. .. , 172 7.2 Simulation approach: Eulerian vs Lagrangian, Contents 7.1 Spray modeling challenges, p.175

. .. Closing-models, 3.2 Evaporation and heat exchange rate, p.176

, Coupling virtual chemistry with evaporation model 180 7.4.1 Impact of simplified transport properties on evaporation fluxes

, Transport properties for virtual species, p.182

R. Abou-taouk, A. , B. Farcy, P. Domingo, L. Vervisch et al.,

. Eriksson, Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combustion Science and Technology, vol.188, issue.1, p.54, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611211

A. Abou-taouk, S. Sadasivuni, D. Lörstad, and L. Eriksson, Evaluation of global mechanisms for LES analysis of SGT-100 DLE combustion system, ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, p.54, 2013.

B. Abramzon and W. Sirignano, Droplet vaporization model for spray combustion calculations, International Journal of Heat and Mass Transfer, vol.32, issue.9, p.179, 1989.

A. Agosta, N. Cernansky, D. Miller, T. Faravelli, and E. Ranzi, Reference components of jet fuels: kinetic modeling and experimental results, Experimental Thermal and Fluid Science, vol.28, issue.7, p.114, 2004.

. Airbus, Global market forecast, p.1, 2018.

C. Angelberger, D. Veynante, F. Egolfopoulos, and T. Poinsot, Large eddy simulations of combustion instabilities in premixed flames, Proceedings of the Summer Program, p.132, 1998.

S. V. Apte, K. Mahesh, P. Moin, and J. C. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, International Journal of Multiphase Flow, vol.29, issue.8, p.176, 2003.

S. Arrhenius, On the reaction velocity of the inversion of cane sugar by acids, Zeitschrift fur physikalische Chemie, vol.4, p.22, 1889.

P. Auzillon, B. Fiorina, R. Vicquelin, N. Darabiha, O. Gicquel et al., Modeling chemical flame structure and combustion dynamics in LES, Proceedings of the Combustion Institute, vol.33, issue.1, p.135, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00491238

R. S. Barlow, M. J. Dunn, M. S. Sweeney, and S. Hochgreb, Effects of preferential transport in turbulent bluff-body-stabilized lean premixed CH 4 /air flames, Combustion and Flame, vol.159, issue.8, p.167, 2012.

J. Becker and C. Hassa, Breakup and atomization of a kerosene jet in crossflow at elevated pressure, Atomization and Sprays, vol.12, issue.1-3, p.193, 2002.

P. Bénard, G. Lartigue, V. Moureau, and R. Mercier, Large-Eddy simulation of the lean-premixed PRECCINSTA burner with wall heat loss, Proceedings of the Combustion Institute, vol.37, issue.4, p.155, 2019.

. Boeing, Current market outlook, p.1, 2017.

M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Symposium (International) on Combustion, vol.27, p.131, 1998.

N. J. Brown, G. Li, and M. L. Koszykowski, Mechanism reduction via principal component analysis, International Journal of Chemical Kinetics, vol.29, issue.6, p.46, 1997.

M. Bui-pham, K. Seshadri, and F. Williams, The asymptotic structure of premixed methane-air flames with slow CO oxidation, Combustion and Flame, vol.89, issue.3-4, p.93, 1992.

T. Butler and P. O'rourke, A numerical method for two dimensional unsteady reacting flows, Symposium (International) on Combustion, vol.16, issue.1, p.131, 1977.

V. Bykov and U. Maas, The extension of the ILDM concept to reaction-diffusion manifolds, Combustion Theory and Modelling, vol.11, issue.6, p.55, 2007.

M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Buildingup virtual optimized mechanism for flame modeling, Proceedings of the Combustion Institute, vol.36, issue.1, p.79, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541938

M. Cailler, R. Mercier, V. Moureau, N. Darabiha, and B. Fiorina, Prediction of CO emissions in LES of turbulent stratified combustion using virtual chemistry, 55th AIAA Aerospace Sciences Meeting, p.156, 2017.

M. Cavazzuti, Deterministic optimization, Optimization Methods, p.66, 2013.

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: nondynamic formulation and initial tests, Combustion and Flame, vol.131, issue.1, p.159, 0195.

F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation, Combustion and Flame, vol.131, issue.1-2, p.132, 2002.

J. Chen, Development of reduced mechanisms for numerical modelling of turbulent combustion, Workshop on Numerical Aspects of Reduction in Chemical Kinetics, CERMICS-ENPC, Cité Descartes, p.49, 1997.

T. Coffee and J. Heimerl, Transport algorithms for premixed, laminar steady-state flames, Combustion and Flame, vol.43, p.17, 1981.

O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of fluids, vol.12, issue.7, p.144, 2000.

O. Colin and M. Rudgyard, Development of high-order taylorgalerkin schemes for LES, Journal of Computational Physics, vol.162, issue.2, p.144, 0190.

P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Physical Chemistry Chemical Physics, vol.4, issue.11, p.114, 2002.

P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling, Progress in Energy and Combustion Science, vol.32, issue.1, p.114, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02021199

P. Dagaut, F. Karsenty, G. Dayma, P. Diévart, K. Hadj-ali et al., Experimental and detailed kinetic model for the oxidation of a gas to liquid (GtL) jet fuel, Combustion and Flame, vol.161, issue.3, p.41, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02014521

P. Dagaut, M. Reuillon, J. Boettner, and M. Cathonnet, Kerosene combustion at pressures up to 40 atm: Experimental study and detailed chemical kinetic modeling, Symposium (International) on Combustion, vol.25, issue.1, p.114, 1994.

