U

)
� B or G :=

(∏
i∈I PGL2(Fqi)/U

)
� B. Clearly G is interpretable

in (F,B) in both cases.

Suppose G = H �B is given, where B ≤ Aut(F ). By the argument before, G interprets
F . Let ϕ(g, x, y) be the formula expressing: x, y ∈ F and[(

1 x
0 1

)]g
=

[(
1 y
0 1

)]
,

where

[(
a b
c d

)]
denotes the coset

(
a b
c d

)
F× in PGL2(F ). Then ϕ(g, F, F ) is the

graph of a partial function. Let ξ(g) be the formula expressing that ϕ(g, F, F ) is the
graph of a field automorphism of F . Define φ(g, x, y) := ϕ(g, x, y) ∧ ξ(g) and ∼ be the
equivalence relation on G×F×F defined as (g, x, y) ∼ (g′, x′, y′) if and only if x = x′, y =
y′ and ϕ(g, F, F ) = ϕ(g′, F, F ). Then φ(G,F, F )/ ∼ is a group of automorphisms of F
containing B. We need to show that φ(G,F, F )/ ∼ contains no other automorphisms.
Note that ξ(G) defines a subgroup of G. Then ξ(G) ∩ H = ξ(H) ≤ G. Let ∼H be
the equivalence relation such that g ∼H g′ if and only if ϕ(g, F, F ) = ϕ(g′, F, F ). Then
ξ(H)/ ∼H is a group of automorphism of F . As H and ξ(H) are interpretable in F , so
does ξ(H)/ ∼H . We conclude ξ(H)/ ∼H is trivial by the fact that a pure field can only
interpret the trivial group of field-automorphisms of itself. Therefore B = φ(G,F, F )/ ∼.

In the following, we will exclude the possibility that B is infinite. This is due to Theorem
2.17.

Corollary 3.57. Suppose (F,B) =
∏
i∈I(Fpni

i
, Bi)/U is a pseudofinite structure with F

a field and B an infinite set of automorphisms of F . Then the theory of (F,B) is not
simple.

Proof. Take ai a generator of the multiplicative group of Fpni
i

. Define Ai = aBi
i . As

ai is the generator and all Bi are powers of the Frobenius, we have |Ai| = |Bi| ≤ ni.
Let A =

∏
i∈I Ai/U . Then we can apply Theorem 2.17 to (F,A) and get the desired

result.

Combing the results above, we have the following conclusion.

Theorem 3.58. Let (G,X) be a pseudofinite definably primitive permutation group
whose theory is supersimple. Let SU(G) = ωαn + γ for some γ < ωα and n ≥ 1.
Suppose SU(X) = ωα + β for some β < ωα. Then one of the following holds:

1. SU(G) = ωα + γ, and there is a definable, divisible torsion-free or elementary
abelian subgroup A of SU-rank ωα which acts regularly on X.
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2. SU(G) = 2, and there is an interpretable pseudofinite field F of SU-rank 1 such
that G ∼= F+ �D where D has finite index in F×.

3. SU(G) = 3, and there is an interpretable pseudofinite field F of SU-rank 1 such
that G ∼= PSL2(F ) or G ∼= PGL2(F ).

Proof. Let dim be defined as the coefficient of ωα.

When n = 1, we apply Theorem 3.27 and get a definable normal abelian subgroup A of
SU-rank greater than or equal to ωα. By Lemma 3.54, we have SU(A) = ωα.

If n = 2, then by Theorem 3.35, there is an interpretable pseudofinite field F of dimension
1 such that Gx induces a group of automorphisms B on F . By Corollary 3.57, we
know that B must be finite. Then by Corollary 3.37, Gx embeds into F× and B is
trivial. Since the SU-rank of F× is a monomial, and dim(F ) = dim(Gx) = 1, we get
SU(Gx) = SU(F×) = ωα. Therefore, Gx has finite index in F×. Suppose [F× : Gx] = k.
Consider (F×)k = {gk : g ∈ F×}. As F× =

∏
i∈I F

×
i /U , there is J ∈ U such that Fi is

cyclic for all i ∈ J and (F×
i )k is the unique subgroup of index k. Therefore, (F×)k is

also the unique definable subgroup of index k of F×. Thus, Gx = (F×)k. Now (G,X)
is definable in F , so (G,X) is supersimple of SU-rank 2.

If n ≥ 3, then by Corollary 3.55, (G,X) is bi-interpretable with a pseudofinite field F
together with a group of automorphisms B. By Corollary 3.57, B is finite, hence is
trivial by Lemma 3.36. Therefore, PSL2(F ) ≤ G ≤ PGL2(F ). For any finite field Fq,
we have [PGL2(Fq) : PSL2(Fq)] ≤ 2. Hence, either G ∼= PSL2(F ) or G ∼= PGL2(F ).



Chapter 4

Schlichting’s Theorem for
Approximate Subgroups

4.1 Introduction

Schlichting’s Theorem was first introduced in [Sch80] with the focus on the existence of
normal subgroups.

Fact 4.1. (Schlichting’s Theorem) Let G be a group and H be a subgroup. If there is
some n ∈ N such that [H : H ∩Hg] ≤ n for all g ∈ G, then there is a normal subgroup
N of G such that N is commensurable with H, that is, there is n′ ∈ N with

max{[N : N ∩H], [H : H ∩N ]} < n′.

This theorem was rediscovered and generalized to commensurable subgroups permutated
by some group of automorphisms by Bergman and Lenstra in [BL89]. It was further
generalized to a wide class of structures including vector spaces, fields and sets by Wagner
in [Wag98] with the right notion of commensurability in each case. The group case is
the Fact 0.36.

Approximate subgroups are subsets in an ambient group which are almost stable under
products. They have a certain subgroup-like behaviour. Although the formal definition
was given in [Tao08] around 2008, approximate subgroups have been studied for more
than fifty years, especially the case of sets of integers with small doubling in additive
combinatorics. The study of general finite approximate subgroups has gained more
attention since the work of Breuillard, Green and Tao around 2010 who gave a complete
classification of finite approximate subgroups in [BGT12].

We recall the definition of an approximate subgroups.

Definition 4.2. Let K ∈ N be a parameter, G be a group and A ⊆ G. We say that A
is a K-approximate subgroup, if

• 1 ∈ A,

• A is symmetric: A = A−1; and

90
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• there is a set X ⊆ G with |X| ≤ K such that AA ⊆ XA.

