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Thèse de doctorat de l’Université Paris-Saclay
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Thèse présentée et soutenue à Palaiseau, le 18/06/2019, par

AMBROSI EMILIANO

Composition du Jury :

Hélène Esnault
Professeur, Freie Universität Présidente

Yves André
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Alas! what are you, after all, my
written and painted thoughts!
Not long ago you were so
variegated, young and malicious,
so full of thorns and secret
spices, that you made me sneeze
and laugh- and now? You have
already do�ed your novelty, and
some of you, I fear, are ready to
become truths, so immortal do
they look, so pathetically honest,
so tedious!

Beyond Good and Evil

Friedrich Nietzsche
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Introduction

This thesis is divided in two parts.

Part I is devoted to give a broad picture of the works presented in this thesis. It is divided
in two chapters. Chapter 1 is of preliminary nature: we recall the tools that we will use in the
rest of the thesis and some previously known results. There are two copy of Chapter 1: one
in French and one in English. Chapter 2 is devoted to summarize in a uniform way the new
results obtained in this thesis, trying to explain how they relate to each others.

Part II consists of 6 chapters, each of them corresponding to one of my papers, and of an
appendix.

Chapter 3: A uniform open image theorem for `-adic representations in positive charac-
teristic ([Amb17]);

Chapter 4: Specialization of Néron-Severi groups in positive characteristic ([Amb18a]);

Chapter 5: Maximal tori in monodromy groups of F-isocrystals and applications ([AD18],
joint with Marco D'Addezio);

Chapter 6: Specialization of p-adic monodromy groups ([Amb19b]);

Chapter 7: A note on the behaviour of the Tate conjecture under �nitely generated �eld
extension ([Amb18b]);

Chapter 8: Uniform boundedness of Brauer groups of forms ([Amb19a]);

Appendix A: Results on gonality.

We kept the introductory sections of each paper, so that the reader could read it without
referring back to the previous chapters.

Specialization of `-adic representations and Néron-Severi groups in positive char-
acteristic

Chapters 3 and 4 are devoted to extend to positive characteristic the results of Cadoret-
Tamagawa [CT12b] and of André in [And96]. Let k be a �nitely generated �eld of characteristic
p > 0 and ` 6= p a prime. Let X be a smooth, geometrically connected k-variety.

In Chapter 3, we consider the following problem: given a continuous representation ρ :
π1(X)→ GLr(Z`) of the étale fundamental group of X with image Π, study how the image Πx

of the local representation ρx : π1(Spec(k))→ π1(X)→ GLr(Z`) induced by a k-rational point
x varies with x ∈ X(k). The main result is that if X is a curve and every open subgroup of
ρ(π1(Xk)) has �nite abelianization, then the set Xex

ρ (k) of x ∈ X(k) such that Πx is not open in
Π is �nite and there exists an integer N ≥ 0, depending only on ρ, such that [Π : Πx] ≤ N for all
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x ∈ X(k)−Xex
ρ (k). This result can be applied to representations arising from geometry, to ob-

tain uniform bounds for the `-primary torsion of groups theoretic invariants in one dimensional
families of smooth proper varieties. For example, torsion of abelian varieties and the Galois
invariant part of the geometric Brauer group. This extends to positive characteristic previous
results of Cadoret-Tamagawa ([CT12b]) and Cadoret-Charles ([CC18]) in characteristic 0.

In Chapter 4, we move to the specialization of Néron-Severi groups. The `-adic Tate con-
jecture for divisors predicts that if Y → X is a smooth proper morphism, then the variation of
the Picard rank of the �bres is controlled by group theoretic invariants. We show that this is
indeed the case, without assuming the `-adic Tate conjecture. Combining this with an `-adic
variant of the Hilbert irreducibility theorem and the result of Chapter 3, we deduce that if
f : Y → X is a smooth proper morphism, then there are �lots" of closed points x ∈ X such
that the �bre of f at x has the same geometric Picard rank as the generic �bre and that, if
X is a curve, this is true for all but �nitely many k-rational points. In characteristic zero,
these results have been proved by André (existence) and Cadoret-Tamagawa (�niteness) using
Hodge theoretic methods. The starting point is to try and exploit the variational form of the
crystalline variational Tate conjecture ([Mor15]). To do this, the main di�culty to overcome
- and this is the main contribution of this chapter- is to compare crystalline local systems (F-
isocrystals) with `-adic lisse sheaves. Since the F-isocrystal R2fcrys,∗OY/K(1) has a behaviour
which is quite di�erent from R2f∗Q`(1), this comparison cannot be done directly. The idea is
to show that R2fcrys,∗OY/K(1) is coming from a smaller and better behaved category of p-adic
local systems: the category of overconvergent F-isocrystals. As it has been understood that
overconvergent F-isocrystals share many properties with lisse sheaves, the idea is to compare
�rst R2fcrys,∗OY/K(1) with its overconvergent incarnation R2f∗O†Y/K(1) via various p-adic com-

parison theorems and then R2f∗O†Y/K(1) with R2f∗Q`(1) relating their monodromy groups via
the theory of weights.

p-adic monodromy groups

Chapters 5 and 6 are devoted to study the monodromy groups of convergent and overconvergent
F-isocrystals and their specialization theory.