N. Darabiha and S. Candel, The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames, Combustion Science and Technology, vol.86, issue.1-6, pp.67-85, 1992.

C. Darwin, The origin of species by means of natural selection: or, the preservation of favored races in the struggle for life, vol.1, p.67, 1872.

A. De and S. Acharya, Large eddy simulation of a premixed bunsen flame using a modified thickened-flame model at two Reynolds number, Combustion Science and Technology, vol.181, issue.10, p.133, 2009.

K. Deb and R. B. , Simulated binary crossover for continuous search space, Complex Systems, vol.9, issue.2, p.217, 1995.

G. Dixon-lewis, Flame structure and flame reaction kinetics II. Transport phenomena in multicomponent systems, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.307, p.17, 1488.

J. Dombard, Direct Numerical Simulation of non-isothermal dilute sprays using the Mesoscopic Eulerian Formalism, p.173, 2011.

P. Domingo, L. Vervisch, and K. Bray, Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, vol.6, issue.4, p.36, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01672226

P. Domingo, L. Vervisch, and J. Réveillon, DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air, Combustion and Flame, vol.140, issue.3, p.36, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01668611

D. Alvarez and P. , Simulation aux grandes échelles de la combustion haute pression pour la validation à priori de diagnostiques optiques, p.186, 2019.

D. Alvarez, P. , P. Bénard, G. Lartigue, V. Moureau et al., LES evaluation of the spray characteristics impact on the flame in a lean-premixed injection system, Poster presented at the 37th International Symposium on Combustion, p.187, 2018.

B. Duboc, P. Domingo, and G. Ribert, Simulating kerosene/air flames with hybrid transported-tabulated chemistry, Proceedings of the European Combustion Meeting, p.58, 2015.

K. Edwards, T. Edgar, and V. Manousiouthakis, Kinetic model reduction using genetic algorithms, Computers & chemical engineering, vol.22, issue.1-2, p.46, 1998.

T. Edwards and L. Q. Maurice, Surrogate mixtures to represent complex aviation and rocket fuels, Journal of Propulsion and Power, vol.17, issue.2, p.114, 2001.

A. El-bakali, P. Dagaut, and M. Cathonnet, Cinétique de combustion du kérosène à pression atmosphérique, CNRS, Rapport interne, p.115, 1999.

L. Elliott, D. Ingham, A. Kyne, N. Mera, M. Pourkashanian et al., Genetic algorithms for optimisation of chemical kinetics reaction mechanisms, Progress in Energy and Combustion Science, vol.30, issue.3, p.67, 2004.

L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian et al., Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms, Computers & Chemical Engineering, vol.30, issue.5, p.46, 2006.

M. Embouazza, Etude de l'auto-allumage par réduction des schémas cinétiques chimiques: application à la combustion homogène diesel, p.55, 2005.

N. Enjalbert, Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés, p.173, 2011.

A. Ern and V. Giovangigli, Multicomponent transport algorithms, vol.24, p.17, 1994.

A. Ern and V. Giovangigli, Thermal diffusion effects in hydrogen-air and methane-air flames, Combustion Theory and Modelling, vol.2, issue.4, p.18, 1998.

L. J. Eshelman and J. D. Schaffer, Real-coded genetic algorithms and interval-schemata, Foundations of Genetic Algorithms, vol.2, p.217, 1993.

M. Euler, R. Zhou, S. Hochgreb, and A. Dreizler, Temperature measurements of the bluff body surface of a swirl burner using phosphor thermometry, Combustion and Flame, vol.161, issue.11, p.156, 2014.

B. Farcy, A. Abou-taouk, L. Vervisch, P. Domingo, and N. Perret, Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNOx process, 67) References, vol.118, p.237, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612393

A. Felden, Development of Analytically Reduced Chemistries (ARC) and applications in Large Eddy Simulations (LES) of turbulent combustion, p.7, 2017.

A. Felden, L. Esclapez, E. Riber, B. Cuenot, and H. Wang, Including real fuel chemistry in LES of turbulent spray combustion, Combustion and Flame, vol.193, p.52, 2018.

E. Fernandez-tarrazo, A. L. Sánchez, A. Liñán, and F. A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combustion and Flame, vol.147, issue.1, p.91, 2006.

P. Fevrier, O. Simonin, and K. D. Squires, Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, Journal of Fluid Mechanics, vol.533, p.173, 2005.

V. Fichet, Modélisation de la combustion du gaz naturel par réseaux de réacteurs avec cinétique chimique détaillée, p.55, 2008.