We can also consider a family of K-approximate subgroups which are uniformly “close”
to each other and wonder if there is an invariant object. Here closeness is defined similar
to the last requirement in the definition of approximate subgroups. More precisely:

Definition 4.3. Let G be an ambient group, X,Y approximate subgroups and N ∈ N.
We say X is N -commensurable with Y if there are Z0, Z1 ⊆ G with max{|Z0|, |Z1|} ≤ N
such that X ⊆ Z0Y and Y ⊆ Z1X.

A family X of approximate subgroups of G is called uniformly N -commensurable if X
is N -commensurable with Y for all X,Y ∈ X .

We call X a uniform family of commensurable approximate subgroups if there areK,N ∈
N such that X is a family of uniformly N -commensurable K-approximate subgroups.

Let X ,Y be uniform families of commensurable approximate subgroups and H be an
approximate subgroup. We say X (or H) is commensurable with Y, if one/any member
of X (or H respectively) is commensurable with one/any member of Y.

Thus, Schlichting’s Theorem for approximate subgroups would state:

Theorem 4.4. If X is a uniform family of commensurable approximate subgroups in
an ambient group G, then there is an approximate subgroup H ⊆ G such that H is
commensurable with X and invariant under all automorphisms of G stabilizing X set-
wise.

We will prove this theorem in this chapter. Indeed, suppose X is a family of uniformly
N -commensurable K-approximate subgroups. We will give an explicit construction of
H which is a KH -approximate subgroup NH -commensurable with X . Moreover, KH

and NH only depends on K and N but not on X . However, we cannot get an explicit
bound on KH and NH based on K and N . In conclusion, we have the following:

Corollary 4.5. Let K and N be two positive natural numbers, then there is L ∈ N such
that for any family X of uniformly N -commensurable K-approximate subgroups, there
is an L-approximate subgroup H which is L-commensurable with X and invariant under
all automorphisms of G stabilizing X set-wise.

4.2 Examples and preliminaries

Let us first look at some examples.

Example 4.1. • Consider rational numbers with addition (Q,+). Let

Xm := [−m− 1,−m] ∪ {0} ∪ [m,m+ 1] ⊆ Q

for m ∈ N≥0. Put X := {Xm : m ∈ N≥0}. It is easy to check that X is a family
of uniformly 3-commensurable 5-approximate subgroups. Note that the group of
automorphisms of (Q,+) is isomorphic to Q×, and the only automorphism that
stabilizes X set-wise is ±1. Therefore, any Xm ∈ X is an approximate subgroup
as required in Theorem 4.4. In particular the interval [−1, 1] is.
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• Let U be a non-principal ultrafilter on N. Let (Q∗,≤∗) :=
∏
n∈N(Q,≤)/U be the

ultrapower. Let E be the set of infinitesimals together with 0, i.e.

E := {ε ∈ Q∗ : − 1

n
<∗ ε <∗ 1

n
, for all n ∈ N}.

As U is non-principal, E is an infinite set. For m, ε, η ∈ Q∗ let

Xm,ε,η := [−m− ε− 1,−m− η] ∪ {0} ∪ [m+ η,m+ ε+ 1] ⊆ Q∗.

Let X := {Xm,ε,η : m ∈ N≥0, ε, η ∈ E}. Then X is a family of uniformly 5-
commensurable 5-approximate subgroups. Now for any ε ∈ E, the group auto-
morphism σε which maps x to (1 + ε) · x stabilizes X set-wise, however if ε �= 0,
then no X ∈ X is invariant.

Claim 4.6. I :=
⋃{[−1− ε, 1+ ε] : ε ∈ E} is an approximate subgroup commensur-

able with X and is invariant under all automorphisms of (Q∗,+) which stabilise
X set-wise.

Proof. It is easy to see that I is an approximate subgroup of (Q∗,+) commen-
surable with X . Let σ be an automorphism of (Q∗,+) stabilizing X . We claim
that for any ε ∈ E , there is η ∈ E such that σ([−1 − ε, 1 + ε]) = [−1 − η, 1 + η].
Suppose not, then there are m ∈ N≥0 and η′, ε′ ∈ E such that m + η′ > 0 and
σ([−1−ε, 1+ε]) = Xm,ε′,η′ . Let r ∈ [−1−ε, 1+ε] such that σ(r) = m+η′. Note that
r
2 ∈ [−1− ε, 1 + ε] and σ( r2) ∈ Xm,ε′,η′ . However, σ( r2) = σ(r)

2 = m+η′
2 �∈ Xm,ε′,η′ , a

contradiction.

Before we go to the technical details, we want to explain briefly the idea of the proof of
Theorem 4.4 first. Basically, we will follow the strategy of the group case, see [Wag98]
or [Wag00, Theorem 4.2.4]. Given a uniform family of commensurable approximate
subgroups X , we will first build a semi-lattice by taking finite unions. We will associate
each finite union with a commensurable approximate subgroup where we reverse the
order of the lattice. Let I the family of approximate subgroups associated to finite
unions. In the group case, one can find a unique minimal object in the lattice I, hence
get an invariant object. However, in the case of approximate subgroups, it is possible
that the minimal object is the infimum of the whole lattice I and it is not clear that we
have the control of the size of the infimum. It can be shown that I is also a uniform
family of approximate subgroups and moreover, unlike X , elements in I have large finite
intersections. We therefore do a dual construction. Starting from I, we build another
family of approximate subgroups Y which is closed under finite unions. It turns out that
Y is uniformly upper-bounded, thus

⋃Y is the invariant object that we are looking for.

In the following, we will present some lemmas that are repeatedly used in the proof of
Theorem 4.4. They are straightforward generalisations of classical results from additive
combinatorics (for example Lemma 4.9 is from Rusza’s covering lemma).

Lemma 4.7. Let X be a family of uniformly N -commensurable K-approximate sub-
groups in an ambient group G. Let T :=

∏
0≤i<nXi with Xi ∈ X and n ≥ 1. Then T is

at most (NK)n−1N -commensurable with X for any X ∈ X .
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Proof. Fix X ∈ X . By assumption, there are N0,K0 ⊆ G with |N0| ≤ N and |K0| ≤ K
such that X0 ⊆ N0X1 and X1X1 ⊆ K0X1, thus∏

0≤i<n
Xi ⊆ N0K0

∏
1≤i<n

Xi.