Chapters 5 is a joint work with Marco D'Addezio. The arguments in Chapter 4 show that
the category of F-isocrystals contains interesting p-adic information and that, sometimes, its
pathological behaviour can be overcome relating it with the better behaved category of overcon-
vergent F-isocrystals. This is the central topic of Chapter 5. Let X be a smooth geometrically
connected variety de�ned over a �nite �eld Fq and letM be an overconvergent F -isocrystal on
X. ToM we can associate a convergent F -isocrystalMconv, a overconvergent isocrystalMgeo

and a convergent isocrystalMconv,geo. Each of these objects de�nes a monodromy group G(−)
and the main technical result of Chapter 5 is that G(Mconv,geo) and G(Mgeo) have maximal
tori of the same dimension. As an application we prove a special case of a conjecture of Kedlaya
on homomorphisms of F -isocrystals. Using this special case, we prove that if A is an abelian
variety without isotrivial geometric isogeny factors over a function �eld F over Fp, then the
group A(F perf)tors is �nite, where F perf is the perfect closure of F . This may be regarded as an
extension of the Lang�Néron theorem and answer positively to a question of Esnault.

In Chapter 6, we de�ne a Qp-linear category of overconvergent F-isocrystals and a Qp-linear
category of convergent F-isocrystals for varieties de�ned over an in�nite �nitely generated �eld
k and the monodromy groups of their objects. Using the theory of companions, we relate
the specialization theory of p-adic monodromy groups of overconvergent F-isocrystals to the
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specialization theory of `-adic monodromy groups. This allows us to transfer the results of
Chapter 3 to this new p-adic setting. In particular, if X is a curve, we prove that for all but
�nitely many x ∈ X(k), the neutral component of the monodromy group of a geometrically
semisimple overconvergent F-isocrystalM over X is the same as the neutral component of the
monodromy group of the �bre ofM at x. Under stronger assumptions, similar some result is
given for convergent F-isocrystals.

Further results

The last two chapters are devoted to complements and variations on the topic of Chapters 3
and 4.

In Chapter 7, we study the behaviour of the Tate conjecture under �nitely generated �eld
extension. The results in Chapter 4 can be used to show that the `-adic Tate conjecture
for divisors on smooth proper varieties over �nitely generated �elds of characteristic p > 0
follows from the `-adic Tate conjecture for divisors on smooth proper varieties over �elds of
transcendence degree 1 over Fp. In Chapter 7, we show that one can further reduce the `-adic
Tate conjecture for divisors to �nite �elds: the `-adic Tate conjecture for divisors on smooth
proper varieties over �nitely generated �elds of positive characteristic follows directly from the
`-adic Tate conjecture for divisors on smooth projective surfaces over �nite �elds.

Chapter 8 is devoted to the study of Brauer groups of forms. If X is a smooth proper variety
over a �nitely generated �eld k of characteristic p > 0 satisfying the `-adic Tate conjecture for
divisors, it is well known that the Galois invariants Br(Xk)[`

∞]π1(k) part of the `-primary torsion
of the geometric Brauer group of X is �nite. The results in Chapters 3 and 4, give uniform
boundedness results for |Br(Xk)[`

∞]π1(k)| in one dimensional families of varieties. However,
recent works of Cadoret, Hui and Tamagawa show that, if X satis�es the `-adic Tate conjecture
for divisors for every ` 6= p, the Galois invariant Br(Xk)[p

′]π1(k) part of the prime-to-p torsion
of the geometric Brauer group of X is �nite. The results in Chapter 3 are not su�cient to give
uniform boundedness results for |Br(Xk)[p

′]π1(k)|. In Chapter 8, we give a few evidences that
such boundedness results could hold: we prove that, for every integer d ≥ 1, there exists an
integer N ≥ 1, depending only on X and d, such that for every �nite extension of �elds k ⊆ k′

with [k′ : k] ≤ d and every (k/k′)-form Y ofX one has |(Br(Y ×k′k)[p′]π1(k′)| ≤ N . The theorem
is a consequence of general results for forms of compatible systems of π1(k)-representations and
it extends to positive characteristic a recent result of Orr and Skorobogatov in characteristic
zero.