B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier et al., Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM, Combustion Theory and Modelling, vol.7, issue.3, p.109, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00256666

B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combustion and Flame, vol.140, issue.3, p.99, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00126045

B. Fiorina, R. Mercier, G. Kuenne, A. Ketelheun, A. Avdi? et al., Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion, Combustion and Flame, vol.162, issue.11, p.55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01347928

B. Fiorina, D. Veynante, and S. Candel, Modeling combustion chemistry in large eddy simulation of turbulent flames, Flow, Turbulence and Combustion, vol.94, issue.1, p.130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219272

B. Fiorina, R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel et al., A filtered tabulated chemistry model for LES of premixed combustion, Combustion and Flame, vol.157, issue.3, p.141, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472611

A. Flightpath, 2050-Europe's vision for aviation, p.2, 2011.

B. Franzelli, B. Fiorina, and N. Darabiha, A tabulated chemistry method for spray combustion, Proceedings of the Combustion Institute, vol.34, p.55, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01272971

B. Franzelli, E. Riber, B. Cuenot, and M. Ihme, Numerical modeling of soot production in aero-engine combustors using large eddy simulations, Proceedings of ASME Turbo Expo, p.57, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01272962

B. Franzelli, E. Riber, L. Y. Gicquel, and T. Poinsot, Large Eddy Simulation of combustion instabilities in a lean partially premixed swirled References flame, Combustion and Flame, vol.159, issue.2, p.158, 2012.

B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene-air premixed flames, Combustion and Flame, vol.157, issue.7, p.229, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01272968

B. Franzelli, A. Vié, M. Boileau, B. Fiorina, and N. Darabiha, , 2017.

, Large eddy simulation of swirled spray flame using detailed and tabulated chemical descriptions. Flow, Turbulence and Combustion, vol.98, p.186

B. G. Franzelli, Impact of the chemical description on direct numerical simulations and large eddy simulations of turbulent combustion in industrial aero-engines, vol.133, p.165, 2011.

S. Freitag and C. Hassa, Spray characteristics of a kerosene jet in cross flow of air at elevated pressure, Proceedings ILASS-Europe, p.193, 2008.

C. Fureby, A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion, Proceedings of the Combustion Institute, vol.30, p.132, 2005.

J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin et al., Large-eddy simulation of a fuel-lean premixed turbulent swirlburner, Combustion and Flame, vol.155, issue.1-2, p.151, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01672198

F. Gao and E. E. O'brien, A large-eddy simulation scheme for turbulent reacting flows, Physics of Fluids A: Fluid Dynamics, vol.5, issue.6, p.130, 1993.

J. E. Gentle, W. K. Härdle, and Y. Mori, Handbook of computational statistics: concepts and methods, p.66, 2012.

M. Germano, U. Piomelli, P. Moin, and W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics, vol.3, issue.7, p.128, 1991.

O. Gicquel, N. Darabiha, and D. Thévenin, Laminar premixed hydrogen / air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proceedings of the Combustion Institute, vol.28, issue.2, p.229, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00256701

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, p.67, 1989.

D. E. Goldberg, The theory of virtual alphabets, International Conference on Parallel Problem Solving from Nature, p.217, 1990.

D. G. Goodwin, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, p.26, 2002.

D. A. Goussis and U. Maas, Model reduction for combustion chemistry, Turbulent Combustion Modeling, p.49, 2011.

G. Hannebique, P. Sierra, E. Riber, and B. Cuenot, Large eddy simulation of reactive two-phase flow in an aeronautical multipoint burner, Flow, Turbulence and Combustion, vol.90, issue.2, p.36, 2013.

J. Hélie and A. Trouvé, Turbulent flame propagation in partially premixed combustion, Symposium (International) on Combustion, vol.27, issue.1, p.31, 1998.

S. Hermeth, G. Staffelbach, L. Y. Gicquel, V. Anisimov, C. Cirigliano et al., Bistable swirled flames and influence on flame transfer functions, Combustion and Flame, vol.161, issue.1, p.54, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00930081

I. Hernández, G. Staffelbach, T. Poinsot, J. C. Casado, and J. B. Kok, LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor, Comptes Rendus Mécanique, vol.341, issue.1, p.87, 2013.

R. Hilbert, F. Tap, H. El-rabii, and D. Thévenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progress in Energy and Combustion Science, vol.30, issue.1, p.18, 2004.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, and M. G. Mayer, Molecular theory of gases and liquids, vol.26, p.181, 1954.

J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, p.67, 1975.

C. Hollmann and E. Gutheil, Modeling of turbulent spray diffusion flames including detailed chemistry, Symposium (international) on combustion, vol.26, p.186, 1996.

G. I. Hong, J. H. Chen, and J. Chen, Chemical response of methane/air diffusion flames to unsteady strain rate, Combustion and Flame, vol.118, issue.1, p.108, 1999.

G. Hubbard, V. Denny, and A. Mills, Droplet evaporation: effects of transients and variable properties, International Journal of Heat and Mass Transfer, vol.18, issue.9, p.177, 1975.

, 20 years, p.1, 2017.

, Civil aviation statistics of the world and ICAO staff estimates, p.1, 2017.

M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Physics of Fluids, vol.20, issue.5, p.56, 2008.

M. Ihme, C. Schmitt, and H. Pitsch, Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame, Proceedings of the Combustion Institute, vol.32, issue.1, p.56, 2009.

M. Ihme, L. Shunn, and J. Zhang, Regularization of reaction progress variable for application to flamelet-based combustion models, Journal of Computational Physics, vol.231, issue.23, p.56, 2012.