Similarly, there are N1,K1, . . . , Nn−2,Kn−2 ⊆ G such that

∏
0≤i<n

Xi ⊆
⎛⎝ ∏

0≤i<n−1

NiKi

⎞⎠Xn−1.

By assumption Xn−1 ≤ Nn−1X for some |Nn−1| ≤ N . Therefore,

T =
∏

0≤i<n
Xi ⊆

⎛⎝ ∏
0≤i<n−1

NiKi

⎞⎠Nn−1X.

We have
∣∣∣(∏0≤i<n−1NiKi

)
Nn−1

∣∣∣ ≤ (NK)n−1N .

On the other hand, as X is N -commensurable with X0 ⊆ T , there is some Z with
|Z| ≤ N such that X ⊆ ZX0 ⊆ ZT . Hence, T is (NK)n−1N -commensurable with
X.

Lemma 4.8. Let G be a group and X,Y ⊆ G. Suppose Y −1 = Y and there is a finite
set Z ⊆ G such that X ⊆ ZY . Let X0 ⊆ X be maximal such that {x0Y : x0 ∈ X0} are
disjoint. Then |X0| ≤ |Z|.

Proof. Suppose, towards a contradiction, that |X0| > |Z|. Then there are xi, xj ∈ X0

and z ∈ Z such that xi ∈ zY and xj ∈ zY . Now we can see that z ∈ xiY −1 = xiY and
z ∈ xjY −1 = xjY , contradicting that xiY ∩ xjY = ∅.
Lemma 4.9. Let G be a group and X,Y be N -commensurable K-approximate subgroups.
Then there is some E ⊆ G such that |E| ≤ KN and XX ⊆ E(XX ∩ Y Y ).

Proof. By definition, there is Z0 ⊆ G with |Z0| ≤ N such that X ⊆ Z0Y . Let X0 ⊆ X
be maximal such that {x0Y : x0 ∈ X0} are disjoint. Then by Lemma 4.8 we have
|X0| ≤ |Z0| ≤ N .

As {x0Y : x0 ∈ X0} is maximal disjoint, for any x ∈ X we have xY ∩X0Y �= ∅, whence
x ∈ X0Y Y

−1 = X0Y Y . Therefore, X ⊆ X0Y Y . Note that

X = X0Y Y ∩X =
⋃
x∈X0

(xY Y ∩X) =
⋃
x∈X0

(xY Y ∩ xx−1X)

⊆
⋃
x∈X0

(xY Y ∩ xXX) =
⋃
x∈X0

x(Y Y ∩XX) = X0(XX ∩ Y Y ).

By assumption, there is some X1 ∈ G with |X1| ≤ K and XX ⊆ X1X. Therefore,
XX ⊆ X1X ⊆ X1X0(XX ∩ Y Y ). Let E := X1X0. Then |E| ≤ KN and XX ⊆
E(XX ∩ Y Y ).
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4.3 Proof of the main theorem

We now proceed to the proof of Theorem 4.4.

Let G and X be given as in Theorem 4.4. We may assume that X is a family of uniformly
N -commensurable K-approximate subgroups.

We define two new families. Let X 2 := {XX : X ∈ X} and

Z :=

{⋃
i∈I

Xi : Xi ∈ X 2, I finite.

}

Remark: It is easy to see that X 2 is a family of uniformly NK-commensurable family
of K3-approximate subgroups. Moreover, X 2 is commensurable with X .

Definition 4.10. Let X,Y ⊆ G. Define

[X : Y ] := max{|X0| : 1 ∈ X0 ⊆ X and {xY : x ∈ X0} are disjoint.}

Notation: for X ⊆ G, we write Xk for the k-fold product of X.

Fix k and Z =
⋃
i∈I Xi ∈ Z. Let X ∈ X 2. By Lemma 4.9 we have

X ⊆ E(X ∩Xi) ⊆ E(X ∩ Z) ⊆ E(X ∩ Z)2
k
,

for some i ∈ I and |E| ≤ KN . Hence [X : (X ∩Z)2
k
] ≤ KN by Lemma 4.8. Therefore,

max{[X : (X ∩ Z)2
k
] : X ∈ X 2} exists. Note that max{[X : (X ∩ Z)2

k
] : X ∈ X 2}

decreases when k increases. Therefore, mink∈N max{[X : (X ∩ Z)2
k
] : X ∈ X 2} exists

and there is a minimal kZ such that max{[X : (X ∩Z)2
kZ ] : X ∈ X 2} reaches this value.

Let
m := min

Z∈Z
min
k∈N

max{[X : (X ∩ Z)2
k
] : X ∈ X 2}.

Let
Zm := {Z ∈ Z : min

k∈N
max{[X : (X ∩ Z)2

k
] : X ∈ X 2} = m}.

Then Zm is non-empty. Moreover, for any Z ⊆ Z ′ ∈ Z if Z ∈ Zm, then

max{[X : (X ∩ Z ′)2
kZ ] : X ∈ X 2} ≤ max{[X : (X ∩ Z)2

kZ ] : X ∈ X 2} = m. (4.1)

Hence, mink∈N max{[X : (X ∩ Z ′)2k ] : X ∈ X 2} ≤ m, and they are equal by minimality
of m. Thus, Z ′ ∈ Zm. We can also see from inequality (1) that kZ′ ≤ kZ .

Let k0 := min{kZ : Z ∈ Zm}. We call Z ∈ Zm strong if kZ = k0. It is easy to see that
for Z and Z ′ ∈ Z, if Z ′ ⊇ Z and Z ∈ Zm is strong, then so is Z ′.

For strong Z, define

η(Z) := {X ∈ X 2 : [X : (X ∩ Z)2
k0+1

] = m}

and
N(Z) :=

⋃
X∈η(Z)

X ∩ (X ∩ Z)2
k0+1

.
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Lemma 4.11. If Z ⊆ Z ′ are both strong, then N(Z) ⊇ N(Z ′).

Proof. If Z ⊆ Z ′ are both strong then η(Z ′) ⊆ η(Z). Let X ∈ η(Z ′) and x1 =

1, x2, . . . , xm ∈ X be such that {xi(X ∩ Z ′)2k0+1
: i ≤ m} are disjoint. Note that

{xi(X ∩ Z)2
k0 : i ≤ m} are also disjoint. As max{[X ′ : (X ′ ∩ Z)2

k0 ] : X ′ ∈ X 2} = m

by definition of k0, we get {xi(X ∩ Z)2
k0 : i ≤ m} is a maximal disjoint family in

{x(X ∩ Z)2
k0 : x ∈ X}. Therefore,

X ⊆
⋃

1≤i≤m
xi(X ∩ Z)2

k0+1 ⊆
⋃

1≤i≤m
xi(X ∩ Z ′)2

k0+1
.

