S. Andrieux, Y. Bamberger, and J. Marigo, Un modèle de matériau microfissuré pour les bétons et les roches, Journal de mécanique théorique et appliquée, vol.5, pp.471-513, 1986.

C. Annavarapu, M. Hautefeuille, and J. E. Dolbow, Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods, International Journal for Numerical Methods in Engineering, vol.92, pp.206-228, 2012.

, A nitsche stabilized finite element method for frictional sliding on embedded interfaces. part i: single interface, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.417-436, 2014.

D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM journal on numerical analysis, vol.19, pp.742-760, 1982.

D. N. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Discontinuous galerkin methods for elliptic problems, Discontinuous Galerkin Methods, pp.89-101, 2000.

D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous galerkin methods for elliptic problems, SIAM journal on numerical analysis, vol.39, pp.1749-1779, 2002.

M. Ashby and C. Sammis, The damage mechanics of brittle solids in compression, Pure and Applied Geophysics, pp.489-521, 1990.

M. F. Ashby and S. Hallam, The failure of brittle solids containing small cracks under compressive stress states, Acta Metallurgica, vol.34, pp.497-510, 1986.

I. Babu?ka, The finite element method with penalty, Mathematics of computation, pp.221-228, 1973.

I. Babu?ka and M. , Nonconforming elements in the finite element method with penalty, SIAM Journal on Numerical Analysis, vol.10, pp.863-875, 1973.

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Mathematics of Computation, vol.31, pp.45-59, 1977.

R. Bargellini, D. Halm, and A. Dragon, Modelling of anisotropic damage by microcracks: towards a discrete approach, Archives of Mechanics, vol.58, pp.93-123, 2006.

R. Bargellini, D. Halm, and A. Dragon, Modelling of quasi-brittle behaviour: a discrete approach coupling anisotropic damage growth and frictional sliding, European Journal of Mechanics-A/Solids, vol.27, pp.564-581, 2008.

F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations, Journal of computational physics, vol.131, pp.267-279, 1997.

F. B. Belgacem, The mortar finite element method with lagrange multipliers, Numerische Mathematik, vol.84, pp.173-197, 1999.

F. B. Belgacem, P. Hild, and P. Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Mathematical Models and Methods in Applied Sciences, vol.9, pp.287-303, 1999.

G. N. , C. V. Benjemaa, M. , and J. Virieux, Dynamic non-planar crack rupture by a finite volume method, Geophys. J. Int, vol.171, pp.271-285, 2007.

, 3d dynamic rupture simulations by a finite volume method, Geophys. J. Int, vol.178, pp.541-560, 2009.

M. Benjemaa, N. Glinsky-olivier, V. M. Cruz-atienza, and J. Virieux, 3-d dynamic rupture simulations by a finite volume method, Geophysical Journal International, vol.178, pp.541-560, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00446840

H. Bhat, C. Sammis, and A. Rosakis, The micromechanics of westerley granite at large compressive loads, Pure and applied geophysics, vol.168, pp.2181-2198, 2011.

H. S. Bhat, A. J. Rosakis, and C. G. Sammis, A micromechanics based constitutive model for brittle failure at high strain rates, Journal of Applied Mechanics, vol.79, p.31016, 2012.

B. Budiansky and R. J. , Elastic moduli of a cracked solid, International journal of Solids and structures, vol.12, pp.81-97, 1976.

F. C. Carvalho and J. F. Labuz, Experiments on effective elastic modulus of twodimensional solids with cracks and holes, International Journal of Solids and Structures, vol.33, pp.4119-4130, 1996.

P. P. Castañeda and J. R. Willis, The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, vol.43, pp.1919-1951, 1995.

D. Cereceda, L. Graham-brady, and N. Daphalapurkar, Modeling dynamic fragmentation of heterogeneous brittle materials, International Journal of Impact Engineering, vol.99, pp.85-101, 2017.

G. Chavent and B. Cockburn, The local projection p 0 ? p 1 -discontinuous-galerkin finite element method for scalar conservation laws, RAIRO-Modélisation mathéma-tique et analyse numérique, vol.23, pp.565-592, 1989.

B. Cockburn, G. E. Karniadakis, and C. Shu, The development of discontinuous galerkin methods, Discontinuous Galerkin Methods, pp.3-50, 2000.