N. Jaouen, An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion, p.57, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01522644

N. Jaouen, L. Vervisch, and P. Domingo, Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proceedings of the Combustion Institute, vol.36, issue.3, p.57, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657558

N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem, Combustion and Flame, vol.175, p.56, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611160

T. Jaravel, Prediction of pollutants in gas turbines using large eddy simulation, vol.48, p.134, 2016.

T. Jaravel, E. Riber, B. Cuenot, and G. Bulat, Large eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proceedings of the Combustion Institute, vol.36, issue.3, p.52, 2017.

W. Jones and R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combustion and Flame, vol.73, issue.3, p.229, 1988.

R. J. Kee, G. Dixon-lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, A fortran computer code package for the evaluation of gas-phase multicomponent transport properties, Sandia National Laboratories Report SAND86-8246, vol.13, p.19, 1986.

R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, Chemkin-III: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, p.82, 1996.

A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Field equation for interface propagation in an unsteady homogeneous flow field, Physical Review A, vol.37, issue.7, p.131, 1988.

E. Knudsen and H. Pitsch, A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion, Combustion and Flame, vol.154, issue.4, p.132, 2008.

J. Koopman, C. Hassa, M. Fischer, G. Stockhausen, M. Jarius et al., Modelling of low emissions combustors using large eddy simulations. work package 4: Reacting flow, temperature and species data, p.190, 0194.

M. Kraushaar, Application of the compressible and low-Mach number approaches to Large Eddy Simulation of turbulent flows in aero-engines, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00711480

, 157) References, p.241

G. Kuenne, A. Ketelheun, and J. Janicka, LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry, Combustion and Flame, vol.158, issue.9, p.133, 2011.

S. Lam, Singular perturbation for stiff equations using numerical methods, Recent Advances in the Aerospace Sciences, p.108, 1985.

S. Lam, Using CSP to understand complex chemical kinetics, Science and Technology, vol.89, issue.5-6, p.89, 1993.

S. Lam and D. Goussis, The CSP method for simplifying kinetics, International Journal of Chemical Kinetics, vol.26, issue.4, p.89, 1994.

F. Laurent and M. Massot, Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods, Combustion Theory and Modelling, vol.5, issue.4, p.173, 2001.

G. Lecocq, I. Hernández, D. Poitou, E. Riber, and B. Cuenot, Soot prediction by Large-Eddy Simulation of complex geometry combustion chambers, Comptes Rendus Mécanique, vol.341, issue.1-2, p.57, 2013.

A. H. Lefebvre, Properties of sprays, Particle & Particle Systems Characterization, vol.6, issue.1-4, p.194, 1989.

A. H. Lefebvre, Gas turbine combustion: alternative fuels and emissions, p.3, 2010.

J. Legier, Simulations numériques des instabilités de combustion dans les foyers aéronautiques, p.158, 2001.

J. Legier, T. Poinsot, and D. Veynante, Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion, Proceedings of the summer program, p.133, 2000.

V. Lepage, Elaboration d'une méthode de réduction de schémas ciné-tiques détaillés. Application aux mécanismes de combustion du gaz naturel et du n-décane, p.52, 2000.

J. Leparoux, R. Mercier, V. Moureau, and H. Musaeffendic, Primary atomization simulation applied to a jet in crossflow aeronautical injector with dynamic mesh adaptation, Proceedings of 14 th Triennal International Conference on Liquid Atomization and Spray Systems, p.172, 2018.

J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, International journal of chemical kinetics, vol.36, issue.10, p.40, 2004.

A. Liñán and F. A. Williams, Fundamental aspects of combustion, 1993.

R. Lindstedt and L. Maurice, Detailed chemical-kinetic model for aviation fuels, Journal of Propulsion and Power, vol.16, issue.2, p.114, 2000.

T. Løvås, P. Amnéus, F. Mauss, and E. Mastorakos, Comparison of automatic reduction procedures for ignition chemistry, Proceedings of the Combustion Institute, vol.29, issue.1, p.50, 2002.

T. Løvås, F. Mauss, C. Hasse, and N. Peters, Development of adaptive kinetics for application in combustion systems, Proceedings of the Combustion Institute, vol.29, issue.1, p.50, 2002.

T. Løvås, D. Nilsson, and F. Mauss, Automatic reduction procedure for chemical mechanisms applied to premixed methane/air flames, Proceedings of the Combustion Institute, vol.28, issue.2, p.7, 2000.

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, vol.30, p.89, 2005.

T. Lu and C. K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-Heptane and iso-octane, Combustion and Flame, vol.144, issue.1, p.45, 2006.

T. Lu and C. K. Law, On the applicability of directed relation graphs to the reduction of reaction mechanisms, Combustion and Flame, vol.146, issue.3, p.89, 2006.

T. Lu and C. K. Law, Systematic approach to obtain analytic solutions of quasi steady state species in reduced mechanisms, The Journal of Physical Chemistry A, vol.110, issue.49, p.49, 2006.

T. Lu and C. K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combustion and Flame, vol.154, issue.4, p.229, 2008.

T. Lu and C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and Combustion Science, vol.35, issue.2, p.40, 2009.

T. Lu, C. S. Yoo, J. Chen, and C. K. Law, Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis, Journal of Fluid Mechanics, vol.652, p.36, 2010.

J. Luche, Elaboration of reduced kinetic models of combustion, vol.52, p.229, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00636023

J. Luche, M. Reuillon, J. Boettner, and M. Cathonnet, Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion, Combustion Science and Technology, vol.176, issue.11, p.48, 2004.