As xi(X ∩ Z)2
k0+1 ⊆ xi(X ∩ Z ′)2k0+1

for each 1 ≤ i ≤ m and {xi(X ∩ Z ′)2k0+1
: i ≤ m}

are disjoint, we get

X ∩ xi(X ∩ Z ′)2
k0+1

= X ∩ xi(X ∩ Z)2
k0+1

,

for each i ≤ m. In particular, we have

X ∩ (X ∩ Z ′)2
k0+1

= X ∩ (X ∩ Z)2
k0+1

.

Therefore, N(Z) ⊇ N(Z ′).

Lemma 4.12. Let Z ∈ Z be strong. Then N(Z) covers any X ′ ∈ X 2 with at most
(KN)2-translates.

Proof. Suppose Z =
⋃
i≤nZ

Xi where Xi ∈ X 2. Note that X ∩ (X ∩ Z)2
k0+1 ⊇ X ∩X0

covers X by KN -translates for any X ∈ η(Z) . As X 2 is KN -uniformly commensurable,
N(Z) covers any X ′ ∈ X 2 with at most (KN)2-translates.

Lemma 4.13. Let Z0, . . . , Zn be strong. Then
⋂
i≤nN(Zi) ⊇ N(

⋃
i≤n Zi).

Proof. By Lemma 4.11, N(Zi) ⊇ N(
⋃
i≤n Zi) for each i ≤ n. Thus the conclusion

holds.

For any Z =
⋃
i∈I Zi ∈ Z, define n(Z) = |I| (we regard Z as a formal family of finite

unions of members in X 2). Let n0 := min{n(Z) : Z strong.}
Lemma 4.14. Let Z0 be strong and n(Z0) = n0. Then there is NZ ∈ N depending

on n0, k0, K and N such that (Z0)
2k0+1

is NZ-commensurable with any X ∈ X 2, and

(Z0)
2k0+2

is (NZ)2-commensurable with any X ∈ X 2.

Proof. Suppose Z0 =
⋃
i∈I Xi with Xi ∈ X 2. Then

(Z0)
2k0+1

=
⋃

f : 2k0+1→I

∏
i<2k0+1

Xf(i).

X is at most (K4N)2
k0+1−1KN -commensurable with each

∏
i<2k0+1 Xf(i) by Lemma 4.7

and the remark before Definition 4.10. Therefore, X covers (Z0)
2k0+1

with at most

NZ := (n0)
2k0+1 ·K2k0+3+1 ·N2k0+1
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translates. As any Xi ⊆ Z0 covers X with at most KN -translates, so does (Z0)
2k0+1

.

Similarly, (Z0)
2k0+2

is at most (NZ)2-commensurable with any X ∈ X 2.

Define

I := {N(Z) : Z strong and there is Z ′ ⊆ Z with Z ′ strong and n(Z ′) = n0},

and define a subclass

I ′ := {N(Z) : Z strong and n(Z) = n0}.

Lemma 4.15. I is a uniform family of commensurable approximate subgroups and is
commensurable with X .

Proof. Note that any N(Z) ∈ I is symmetric and contains the identity. Moreover,

as Z ⊇ Z0 for some Z0 strong and n(Z0) = n0, we get N(Z) ⊆ N(Z0) ⊆ (Z0)
2k0+1

is NZ-commensurable with any X ∈ X 2 by Lemma 4.14. Since (Z0)
2k0+2

is (NZ)2-
commensurable with any X ∈ X 2 and N(Z) covers X with at most (KN)2-translates
by Lemma 4.14 and Lemma 4.12, we get

N(Z)2 ⊆ N(Z0)
2 ⊆ (Z0)

2k0+2 ⊆ T0X ⊆ T0T1N(Z),

where T0, T1 ⊆ G with |T0| ≤ (NZ)2 and |T1| ≤ (KN)2. Therefore, N(Z) are (NZKN)2-
approximate subgroups.

If N(Z ′) ∈ I, then by (Z0)
2k0+1

is NZ-commensurable with any X ∈ X 2 and N(Z ′)
covers X by (KN)2-translates, we get

N(Z) ⊆ N(Z0) ⊆ (Z0)
2k0+1 ⊆ T ′

0X ⊆ T ′
0T

′
1N(Z ′)

for some |T ′
0| ≤ NZ and |T ′

1| ≤ (KN)2.

We conclude that I is a family of uniformly NZ(KN)2-commensurable (NZKN)2-
approximate subgroups.

By the above argument, we know that N(Z0) is NZ-commensurable with any X ∈ X 2.
Hence I is commensurable with X 2. As X 2 is commensurable with X , we get I is
commensurable with X .

Note that I is also invariant under all automorphisms of G stabilizing X set-wise.

If I has a unique minimal element H, then H is commensurable with any X ∈ X and
invariant under all automorphisms stabilizing X set-wise. And the proof is done.

Otherwise, we do a dual construction with the family I to get another family of uniformly
commensurable approximate subgroups which is closed under finite unions.

As I is uniformly NZ(KN)2-commensurable, we get [I : J ] ≤ NZ(KN)2 for all I, J ∈ I
by Lemma 4.8. Define

m′ := min
I∈I

max{[I : J ] : J ∈ I ′},
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and
Im′ := {I ∈ I : max{[I : J ] : J ∈ I ′} = m′}.

If I ⊆ I ′ with I ′ ∈ Im′ and I ∈ I, then

max{[I : J ] : J ∈ I ′} ≤ max{[I ′ : J ] : J ∈ I ′} = m′.

By minimality of m′, we get max{[I : J ] : J ∈ I ′} = m′. Hence, I ∈ Im′ .

Fix I ∈ Im′ . Let T ∈ I ′ such that [I : T ] = m′. Let {x1T, . . . , xm′T} be a maximal
disjoint family in {iT : i ∈ I}. For any J ⊇ I and J ∈ Im′ , we have {x1T, . . . , xm′T}
must also be maximal disjoint in {jT : j ∈ J}. Therefore, J ⊆ ⋃1≤i≤m′ xiT

2 and⋃
{J ⊇ I, J ∈ Im′} ⊆

⋃
1≤i≤m′

xiT
2.

