, Etat d'avancement de la caractérisation des déchets MAVL produits avant 2015 -Programmes d'étude du conditionnementdes déchets, 2015.

D. Chartier, B. Muzeau, L. Stefan, J. Sanchez-canet, and C. Monguillon, Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag, Journal of Hazardous Materials, vol.326, pp.197-210, 2017.

D. Chen, S. K. Sharma, and A. Mudhoo, Handbook on applications of ultrasound : Sonochemistry for sustainability, 2012.

L. H. Thompson and L. K. Doraiswamy, Sonochemistry: Science and engineering. Industrial & Engineering Chemistry Research, vol.38, issue.4, pp.1215-1249, 1999.

T. Leong, M. Ashokkumar, and S. Kentish, The fundamentals of power ultrasounda review, Acoustics Australia, vol.39, issue.2, pp.54-63, 2011.

T. Y. Wu, N. Guo, C. Y. The, W. Hay, and J. X. , Advances in ultrasound technology for environmental remediation. SpringerBriefs in Molecular Science, 2012.

A. Harkin, A. Nadim, and T. J. Kaper, On acoustic cavitation of slightly subcritical bubbles, Physics of Fluids, vol.11, issue.2, pp.274-287, 1999.

K. Yasui, Acoustic cavitation and bubble dynamics, 2018.

K. S. Suslick, . Sonoluminescence, and . Sonochemistry, IEEE Ultrasonics, pp.523-532, 1997.

M. Ashokkumar, J. Lee, S. Kentish, and F. Grieser, Bubbles in an acoustic field: An overview, Ultrasonics Sonochemistry, vol.14, issue.4, pp.470-475, 2007.

M. Vinatoru, T. J. Mason, and I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials, Trends in analytical chemistry, vol.97, pp.159-178, 2017.

K. S. Suslick, S. J. Doktycz, and E. B. Flint, On the origin of sonoluminescence and sonochemistry, Ultrasonics, vol.28, issue.5, pp.280-290, 1990.

O. Louisnard, J. González-garcí-a, H. Feng, G. Barbosa-canovas, and J. Weiss, Acoustic cavitation, Ultrasound technologies for food, pp.13-64, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01729180

L. Van-wijngaarden, Mechanics of collapsing cavitation bubbles, Ultrasonics Sonochemistry, vol.29, pp.524-527, 2016.

K. S. Suslick, D. A. Hammerton, and R. E. Cline, The sonochemical hot-spot, Journal of the American Chemical Society, vol.108, issue.18, pp.5641-5642, 1986.

K. S. Suslick and . Sonochemistry, Science, vol.247, issue.4949, pp.1439-1445, 1990.

K. S. Suslick, W. B. Mcnamara, Y. Didenko, L. A. Sonoluminescence, and . Crum, Hot spot conditions during multibubble cavitation, Sonochemistry and, pp.191-204, 1999.

Y. T. Didenko, W. B. Mcnamara, and K. S. Suslick, Hot spot conditions during cavitation in water, Journal of the American Chemical Society, vol.121, issue.24, pp.5817-5818, 1999.

C. Cairos and R. Mettin, Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields, Physical Review Letters, vol.118, issue.6, 2017.

A. A. Ndiaye, R. Pflieger, B. Siboulet, J. Molina, J. F. Dufreche et al., Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water, Journal of Physical Chemistry A, vol.116, pp.4860-4867, 1920.
URL : https://hal.archives-ouvertes.fr/hal-02002133

R. Pflieger, T. Ouerhani, T. Belmonte, and S. I. Nikitenko, Use of NH (A 3 P-X 3 S -) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation, Physical Chemistry Chemical Physics, vol.19, issue.38, pp.26272-26279, 2017.

S. I. Nikitenko and R. Pflieger, Toward a new paradigm for sonochemistry: Short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions, Ultrasonics Sonochemistry, vol.35, pp.623-630, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02114785

R. Pflieger, A. A. Ndiaye, T. Chave, and S. I. Nikitenko, Influence of ultrasonic frequency on Swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions, The Journal of Physical Chemistry B, vol.119, issue.1, pp.284-290, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02118223

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, The final stage of the collapse of a cavitation bubble close to a rigid boundary, Physics of Fluids, vol.14, issue.1, pp.85-92, 2002.

N. Bremond, M. Arora, S. M. Dammer, and D. Lohse, Interaction of cavitation bubbles on a wall, Physics of Fluids, vol.18, issue.12, pp.150501-150510, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00264702

T. Mason and J. P. Lorimer, Applied sonochemistry: The uses of power ultrasound in chemistry and processing, 2002.

W. Lauterborn and H. Bolle, Experimental investigations of cavitation-bubble collapse in neighborhood of a solid boundary, Journal of Fluid Mechanics, vol.72, issue.2, pp.391-399, 1975.

Y. Sugimoto, Y. Yamanishi, K. Sato, and M. Moriyama, Measurement of bubble behavior and impact on solid wall induced by fiber-holmium: YAG laser, Journal of Flow Control, Measurement & Visualization, vol.03, issue.04, pp.135-143, 2015.

W. Lauterborn, T. Kurz, R. Mettin, and C. D. Ohl, Experimental and theoretical bubble dynamics, Advances in Chemical Physics, pp.295-380, 1999.

O. Supponen, D. Obreschkow, P. Kobel, M. Tinguely, N. Dorsaz et al., Shock waves from nonspherical cavitation bubbles, Physical Review Fluids, vol.2, issue.9, pp.360101-360120, 2017.

F. R. Young and . Sonoluminescence, , 2004.

M. Virot, T. Chave, S. I. Nikitenko, D. G. Shchukin, T. Zemb et al., Acoustic cavitation at the water-glass interface, Journal of Physical Chemistry C, vol.114, issue.30, pp.13083-13091, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02000158

F. Reuter and R. Mettin, Mechanisms of single bubble cleaning, Ultrasonics Sonochemistry, vol.29, pp.550-562, 2016.

E. A. Brujan, T. Ikeda, and Y. Matsumoto, On the pressure of cavitation bubbles. Experimental Thermal and Fluid Science, vol.32, pp.1188-1191, 2008.

A. Philipp and W. Lauterborn, Cavitation erosion by single laser-produced bubbles, Journal of Fluid Mechanics, vol.361, pp.75-116, 1998.

J. E. Piercy and J. Lamb, Acoustic streaming in liquids, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.226, pp.43-50, 1164.

J. T. Karlsen, W. Qiu, P. Augustsson, and H. Bruus, Acoustic Streaming and Its Suppression in Inhomogeneous Fluids, Physical Review Letters, vol.120, issue.5, pp.54501-54502, 2018.

M. Legay, N. Gondrexon, S. Le-person, P. Boldo, and A. Bontemps, Enhancement of heat transfer by ultrasound: Review and recent advances, International Journal of Chemical Engineering, issue.2, pp.1-17, 2011.

E. H. Trinh and A. Gopinath, Acoustic streaming and heat and mass transfer enhancement, Third Microgravity Fluid Physics Conference, pp.791-796, 1996.