K. Luo, H. Pitsch, M. Pai, and O. Desjardins, Direct numerical simulations and analysis of three-dimensional n-heptane spray flames in a model swirl combustor, Proceedings Combustion Institute, vol.33, issue.2, p.186, 2011.

U. Maas and S. B. Pope, Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds, Proceedings of the Combustion Institute, vol.24, issue.1, p.55, 1992.

U. Maas and S. B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combustion and Flame, vol.88, issue.3, p.55, 1992.

B. F. Magnussen and B. H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symposium (international) on Combustion, vol.16, p.130, 1977.

G. Maio, , p.214, 2019.

G. Maio, M. Cailler, R. Mercier, and B. Fiorina, Virtual chemistry for temperature and CO prediction in LES of non-adiabatic turbulent flames, Proceedings of the Combustion Institute, vol.37, issue.2, p.166, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02179433

P. Malbois, E. Salaün, F. Frindt, G. Cabot, L. Bouheraoua et al., Simultaneous equivalence ratio and flame structure measurements in a lean-premixed aero-engine injection system under relevant operating conditions, Proceedings of the European Combustion Meeting, p.189, 2017.

P. Malbois, E. Salaun, F. Frindt, G. Cabot, B. Renou et al., Experimental investigation with optical diagnostics of a lean-premixed aero-engine injection system under relevant operating conditions, ASME Turbo Expo, vol.187, p.189, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668918

N. M. Marinov, W. J. Pitz, C. K. Westbrook, A. M. Vincitore, M. J. Castaldi et al., Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame, Combustion and Flame, vol.114, issue.1, p.41, 1998.

C. Martin, Etude énergétique des instabilités thermo-acoustiques et optimisation génétique des cinétiques réduites, vol.54, p.218, 2005.

E. Mason and S. Saxena, Approximate formula for the thermal conductivity of gas mixtures, The Physics of Fluids, vol.1, issue.5, p.18, 1958.

A. Masri, Partial premixing and stratification in turbulent flames, Proceedings of the Combustion institute, vol.35, issue.2, p.31, 2015.

M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, The Physics of Fluids, vol.26, issue.4, p.174, 1983.

B. J. Mcbride, S. Gordon, and M. A. Reno, Coefficients for calculating thermodynamic and transport properties of individual species, p.71, 1993.

S. Meares and A. R. Masri, A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures, Combustion and Flame, vol.161, issue.2, p.31, 2014.

C. Mehl, Large Eddy Simulations and complex chemistry for modeling References the chemical structure of turbulent flames, vol.166, p.215, 2018.

W. Meier, P. Weigand, X. R. Duan, and R. Giezendanner-thoben, Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame, Combustion and Flame, vol.150, issue.1, p.143, 2007.

S. Menon and W. H. Calhoon, Subgrid mixing and molecular transport modeling in a reacting shear layer, Symposium (International) on Combustion, vol.26, p.130, 1996.

R. Mercier, Turbulent combustion modeling for Large Eddy Simulation of non-adiabatic stratified flames, p.158, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01246453

R. Mercier, P. Auzillon, V. Moureau, N. Darabiha, O. Gicquel et al., LES modeling of the impact of heat losses and differential diffusion on turbulent stratified flame propagation: application to the TU darmstadt stratified flame, Flow, Turbulence and Combustion, vol.93, issue.2, p.88, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01219286

R. Mercier, C. Mehl, V. Moureau, and B. Fiorina, Filtered wrinkled flamelets model for large eddy simulation of turbulent premixed combustion, Combustion and Flame, vol.205, p.167, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02129890

R. Mercier, V. Moureau, D. Veynante, and B. Fiorina, LES of turbulent combustion: on the consistency between flame and flow filter scales. Proceedings of the Combustion Institute, vol.35, p.143, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219282

R. Mercier, T. Schmitt, D. Veynante, and B. Fiorina, The influence of combustion SGS sub-models on the resolved flame propagation. application to the LES of the Cambridge stratified flames, Proceedings of the Combustion Institute, vol.35, issue.2, p.167, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219284

Z. Michalewicz, Genetic algorithms+ data structures= evolution programs, p.218, 2013.

M. Miguel-brebion, D. Mejia, P. Xavier, F. Duchaine, B. Bédat et al., Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder, Combustion and Flame, vol.172, p.51, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01557859

Y. Mizobuchi, J. Shinjo, S. Ogawa, and T. Takeno, A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame, Proceedings of the Combustion Institute, vol.30, issue.1, p.36, 2005.

P. Moin, K. Squires, W. Cabot, and S. Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport, Physics of Fluids A: Fluid Dynamics, vol.3, issue.11, p.129, 1991.

L. Monchick and E. Mason, Transport properties of polar gases, The Journal of Chemical Physics, vol.35, issue.5, p.19, 1961.

H. Mongia, On initiating 3rd generation of correlations for gaseous References 245 emissions of aero-propulsion engines, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, vol.1529, p.3, 2010.

C. J. Montgomery, C. Yang, A. R. Parkinson, and J. Chen, Selecting the optimum quasi-steady-state species for reduced chemical kinetic mechanisms using a genetic algorithm, Combustion and Flame, vol.144, issue.1, p.50, 2006.