Let
Y := {

⋃
i≤n

Ji : Ji ∈ Im′ and n ∈ N}.

For any n ∈ N and J0, . . . , Jn ∈ Im′ , there is some I ∈ I such that
⋂
i≤n Ji ⊇ I by

Lemma 4.13. As Ji ∈ Im′ we have I ∈ Im′ . Therefore,
⋃
i≤n Ji ⊆

⋃{J ⊇ I, J ∈ Im′}.
Lemma 4.16. Y is a uniformly commensurable family and any Y ∈ Y is commensurable
with X .

Proof. Let Y, Y ′ ∈ Y. Suppose Y =
⋃
i≤n Ji and Y ′ =

⋃
i≤n′ J ′

i . By the argument before,
there are I ∈ Im′ , T ∈ I ′ and M ⊆ G with |M | ≤ m′ such that

Y ⊆
⋃
{J ⊇ I, J ∈ Im′} ⊆MT 2.

As I is a family of uniformly NZ(KN)2-commensurable (NZKN)2-approximate sub-
groups, T ∈ I ′ ⊆ I and J ′

0 ∈ I, there are M1,M2 with |M1| ≤ (NZKN)2 and
|M2| ≤ NZ(KN)2 such that T 2 ⊆M1T and T ⊆M2J

′
0. Thus,

Y ⊆MT 2 ⊆MM1T ⊆MM1M2J
′
0 ⊆MM1M2(

⋃
i≤n′

J ′
i) = MM1M2Y

′.

Let NY := m′(NZ)3(NY )4. Then Y is uniformly NY -commensurable.

By the above argument, for any
⋃
i≤n Ji = Y ∈ Y there is T ∈ I ′ ⊆ I such that Y

is contained in m′(NZKN)2-translates of T . As Ji ∈ I ′ is commensurable with T and
Ji ⊆ Y , we get Y is commensurable with T . Hence, Y is commensurable with I. As I
is commensurable with X by Lemma 4.15, we get Y is commensurable with X .

Note that any Y =
⋃
i≤n Ji ∈ Y is symmetric and contains the identity. Moreover, as I

is a family of uniformly NZ(KN)2-commensurable (NZKN)2-approximate subgroups,
we get

Y 2 =
⋃
i,j≤n

JiJj ⊆
⋃
i,j≤n

Tij(Jj)
2 ⊆

⋃
i,j≤n

TijTjJj ⊆ (
⋃
i,j≤n

TijTj)Y
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where |Tij | ≤ NZ(KN)2 and |Tj | ≤ (NZKN)2 for i, j ≤ n. Therefore, Y is an approx-
imate subgroup. But we cannot deduce a uniform bound for any Y ∈ Y from the above
argument.

We conclude that Y is a family of approximate subgroups which are uniformly commen-
surable and closed under finite unions.

For any X = X−1 ⊆ G define 〈X〉 :=
∨
k∈NX

k, the group generated by X.

Lemma 4.17. There is no NY + 1-chain 〈Y0〉 � 〈Y1〉 � · · · � 〈YNY
〉 with Yi ∈ Y.

Proof. Suppose, towards a contradiction, that there is such a chain. Then for each
i < NY , there is some yi ∈ Yi+1 \ 〈Yi〉. Therefore, yi〈Yi〉 ∩ 〈Yi〉 = ∅. Let y−1 := id. We
claim that {yiY0 : −1 ≤ i < NY } is a disjoint family. Indeed, for any i < j, we have
yj〈Yj〉 ∩ 〈Yj〉 = ∅ and yiY0 ⊆ 〈Yi+1〉 ⊆ 〈Yj〉. Therefore, yjY0 ∩ yiY0 = ∅. By assumption,
Y0 should be NY -commensurable with

⋃
i≤NY

Yi ∈ Y. This contradicts Lemma 4.8.

By Lemma 4.17, the family {〈Y 〉 : Y ∈ Y} has a maximal element Gmax := 〈Ymax〉 for
some Ymax ∈ Y. By maximality, Gmax ⊇

⋃
Y ∈Y Y .

Lemma 4.18. There is some n1 ∈ N such that Y ⊆ (Ymax)n1 for all Y ∈ Y.

Proof. Suppose not, then there is some Y0 ∈ Y and a0 ∈ Y0 such that a0 �∈ Ymax. As
Gmax = 〈Ymax〉 ⊇ Y0, there is �0 with a0 ∈ (Ymax)�0 . By assumption, there is some
Y1 ∈ Y and a1 ∈ Y1 with a1 �∈ (Ymax)�0+2. Since Y1 ⊆ 〈Ymax〉, we have a1 ∈ (Ymax)�1

for some �1 > �0 + 2. Repeating this procedure, we get (Yi)0≤i≤NY
, (ai)0≤i≤NY

and
�0 < �1 < · · · < �NY

such that Yi ∈ Y and ai ∈ Yi, and moreover: ai ∈ (Ymax)�i and
ai �∈ (Ymax)�i−1+2.

Consider {aiYmax : 0 ≤ i ≤ NY }. For any i < j, if aiYmax ∩ ajYmax �= ∅, then
aj ∈ ai(Ymax)2 since Ymax is closed under inverses. As ai ∈ (Ymax)�i , we get aj ∈
(Ymax)�i+2 ⊆ (Ymax)�j−1+2, a contradiction. Therefore, {aiYmax : 0 ≤ i ≤ NY } are
disjoint. Let Y ′ :=

⋃
0≤i≤NY

Yi, then Y ′ ∈ Y but is not NY -commensurable with Ymax,
which contradicts our assumption.

From now on we will consider a subfamily of Im′ which is invariant under all automorph-
isms of G stabilizing X set-wise.

Let
n2 := min{n(Z) : N(Z) ∈ Im′},

and
Y ′ := {N(Z) ∈ Im′ : n(Z) = n2}.

Note that Y ′ ⊆ Y.

Let H :=
⋃Y ′ ⊆ ⋃Y ⊆ (Ymax)n1 . Then H is invariant under all automorphisms

stabilizing X , since Y ′ is. Moreover, as Ymax is an approximate subgroup commensurable
with any X ∈ X , we get H is commensurable with X . It is also an approximate subgroup
as Ymax is. This ends the proof of Theorem 4.4.
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4.4 Uniform bound

The aim of this section is to prove Corollary 4.5. The strategy is that if we assume the
bound does not exist, then we can build a counter-example using ultraproducts. To do
this, we need that the approximate subgroup H constructed from X in Theorem 4.4 is
definable.