Appendix: results on gonality

For sake of completeness, in the appendix we generalize the main technical result of Chapter 3
from genus to gonality, following arguments of Cadoret and Tamagawa. This has some appli-
cation to the study of p-adic representations and of not necessarely GLP `-adic representations
and it could be helpful for further developments.
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Chapitre 1

Préliminaires (en Français)

1.1 Cadre absolu

Soit k un corps de caractéristique p ≥ 0 et soit X une variété propre et lisse sur k.
L'objet principal de la géométrie arithmétique est l'étude des liens entre les propriétés arith-

métiques et géométriques de X. Ces liens étant extrêmement riches et complexes, la stratégie
générale développée au vingtième siècle est d'associé à X des groupes abéliens ou des espaces
vectoriels munis de structures supplémentaires encodant en partie les propriétés de X. Par
exemple :

• Le groupe de Chow CHi(X) des cycles de codimension i de X à équivalence rationelle
près ([Ful98]) ;

• Si k = C, la cohomologie de Betti H i(Xan,Q) muni d'une structure de Hodge ([GH94]) ;

• Si k est un corps quelconque, pour tout ` 6= p la cohomologie étale `-adique H i(Xk,Q`)
munie d'une action continue de π1(k) ([SGA4]) ;

• Si k est parfait et p > 0, la cohomologie cristalline H i
crys(X,K) munie d'une action du

Frobenius absolu de k ([B078]).

La théorie des motifs ([And04, Section 4]) et les conjectures de plénitude ([And04, Section
7]) (comme par exemple la conjecture de Hodge ([Hod50]) et la conjecture de Tate ([Tat65]))
donnent un cadre conjectural dans lequel comparer ces invariants. Dans cette section nous
faisons quelques rappels sur ce sujet.

1.1.1 Cycles algébriques et motifs

1.1.1.1 Cycles algébriques

Soit L un anneau intègre de caractéristique zéro et soit Zi(X) le groupe abélien libre engendré
par les sous-variétés intègres de codimension i de X. Soit ∼ une relation d'équivalence adéquate
sur Zi(X) (c.f. [And04, Section 3.1]). On dé�nit CHi

L(X)∼ comme étant le quotient de Zi(X)⊗L
par cette relation d'équivalence.

Si ∼= rat est la relation d'équivalence rationnelle, alors CHi(X) := CHi
Z(X)rat est appelé

le groupe de Chow des cycles de codimension i modulo équivalence rationnelle. Si L ⊆ L′ est
une inclusion d'anneaux alors CHi

L(X)rat ⊗L L′ ' CHi
L′(X)rat ([And04, 3.2.2]). En général, les

groupes CHi(X) sont compliqués et de rang in�ni. Quand i = 1, le groupe CH1(X) s'identi�e
au groupe de Picard Pic(X) de X, qui classi�e les �brés en droites sur X à isomorphisme près.

Si ∼= alg est la relation d'équivalence algébrique, alors CHi
alg(X) := CHi

Z(X)alg est appelé
le groupe de Chow des cycles de codimension i modulo équivalence algébrique. Si L ⊆ L′ est
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une inclusion d'anneaux, alors CHi
L(X)alg ⊗L L′ ' CHi

L′(X)alg ([And04, 3.7.2.1]). Etant donné
que la relation d'équivalence rationnelle est plus �ne que la relation d'équivalence algébrique, il
y a un morphisme quotient naturel q : CHi

L(X)rat � CHi
L(X)alg, que quand i = 1, iden�e à le

quotient naturelle Pic(X)⊗ L→ NS(X)⊗ L, où NS(X) := PicX(k)/P ic0
X(k) est le quotient

des k-points du schéma de Picard PicX de X modulo les k-points de sa composante neutre
Pic0

X .
Si ∼= num est la relation d'équivalence numérique, alors CHi

num(X) := CHi
Z(X)num est

appelé le groupe de Chow des cycles de codimension imodulo équivalence numérique. En général
CHi

L(X)num est un L-module libre de type �ni et si L ⊆ L′ est une inclusion d'anneaux, alors
CHi

L(X)num⊗L L′ ' CHi
L′(X)num ([And04, 3.7.2.1]). Etant donné que la relation d'équivalence

algebrique est plus �ne que la relation d'équivalence numérique, il y a un morphisme quotient
naturel q : CHi

L(X)alg � CHi
L(X)num, que quand L est un corps, identi�e ([Mat57], [And04,

Section 3.2.7]) NS(X)⊗ L avec CHi
L(X)num.