V. Moureau, P. Domingo, and L. Vervisch, Design of a massively parallel CFD code for complex geometries, Comptes Rendus Mé-canique, vol.339, issue.2-3, p.157, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01672172

V. Moureau, P. Domingo, and L. Vervisch, From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combustion and Flame, vol.158, issue.7, p.141, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01672168

V. Moureau, P. Minot, H. Pitsch, and C. Bérat, A ghost-fluid method for large-eddy simulations of premixed combustion in complex geometries, Journal of Computational Physics, vol.221, issue.2, p.143, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01658744

M. E. Mueller and H. Pitsch, A methodology for soot prediction including thermal radiation in complex industrial burners, Combustion and Flame, vol.159, issue.6, p.55, 2012.

S. Nambully, P. Domingo, V. Moureau, and L. Vervisch, A filtered-laminar-flame PDF sub-grid scale closure for LES of premixed turbulent flames. part I: Formalism and application to a bluff-body burner with differential diffusion, Combustion and Flame, vol.161, issue.1, p.167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612429

S. Nambully, P. Domingo, V. Moureau, and L. Vervisch, A filtered-laminar-flame PDF sub-grid-scale closure for LES of premixed turbulent flames. part II: Application to a stratified bluff-body burner, Combustion and Flame, vol.2, issue.7, p.156, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612429

P. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combustion and Flame, vol.157, issue.1, p.56, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01672184

F. Nicoud, H. Baya-toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Physics of Fluids, vol.23, issue.8, p.128, 0190.
URL : https://hal.archives-ouvertes.fr/hal-00802472

F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, vol.62, p.144, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00910373

Y. Niu, L. Vervisch, and P. D. Tao, An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition, Combustion and Flame, vol.160, issue.4, p.56, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01671904

D. Paulhiac, Modélisation de la combustion d'un spray dans un brûleur aéronautique, p.53, 2015.

F. Pecquery, V. Moureau, G. Lartigue, L. Vervisch, and A. Roux, Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame, Combustion and Flame, vol.161, issue.2, p.57, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612394

J. E. Penner, D. H. Lister, D. J. Griggs, D. J. Dokken, and M. Mcfarland, Aviation and the global atmosphere: A special report of IPCC working groups I and III, Intergovernmental panel on climate change, p.2, 1999.

P. Pepiot, Automatic strategies to model transportation fuel surrogates, vol.48, p.105, 2008.

P. Pepiot and H. Pitsch, Systematic reduction of large chemical mechanisms, 4th Joint Meeting of the US Sections of the Combustion Institute, vol.2123, p.45, 2005.

P. Pepiot-desjardins and H. Pitsch, An efficient error-propagationbased reduction method for large chemical kinetic mechanisms, Combustion and Flame, vol.154, issue.1, p.47, 2008.

B. A. Perry, M. E. Mueller, and A. R. Masri, A two mixture fraction flamelet model for large eddy simulation of turbulent flames with inhomogeneous inlets, Proceedings of the Combustion Institute, vol.36, issue.2, p.55, 2017.

N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, vol.10, issue.3, p.229, 1984.

C. D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, vol.504, p.229, 2004.

H. Pitsch, Large-eddy simulation of turbulent combustion, Annual Review of Fluid Mechanics, vol.38, p.127, 2006.

H. Pitsch and L. Duchamp-de-lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proceedings of the Combustion Institute, vol.29, issue.2, p.132, 2001.

H. Pitsch and M. Ihme, An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion, 43rd AIAA Aerospace Sciences Meeting and Exhibit, p.55, 2005.

H. Pitsch and N. Peters, A consistent flamelet formulation for nonpremixed combustion considering differential diffusion effects, Combustion and Flame, vol.114, issue.1-2, p.29, 1998.

T. Poinsot and D. Veynante, Theoretical and numerical combustion, vol.127, p.130, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00270731

W. Polifke, W. Geng, and K. Döbeling, Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms, Combustion and Flame, vol.113, issue.1-2, p.67, 1998.

S. Pope, Lagrangian PDF methods for turbulent flows, Annual review of fluid mechanics, vol.26, issue.1, p.131, 1994.

S. B. Pope, Turbulent flows, p.127, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00712179

F. Proch, P. Domingo, L. Vervisch, and A. M. Kempf, Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combustion and Flame, vol.180, p.140, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611182

F. Proch and A. M. Kempf, Numerical analysis of the cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry, Combustion and Flame, vol.161, issue.10, p.161, 2014.

F. Proch, M. Pettit, T. Ma, M. Rieth, and A. Kempf, Investigations on the effect of different subgrid models on the quality of LES results, Workshop on Direct and Large-Eddy Simulation 9, p.157, 2013.

R. Ragucci, A. Bellofiore, and A. Cavaliere, Trajectory and momentum coherence breakdown of a liquid jet in high-density air cross-flow, Atomization and Sprays, vol.17, issue.1, p.193, 2007.

W. Ranz and W. Marshall, Evaporation from drops, Chemical Engineering Progress, vol.48, issue.3, p.179, 1952.

E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli et al., Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Progress in Energy and Combustion Science, vol.38, issue.4, p.86, 2012.