Lemma 4.19. Let L be a first-order language contains the group language. Let M be
an L-structure expanding a group G. Suppose X is a uniform family of commensurable
approximate subgroups in G and that X is uniformly definable inM by a formula φ(x; ȳ).
That is, X = {φ(G, b̄) : b̄ ∈M|ȳ|}. Let H be the invariant approximate subgroup obtained
by Theorem 4.4. Then H is also definable by a formula ψX ,φ(x).

Proof. By assumption X is uniformly definable. Hence, so is X 2, but neither are Z
or Zm. However, knowing m, k0 and n0, the family of strong Z with n(Z) = n0 is
uniformly definable. Given m, k0 and a strong Z, we have that η(Z) is definable, hence
N(Z) is also definable. Therefore, I ′ is uniformly definable. Similarly, knowing m′ and
n2 additionally, Y ′ is uniformly definable, thus H is definable by a formula ϕX ,φ(x).

Remark:

• Unlike the case of groups, H is not obtained by finite operations, the defining
formula for H should involve additional existential and universal quantifiers.

• By the same reason, if X is a type-definable family of (type-)definable approximate
subgroups, then H is also type-definable.

Now we can prove the corollary.

Proof. (Proof of Corollary 4.5) Fix K and N . Suppose Corollary 4.5 fails. Then
for any n ∈ N, there is a group Gn and a family of uniformly N -commensurable K-
approximate subgroups Xn such that there is no H which is n-approximate subgroup
n-commensurable with Xn invariant under all automorphisms stabilizing Xn set-wise.

Let L be the language ((G, 1, ·), I, R) which contains two sorts G and I and a relation
R ⊆ G × I where G is equipped with a group language. We interpret (Gn,Xn) as
L-structures by:

• Interpret the first sort as Gn with the group operation;

• Let In be an index set such that there is a bijection τ : In → Xn. Interpret the
second sort as In and R : Gn × In as R(g, i) if and only if g ∈ τ(i).

Let U be a non-principal ultrafilter over N and let (G,X ) :=
∏
n∈N(Gn,Xn)/U be the

ultraproduct of {(Gn,Xn) : n ∈ N} (seen as L-structures) along U . Now it is easy to
check that X is a family of uniformly N -commensurable K-approximate subgroups in
G, and X is uniformly definable by R(x, i). By Theorem 4.4, there is an L-approximate



Chapter 4. Schlichting’s Theorem for Approximate Subgroups 100

subgroup H that is N ′-commensurable with X and invariant under all automorphisms
stabilising X set-wise. By Lemma 4.19, H is definable. By �Los’s Theorem H is an
ultraproduct of {Hn : n ∈ N} along U , and the set J defined as:

{n ∈ N : n > max{N ′, L}, Hn is an L-approximate subgroup N ′-commensurable with Xn}

is in the ultrafilter U . For any n ∈ J , as n > max{N ′, L}, we have Hn is also an n-
approximate subgroup n-commensurable with Xn. Therefore, there is σn an automorph-
ism of Gn which fixes Xn set-wise, but σn(Hn) �= Hn. For n ∈ N\J define σn := id, that
is the identity automorphism on Gn. Let σ be the ultraproduct of {σn : n ∈ N} along
U . Then σ is an automorphism of G fixing X set-wise, but σ(H) �= H, contradiction.

Remark: If X is a family of uniformly N -commensurable finite K-approximate sub-
groups, then Theorem 4.4 holds as the trivial subgroup {id} is a witness. However, if
the size of X ∈ X is large compared to N and K, then H we construct will also be of
size comparable with X ∈ X , and in particular non-trivial.



Appendix A

Pseudofinite M̃c-groups of
dimension 2

In the following, we will present a proof that a pseudofinite M̃c-group of dimension 2,
where the dimension is additive and integer-valued, has a finite-by-abelian subgroup of
positive dimension whose normalizer is of dimension 2. The proof we present here is
from [Wag15, Theorem 13], which does not use the CFSG.

Let dim be a dimension on a theory T and X a definable/interpretable set. Recall that
we say X is broad if dim(X) > 0. If Y ⊆ X is definable/interpretable, we say Y is wide
in X if dim(Y ) = dim(X).

Definition A.1. Let dim be an additive dimension on T . We say that tuple a is
independent of b over a small set A, written as a |�d

A
b, if dim(a/A) = dim(a/Ab).

Remark: If both dim(a/A) and dim(b/A) are finite, then additivity of dim will imply
symmetry of |�d, that is a |�d

A
b⇔ b |�d a.

Fact A.2. [Wag18, Theorem 4.9] Let G be a pseudofinite M̃c-group and dim an additive
dimension on G. Then G has a definable broad finite-by-abelian subgroup. In fact, let
C be any minimal broad centralizer (up to finite index) of a finite tuple. Then Z̃(C) is
broad and finite-by-abelian.

Lemma A.3. Let G be a pseudofinite M̃c-group and dim an additive integer-valued
dimension on G with dim(G) = 2. Suppose there is b ∈ G with dim(b) ≥ 1 and
dim(CG(b)) = 2. Then G has a normal definable finite-by-abelian subgroup D, and
dim(D) ≥ 1.

Proof. Let G0 := {g ∈ G : dim(gG) = 0}. Then G0 is a definable characteristic subgroup

of G by Lemma 3.24. Since b ∈ G0, we get dim(G0) ≥ 1. By the M̃c-condition, there are
b0, . . . , bn ∈ G0 and d ∈ N such that if we define T := CG0(b0, . . . , bn), then [T : CT (g)] ≤
d for all g ∈ G0. Therefore T = Z̃(T ). As bi ∈ G0 for all 0 ≤ i ≤ n, we have CG0(bi)
is wide in G0. Thus, dim(T ) = dim(G0) ≥ 1. Since {(CG0(b0, . . . , bn, g) : g ∈ G0} is a
uniformly commensurable definable family of subgroups of G0, by Schlichting’s theorem,
there is a definable characteristic subgroup N ≤ G0, such that N is commensurable with
T . Thus D := Z̃(N) is commensurable with Z̃(T ) = T . Note that D is normal in G
and definable and finite-by-abelian as required.
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Theorem A.4. Let G be a pseudofinite M̃c-group and dim an additive integer-valued
dimension on G. If dim(G) = 2 then G has a broad definable finite-by-abelian subgroup
whose normalizer is wide.