C. Brennen, Cavitation and bubble dynamics, vol.44, 1995.

W. T. Richards and A. L. Loomis, The chemical effects of high frequency sound waves I. A preliminary survey, Journal of the American Chemical Society, vol.49, issue.12, pp.3086-3100, 1927.

N. Pokhrel, P. K. Vabbina, and N. Pala, Sonochemistry: Science and engineering, Ultrasonics Sonochemistry, vol.29, pp.104-128, 2016.

T. Lepoint and F. Mullie, What Exactly is Cavitation Chemistry, Ultrasonics Sonochemistry, vol.1, pp.13-22, 1994.

R. J. Wood, J. Lee, and M. J. Bussemaker, A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions, Ultrasonics Sonochemistry, vol.38, pp.351-370, 2017.

R. Ji, R. Pflieger, M. Virot, and S. I. Nikitenko, Multibubble sonochemistry and sonoluminescence at 100 khz: The missing link between low-and high-frequency ultrasound, Journal of Physical Chemistry B, vol.122, issue.27, pp.6989-6994, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02075371

T. Ouerhani, R. Pflieger, W. Ben-messaoud, and S. I. Nikitenko, Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2-Ar mixtures, Journal of Physical Chemistry B, vol.119, issue.52, pp.15885-15891, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02118226

L. C. Hagenson and L. K. Doraiswamy, Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system, Chemical Engineering Science, vol.53, issue.1, pp.131-148, 1998.

N. Serpone, P. Colarusso, and I. Sonochemistry, Effects of Ultrasounds On Heterogeneous Chemical Reactions -a Useful Tool To Generate Radicals and To Examine Reaction Mechanisms, pp.635-679

J. Dooher, R. Genberg, S. Moon, B. Gilmartin, S. Jakatt et al., Combustion studies of water-oil emulsion on a commercial boiler using number 2 oil and low and high sulfur number 6 oil, Fuel, vol.59, issue.12, pp.883-892, 1980.

D. G. Shchukin, E. Skorb, V. Belova, and H. Mohwald, Ultrasonic cavitation at solid surfaces, Advanced Materials, vol.23, issue.17, pp.1922-1934, 2011.

T. J. Mason, Ultrasonic cleaning: An historical perspective, Ultrasonics Sonochemistry, vol.29, pp.519-523, 2016.

S. Banerjee, R. Kumar, and K. S. Gandhi, Analysis of ultrasonically enhanced hydrogen evolution for Zn-NiCl2 system, Chemical Engineering Science, vol.50, issue.15, pp.2409-2418, 1995.

R. N. Domingos, D. R. Vollet, and A. J. Bucalon, Structural changes induced by ultrasound during aging of the boehmite phase, Ultrasonics Sonochemistry, vol.4, issue.4, pp.321-323, 1997.

T. J. Mason, J. P. Lorimer, and D. J. Walton, Sonoelectrochemistry. Ultrasonics, vol.28, pp.333-337, 1990.

R. G. Compton, J. C. Eklund, and F. Marken, Sonoelectrochemical processes: A review, Electroanalysis, vol.9, issue.7, pp.509-522, 1997.

A. Brotchie, F. Grieser, A. , and M. , Effect of power and frequency on bubble-size distributions in acoustic cavitation, Physical Review Letters, vol.102, issue.8, 2009.

B. Babgi, M. F. Zhou, M. Aksu, Y. Alghamdi, A. et al., Initial growth of sonochemically active and sonoluminescence bubbles at various frequencies, Ultrasonics Sonochemistry, vol.29, pp.55-59, 2016.

. Dake and . Sonoluminescence, , 2005.

S. Hatanaka, K. Yasui, T. Kozuka, T. Tuziuti, and H. Mitome, Influence of bubble clustering on multibubble sonoluminescence, Ultrasonics, vol.40, issue.1-8, pp.655-660, 2002.

D. Krefting, R. Mettin, and W. Lauterborn, High-speed observation of acoustic cavitation erosion in multibubble systems, Ultrasonics Sonochemistry, vol.11, issue.3-4, pp.119-123, 2004.

M. P. Brenner, S. Hilgenfeldt, and D. Lohse, Single-bubble sonoluminescence, Reviews of Modern Physics, vol.74, issue.2, pp.425-484, 2002.

T. J. Matula, R. A. Roy, P. D. Mourad, W. B. Mcnamara-iii, and K. S. Suslick, Comparison of multibubble and single-bubble sonoluminescence spectra, Physical Review Letters, vol.75, issue.13, pp.2602-2605, 1995.

Y. T. Didenko and S. P. Pugach, Spectra of water sonoluminescence, Journal of Physical Chemistry, vol.98, issue.39, pp.9742-9749, 1994.

S. Abe and P. K. Choi, Spatiotemporal separation of Na-atom emission from continuum emission in sonoluminescence, Japanese Journal of Applied Physics, vol.48, issue.7, 2009.

Y. Hayashi and P. K. Choi, Effects of rare gases on sonoluminescence spectrum of the K atom, Journal of Physical Chemistry B, vol.116, issue.27, pp.7891-7897, 2012.

P. K. Choi, Sonoluminescence and acoustic cavitation, Japanese Journal of Applied Physics, vol.56, issue.7, 2017.

H. Xu and K. S. Suslick, Molecular emission and temperature measurements from single-bubble sonoluminescence, Physical Review Letters, vol.104, issue.24, pp.244301-244302, 2010.

H. Xu, N. G. Glumac, and K. S. Suslick, Temperature Inhomogeneity during Multibubble Sonoluminescence, Angewandte Chemie International Edition, vol.49, issue.6, pp.1079-1082, 2010.

D. J. Flannigan and K. S. Suslick, Temperature Nonequilibration during SingleBubble Sonoluminescence, Journal of Physical Chemistry Letters, vol.3, issue.17, pp.2401-2404, 2012.

W. B. Mcnamara, Y. T. Didenko, and K. S. Suslick, Sonoluminescence temperatures during multi-bubble cavitation, Nature, vol.401, issue.6755, pp.772-775, 1999.

S. Merouani, H. Ferkous, O. Hamdaoui, Y. Rezgui, and M. Guemini, A method for predicting the number of active bubbles in sonochemical reactors, Ultrasonics Sonochemistry, vol.22, pp.51-58, 2015.

J. L. Laborde, C. Bouyer, J. P. Caltagirone, G. , and A. , Acoustic cavitation field prediction at low and high frequency ultrasounds, Ultrasonics, vol.36, issue.1-5, pp.581-587, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00179177

M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka et al., Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies, Chemphyschem, vol.11, issue.8, pp.1680-1684, 2010.

M. A. Beckett and I. Hua, Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry, Journal of Physical Chemistry A, vol.105, issue.15, pp.3796-3802, 2001.

R. Tronson, M. Ashokkumar, and F. Grieser, Comparison of the effects of watersoluble solutes on multibubble sonoluminescence generated in aqueous solutions by 20-and 515-kHz pulsed ultrasound, Journal of Physical Chemistry B, vol.106, issue.42, pp.11064-11068, 2002.