Soit maintenant H∗ une théorie cohomologique de Weil à coe�cients dans un corps de
caractéristique nulle F ⊇ L (cf. [Saa72, Appendices] et [And04, Section 3.3]). Soit ciH : CHi(X)⊗
L → H2i(X)(i) l'application classe de cycle associée à H∗. On dé�nit le groupe des cycles de
codimension i modulo H-équivalence homologique, CHi

L(X)H , comme étant l'image de cX :
CHi(X)⊗L→ H2i(X)(i). Si L = F , puisque H2i(X)(i) est de dimension �nie sur F , CHi

F (X)H
est un F -espace vectoriel de dimension �nie. Il n'est pas vrai en général que la �èche naturelle
CHi

L(X)H ⊗ F → CHi
F (X)H est injective et on ne sait pas si CHi

L(X)H est �niment engendré
sur L.

La relation d'équivalence algebrique étant plus �ne que la relation d'équivalence homologique
qui est elle même plus �ne que la relation d'équivalence numérique, l'application quotient
q : CHi

L(X)alg � CHi
L(X)num se factorise en la composition de q1 : CHi

L(X)alg � CHi
L(X)H

et q2 : CHi
L(X)H � CHi

L(X)num. Via q2, CH1
F (X)H s'identi�e ([And04, Proposition 3.4.6.1])

à NS(X)⊗ F . En général, une des conjectures standard de Grothendieck ([Kle94, Conjecture
D]), prédit que CHi

F (X)H = CHi
F (X)num.

1.1.1.2 Motifs

On suppose maintenant que L = F . Pour ∼∈ {num,H}, on note MotF∼(k) la catégorie F -
linéaire pseudoabélienne tensorielle rigide des motifs purs à ∼-équivalence près([And04, Sec-
tion 4.1.3]), SPV(k) la catégorie des variétés propres et lisses et H∗ : SPV(k)→MotF∼(k) le
foncteur canonique. Il existe un foncteur de réalisation RH : MotFH(k)→ GrVectF dans la ca-
tégorie des F-espaces vectoriels gradués. Par ailleurs Jannsen a prouvé ([Jan92]) queMotFnum(k)
est une catégorie abélienne semi-simple.

En supposant les conjectures standard de Grothendieck ([Gro69]), on devrait pouvoir mo-
di�er la contrainte de commutativité dans MotFH(k) (cf. [And04, Section 5.1.3]) a�n d'obte-
nir un foncteur �bre RH : MotFH(k) → VectF . En combinant [Jan92], les conjectures stan-
dard de Grothendieck et la conjecture CHi

F (X)H = CHi
F (X)num, la catégorie MotFH(k) de-

vrait être une catégorie Tannakienne F -linéaire semisimple ([Saa72]) munie d'un foncteur �bre
RH : MotFH(k) → VectF . Ainsi, pour tout M in MotFH(k) on devrait pouvoir considérer
la sous-catégorie Tannakienne 〈M〉 ⊆ MotFH(k) engendrée par M et son groupe Tannakien
réductif G(M) ([And04, Section 6]).

On suppose maintenant que l'image essentielle de RH : MotFH(k) → VectF se factorise à
travers une catégorie F -linéaire Tannakienne enrichie ([And04, Section 7.1.1]) C (par exemple
la catégorie de structures de Hodge polarisées ou la catégorie des représentations continus Q`-
linéaires de π1(k)). Alors les conjectures de plénitudes ([Hod50], [Tat65], [And04, Section 7.1])
prédisent que l'image essentielle de RH : MotFH(k) → C est une sous-catégorie Tannakienne
semi-simple de C. Les groupes réductifs étant déterminés par leurs invariants tensoriels ([DM82,
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Proposition 3.1]), cela impliquerait que G(M) s'identi�e au groupe de Tannaka de la sous-
catégorie Tannakienne 〈RH(M)〉 ⊆ C engendrée par RH(M).

Soit H ′ une autre théorie de cohomologie à coe�cients dans F ⊆ F ′ telle que H ′⊗F F ′ ' H
en tant que cohomologies de Weil. Alors il existe un foncteur naturel − ⊗ F ′ : MotFH(k) →
MotF

′

H′(k). Les conjectures de plénitudes et de semi-simplicité pour H et H ′ en addition à
l'équivalence des relations d'équivalences homologiques et numériques impliquent que, pour
toutM∈MotFH(k), on a

G(RH′(M⊗ F ′)) ' G((H ′)∗(M⊗ F ′)) ' G(H∗(M)⊗ F ′) ' G(RH(M))⊗ F ′.