B. Cockburn and C. Shu, The local discontinuous galerkin method for timedependent convection-diffusion systems, SIAM Journal on Numerical Analysis, vol.35, pp.2440-2463, 1998.

A. J. -p.-de-la-puente, J. , and M. Kaser, Dynamic rupture modeling on unstructured meshes using a discontinuous galerkin method, J. Geophys. Res, vol.114, 2009.

F. L. Delcourte, S. , and N. Glinsky-olivier, A high-order discontinuous galerkin method for the seismic wave propagation, ESAIM: Proc, vol.27, pp.70-89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00868418

S. Delcourte, L. Fezoui, and N. Glinsky-olivier, A high-order discontinuous galerkin method for the seismic wave propagation, ESAIM: Proceedings, vol.27, pp.70-89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00868418

H. Deng and S. Nemat-nasser, Dynamic damage evolution in brittle solids, Mechanics of Materials, vol.14, pp.83-103, 1992.

C. Denoual and F. Hild, A damage model for the dynamic fragmentation of brittle solids, Computer methods in applied mechanics and engineering, vol.183, pp.247-258, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00013966

, Dynamic fragmentation of brittle solids: a multi-scale model, European Journal of Mechanics-A/Solids, vol.21, pp.105-120, 2002.

V. Deshpande and A. Evans, Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model, Journal of the Mechanics and Physics of Solids, vol.56, pp.3077-3100, 2008.

V. Deudé, L. Dormieux, D. Kondo, and V. Pensée, Propriétés élastiques non linéaires d'un milieu mésofissuré, vol.330, pp.587-592, 2002.

D. A. Di-pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, vol.69, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01820185

L. Dormieux, D. Kondo, F. Ulm, and M. , , 2006.

J. Douglas and T. Dupont, Interior penalty procedures for elliptic and parabolic galerkin methods, Computing methods in applied sciences, pp.207-216, 1976.

K. M. Dumbser and M. , An arbitrary high order discontinuous galerkin method for elastic waves on unstructured meshes v: local time stepping and p-adaptivity, Geophys. J. Int, vol.171, pp.695-717, 2006.

M. Dumbser and M. Kaser, An arbitrary high order discontinuous galerkin method for elastic waves on unstructured meshes ii: the three-dimensional isotropic case, Geophys. J. Int, vol.167, pp.319-336, 2006.

N. El-abbasi and K. Bathe, Stability and patch test performance of contact discretizations and a new solution algorithm, Computers & Structures, vol.79, pp.1473-1486, 2001.

B. Erzar and P. Forquin, Analysis and modelling of the cohesion strength of concrete at high strain-rates, International Journal of Solids and Structures, vol.51, pp.2559-2574, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01953941

J. Eshelby, Elastic inclusions and heterogeneities, vol.2, 1961.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.241, pp.376-396, 1957.

V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky, An hp-adaptive discontinuous galerkin finite-element method for 3-d elastic wave modelling, Geophysical Journal International, vol.183, pp.941-962, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00565022

X. Feng and S. Yu, Micromechanical modelling of tensile response of elasticbrittle materials, International Journal of Solids and Structures, vol.32, pp.3359-3372, 1995.

P. Forquin and F. Hild, A probabilistic damage model of the dynamic fragmentation process in brittle materials, Advances in applied mechanics, vol.44, pp.1-72, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521184

L. Freund, Crack propagation in an elastic solid subjected to general loading?i. constant rate of extension, Journal of the Mechanics and Physics of Solids, vol.20, pp.129-140, 1972.

L. Freund, Dynamic Fracture Mechanics, Cambridge Monographs on Mechanics, 1998.

L. Gambarotta, Friction-damage coupled model for brittle materials, Engineering fracture mechanics, vol.71, pp.829-836, 2004.

L. Gambarotta and S. Lagomarsino, A microcrack damage model for brittle materials, International Journal of Solids and Structures, vol.30, pp.177-198, 1993.

L. Graham-brady, Statistical characterization of meso-scale uniaxial compressive strength in brittle materials with randomly occurring flaws, International Journal of Solids and Structures, vol.47, pp.2398-2413, 2010.

R. Graves, Simulating seismic wave propagation in 3d elastic media using staggeredgrid finite differences, Bull. seism. Soc. Am, vol.86, pp.1091-1106, 1996.

D. Halm and A. Dragon, A model of anisotropic damage by mesocrack growth

, International Journal of Damage Mechanics, vol.5, pp.384-402, 1996.