Y. Asakura, T. Nishida, T. Matsuoka, and S. Koda, Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors, Ultrasonics Sonochemistry, vol.15, issue.3, pp.244-250, 2008.

N. S. Yusof and M. Ashokkumar, Sonochemical synthesis of gold nanoparticles by using high intensity focused ultrasound, Chemphyschem, vol.16, issue.4, pp.775-781, 2015.

P. Kanthale, M. Ashokkumar, and F. Grieser, Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects, Ultrasonics Sonochemistry, vol.15, issue.2, pp.143-150, 2008.

G. Cum, G. Galli, R. Gallo, and A. Spadaro, Role of frequency in the ultrasonic activation of chemical reactions, Ultrasonics, vol.30, issue.4, pp.267-270, 1992.

C. Petrier, A. Jeunet, J. L. Luche, and G. Reverdy, Unexpected frequency-effects on the rate of oxidative processes induced by ultrasound, Journal of the American Chemical Society, vol.114, issue.8, pp.3148-3150, 1992.

G. Portenlänger and H. Heusinger, The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes, Ultrasonics Sonochemistry, vol.4, issue.2, pp.127-130, 1997.

T. J. Mason, A. J. Cobley, J. E. Graves, M. , and D. , New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound, Ultrasonics Sonochemistry, vol.18, issue.1, pp.226-230, 2011.

G. O. Whillock and B. F. Harvey, Ultrasonically Enhanced Corrosion of 304L Stainless Steel: 2. The Effect of Frequency, Acoustic Power and Horn to Specimen Distance, Ultrasonics Sonochemistry, vol.4, issue.1, pp.33-38, 1997.

R. Pflieger, T. Chave, G. Vite, L. Jouve, and S. I. Nikitenko, Effect of Operational Conditions on Sonoluminescence and Kinetics of H2O2 Formation during the Sonolysis of Water in the Presence of Ar/O2 Gas Mixture, Ultrasonics Sonochemistry, vol.26, pp.169-175, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02118224

C. Cairos, J. Schneider, R. Pflieger, and R. Mettin, Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions, Ultrasonics Sonochemistry, vol.21, issue.6, pp.2044-2051, 2014.

K. Yasui, Influence of ultrasonic frequency on multibubble sonoluminescence, Journal of the Acoustical Society of America, vol.112, issue.4, pp.1405-1413, 2002.

S. Merouani, O. Hamdaoui, Y. Rezgui, and M. Guemini, Effects of Ultrasound Frequency and Acoustic Amplitude on the Size of Sonochemically Active BubblesTheoretical Study, Ultrasonics Sonochemistry, vol.20, issue.3, pp.815-819, 2013.

M. Gutierrez and A. Henglein, Chemical action of pulsed ultrasound -observation of an unprecedented intensity effect, Journal of Physical Chemistry, vol.94, issue.9, pp.3625-3628, 1990.

M. Sivakumar and A. Gedanken, Insights into the sonochemical decomposition of Fe(CO)5: theoretical and experimental understanding of the role of molar concentration and power density on the reaction yield, Ultrasonics Sonochemistry, vol.11, issue.6, pp.373-378, 2004.

Y. T. Didenko, T. V. Gordeychuk, and V. L. Koretz, The effect of ultrasound power on water sonoluminescence, Journal of Sound and Vibration, vol.147, issue.3, pp.409-416, 1991.

H. B. Lee and P. K. Choi, Acoustic power dependences of sonoluminescence and bubble dynamics, Ultrasonics Sonochemistry, vol.21, issue.6, pp.2037-2043, 2014.

D. Sunartio, M. Ashokkumar, and F. Grieser, The influence of acoustic power on multibubble sonoluminescence in aqueous solution containing organic solutes, Journal of Physical Chemistry B, vol.109, issue.42, pp.20044-20050, 2005.

M. Ashokkumar, P. Mulvaney, and F. Grieser, The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases, Journal of the American Chemical Society, vol.121, issue.32, pp.7355-7359, 1999.

K. Okitsu, T. Suzuki, N. Takenaka, H. Bandow, R. Nishimura et al., Acoustic multibubble cavitation in water: A new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemistry, Journal of Physical Chemistry B, vol.110, issue.41, pp.20081-20084, 2006.

R. Pflieger, L. Gravier, G. Guillot, M. Ashokkumar, and S. I. Nikitenko, Inverse effects of the gas feed positioning on sonochemistry and sonoluminescence, Ultrasonics Sonochemistry, vol.46, pp.10-17, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02105853

K. Yasui, Y. Iida, T. Tuziuti, T. Kozuka, and A. Towata, Strongly interacting bubbles under an ultrasonic horn, Physical Review E, vol.77, issue.1, 2008.

M. H. Entezari and P. Kruus, Effect of frequency on sonochemical reactions II. Temperature and intensity effects, Ultrasonics Sonochemistry, vol.3, issue.1, pp.19-24, 1996.

S. I. Nikitenko, C. Le-naour, and P. Moisy, Comparative study of sonochemical reactors with different geometry using thermal and chemical probes, Ultrasonics Sonochemistry, vol.14, issue.3, pp.330-336, 2007.
URL : https://hal.archives-ouvertes.fr/in2p3-00135226

M. L. Calvisi, O. Lindau, J. R. Blake, and A. J. Szeri, Shape stability and violent collapse of microbubbles in acoustic traveling waves, Physics of Fluids, vol.19, issue.4, 2007.

J. Lee, M. Ashokkumar, K. Yasui, T. Tuziuti, T. Kozuka et al., Development and optimization of acoustic bubble structures at high frequencies, Ultrasonics Sonochemistry, vol.18, issue.1, pp.92-98, 2011.

M. Kauer, V. Belova-magri, C. Cairos, H. J. Schreier, and R. Mettin, Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields, Ultrasonics Sonochemistry, vol.34, pp.474-483, 2017.

K. Thangavadivel, K. Okitsu, G. Owens, P. J. Lesniewski, and R. Nishimura, Influence of sonochemical reactor diameter and liquid height on methyl orange degradation under 200 kHz indirect sonication, Journal of Environmental Chemical Engineering, issue.1, pp.275-280, 2013.

S. De-la-rochebrochard, J. Suptil, J. F. Blais, and E. Naffrechoux, Sonochemical efficiency dependence on liquid height and frequency in an improved sonochemical reactor, Ultrasonics Sonochemistry, vol.19, issue.2, pp.280-285, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01814656

T. Tuziuti, K. Yasui, T. Kozuka, and A. Towata, Influence of liquid-surface vibration on sonochemiluminescence intensity, Journal of Physical Chemistry A, vol.114, issue.27, pp.7321-7325, 2010.

E. Kim, M. Cui, M. Jang, B. Park, Y. Son et al., Investigation of sonochemical activities at a frequency of 334 kHz: The effect of geometric parameters of sonoreactor, Ultrasonics Sonochemistry, vol.21, issue.4, pp.1504-1511, 2014.