1.1.2 Cohomologie `-adique

Dans cette section ` est un nombre premier di�érent de p.

1.1.2.1 Cohomologie étale et la conjecture de Tate

Pour tous les entiers i ≥ 0, j ∈ Z, Grothendieck a dé�ni ([SGA4]) un groupe de cohomologie
étale H i(Xk,Q`(j)). C'est un Q`-espace vectoriel de dimension �nie ([SGA4, XIV, Corollaire
1.2]) muni d'une action continue de π1(k) et l'image CHi

` de l'application classe de cycle ci` :
CHi(X)→ H2i(Xk,Q`(i)) vit dans le sous-espace⋃

[k′:k]<+∞

H2i(Xk,Q`(i))
π1(k′).

Dans ce cadre, la conjecture de plénitude est la conjecture de Tate ([Tat65]) qui prédit la
relation suivante entre cycles algébriques et cohomologie.

Conjecture 1.1.2.1.1 (T(X, i, `)). Si k est �niment engendré, alors l'application classe de
cycle

ci` : CHi(Xk)⊗Q` →
⋃

[k′:k]<+∞

H2i(Xk,Q`(i))
π1(k)

est surjective

La conjecture 1.1.2.1.1 est largement ouverte en général mais lorsque i = 1 elle est connue
pour les variétés abéliennes ([Tat66], [Zar75], [Zar77], [FW84]), les surfaces K3 ([NO85], [Tan95],
[And96a], [Char13], [MP15], [KMP15]) et quelques autres classe de variétés ; on pourra par
exemple consulter [MP15, Section 5.13] et [Moo17].

1.1.2.2 Groupes de monodromie

L'action de π1(k) sur H i(Xk,Q`(j)) induit un morphisme continu

ρi,j` : π1(k)→ GL(H i(Xk,Q`(j)))

et on pose Πi,j
` := ρi,j` (π1(k)). Comme tout sous-groupe fermé de GL(H i(Xk,Q`(j))), Πi,j

` est
un groupe de Lie `-adique compact ([Ser65, Lie Groups, Chapter V, Section 9]) et donc un
presque pro-`-groupe topologiquement �niment engendré ([DdSMSeg91]). Soit Gi,j

` l'adhérence
de Zariski de Πi,j

` dans GL(H i(Xk,Q`(j))). Du point de vue Tannakien, si on écrit 〈ρi,j` 〉 pour
la sous-catégorie Tannakienne de RepQ`(π1(k)) engendrée par ρi,j` , le groupe algébrique Gi,j

`

est caractérisé ([And04, Section 7.1.3]) par le fait que RepQ`(G
i,j
` ) ' 〈ρi,j` 〉. Si ρ

i,j
` est semi-

simple alors Gi,j
` peut aussi être décrit comme étant le sous-groupe de GL(H i(Xk,Q`(j))) �xant

(H i(Xk,Q`(j))
⊗m ⊗ (H i(Xk,Q`(j))

∨)⊗n)π1(k) pour tous les entiers n,m ≥ 0.
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1.1.3 Caractéristique nulle : cohomologie de Betti et théorie de Hodge

On suppose maintenant que p = 0 et, pour simpli�er, qu'il existe une inclusion k ⊆ C.

1.1.3.1 Cohomologie de Betti et conjecture de Hodge

On peut associer à XC ([Ser56, Section 2], [SGA1, Exposé XII]) un espace analytique complexe
Xan

C et donc considérer la cohomologie de Betti H i
B(X,Q) := H i(Xan

C ,Q) de X. La décompo-
sition de Hodge ([Hod41], [GH94, Chapter 0]) donne un isomorphisme canonique

H i(Xan
C ,Q)⊗ C '

⊕
p+q=i

Hp(Xan
C ,Ωq

Xan
C

).

On en déduit que H i(Xan
C ,Q) est une Q-structure de Hodge polarisée ([Moo04, Section 1])

que l'on peut tordre par Q(j), pour tout j ∈ Z, a�n d'obtenir H i(Xan
C ,Q(j)). En compo-

sant l'application classe de cycle CHi(Xan
C ) ⊗ Q → H2i(Xan

C ,Q(i)) ⊆ H i(Xan
C ,Q(i)) ⊗ C, avec

l'isomorphisme CHi(XC) ' CHi(Xan
C ) induit par le foncteur d'analyti�cation, on obtient une

application classe de cycle ciB : CHi(XC) ⊗ Q → H2i(Xan
C ,Q(i)) ⊆ Hn

B(X,Q(i)) ⊗ C dont
l'image est contenue dans H i(Xan

C ,Ωi
Xan

C
) ∩H2i

B (X,Q(i)) =: H2i
B (X,Q(i))0,0. Dans ce cadre, la

conjecture de plénitude est la conjecture de Hodge ([Hod50]) :

Conjecture 1.1.3.1.1 (H(X, i)). L'application classe de cycle

ciB : CHi(XC)⊗Q→ H2i
B (X,Q(i))0,0

est surjective.