J. Reveillon and L. Vervisch, Analysis of weakly turbulent dilutespray flames and spray combustion regimes, Journal of Fluid Mechanics, vol.537, p.186, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01668606

G. Ribert, O. Gicquel, N. Darabiha, and D. Veynante, Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combustion and Flame, vol.146, issue.4, p.56, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00114951

G. Ribert, L. Vervisch, P. Domingo, and Y. Niu, Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, Flow, Turbulence and Combustion, vol.92, issue.1-2, p.58, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612398

S. Richard, Lecture notes in combustion technology for future aero gas turbines and requirements on design tools, Von Karman Institute Lecture Series, p.5, 2015.

S. Richard, O. O.-colin, A. Vermorel, C. Benkenida, D. Angelberger et al., Towards large eddy simulation of combustion in spark ignition engines, Proceedings of the Combustion Institute, vol.31, issue.2, p.132, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00271669

D. A. Rosenberg, P. M. Allison, and J. F. Driscoll, Flame index and its statistical properties measured to understand partially premixed turbulent combustion, Combustion and Flame, vol.162, issue.7, p.31, 2015.

S. Roux, G. Lartigue, T. Poinsot, U. Meier, and C. Bérat, Studies of References mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations, Combustion and Flame, vol.141, issue.1-2, p.143, 2005.

P. Sagaut, Large eddy simulation for incompressible flows: an introduction, p.129, 2006.

C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati et al., Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame, Combustion and Flame, vol.162, issue.9, p.225, 2015.

E. Salaün, P. Malbois, A. Vandel, G. Godard, F. Grisch et al., Experimental investigation of a spray swirled flame in gas turbine model combustor, 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, p.186, 2016.

A. Sánchez, A. Lépinette, M. Bollig, A. Liñán, and B. Lázaro, The reduced kinetic description of lean premixed combustion, Combustion and Flame, vol.123, issue.4, p.86, 2000.

M. Sanjosé, Evaluation de la méthode Euler-Euler pour la simulation aux grandes échelles des chambres à carburant liquide, p.181, 2009.

R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law, Structure of a spatially developing turbulent lean methane-air bunsen flame, Proceedings of the Combustion Institute, vol.31, issue.1, p.154, 2007.

S. Sazhin, Droplets and sprays, vol.345, p.176, 2014.

L. Schiller and A. Nauman, A drag coefficient correlation, VDI Zeitung, vol.77, p.176, 1935.

T. Schönfeld and M. Rudgyard, Steady and unsteady flow simulations using the hybrid flow solver AVBP, AIAA journal, vol.37, issue.11, p.8, 0190.

E. K. Shashank and H. Pitsch, Spray evaporation model sensitivities, Annual Research Briefs of the CTR, p.180, 2011.

P. Sierra, Modeling the dispersion and evaporation of sprays in aeronautical combustion chambers, vol.181, p.182, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00701105

N. Sikalo, C. O.-hasemann, A. Schulz, I. Kempf, and . Wlokas, A genetic algorithm-based method for the automatic reduction of reaction mechanisms, International Journal of Chemical Kinetics, vol.46, issue.1, p.46, 2014.

W. A. Sirignano, Fluid dynamics and transport of droplets and sprays, p.176, 2010.

J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly weather review, vol.91, issue.3, p.128, 1963.

G. P. Smith, D. M. Golden, M. Frenklach, B. Eiteener, M. Goldenberg et al., , vol.86, p.87, 2011.

D. B. Spalding, The combustion of liquid fuels, Symposium (international) on combustion, vol.4, issue.1, p.176, 1953.

A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: an effective coupling, Industrial & Engineering Chemistry Research, vol.53, issue.22, p.225, 2013.

W. Sutherland, The viscosity of gases and molecular force. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.36, issue.223, p.19, 1893.

M. S. Sweeney, S. Hochgreb, and R. S. Barlow, The structure of premixed and stratified low turbulence flames, Combustion and Flame, vol.158, issue.5, p.140, 2011.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, A comparative analysis of flame surface density metrics in premixed and stratified flames, Proceedings of the Combustion Institute, vol.33, issue.1, p.157, 2011.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Nonswirling flows, Combustion and Flame, vol.159, issue.9, p.157, 2012.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combustion and Flame, vol.159, issue.9, p.157, 2012.

M. S. Sweeney, S. Hochgreb, M. J. Dunn, and R. S. Barlow, Multiply conditioned analyses of stratification in highly swirling methane/air flames, Combustion and Flame, vol.160, issue.2, p.164, 2013.

N. Syred, A review of oscillation mechanisms and the role of the precessing vortex core (pvc) in swirl combustion systems, Progress in Energy and Combustion Science, vol.32, issue.2, p.31, 2006.

A. S. Tomlin, M. J. Pilling, T. Turányi, J. H. Merkin, and J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses, Combustion and Flame, vol.91, issue.2, p.43, 1992.

A. S. Tomlin, T. Turányi, and M. J. Pilling, Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Comprehensive Chemical Kinetics, vol.35, p.43, 1997.

T. Turányi, Reduction of large reaction mechanisms, New Journal of chemistry, vol.14, issue.11, p.42, 1990.

T. Turányi and T. Bérces, Kinetics of reactions occurring in the unpolluted troposphere, II. sensitivity analysis, Reaction Kinetics and Catalysis Letters, vol.41, issue.1, p.45, 1990.

, Air topics, p.2, 2018.

C. M. Vagelopoulos and F. N. Egolfopoulos, Direct experimental determination of laminar flame speeds, Symposium (international) on combustion, vol.27, p.86, 1998.