M. J. Bussemaker and D. Zhang, A phenomenological investigation into the opposing effects of fluid flow on sonochemical activity at different frequency and power settings. 1. Overhead stirring, Ultrasonics Sonochemistry, vol.21, issue.1, pp.436-445, 2014.

O. Kaltsa, I. Gatsi, S. Yanniotis, and I. Mandala, Influence of ultrasonication parameters on physical characteristics of olive oil model emulsions containing xanthan. Food and Bioprocess Technology, vol.7, pp.2038-2049, 2014.

H. Falleh, R. Ksouri, M. E. Lucchessi, C. Abdelly, and C. Magne, Ultrasound-assisted extraction: Effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of mesembryanthemum edule l. Aizoaceae shoots, Tropical Journal of Pharmaceutical Research, vol.11, issue.2, pp.243-249, 2012.

S. X. Leong, C. C. Mayorga-martinez, Z. Sofer, J. Luxa, S. M. Tana et al., A study of the effect of sonication time on the catalytic performance of layered WS2 from various sources, Physical Chemistry Chemical Physics, vol.19, issue.4, pp.2768-2777, 2017.

Y. Zhao, C. Bao, R. Feng, L. , and R. , A new method of etching ABS plastic for plating by ultrasound. Plating and Surface Finishing, vol.85, pp.98-100, 1998.

K. S. Suslick and G. J. Price, Applications of ultrasound to materials chemistry, Annual Review of Materials Science, vol.29, issue.1, pp.295-326, 1999.

K. S. Suslick, D. J. Casadonte, M. L. Green, and M. E. Thompson, Effects of highintensity ultrasound on inorganic solids, Ultrasonics, vol.25, issue.1, pp.56-59, 1987.

A. Cobley and T. Mason, The evaluation of sonochemical techniques for sustainable surface modification in electronic manufacturing, Circuit World, vol.33, issue.3, pp.29-34, 2007.

A. Cobley, T. Mason, R. , and J. , Sonochemical surface modification: A route to lean, green and clean manufacturing, Journal of Applied Surface Finishing, vol.3, issue.4, pp.190-196, 2008.

E. V. Skorb, D. G. Shchukin, H. Mohwald, and D. V. Andreeva, Ultrasound-driven design of metal surface nanofoams, Nanoscale, vol.2, issue.5, pp.722-727, 2010.

E. Hutli, M. S. Nedeljkovic, A. Bonyar, N. A. Radovic, V. Llic et al., The ability of using the cavitation phenomenon as a tool to modify the surface characteristics in micro-and in nano-level, Tribology International, vol.101, pp.88-97, 2016.

E. V. Skorb, H. Mohwald, and D. V. Andreeva, Effect of cavitation bubble collapse on the modification of solids: Crystallization aspects, Langmuir, vol.32, issue.43, pp.11072-11085, 2016.

Y. K. Zhou and F. G. Hammitt, Cavitation erosion incubation period, Wear, vol.86, issue.2, pp.299-313, 1983.

D. F. Rivas, B. Verhaagen, J. R. Seddon, A. G. Zijlstra, L. M. Jiang et al., Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles, Biomicrofluidics, vol.6, issue.3, 2012.

S. Verdan, G. Burato, M. Comet, L. Reinert, and H. Fuzellier, Structural changes of metallic surfaces induced by ultrasound, Ultrasonics Sonochemistry, vol.10, pp.291-295, 2003.

A. Kollath, P. V. Cherepanov, and D. V. Andreeva, Controllable manipulation of crystallinity and morphology of aluminium surfaces using high intensity ultrasound, Applied Acoustics, vol.103, pp.190-194, 2016.

Y. Zhukova, S. A. Ulasevich, J. W. Dunlop, P. Fratzl, H. Mohwald et al., Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces, Ultrasonics Sonochemistry, vol.36, pp.146-154, 2017.

E. V. Skorb, D. Fix, D. G. Shchukin, H. Mohwald, D. V. Sviridov et al., Sonochemical formation of metal sponges, Nanoscale, vol.3, issue.3, pp.985-993, 2011.

N. S. Saadi, L. B. Hassan, and T. Karabacak, Metal oxide nanostructures by a simple hot water treatment, Scientific Reports, vol.7, issue.1, p.7158, 2017.

T. J. Bulat, Macrosonics in industry .3. Ultrasonic cleaning, Ultrasonics, vol.12, issue.2, pp.59-68, 1974.

L. A. Crum and G. W. Ferrell, The role of acoustic cavitation in megasonic cleaning, Acustica, vol.82, pp.132-132, 1996.

F. J. Fuchs, Ultrasonic cleaning and washing of surfaces, in Power ultrasonics, pp.577-609, 2015.

K. Barbara and K. Ed, Ultrasonics vs megasonics, 2018.

. Sonosys, MEMS (microelectromechanical systems) / LIGA technology, 2015.

, Octorber, vol.15

Y. L. Li, Ultrasonic cleaning principle and application, Cleaning World, vol.22, issue.7, pp.31-35, 2006.

N. S. Yusof, B. Babgi, Y. Alghamdi, M. Aksu, J. Madhavan et al., Physical and chemical effects of acoustic cavitation in selected ultrasonic cleaning applications, Ultrasonics Sonochemistry, vol.29, pp.568-576, 2016.

N. Galy, Behavior of 14C in irradiated nuclear graphite : effects of irradiation and decontamination by steam reforming, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01493658

L. Vende, Nuclear graphite waste's behaviour under disposal conditions : Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00770671

P. Anzieu, B. Bonin, and P. Pradel, Gas-cooled nuclear reactors, 2006.
URL : https://hal.archives-ouvertes.fr/cea-01151588

G. Moniteur,

C. Cannes, Matrices de confinement pour les déchets nucléaires : corrosion des métaux dans les conditions de stockage, 2018.

B. Barre, P. Anzieu, R. Lenain, and J. Thomas, Nuclear reactor systems -a technical, historical and dynamic approach, 2016.

J. Pageot, Study of a nuclear graphite waste 14 C decontamination process by CO2 gasification, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01137038

R. Caillat and R. Darras, Corrosion du magnésium et de certains de ses alliages dans les piles refroidies par gaz 1958

C. R. Azevedo, Selection of fuel cladding material for nuclear fission reactors, vol.18, pp.1943-1962, 2011.

S. F. Pugh, J. E. Harris, L. E. Raraty, J. Wareing, G. A. Burras et al., Magnesium alloy cladding for nuclear fuels, Journal of the British Nuclear Energy Society, vol.11, issue.4, pp.313-330, 1972.

R. Neelameggham, Primary production of magnesium, Fundamentals of Magnesium Alloy Metallurgy, pp.1-32, 2013.

C. Juers, Corrosion and surface treatments for magnesium alloys used for aeronautical applications, 2008.
URL : https://hal.archives-ouvertes.fr/tel-01748487

I. Polmear, D. Stjohn, J. Nie, M. ;. Qian, and . Polmear, Magnesium alloys, Light alloys, pp.287-367, 2017.

B. L. Mordike and T. Ebert, Magnesium -properties -applications -potential, Materials Science and Engineering A, vol.302, issue.1, pp.37-45, 2001.