Contrairement à T(X, 1, `) qui est largement ouverte en général, on déduit de la suite exacte
exponentielle ([GH94, Pag. 163]) et de la décomposition de Hodge le théorème de Lefschetz (1,1).

Fait 1.1.3.1.2 ([Lef24][GH94, Pag. 163-164]). La conjecture H(X, 1) est vraie.

Remarque 1.1.3.1.3. Bien que la cohomologie `-adique et la cohomologie de Betti soient
conjecturalement des incarnations du même motif on voit déjà qu'elles ont des propriétés bien
spéci�ques : la cohomologie `-adique nous permet d'utiliser la théorie des groupes de Lie `-
adiques et l'action de π1(k) alors que la cohomologie de Betti nous permet d'utiliser des tech-
niques de théorie de Hodge analytique complexe. Des résultats de comparaisons entre elles
devraient être utile pour combiner ces di�érentes informations.

1.1.3.2 Groupes de monodromie

La structure de Hodge sur H i(Xan
C ,Q(j)) est décrite ([Moo04, Section 3]) par un morphisme

de groupes algébriques

hi,jB : ResC/RGm → GL(H i(Xan
C ,Q(j))⊗ R),

et le groupe de Mumford Tate Gi,j
B est ([Moo04, Section 4]) le plus petit sous-groupe connexe

de GL(H i(Xan
C ,Q(j))) tel que Gi,j

B ⊗ R contient Im(hi,jB ). Comme dans le cadre `-adique, le
groupe Gi,j

B est caractérisé comme étant l'unique groupe algébrique (à isomorphisme près) tel
que RepQ(Gi,j

B ) est équivalente à la sous-catégorie Tannakienne 〈H i(Xan
C ,Q)〉 engendrée par

H i(Xan
C ,Q) dans la catégorie des structures de Hodge polarisées. La catégorie des Q-structures

de Hodge polarisées étant semi-simple ([Moo04, Proposition 4.9]), Gi,j
B est réductif. Il peut donc

être décrit comme étant le sous-groupe de GL(H i(Xan
C ,Q(j))) �xant toutes les (0,0)-classes dans

H i(Xan
C ,Q(j))⊗n ⊗ (H i(Xan

C ,Q(j))∨)⊗m pour tous les entiers m,n ≥ 0.
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1.1.3.3 Comparaison entre le site singulier et le site étale

En conséquence de l'invariance de la cohomologie étale par extensions de corps algébriquement
clos de caractéristique nulle ([SGA41

2
, Corollaire 5.3.3]) et du théorème de comparaison d'Artin

([SGA4, XI, Theorem 4.4]), il existe un isomorphisme canonique

H i(Xk,Q`) ' H i(XC,Q`) ' H i(Xan
C ,Q)⊗Q`,

qui s'inscrit dans le diagramme commutatif suivant

(CHi(XC)⊗Q)⊗Q` CHi(Xk)⊗Q`

H2i(Xan
C ,Q(i))⊗Q` H2i(Xk,Q`(i)).

ciB⊗Q` ci`

'

Le groupe de Mumford-Tate Gi,j
B ⊆ GL(H i(Xan

C ,Q(j))) est envoyé, par le théorème de com-
paraison d'Artin, vers un Q`-groupe algébrique Gi,j

B ⊗ Q` ⊆ GL(H i(Xk,Q`(j))). En associant
la philosophie des motifs (Section 1.1.1.2) aux conjectures 1.1.2.1.1 and 1.1.3.1.1 on obtient la
conjecture de Mumford-Tate :

Conjecture 1.1.3.3.1. Si k est �niment engendré, Gi,j
B ⊗Q` = (Gi,j

` )0 modulo le théorème de
comparaison d'Artin.

Bien que les conjectures 1.1.2.1.1 et 1.1.3.1.1 soient complètement ouvertes en général la
conjecture 1.1.3.3.1 est connue dans certains cas (on pourra par exemple consulter [Pin98]). SiX
est une variété abélienne Deligne a montré ([DM82]) qu'il y a une inclusion (Gi,j

` )0 ⊆ Gi,j
B ⊗Q`.

La conjecture 1.1.3.3.1 prédit aussi le résultat suivant.