Proof. Let A = Z̃(C) be a broad finite-by-abelian subgroup of G, where C is a minimal
broad centralizer up to finite index as in Fact A.2. If dim(C) = 2, then C ≤ NG(Z̃(C)),
thus A := Z̃(C) is the group we are searching for. Hence, we may suppose that dim(C) =
1, thus 1 ≤ dim(A) ≤ dim(C) = 1.

We distinguish two cases. The first case is that A is commensurable with Ag for all
g ∈ G. Then by Schlichting’s theorem, there is a normal subgroup B of G such that
B is commensurable with A. By Lemma 3.23, Z̃(B) is commensurable with Z̃(A) =
Z̃(Z̃(C)) = Z̃(C) = A. Thus, N := Z̃(B) is a definable broad finite-by-abelian subgroup.
Note that since B is normal in G and N is characteristic in B, we get that B is normal
in G and we are done.

The second case is that there is some g ∈ G such that Ag is not commensurable with
A. Thus, C is not commensurable with Cg. As C is a minimal broad centralizer up to
finite index, we get dim(C ∩ Cg) = 0. Therefore, dim(A ∩ Ag) ≤ dim(C ∩ Cg) = 0. We
conclude

dim(AgA) = dim(AgA/A) + dim(A) = dim(Ag/(A ∩Ag)) + dim(A) = 2.

Take elements a, b0 in A such that dim(agb0/g) = 2. Then we have

2 = dim(agb0/g) ≤ dim(a, b0/g) ≤ dim(a/g, b0) + dim(b0/g) ≤ 1 + 1 = 2.

Thus, all inequalities are indeed equalities in the above equation and a, b0 are wide in A
and d-independent with each other over g. Let c0 be wide in A and d-independent with
a, b0 over g. Then

2 ≥ dim(c0a
gb0/g) ≥ dim(c0a

gb0/g, c0) = dim(agb0/g, c0) = dim(agb0/g) = 2,

and c0a
gb0 |�d

g
c0. Similarly c0a

gb0 |�d
g
b0. Choose d, b1, c1 ≡g,c0agb0 a, b0, c0 such that

d, b1, c1 |�d
g,c0agb0

a, b0, c0. Then c1d
gb1 = c0a

gb0. Therefore, c−1
0 c1d

g = agb0b
−1
1 . Let

b := b0b
−1
1 and c := c−1

0 c1. Then b, c ∈ A and

dim(b/a, g) ≥ dim(b/a, g, b0, c0) = dim(b1/a, g, b0, c0) = dim(b1/g, c0a
gb0) = 1.

Therefore, b is wide in A over a, g and similarly, c is wide in A over d, g.

Since A is finite by abelian, tA is finite for any t ∈ A. Thus, dim(CA(t)) = dim(A) −
dim(tA) = dim(A). We conclude that E := CA(a, b, c, d) is wide in A. Note that
dim(E ∩ Eg) ≤ dim(A ∩ Ag) = 0. Thus, we also have dim(EgE) = 2. Let x, y be in E
such that dim(xgy/a, b, c, d, g) = 2. Then x and y are d-independent wide elements in
E over a, b, c, d, g. Let z := xgy. Then

dim(xgy/a, b, c, d, g) = dim(xgy/a, b, c, d, g) = 2

and
azb = axgyb = agyb = agyby = (agb)y = (cdg)y = cdxgy = cdz.
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Choose z′ ≡a,b,c,d,g z and z′ |�d
a,b,c,d,g

z and let r := z′−1z. Then r is wide in G over

a, b, c, d, g, z and
azbr = az

′rbr = (az
′
b)r = (cdz

′
)r = crdz.

We conclude that c−1azb = dz = c−razbr and azbb−r = cc−raz. Let b′ := bb−r and
c′ := cc−r. Then

azb′ = c′az.

As r |�d
g,a,b,c,d

z we get

dim(z/a, b′, c′) ≥ dim(z/a, b, c, d, r, g) = dim(z/a, b, c, d) = 2.

Take z′′ ≡a,b′,c′ z with z′′ |�d
a,b′,c′ z. Then az

′′
b′ = c′az′′ . Hence, c′ = (b′)a−z

= (b′)a−z′′
.

Thus a−zaz′′ commutes with b′. Let a′ := a−1az
′′z−1

. Then (a′)z commutes with b′.
Claim A.5. Suppose t is a wide element in G over h and c̄, where h ∈ G and c̄ is a finite
tuple of elements in G. Then we may assume

dim(ht/h, c̄) ≥ 1.

If in addition h ∈ A, then we may assume dim(ht/h, c̄) = 1.

Proof. Suppose dim(ht/h, c̄) = 0, then

dim(t/ht, h, c̄) = dim(t, ht/h, c̄)− dim(ht/h, c̄) = dim(t, ht/h, c̄)

= dim(t/h, c̄) + dim(ht/h, t, c̄) = dim(t/h, c̄) = 2

Take t′ ≡ht,h,c̄ t and t′ |�d
ht,h,c̄

t, then ht = ht
′
. Thus t′t−1 ∈ CG(h). Since

dim(t′t−1/h, c̄) ≥ dim(t′t−1/h, c̄, t, ht) = dim(t′/h, c̄, t, ht)
= dim(t′/h, c̄, ht) = dim(t/h, c̄, ht) = 2,

we get CG(h) = 2. By Lemma A.3, G has a normal finite-by-abelian subgroup and we
are done. Hence, we may suppose dim(ht/h, c̄) ≥ 1. If h ∈ A and dim(ht/h, c̄) = 2 then
dim(hG) ≥ dim(ht/h) = 2. Hence, dim(G/CG(h)) = 2 and dim(CG(h)) = 0. However,
since h ∈ A and A is broad finite-by-abelian, we have dim(CG(h)) ≥ dim(CA(h)) = 1, a
contradiction.

Thus, we may assume dim(b′/b) = dim(b−r/b) = 1 and dim(az
′′
/a, z, b′, c′) = 1. Thus,

dim(a′/a, z, b′, c′) = dim(az
′′
/a, z, b′, c′) = 1

and
dim(a′/b′, a, c′) = dim(az

′′z−1
/b′, a, c′) = 1

where the last equality comes from Claim A.5 since dim(z′′z−1/a, b′, c′) = 2. We con-
clude,

dim(z/a′, b′) ≥ dim(z/a′, b′, a, c′) = dim(z, a′/b′, a, c′)− dim(a′/b′, a, c′)
= dim(a′/z, b′, a, c′) + dim(z/b′, a, c′)− dim(a′/b′, a, c′)
= dim(z/b′, a, c′) = 2.
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Again by Claim A.5, as dim(z/a′, b′) = 2, we get dim((a′)z/b′, a′) ≥ 1.