R. Caillat, J. Herenguel, M. Salesse, and J. Stohr, Raisons du choix de l'alliage Mg-Zr pour le gainage des éléments combustibles, Journal of Nuclear Materials, vol.8, issue.1, pp.1-2, 1963.

J. Gu, Grain refinement of Mg-Zn and Mg-Mn alloys by SiC inoculation, 2017.

M. Rendu, Sicral F1 graphite-core fuel element behavior in power reactors 1987

K. R. Hallam, P. C. Minshall, P. J. Heard, and P. E. Flewitt, Corrosion of the alloys Magnox AL80, Magnox ZR55 and pure magnesium in air containing water vapour, Corrosion Science, vol.112, pp.347-363, 2016.

C. R. Gregson, D. T. Goddard, M. J. Sarsfield, and R. J. Taylor, Combined electron microscopy and vibrational spectroscopy study of corroded Magnox sludge from a legacy spent nuclear fuel storage pond, Journal of Nuclear Materials, vol.412, issue.1, pp.145-156, 2011.

G. L. Song, Corrosion electrochemistry of magnesium (Mg) and its alloys, in Corrosion of magnesium alloys, pp.3-65, 2011.

R. C. Zeng, J. Zhang, W. J. Huang, W. Dietzel, K. U. Kainer et al., Review of studies on corrosion of magnesium alloys. Transactions of Nonferrous Metals Society of China, vol.16, pp.763-771, 2006.

M. Joyce, Radioactive waste management and disposal, pp.357-378, 2018.

V. M. Efremenkov, Radioactive waste management at nuclear power plants, International Atomic Energy Agency Bulletin, vol.31, issue.4, pp.37-42, 1989.

M. Atkins and F. P. Glasser, Application of portland cement-based materials to radioactive waste immobilization, Waste Management, vol.12, issue.2, pp.105-131, 1992.

G. A. Fairhall and J. D. Palmer, The encapsulation of Magnox Swarf in cement in the United Kingdom, vol.22, pp.293-298, 1992.

A. Rooses, D. Lambertin, D. Chartier, and F. Frizon, Galvanic corrosion of Mg-Zr fuel cladding and steel immobilized in Portland cement and geopolymer at early ages, Journal of Nuclear Materials, vol.435, issue.1-3, pp.137-140, 2013.

A. Strasser, J. Santucci, K. Lindquist, W. Yario, G. Stern et al., Evaluation of stainless steel cladding for use in current design LWRs

A. Abe, C. Giovedi, D. Gomes, and A. Silva, Revisiting stainless steel as pwr fuel rod cladding after fukushima daiichi accident, Journal of Power and Energy Engineering, issue.1, pp.323-329, 2013.

E. Pino, A. Abe, and C. Giovedi, The quest for safe and reliable fuel cladding materials, 2015 International nuclear atlantic conference, pp.4847-4854, 2015.

A. Leontyev, Laser decontamination and cleaning of metal surfaces : modelling and experimental studies, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00661695

. Andra, Intermediate-level waste (ILW-LL), 2018.

D. Lambertin, F. Frizon, B. , and F. , Mg-Zr alloy behavior in basic solutions and immobilization in Portland cement and Na-geopolymer with sodium fluoride inhibitor. Surface & Coatings Technology, vol.206, pp.4567-4573, 2012.

J. L. Agullo and A. , Etude de la faisabilité du traitement et du confinement des effluents issus de la dissolution dans l'acide nitrique des déchets magnésiens, 2018.

. Otnd, Étude de faisabilité du procédé de dissolution carbonique sur des déchets magnésiens du dégainage -définition du procédé de dissolution carbonique, 2015.

, Decontamination techniques used in decommissioning activities 1999

A. Kaul and M. Lasch, Decontamination, in Radiological Protection, pp.259-294, 2005.

P. Kinnunen, ANTIOXI -Decontamination techniques for activity removal in nuclear environments, 2008.

T. Moser and T. Carr, Pressurized Water Reactor Fuel Cleaning Using Advanced Ultrasonics, 2000.

N. Lebedev, D. Krasilnikov, A. Vasiliev, G. Dubinin, Y. et al., Development and application of the ultrasonic technologies in nuclear engineering, NPC 2012: Nuclear Plant Chemistry Conference, International Conference on Water Chemistry of Nuclear Reactor Systems, 2012.

A. Kumar, R. B. Bhatt, P. G. Behere, A. , and M. , Ultrasonic decontamination of prototype fast breeder reactor fuel pins, Ultrasonics, vol.54, issue.4, pp.1052-1056, 2014.

H. Wells, Radioactive decontamination by ultrasonics, Ultrasonics, vol.4, issue.1, pp.29-34, 1966.

P. Cerre, E. Mestre, and J. De-kerdelleau, Decontamination of Surfaces by Ultrasonics, 1962.

J. Courtault, J. De-kerdelleau, and E. Mestre, The ultrasonic copper and brass decontamination study 1965

E. Borioli, F. Bregani, and A. Garofalo, Effectiveness of different decontamination techniques on metallic scraps arising from decommissioned power plants 1998

Y. Hong, S. Park, S. Han, and B. Kim, Smart decontamination device for small-size radioactive scrap metal waste : Using abrasion pin in rotating magnetic field and ultrasonic wave cleaner, Journal of Nuclear Fuel Cycle and Waste Technology, vol.12, issue.1, pp.79-88, 2014.

A. P. Vasilyev, N. M. Lebedev, A. E. Savkin, and I. E. Karlina, Experimental Tests of Ultrasonic Decontamination of Metal Radioactive Waste, 2009 Waste Management Symposium -WM2009/WM'09: HLW, TRU, LLW/ILW, Mixed, Hazardous Wastes and Environmental Management -Waste

K. J. Rosman and P. D. Taylor, Isotopic compositions of the elements, 19971998.

H. Jaffe and D. A. Berlincourt, Piezoelectric transducer materials, Proceedings of the IEEE, vol.53, pp.1372-1386, 1965.

P. N. Wells, M. A. Bullen, D. H. Follett, H. F. Freundlich, J. et al., The dosimetry of small ultrasonic beams, Ultrasonics, vol.1, issue.2, pp.106-110, 1963.

C. L. Gong and D. P. Hart, Ultrasound induced cavitation and sonochemical yields, Journal of the Acoustical Society of America, vol.104, issue.5, pp.2675-2682, 1998.

E. Dalodiere, M. Virot, P. Moisy, and S. I. Nikitenko, Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen, Ultrasonics Sonochemistry, vol.29, pp.198-204, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02076922

S. Amelinckx, D. V. Dyck, J. V. Landuyt, and G. V. Tendeloo, Handbook of microscopy. Applications in materials, science, solid-state physics and chemistry, 1997.