Conjecture 1.1.3.3.2. Si k est �niment engendré, il existe un groupe algébrique connexe Gi,j

sur Q et une représentation �dèle G ⊆ GL(V i,j) tels que pour tout ` 6= p il y a un isomorphisme
V i,j ⊗ Q` ' H i(Xk,Q`(j)) qui identi�e Gi,j ⊗ Q` ⊆ GL(V i,j ⊗ Q`) ' GL(H i(Xk,Q`(j))) avec
(Gi,j

` )0.

1.1.4 Caractéristique positive : cohomologie cristalline

On suppose maintenant p > 0 et que k est parfait. Soit W := W (k) l'anneau des vecteurs de
Witt de k et K son corps des fractions K. Dans cette section on rappelle les idées principales
qui rentrent en jeu dans la construction d'une théorie cohomologique de Weil p-adique. Un
exemple classique de Serre (voir par exemple [Gro68, Section 1.7]) montre qu'il n'existe pas de
théories cohomologiques à coe�cients dans Qp, il faut donc dé�nir une théorie cohomologique
à coe�cients dans K.

1.1.4.1 Site in�nitésimal

Soient S un schéma et f : Z → S un morphisme, on note H i
dr(Z/S) la cohomologie de de

Rham relative de Z sur S ([Gro66], [MP12, Section 4.5]). Bien que H i
dr(Z/S) ait une description

relativement concrète en terme de formes di�érentielles, Grothendieck a montré dans [Gro68]
que, au moins en caractéristique nulle, elle peut aussi être dé�nie via la théorie des topos.
Pour ce faire il a dé�ni ([Gro68, Section 4]) un site in�nitésimal Inf(Z/S) muni d'un topos de
faisceaux en groupes abéliens (Z/S)inf et un faisceau structural OZ/S. On note H i

inf (Z/S,OZ/S)
le ième groupe de cohomologie de OZ/S. Grothendieck a prouvé le résultat suivant.

Fait 1.1.4.1.1 ([Gro68, Theorem 4.1 and Section 5.3]).
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1. Si f : Z → S est lisse et S est de caractéristique nulle, il y a un isomorphisme naturel

H i
dr(Z/S) ' H i

inf (Z/S,OZ/S);

2. Si Z ′ → Z est un épaississement nilpotent de S-schémas, il y a un isomorphisme naturel

H i
inf (Z

′/S,OZ′/S) ' H i
inf (Z/S,OZ/S).

Le fait 1.1.4.1.1 peut être utilisé pour montrer que la cohomologie de de Rham de la défor-
mation d'une variété propre et lisse ne dépend que de la variété de départ.

Remarque 1.1.4.1.2 ([B078, Pag. 1.11]). Notons S := Spec(C[[T ]]) et Sn := Spec(C[[T ]]/(T n)).
Soit Z → S un morphisme propre et lisse, on pose Zn := Z ×S Sn. Comme f est propre, on
a Hdr(Z/S) ' lim←−nHdr(Zn/Sn). Puisque Zn → Sn est lisse et Z1 → Zn est un épaississement
in�nitésimal, par le fait 1.1.4.1.1 on a

Hdr(Z/S) ' lim←−
n

Hdr(Zn/Sn) ' lim←−
n

H i
inf (Zn/Sn,OZn/Sn) ' lim←−

n

H i
inf (Z1/Sn,OZ1/Sn).

Cela montre que la cohomologie de de Rham relative de Z → S ne dépend que de Z1.

1.1.4.2 Site cristallin

Au vu de la remarque 1.1.4.1.2, pour construire une théorie cohomologique à coe�cients dans
K pour les variétés sur k on pourrait essayer de relever X en un schéma propre et lisse X
sur W et ensuite prendre la cohomologie de de Rham de XK := X ×W K. Toutefois toutes
les variétés ne sont pas relevable en caractéristique nulle et même si c'était le cas il ne serait
pas évident de montrer que la cohomologie obtenue serait (canoniquement) indépendante du
choix de relèvement. Les arguments de la remarque 1.1.4.1.2 suggèrent que, pour montrer cette
indépendance on pourrait utiliser une théorie cohomologique pour laquelle l'analogue du fait
1.1.4.1.1 est vrai. Toutefois dans le fait 1.1.4.1.1(1), l'hypothèse de caractéristique nulle est
nécessaire.

Exemple 1.1.4.2.1. Si S = k et Z = A1
k, alors on veut montrer que d : k[x] → k[x]dx est

surjectif. Si f =
∑
aix

idx and p = 0, alors f = d(
∑

(ai/i+ 1)xi+1).