D. Halm and A. Dragon, An anisotropic model of damage and frictional sliding for brittle materials, European Journal of Mechanics-A/Solids, vol.17, pp.439-460, 1998.

P. Hansbo and M. G. Larson, Discontinuous galerkin methods for incompressible and nearly incompressible elasticity by nitsche's method, Computer methods in applied mechanics and engineering, vol.191, pp.1895-1908, 2002.

Z. Hashin, The differential scheme and its application to cracked materials, Journal of the Mechanics and Physics of Solids, vol.36, pp.719-734, 1988.

F. Hecht, New development in freefem++, J. Numer. Math, vol.20, pp.251-265, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

F. Hild, C. Denoual, P. Forquin, and X. Brajer, On the probabilisticdeterministic transition involved in a fragmentation process of brittle materials, Computers & structures, vol.81, pp.1241-1253, 2003.

A. Hoenig, Elastic moduli of a non-randomly cracked body, International Journal of Solids and Structures, vol.15, pp.137-154, 1979.

H. Horii and S. Nemat-nasser, Overall moduli of solids with microcracks: loadinduced anisotropy, Journal of the Mechanics and Physics of Solids, pp.155-171, 1983.

G. Hu, J. Liu, L. Graham-brady, and K. Ramesh, A 3d mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading, Journal of the Mechanics and Physics of Solids, vol.78, pp.269-297, 2015.

J. Hudson, T. Pointer, and E. Liu, Effective-medium theories for fluid-saturated materials with aligned cracks, Geophysical Prospecting, vol.49, pp.509-522, 2001.

F. Huq, R. Brannon, and L. Graham-brady, An efficient binning scheme with application to statistical crack mechanics, International Journal for Numerical Methods in Engineering, vol.105, pp.33-62, 2016.

M. Jeyakumaran and J. Rudnicki, The sliding wing crack?again!, Geophysical research letters, vol.22, pp.2901-2904, 1995.

T. Jiang, J. Shao, W. Xu, and C. Zhou, Experimental investigation and micromechanical analysis of damage and permeability variation in brittle rocks, International Journal of Rock Mechanics and Mining Sciences, vol.47, pp.703-713, 2010.

J. Ju and X. Lee, Micromechanical damage models for brittle solids. part i: tensile loadings, Journal of Engineering Mechanics, vol.117, pp.1495-1514, 1991.

M. Kachanov, Elastic solids with many cracks and related problems, vol.30, pp.259-445, 1993.

M. L. Kachanov, A microcrack model of rock inelasticity part i: Frictional sliding on microcracks, Mechanics of Materials, vol.1, pp.19-27, 1982.

D. M. Kaser, M. , and H. Igel, An arbitrary high order discontinuous galerkin method for elastic waves on un-structured meshes iii: viscoelastic attenuation, Geophys. J. Int, vol.168, pp.224-242, 2007.

H. V. Kaser, M. , and J. De-la-puente, Quantitative accuracy analysis of the discontinuous galerkin method for seismic wave propagation, Geophysical Journal International, vol.173, pp.990-999, 2008.

C. Katcoff and L. Graham-brady, Modeling dynamic brittle behavior of materials with circular flaws or pores, International Journal of Solids and Structures, vol.51, pp.754-766, 2014.

B. Kostrov, Unsteady propagation of longitudinal shear cracks, Journal of applied Mathematics and Mechanics, vol.30, pp.1241-1248, 1966.

D. Krajcinovic, Damage Mechanics, North-Holland Series in Applied Mathematics and Mechanics, 1996.

T. A. Laursen, M. A. Puso, and J. Sanders, Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations, Computer methods in applied mechanics and engineering, pp.3-15, 2012.

P. Lesaint, Finite element methods for symmetric hyperbolic equations, Numerische Mathematik, vol.21, pp.244-255, 1973.

P. Lesaint and P. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations, pp.89-123, 1974.

A. Lew, P. Neff, D. Sulsky, and M. Ortiz, Optimal bv estimates for a discontinuous galerkin method for linear elasticity, Applied Mathematics Research Express, pp.73-106, 2004.

J. Liu and L. Graham-brady, Effective anisotropic compliance relationships for wing-cracked brittle materials under compression, International Journal of Solids and Structures, vol.100, pp.151-168, 2016.