J. ;. Epp and . Hübschen, X-ray diffraction (XRD) techniques for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods, pp.81-124, 2016.

D. Quéré, Rough ideas on wetting, Physica A: Statistical Mechanics and its Applications, vol.313, pp.32-46, 2002.

R. Wenzel, Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, vol.28, pp.988-994, 1936.

A. G. Demir, V. Furlan, N. Lecis, and B. Previtali, Laser surface structuring of AZ31 Mg alloy for controlled wettability, Biointerphases, vol.9, issue.2, 2014.

W. M. Sigmund, S. Hsu, and C. Model, Encyclopedia of Membranes, E. Drioli and L. Giorno, pp.310-311, 2016.

D. L. Shimanovich, A. I. Vorobjova, D. I. Tishkevich, A. V. Trukhanov, M. V. Zdorovets et al., Preparation and morphology-dependent wettability of porous alumina membranes, Beilstein Journal of Nanotechnology, vol.9, pp.1423-1436, 2018.

A. Aina, In situ monitoring of pharmaceutical crystallisation, 2012.

A. Brotchie, F. Grieser, A. , and M. , Characterization of acoustic cavitation bubbles in different sound fields, Journal of Physical Chemistry B, vol.114, issue.34, pp.11010-11016, 2010.

S. Merouani, O. Hamdaoui, Y. Rezgui, and M. Guemini, Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases, Ultrasonics Sonochemistry, vol.22, pp.41-50, 2015.

S. Koda, T. Kimura, T. Kondo, and H. Mitome, A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrasonics Sonochemistry, vol.10, issue.3, pp.149-156, 2003.

G. Mark, A. Tauber, L. A. Rudiger, H. P. Schuchmann, D. Schulz et al., OH-radical formation by ultrasound in aqueous solution -part II: Terephthalate and fricke dosimetry and the influence of various conditions on the sonolytic yield, Ultrasonics Sonochemistry, vol.5, issue.2, pp.41-52, 1998.

K. S. Suslick, Y. Didenko, M. M. Fang, T. Hyeon, K. J. Kolbeck et al., Acoustic cavitation and its chemical consequences, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.357, pp.335-353, 1751.

G. J. Price, N. K. Harris, and A. J. Stewart, Direct observation of cavitation fields at 23 and 515 kHz, Ultrasonics Sonochemistry, vol.17, issue.1, pp.30-33, 2010.

K. Yasui, T. Tuziuti, T. Kozuka, A. Towata, and Y. Iida, Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound, Journal of Chemical Physics, vol.127, issue.15, pp.154502-154503, 2007.

T. G. Slanger and R. A. Copeland, Energetic oxygen in the upper atmosphere and the laboratory, Chemical Reviews, vol.103, issue.12, pp.4731-4766, 2003.

T. Tuziuti, S. Hatanaka, K. Yasui, T. Kozuka, and H. Mitome, Influence of dissolved oxygen content on multibubble sonoluminescence with ambient-pressure reduction, Ultrasonics, vol.40, issue.1-8, pp.651-654, 2002.

V. H. Arakeri and K. P. Nishad, Influence of argon content on intensity of multibubble sonoluminescence, IEEE 3rd International conference on communication software and networks, pp.353-355, 2011.

P. Kanthale, M. Ashokkumar, and F. Grieser, Sonoluminescence, Sonochemistry (H2O2 Yield) and Bubble Dynamics: Frequency and Power Effects, Ultrasonics Sonochemistry, vol.15, pp.143-150, 2008.

C. O. Laux, T. G. Spence, C. H. Kruger, and R. N. Zare, Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science & Technology, vol.12, pp.125-138, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02165973

A. A. Ndiaye, R. Pflieger, B. Siboulet, and S. I. Nikitenko, The origin of isotope effects in sonoluminescence spectra of heavy and light water, Angewandte ChemieInternational Edition, vol.52, issue.9, pp.2478-2481, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02001976

A. Thiemann, F. Holsteyns, C. Cairos, and R. Mettin, Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid, Ultrasonics Sonochemistry, vol.34, pp.663-676, 2017.

J. Zhou, Y. Tada, Y. Kato, Y. Nagatsu, K. Yasui et al., Effects of Reflection Plate on Ultrasonic Reaction in a Sonoreactor, JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol.42, issue.8, pp.570-575, 2009.

M. Ashokkumar, J. Lee, Y. Iida, K. Yasui, T. Kozuka et al., The detection and control of stable and transient acoustic cavitation bubbles, Physical Chemistry Chemical Physics, vol.11, issue.43, pp.10118-10121, 2009.

T. Tuziuti, K. Yasui, T. Kozuka, A. Towata, and Y. Iida, Suppression of Sonochemiluminescence Reduction at High Acoustic Amplitudes by the Addition of Particles, The Journal of Physical Chemistry A, vol.111, issue.48, pp.12093-12098, 2007.

O. Lindström, Physico-Chemical Aspects of Chemically Active Ultrasonic Cavitation in Aqueous Solutions, The Journal of the Acoustical Society of America, vol.27, issue.4, pp.654-671, 1955.

D. Sunartio, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida et al., Correlation between Na* emission and "chemically active" acoustic cavitation bubbles. Chemphyschem, vol.8, pp.2331-2335, 2007.

L. Liu, Y. Yang, P. Liu, and W. Tan, The influence of air content in water on ultrasonic cavitation field, Ultrasonics Sonochemistry, vol.21, issue.2, pp.566-571, 2014.

J. C. Isselin, A. P. Alloncle, A. , and M. , On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena, Journal of Applied Physics, vol.84, issue.10, pp.5766-5771, 1998.

A. Vogel, S. Busch, and U. Parlitz, Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water, Journal of the Acoustical Society of America, vol.100, issue.1, pp.148-165, 1996.

F. G. Hammitt and M. K. De, Cavitation erosion of aluminum considering bubble collapse, pulse-height spectra and cavitation erosion efficiency. Wear, vol.55, pp.221-234, 1979.

B. C. Rao and D. H. Buckley, Erosion of Aluminum 6061-T6 under Cavitation Attack in Mineral-Oil and Water, Wear, vol.105, issue.2, pp.171-182, 1985.

H. S. Chen, J. Li, D. R. Chen, and J. D. Wang, Damages on Steel Surface at the Incubation Stage of the Vibration Cavitation Erosion in Water, Wear, vol.265, pp.692-698, 2008.

M. Virot, R. Pflieger, E. V. Skorb, J. Ravaux, T. Zemb et al., Crystalline Silicon under Acoustic Cavitation: From Mechanoluminescence to Amorphization, Journal of Physical Chemistry C, vol.116, issue.29, pp.15493-15499, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02098097

E. V. Skorb and H. Mohwald, Ultrasonic Approach for Surface Nanostructuring, Ultrasonics Sonochemistry, vol.29, pp.589-603, 2016.

C. Fotea, J. Callaway, A. , and M. R. , Characterisation of the surface chemistry of magnesium exposed to the ambient atmosphere, Surface and Interface Analysis, vol.38, issue.10, pp.1363-1371, 2006.