Note that (a′)z ∈ CG(b′), hence dim(CG(b′)) ≥ dim((a′)z/b′) ≥ 1. If dim(CG(b′)) = 2,
then we are done by Lemma A.3. Otherwise, dim(CG(b′)) = 1. Choose z∗ ∈ G with
z∗ ≡a′,b′ z and z∗ |�d

a′,b′ z. Since (a′)z ∈ CG(b′), we have (a′)z∗ ∈ CG(b′). Let h :=

(z∗)−1z. Then (a′)z = (a′)z∗h ∈ CG((b′)h), hence (a′)z ∈ CG(b′, (b′)h). Since z∗ |�d
a′,b′ z

we have (z∗)−1z |�d
a′,b′ z and h |�d

a′,b′(a
′)z. Thus,

dim(CG(b′, (b′)h)) ≥ dim((a′)z/a′, b′, h) = dim((a′)z/a′, b′) ≥ 1

and dim(CG(b′)/CG(b′, (b′)h)) = 0.

By the M̃c-condition, there is a minimal broad centralizer (up to finite index) CG(b′, c̄) ≤
CG(b′) with dim(CG(b′, c̄)) = dim(CG(b′)) = 1. Choose c̄′ ≡b′ c̄ such that c̄′ |�d

b′ z, z
∗.

Thus, c̄′ |�d
b′ h. Let D := CG(b′, c̄′). Then D is also a minimal broad centralizer up to

finite index by invariance of dim.

Since dim(CG(b′)) = dim(D) = 1 and dim(CG(b′)/CG(b′, (b′)h)) = 0, we get

dim(D/D ∩Dh) = dim(D/(D ∩ CG((b′)h))) + dim((D ∩ CG((b′)h))/(D ∩Dh))

≤ dim(CG(b)/(CG(b) ∩ CG((b′)h))) + dim(CG((b′)h)/Dh) = 0.

We conclude that dim(D∩Dh) = 1 and D is commensurable with Dh as it is a minimal
broad centralizer up to finite index. Note that since D is a minimal broad centralizer up
to finite index, we have ÑG(D) := {g ∈ G : [D : D ∩Dg] <∞} is a definable subgroup
of G and h ∈ ÑG(D). As h |�d

b′ c̄
′, we have

dim(ÑG(D)) ≥ dim(h/b′, c̄′) = dim(h/b′) ≥ dim(z∗/a′, b′, z) = dim(z∗/a′, b′) = 2.

By definition and the M̃c-condition, the family {g ∈ ÑG(D) : Dg} is a uniformly com-
mensurable family. By Schlichting’s theorem, there is a definable T characteristic in
ÑG(D) such that T is commensurable with D. Since Z̃(D) is broad and Z̃(T ) is com-
mensurable with Z̃(D) by Lemma 3.23, we get that Z̃(T ) is a definable broad finite-
by-abelian subgroup which is normal in ÑG(D), and Z̃(T ) is the group we are looking
for.

Remark: Throughout the proof, there are two cases for the finite-by-abelian group E
whose normaliser is wide. The first one is that E := Z̃(C) where C is commensurable
with a minimal broad centralizer up to finite index. And the second case is that E is
normal in G.
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Structures pseudo-finies et dimensions de comptage

Résumé. Cette thèse porte sur la théorie des modèles des structures pseudo-finies en mettant
l’accent sur les groupes et les corps. Le but est d’approfondir notre compréhension des interactions
entre les dimensions de comptage pseudo-finies et les propriétés algébriques de leurs structures
sous-jacentes, ainsi que de la classification de certaines classes de structures en fonction de leurs
dimensions. Notre approche se fait par l’étude d’exemples. Nous avons examiné trois classes de
structures. La première est la classe des H-structures, qui sont des expansions génériques. Nous
avons donné une construction explicite de H-structures pseudo-finies comme ultraproduits de
structures finies. Le deuxième exemple est la classe des corps aux différences finis. Nous avons
étudié les propriétés de la dimension pseudo-finie grossière de cette classe. Nous avons montré
qu’elle est définissable et prend des valeurs entières, et nous avons trouvé un lien partiel entre
cette dimension et le degré de transcendance transformelle. Le troisième exemple est la classe des
groupes de permutations primitifs pseudo-finis. Nous avons généralisé le théorème classique de
classification de Hrushovski pour les groupes stables de permutations d’un ensemble fortement
minimal au cas où une dimension abstraite existe, cas qui inclut à la fois les rangs classiques
de la théorie des modèles et les dimensions de comptage pseudo-finies. Dans cette thèse, nous
avons aussi généralisé le théorème de Schlichting aux sous-groupes approximatifs, en utilisant
une notion de commensurabilité.

Mots-clés : structure pseudo-finie, dimension de comptage pseudo-finie, H-structure, corps
aux différences pseudo-fini, groupe de permutations primitif, sous-groupe approximatif.

Pseudofinite structures and counting dimensions

Abstract. This thesis is about the model theory of pseudofinite structures with the focus on
groups and fields. The aim is to deepen our understanding of how pseudofinite counting dimen-
sions can interact with the algebraic properties of underlying structures and how we could classify
certain classes of structures according to their counting dimensions. Our approach is by studying
examples. We treat three classes of structures: The first one is the class of H-structures, which
are generic expansions of existing structures. We give an explicit construction of pseudofinite
H-structures as ultraproducts of finite structures. The second one is the class of finite difference
fields. We study properties of coarse pseudofinite dimension in this class, show that it is definable
and integer-valued and build a partial connection between this dimension and transformal tran-
scendence degree. The third example is the class of pseudofinite primitive permutation groups.
We generalise Hrushovski’s classical classification theorem for stable permutation groups acting
on a strongly minimal set to the case where there exists an abstract notion of dimension, which
includes both the classical model theoretic ranks and pseudofinite counting dimensions. In this
thesis, we also generalise Schlichting’s theorem for groups to the case of approximate subgroups
with a notion of commensurability.

Keywords: pseudofinite structure, pseudofinite counting dimension, H-structure, pseudofi-
nite difference field, primitive permutation group, approximate subgroup.
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