R. Liu, M. F. Wheeler, and I. Yotov, On the spatial formulation of discontinuous galerkin methods for finite elastoplasticity, Computer Methods in Applied Mechanics and Engineering, vol.253, pp.219-236, 2013.

J. Martins and J. Oden, A numerical analysis of a class of problems in elastodynamics with friction, Computer Methods in Applied Mechanics and Engineering, vol.40, pp.327-360, 1983.

A. Masud, T. J. Truster, and L. A. Bergman, A unified formulation for interface coupling and frictional contact modeling with embedded error estimation, International Journal for Numerical Methods in Engineering, vol.92, pp.141-177, 2012.

G. Mavko, T. Mukerji, and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2009.

T. Mcdevitt and T. Laursen, A mortar-finite element formulation for frictional contact problems, International Journal for Numerical Methods in Engineering, vol.48, pp.1525-1547, 2000.

R. Mclaughlin, A study of the differential scheme for composite materials, International Journal of Engineering Science, vol.15, pp.237-244, 1977.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, vol.21, pp.571-574, 1973.

T. Mura, Micromechanics of Defects in Solids, Mechanics of Elastic and Inelastic Solids, 1987.

S. Nemat-nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland Series in Applied Mathematics and Mechanics, 2013.

S. Nemat-nasser and H. Horii, Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst, Journal of Geophysical Research: Solid Earth, vol.87, pp.6805-6821, 1982.

V. Nguyen, G. Becker, and L. Noels, Multiscale computational homogenization methods with a gradient enhanced scheme based on the discontinuous galerkin formulation, Computer Methods in Applied Mechanics and Engineering, vol.260, pp.63-77, 2013.

J. Nitsche, On dirichlet problems using subspaces with nearly zero boundary conditions, The mathematical foundations of the finite element method with applications to partial differential equations, pp.603-627, 1972.

L. Noels and R. Radovitzky, A general discontinuous galerkin method for finite hyperelasticity. formulation and numerical applications, International Journal for Numerical Methods in Engineering, vol.68, pp.64-97, 2006.

J. Oden and J. Martins, Models and computational methods for dynamic friction phenomena, Computer methods in applied mechanics and engineering, vol.52, pp.527-634, 1985.

B. Paliwal and K. Ramesh, An interacting micro-crack damage model for failure of brittle materials under compression, Journal of the Mechanics and Physics of Solids, vol.56, pp.896-923, 2008.

V. Pensée and D. Kondo, Une analyse micromécanique 3-d de l'endommagement par mésofissuration, Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics, vol.329, pp.271-276, 2001.

V. Pensee and D. Kondo, Micromechanics of anisotropic brittle damage: comparative analysis between a stress based and a strain based formulation, Mechanics of materials, vol.35, pp.747-761, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00139451

V. Pensée, D. Kondo, and L. Dormieux, Micromechanical analysis of anisotropic damage in brittle materials, Journal of Engineering Mechanics, vol.128, pp.889-897, 2002.

G. Pietrzak and A. Curnier, Large deformation frictional contact mechanics: continuum formulation and augmented lagrangian treatment, Computer Methods in Applied Mechanics and Engineering, vol.177, pp.351-381, 1999.

A. Popp and W. Wall, Dual mortar methods for computational contact mechanicsoverview and recent developments, vol.37, pp.66-84, 2014.

T. Poston and I. Stewart, Catastrophe Theory and Its Applications, 2014.

W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, 1973.

V. Renaud, D. Kondo, and J. Henry, Computations of effective moduli for microcracked materials: a boundary element approach, Computational materials science, vol.5, pp.227-237, 1996.

E. H. Saenger, N. Gold, and S. A. Shapiro, Modeling the propagation of elastic waves using a modified finite-difference grid, Wave motion, pp.77-92, 2000.

E. H. Saenger, O. S. Krüger, and S. A. Shapiro, Effective elastic properties of randomly fractured soils: 3d numerical experiments, Geophysical Prospecting, vol.52, pp.183-195, 2004.

E. H. Saenger and S. A. Shapiro, Effective velocities in fractured media: A numerical study using the rotated staggered finite-difference grid, Geophysical Prospecting, vol.50, pp.183-194, 2002.

M. Schoenberg, Elastic wave behavior across linear slip interfaces, The Journal of the Acoustical Society of America, vol.68, pp.1516-1521, 1980.