S. Ogawa, H. Niwa, K. Nakanishi, T. Ohta, Y. et al., Influence of CO2 and H2O on Air Oxidation of Mg Nanoparticles Studied by NEXAFS, Journal of Surface Analysis, vol.17, issue.3, pp.319-323, 2011.

Y. Wang, W. Wang, L. Zhong, J. Wang, Q. Jiang et al., Super-hydrophobic surface on pure magnesium substrate by wet chemical method, Applied Surface Science, vol.256, issue.12, pp.3837-3840, 2010.

V. Mitrovicscepanovic and R. J. Brigham, Localized corrosion initiation on magnesium alloys. Corrosion, 1992, vol.48, pp.780-784

C. Berziou, K. Remy, A. Billard, and J. Creus, Corrosion behaviour of dc magnetron sputtered Fe1?xMgx alloy films in 3 wt% NaCl solution, Corrosion Science, vol.49, issue.11, pp.4276-4295, 2007.

D. R. Lide, CRC Handbook of Chemistry and Physics, 2003.

M. Hauptmann, H. Struyf, S. De-gendt, C. Glorieux, and S. Brems, Importance of bubble size control in ultrasonic surface cleaning by pulsed high-frequency sound fields, Electrochemical Society Journal of Solid State Science and Technology, vol.3, issue.1, pp.3032-3040, 2014.

R. Jain and R. Pitchumani, Fractal model for wettability of rough surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.33, pp.7181-7190, 2017.

T. Chave, N. M. Navarro, P. Pochon, N. Perkas, A. Gedanken et al., Sonocatalytic degradation of oxalic acid in the presence of oxygen and Pt/TiO2, Catalysis Today, vol.241, pp.55-62, 2015.

M. Dükkanc? and G. Gündüz, Ultrasonic degradation of oxalic acid in aqueous solutions, Ultrasonics Sonochemistry, vol.13, issue.6, pp.517-522, 2006.

, CRC Handbook of Chemistry and Physics, vol.128, p.5585, 2006.

E. Hasty, ;. T. Chemistry, and E. Brown, The Central Science. Third Edition ed, Journal of Chemical Education, vol.64, p.173, 1987.

J. Drelich and E. Chibowski, Superhydrophilic and Superwetting Surfaces: Definition and Mechanisms of Control, Langmuir, vol.26, issue.24, pp.18621-18623, 2010.

K. Nogita, S. Ockert, J. Pierce, M. C. Greaves, C. M. Gourlay et al., Engineering the Mg-Mg2Ni eutectic transformation to produce improved hydrogen storage alloys, International Journal of Hydrogen Energy, vol.34, issue.18, pp.7686-7691, 2009.

N. I. Zainal-abidin, A. D. Atrens, D. Martin, and A. Atrens, Corrosion of High Purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank's Solution at 37 °C. Corrosion Science, vol.53, pp.3542-3556, 2011.

H. S. Jung, J. K. Lee, J. Y. Kim, and K. S. Hong, Crystallization Behaviors of Nanosized MgO Particles from Magnesium Alkoxides, Journal of Colloid and Interface Science, vol.259, issue.1, pp.127-132, 2003.

A. Valouma, A. Verganelaki, P. Maravelaki-kalaitzaki, G. , and E. , Chrysotile Asbestos Detoxification with a Combined Treatment of Oxalic Acid and Silicates Producing Amorphous Silica and Biomaterial, Journal of Hazardous Materials, vol.305, pp.164-170, 2016.

M. Rozalen and F. J. Huertas, Comparative Effect of Chrysotile Leaching in Nitric, Sulfuric and Oxalic Acids at Room Temperature, Chemical Geology, vol.352, pp.134-142, 2013.

H. S. Chen and S. H. Liu, Inelastic Damages by Stress Wave on Steel Surface at the Incubation Stage of Vibration Cavitation Erosion, Wear, vol.266, issue.1-2, pp.69-75, 2009.

. Frankel, Pitting corrosion of metals: A review of the critical factors, Journal of the Electrochemical Society, vol.145, issue.6, pp.2186-2197, 1998.

R. Zhang, Y. Qiu, Y. Qi, and N. Birbilis, A closer inspection of a grain boundary immune to intergranular corrosion in a sensitised Al-Mg alloy, Corrosion Science, vol.133, pp.1-5, 2018.

T. B. Benjamin and A. T. Ellis, The Collapse of Cavitation Bubbles and Pressures Thereby Produced Against Solid Boundaries, Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences, vol.260, pp.221-240, 1110.

M. Tinguely, The Effect of Pressure Gradient on the Collapse of Cavitation Bubbles in Normal and Reduced Gravity, Faculté des sciences et techniques de l'ingénieur, 2013.

B. M. Borkent, S. Gekle, A. Prosperetti, and D. Lohse, Nucleation Threshold and Deactivation Mechanisms of Nanoscopic Cavitation Nuclei, Physics of Fluids, vol.21, issue.10, pp.1-9, 2009.

V. Belova, M. Krasowska, D. Y. Wang, J. Ralston, D. G. Shchukin et al., Influence of Adsorbed Gas at Liquid/Solid Interfaces on Heterogeneous Cavitation, Chemical Science, vol.4, issue.1, pp.248-256, 2013.

D. Lambertin, A. Rooses, F. ;. Frizon, and . Hort, Galvanic Corrosion of Mg-Zr Alloy and Steel or Graphite in Mineral Binders, Magnesium Technology, pp.153-155, 2013.

Y. Su, J. Lin, Y. Su, W. Zai, G. Li et al., Investigation on composition, mechanical properties, and corrosion resistance of Mg-0.5Ca-X(Sr, Zr, Sn) biological alloy. Scanning, pp.1-10, 2018.

J. Rajchenbach, D. Clamond, and A. Leroux, Observation of Star-Shaped Surface Gravity Waves, Physical Review Letters, vol.110, issue.9, p.94502, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858982

M. P. Brady, A. V. Ievlev, M. Fayek, D. N. Leonard, M. G. Frith et al., Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water, ACS Applied Materials & Interfaces, vol.9, issue.43, pp.38125-38134, 2017.

L. N. Sun-fangfang, L. Qunying, L. Enzuo, H. Chunnain, S. Chunsheng et al., Effect of Sc and Zr additions on microstructures and corrosion behavior of AlCu-Mg-Sc-Zr alloys, Journal of Materials Science & Technology, vol.33, issue.9, pp.1015-1022, 2017.

L. H. Wen, Z. S. Ji, M. L. Hu, and H. Y. Ning, Microstructure and mechanical properties of Mg-3.0Nd-0.4Zn-0.4Zr magnesium alloy, Journal of Magnesium and Alloys, vol.2, issue.1, pp.85-91, 2014.

A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. S. Levchenko, N. Y. Tabachkova, W. Mufalo et al., Precipitation behavior of L12 Al3Zr phase in Al-Mg-Zr alloy, Materials Characterization, vol.139, pp.30-37, 2018.

