Crosstalk between FGF and Notch signaling pathways during the collective migration of parapineal cells in the left right asymmetric zebrafish brain

Abstract : During the establishment of left-right asymmetry in the zebrafish brain, a small group of cells, the parapineal, collectively migrates from the dorsal midline of the epithalamus to the left in most wild-type embryos. Parapineal migration requires Fibroblastic Growth Factor 8 (Fgf8), a secreted signal expressed bilaterally in epithalamic tissues surrounding the parapineal. The left bias in the orientation of parapineal migration depends on the activity of Cyclops, a secreted factor of the Nodal/TGFß family that is transiently expressed in the left epithalamus prior to parapineal migration. Therefore, the parapineal provides a powerful new model to understand FGF dependent collective cell migration and to study how other signaling pathways modulate this process. Live imaging of an FGF reporter transgene revealed that the FGF pathway is activated in only few parapineal cells that are usually located at the leading edge of migration. Global expression of a constitutively activated Fgf receptor (CA-FGFR) delays migration in wild-type, while it partially restores both parapineal migration and focal activation of the FGF reporter transgene in fgf8-/- mutant embryos. Importantly, focal activation of FGF signaling in few parapineal cells is sufficient to restore collective migration in fgf8-/- mutants. Finally, Nodal asymmetry contributes to restrict and left-bias the activation of the FGF pathway (Manuscript n°1). Following this work, my thesis project aimed at understanding how the activation of the FGF pathway is restricted to few cells, despite all parapineal cells apparently being competent to activate the pathway. We showed that Notch signaling is able to restrict FGF activity. Loss or gain of function of the Notch pathway respectively triggers an increase or decrease in FGF activity, which correlate with PP migration defects. Moreover, decreasing or increasing FGF activity levels respectively rescues or aggravates parapineal migration defects in Notch loss-of-function context. Our data indicate that Notch signaling restricts the activation of the FGF pathway within parapineal cells to promote their collective migration (Manuscript n°2). We also found that Notch pathway is required for the specification of a correct number of parapineal cells, independently of FGF pathway. In parallel, we analysed the function of MMP2 (Matrix Metalloprotease 2), a protein mosaïcally expressed in the parapineal and a candidate to modulate FGF signaling. However, we found no significant defects in the specification or migration of parapineal cells in mmp2-/- mutant embryos (Manuscript n°3). My PhD work reveals a role for Notch signaling in restricting the activation of FGF signaling within few parapineal cells, a process that is biased by Nodal pathway to the left and required for the migration of the entire parapineal. These data provide insights into the interaction of FGF, Notch and Nodal/TGFb signaling pathways that may be applicable to other models of collective cell migration, such as cancer cells migration for instance.
Document type :
Theses
Complete list of metadatas

Cited literature [325 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02282171
Contributor : Abes Star <>
Submitted on : Monday, September 9, 2019 - 5:52:08 PM
Last modification on : Tuesday, September 10, 2019 - 1:09:04 AM

File

2018TOU30197b.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02282171, version 1

Collections

Citation

Lu Wei. Crosstalk between FGF and Notch signaling pathways during the collective migration of parapineal cells in the left right asymmetric zebrafish brain. Development Biology. Université Paul Sabatier - Toulouse III, 2018. English. ⟨NNT : 2018TOU30197⟩. ⟨tel-02282171⟩

Share

Metrics

Record views

169

Files downloads

11