M. Schoenberg and C. M. Sayers, Seismic anisotropy of fractured rock, Geophysics, vol.60, pp.204-211, 1995.

A. Schubnel and Y. Guéguen, Dispersion and anisotropy of elastic waves in cracked rocks, Journal of Geophysical Research: Solid Earth, p.108, 2003.

J. C. Simo and T. Laursen, An augmented lagrangian treatment of contact problems involving friction, Computers & Structures, vol.42, pp.97-116, 1992.

S. Sitzmann, K. Willner, and B. I. Wohlmuth, A dual lagrange method for contact problems with regularized frictional contact conditions: Modelling micro slip, Computer Methods in Applied Mechanics and Engineering, vol.285, pp.468-487, 2015.

K. Teferra and L. Graham-brady, Tessellation growth models for polycrystalline microstructures, Computational Materials Science, vol.102, pp.57-67, 2015.

I. Temizer, A mixed formulation of mortar-based contact with friction, Computer Methods in Applied Mechanics and Engineering, vol.255, pp.183-195, 2013.

A. Eyck and A. Lew, Discontinuous galerkin methods for non-linear elasticity, International Journal for Numerical Methods in Engineering, vol.67, pp.1204-1243, 2006.

L. Thomsen, Elastic anisotropy due to aligned cracks in porous rock, Geophysical Prospecting, vol.43, pp.805-829, 1995.

I. Toulopoulos and J. Ekaterinaris, High-order discontinuous galerkin discretizations for computational aeroacoustics in complex domains, AIAA J, vol.44, pp.502-511, 2006.

T. J. Truster, P. Chen, and A. Masud, On the algorithmic and implementational aspects of a discontinuous galerkin method at finite strains, Computers & Mathematics with Applications, vol.70, pp.1266-1289, 2015.

T. J. Truster and A. Masud, A discontinuous/continuous galerkin method for modeling of interphase damage in fibrous composite systems, Computational Mechanics, vol.52, pp.499-514, 2013.

, Primal interface formulation for coupling multiple pdes: a consistent derivation via the variational multiscale method, Computer Methods in Applied Mechanics and Engineering, vol.268, pp.194-224, 2014.

, Discontinuous galerkin method for frictional interface dynamics, Journal of Engineering Mechanics, vol.142, p.4016084, 2016.

G. B. Van-baren, W. A. Mulder, and G. C. Herman, Finite-difference modeling of scalar-wave propagation in cracked media, Geophysics, vol.66, pp.267-276, 2001.

J. Virieux, P-sv wave propagation in heterogeneous media: Velocity-stress finitedifference method, Geophysics, pp.889-901, 1986.

S. Vlastos, E. Liu, I. Main, and X. Li, Numerical simulation of wave propagation in media with discrete distributions of fractures: effects of fracture sizes and spatial distributions, Geophysical Journal International, vol.152, pp.649-668, 2003.

M. F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM Journal on Numerical Analysis, vol.15, pp.152-161, 1978.

P. Wriggers, Finite element algorithms for contact problems, Archives of Computational, Methods in Engineering, vol.2, pp.1-49, 1995.

P. Wriggers and G. Zavarise, A formulation for frictionless contact problems using a weak form introduced by nitsche, Computational Mechanics, pp.407-420, 2008.

S. Yu and X. Feng, A micromechanics-based damage model for microcrackweakened brittle solids, Mechanics of Materials, vol.20, pp.59-76, 1995.

G. Zavarise, P. Wriggers, and B. Schrefler, A method for solving contact problems, International Journal for Numerical Methods in Engineering, vol.42, pp.473-498, 1998.

J. Zhang, Elastic wave modeling in fractured media with an explicit approach, Geophysics, vol.70, pp.75-85, 2005.

Q. Zhu, D. Kondo, J. Shao, and V. Pensee, Micromechanical modelling of anisotropic damage in brittle rocks and application, International Journal of Rock Mechanics and Mining Sciences, vol.45, pp.467-477, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00265097

Q. Zhu, D. Kondo, and J. Shao, Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme, International Journal of Solids and Structures, vol.45, pp.1385-1405, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00755158

Q. Zhu, J. Shao, and D. Kondo, A micromechanics-based non-local anisotropic model for unilateral damage in brittle materials, Comptes Rendus Mé-canique, vol.336, pp.320-328, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00755168

J. Zinszner, B. Erzar, P. Forquin, and E. Buzaud, Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: an experimental and numerical study, J. Mech. Phys. Solids, pp.112-127, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02083285