L. Cançado, K. Takai, T. Enoki, M. Endo, Y. Kim et al., General equation for the determination of the crystallite size La of nanographite by raman spectroscopy, Applied Physics Letters, vol.88, issue.16, pp.163106-163107, 2006.

R. M. Haag and C. R. Muncy, Studies in the system MgUO3-MgUO4, vol.47, pp.34-36, 1964.

R. S. Ondrejcin and T. P. Garrett, The thermal decomposition of anhydrous uranyl nitrate and uranyl nitrate dihydrate1, The Journal of Physical Chemistry, vol.65, issue.3, pp.470-473, 1961.

S. M. Thein and P. J. Bereolos, Thermal stabilization of 233 UO2, 233 UO3 and 233 U3O8, 2000.

C. J. Rodden and . Uranium, , 1964.

. New-brunswick-lab and N. J. Aec, Medium: ED

. Leiem and . Triuranium-octoxide, , 2014.

L. E. Sweet, D. D. Reilly, D. G. Abrecht, E. C. Buck, D. E. Meier et al., Spectroscopic studies of the several isomers of UO3. in SPIE Security + Defence, p.7, 2013.

K. C. Faêda, G. C. Machado, and F. S. Lameiras, Characterization of UO2 by infrared spectroscopy, 2011 International Nuclear Atlantic Conference -INAC, 2011.

S. Nakagaki, K. Mantovani, G. Machado, . Dias-de-freitas, K. Castro et al., Recent Advances in Solid Catalysts Obtained by Metalloporphyrins Immobilization on Layered Anionic Exchangers: A Short Review and Some New Catalytic Results, Molecules, vol.21, issue.3, p.291, 2016.

E. Makkos, A. Kerridge, J. Austin, and N. Kaltsoyannis, Ionic adsorption on the brucite (0001) surface: A periodic electrostatic embedded cluster method study, The Journal of Chemical Physics, vol.145, pp.204708-204709, 1920.

G. I. Pushkaryova, Sorption extraction of metals from mono-and multicomponent solutions using brucite, Journal of Mining Science, vol.35, issue.6, pp.660-663, 1999.

Q. Cao, F. Huang, Z. Zhuang, L. , and Z. , A study of the potential application of nanoMg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water, Nanoscale, vol.4, issue.7, pp.2423-2430, 2012.

Z. Chen, Z. Zhuang, Q. Cao, X. Pan, X. Guan et al., Adsorption-Induced Crystallization of U-Rich Nanocrystals on Nano-Mg(OH)2 and the Aqueous Uranyl Enrichment, ACS Applied Materials & Interfaces, vol.6, issue.2, pp.1301-1305, 2014.

G. R. Bochkarev and G. I. Pushkareva, Intensification of sorption properties of brucite, Journal of Mining Science, vol.41, issue.4, pp.380-384, 2005.

G. I. Pushkareva and S. A. Bobyleva, Influence of Ultrasound on the Sorption Properties of Brucite, Journal of Mining Science, vol.39, issue.6, pp.616-620, 2003.

R. L. Higginson, C. P. Jackson, E. L. Murrell, P. A. Exworthy, R. J. Mortimer et al., Effect of thermally grown oxides on colour development of stainless steel, Materials at High Temperatures, vol.32, pp.113-117, 2015.

D. A. Levin, C. O. Laux, and C. H. Kruger, A General Model for the Spectral Calculation of OH Radiation in the Ultraviolet, Journal of Quantitative Spectroscopy & Radiative Transfer, vol.61, issue.3, pp.377-392, 1999.

, Hydrogen Peroxide Ultraviolet Absorption Spectrum, 2018.

Y. Zhu, G. Wu, Y. Zhang, and Q. Zhao, Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31, Applied Surface Science, vol.257, issue.14, pp.6129-6137, 2011.

M. Bera, . Chandravati, P. Gupta, and P. K. Maji, Facile One-Pot Synthesis of Graphene Oxide by Sonication Assisted Mechanochemical Approach and Its Surface Chemistry, Journal of Nanoscience and Nanotechnology, vol.18, issue.2, pp.902-912, 2018.

J. T. Gourley and W. A. Runciman, Multiphonon infrared absorption spectra of MgO and CaO, Journal of Physics C: Solid State Physics, vol.6, issue.3, pp.583-592, 1973.

N. Wozniak, Spectroscopic Signatures of Uranium Speciation for Forensics, p.238, 2017.

F. Poncet, F. Valdivieso, R. Gibert, and M. Pijolat, In situ infrared spectroscopic study on uranium oxides during UO3 carboreduction. Materials Chemistry and Physics, vol.58, pp.55-57, 1999.
URL : https://hal.archives-ouvertes.fr/emse-00609980

W. Nicholas, Spectroscopic signatures of uranium speciation for forensics, Chemistry and Biochemistry, 2017.

K. Honda, T. Atake, and Y. Saito, Infrared spectra of oxide films on SUS430 stainless steel formed at temperatures between 473 and 1073 K, Journal of Materials Research, vol.7, issue.1, pp.80-84, 2016.

P. S. Braterman, R. , and C. T. , Vibrational spectroscopy of brucite: A molecular simulation investigation, American Mineralogist, vol.91, issue.7, pp.1188-1196, 2006.

A. Merlen, J. Buijnsters, . Gerardus, and C. Pardanaud, A guide to and review of the use of multiwavelength raman spectroscopy for characterizing defective aromatic carbon solids: From graphene to amorphous carbons, Coatings, vol.7, issue.10, pp.1-55, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596681

Y. Kawashima and G. Katagiri, Fundamentals, overtones, and combinations in the Raman spectrum of graphite, Physical Review B, vol.52, issue.14, pp.10053-10059, 1995.

M. L. Palacios and S. H. Taylor, Characterization of Uranium Oxides Using in Situ Micro-Raman Spectroscopy, Applied Spectroscopy, vol.54, issue.9, pp.1372-1378, 2000.

G. C. Allen, I. S. Butler, and T. Nguyen-anh, Characterisation of uranium oxides by micro-Raman spectroscopy, Journal of Nuclear Materials, vol.144, issue.1, pp.17-19, 1987.

G. C. Allen and A. J. Griffiths, Vibrational spectroscopy of alkaline-earth metal uranate compounds, Journal of the Chemical Society, issue.2, pp.315-319, 1979.

D. Thierry, D. Persson, C. Leygraf, N. Boucherit, H. Goff et al., Raman spectroscopy and XPS investigations of anodic corrosion films formed on FeMo alloys in alkaline solutions, Corrosion Science, vol.32, issue.3, pp.273-284, 1991.

J. E. Maslar, W. S. Hurst, W. J. Jr, and J. H. Hendricks, Situ Raman Spectroscopic Investigation of Stainless Steel Hydrothermal Corrosion. CORROSION, vol.58, pp.739-747, 2002.

C. 1225,

C. , , p.1250

-. Mg, , vol.846

-. Mg, , p.1050