S. Vajda, P. Valko, and T. Turányi, Principal component analysis of kinetic models, International Journal of Chemical Kinetics, vol.17, issue.1, p.46, 1985.

L. Valiño, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow, Turbulence and Combustion, vol.60, p.131, 1998.

J. Van-oijen, F. Lammers, and L. De-goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, p.229, 2001.

D. Veynante and V. Moureau, Analysis of dynamic models for large eddy simulations of turbulent premixed combustion, Combustion and Flame, vol.162, issue.12, p.132, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219931

D. Veynante and L. Vervisch, Turbulent combustion modeling, Progress in Energy and Combustion Science, vol.28, issue.3, p.130, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01672225

A. Vié, B. Franzelli, Y. Gao, T. Lu, H. Wang et al., Analysis of segregation and bifurcation in turbulent spray flames: A 3D counterflow configuration, Proceedings of the Combustion Institute, vol.35, issue.2, p.51, 2015.

A. Vié, F. Laurent, and M. Massot, Size-velocity correlations in hybrid high order moment/multi-fluid methods for polydisperse evaporating sprays: Modeling and numerical issues, Journal of Computational Physics, vol.237, p.173, 2013.

A. Violi, S. Yan, E. Eddings, A. Sarofim, S. Granata et al., Experimental formulation and kinetic model for jp-8 surrogate mixtures, Combustion Science and Technology, vol.174, p.114, 2002.

D. Vlachos, Reduction of detailed kinetic mechanisms for ignition and extinction of premixed hydrogen/air flames, Chemical Engineering Science, vol.51, issue.16, p.46, 1996.

P. S. Volpiani, T. Schmitt, and D. Veynante, Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation, Combustion and Flame, vol.180, p.151, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01865083

G. Wang, M. Boileau, and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combustion and Flame, vol.158, issue.11, p.251, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00659566

H. Wang, E. Dames, B. Sirjean, D. Sheen, R. Tangko et al., A hightemperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, p.41, 2010.

H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin et al., USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds, p.225, 2007.

P. Wang, N. Platova, J. Fröhlich, and U. Maas, Large eddy simulation of the PRECCINSTA burner, International Journal of Heat and Mass Transfer, vol.70, p.141, 2014.

J. Warnatz, The structure of laminar alkane-, alkene-, and acetylene flames, Symposium (International) on Combustion, vol.18, issue.1, p.24, 1981.

P. Weigand, X. Duan, W. Meier, U. Meier, M. Aigner et al., Experimental investigations of an oscillating lean premixed CH 4 /air swirl flame in a gas turbine model combustor, Proceedings of the European Combustion Meeting, p.140, 2005.

P. Weigand, W. Meier, X. Duan, and M. Aigner, Laser-based investigations of thermoacoustic instabilities in a lean premixed gas turbine model combustor, Journal of Engineering for Gas Turbines and power, vol.129, issue.3, p.140, 2007.

C. K. Westbrook and F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combustion Science and Technology, vol.27, issue.1-2, p.229, 1981.

C. Wilke, A viscosity equation for gas mixtures, The Journal of Chemical Physics, vol.18, issue.4, p.18, 1950.

F. Williams, Combustion theory, p.131, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00014918

A. H. Wright, Genetic algorithms for real parameter optimization, Foundations of Genetic Algorithms, vol.1, p.217, 1991.

H. Wu and M. Ihme, Compliance of combustion models for turbulent reacting flow simulations, Fuel, vol.186, p.36, 2016.

Y. Xuan, G. Blanquart, and M. E. Mueller, Modeling curvature effects in diffusion flames using a laminar flamelet model, Combustion and Flame, vol.161, issue.5, p.29, 2014.

H. Yamashita, M. Shimada, and T. Takeno, A numerical study on flame stability at the transition point of jet diffusion flames, Proceedings of the Combustion Institute, vol.26, issue.1, p.36, 1996.

G. Yao, S. Abdel-khalik, and S. Ghiaasiaan, An investigation of simple evaporation models used in spray simulations, Journal of Heat Transfer, vol.125, issue.1, p.176, 2003.

C. S. Yoo, T. Lu, J. H. Chen, and C. K. Law, Parametric study, vol.158, p.51, 2011.

S. Yoon, J. Hewson, P. Desjardin, D. Glaze, A. Black et al., Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications, International Journal of Multiphase Flow, vol.30, issue.11, p.194, 2004.

C. Yu, C. Wang, and M. Frenklach, Chemical kinetics of methyl oxidation by molecular oxygen, The Journal of Physical Chemistry, vol.99, issue.39, p.86, 1995.

A. Zambon and H. Chelliah, Explicit reduced reaction models for ignition, flame propagation, and extinction of C 2 H 4 /CH 4 /H 2 and air systems, Combustion and Flame, vol.150, issue.1, p.49, 2007.

X. Zheng, T. Lu, and C. Law, Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene, Proceedings of the Combustion Institute, vol.31, issue.1, p.45, 2007.

R. Zhou, S. Balusamy, M. S. Sweeney, R. S. Barlow, and S. Hochgreb, Flow field measurements of a series of turbulent premixed and stratified methane/air flames, Combustion and Flame, vol.160, issue.10, p.156, 2013.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190