Au vu de l'exemple 1.1.4.2.1, l'idée est de remplacer le site in�nitésimal par un site plus �n,
pour lesquels les recouvrement possèdent une opération analogue à 1/i + 1 : le site cristallin.
Soit (S, I, γ) un schéma muni d'une structure de puissances divisées ([B078, Pag. 3.18]) et soit
f : Z → S un S-schéma sur lequel γ s'étend ([B078, De�nition 3.14]). Dans [B078, Section 5],
Berthelot dé�nit le site cristallin Crys(Z/S), le topos de faisceaux en groupes abéliens (Z/S)crys
et le faisceau structural OZ/S. Il montre ensuite :

Fait 1.1.4.2.2 ([B078, Corollary 7.4 and Theorem 5.17]). Si p est nilpotent sur S les assertions
suivantes sont vraies.

• Si Z → S est lisse, alors il y a un isomorphisme naturel

H i
dr(Z/S) ' H i

crys(Z/S,OZ/S);

• Si Z ′ → Z est un épaississement nilpotent, alors il y un isomorphisme naturel

H i
crys(Z

′/S,OZ′/S) ' H i
crys(Z/S,OZ/S).
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1.1.4.3 Cohomologie cristalline

Soit Wn := Wn(k) l'anneau des vecteurs de Witt n-tronqués de k. La structure de puissances
divisées naturelle γ sur Wn, de�nie par γm(p) = pm/(m!) si m < n et γm(p) = 0 sinon, s'étend
automatiquement ([B078, Proposition 3.15]) à tous les Wn-schémas T → Wn. Cela permet
permet de dé�nir la cohomologie cristalline d'une k-variété propre et lisse X ([B078, Summary
7.26]) de la façon suivante

H i
crys(X/K) := (lim←−

n

H i
crys(X/Wn,OX/Wn))⊗Q.

Alors, si X→ Spec(W (k)) est propre et lisse et Xn := X×W Wn, par le fait 1.1.4.2.2 on a :

H i
dr(X/K)⊗Q ' H i

dr(X/W (k))⊗Q ' H i
crys(X1/K).

Le foncteur H i
crys(−/K) donne une théorie cohomologique de Weil à coe�cients dans K et le

Frobenius absolu ϕ de k induit une action semi-linéaire sur H i
crys(X/K).

1.1.4.4 Conjecture de Tate cristalline

L'image de l'application classe de cycle

cip : CHi(X)→ H2i
crys(X/K)

est contenue dans H2i
crys(X/K)ϕ=p. Si k = Fq avec q = ps, alors l'action de F := ϕs sur

H2i
crys(X/K) est K-linéaire et, dans ce cadre, la conjecture de plénitude est la suivante.

Conjecture 1.1.4.4.1 (T(X, i, p)). Si k = Fq, l'application classe de cycle

cip : CHi(X)⊗K → H2i
crys(X/K)F=q

est surjective

1.1.4.5 Comparaison

Alors qu'en caractéristique nulle on peut comparer directement les cohomologies `-adiques et de
Betti via l'isomorphisme de comparaison d'Artin, il n'y pas de tel isomorphisme de comparaison,
en caractéristique positive, entre les cohomologies `-adiques et cristallines. Lorsque k = Fq est
un corps �ni avec q = ps éléments, on peut essayer de palier le manque d'isomorphisme de
comparaison en utilisant la théorie des poids de Frobenius. Pour tout ` 6= p le Frobenius
arithmétique F ∈ π1(Fq) agit linéairement sur l'espace vectoriel H i

`(X) := H i(Xk,Q`) et si
` = p la sème puissance du Frobenius absolu F agit linéairement sur H i

p(X) := H i
crys(X). Soit

L l'ensemble de tous les nombres premiers.

Fait 1.1.4.5.1 ([Del74], [KM74]). Pour ? ∈ L, le polynôme caractéristique Φ de F agissant sur
H i

?(X) est dans Q[T ] et il est indépendant de ? ∈ L. De plus pour toutes les racines α de Φ et
pour tous les plongements ι : Q(α) ↪→ C, on a |ι(α)| = qi/2.

Remarque 1.1.4.5.2.

• Par le fait 1.1.4.5.1, l'adhérence de Zariski de l'image de π1(Fq) agissant sur la semi
simpli�cation de H i

?(X) est dé�nie sur Q et est indépendante de `. En particulier une
version de la conjecture 1.1.3.3.2 est vraie dans ce contexte à semi-simpli�cation près.

• Si k est un corps �niment engendré de caractéristique positive, pour dé�nir une notion
raisonnable d'indépendance et obtenir un analogue du fait 1.1.4.5.1, on doit se ramener
au cas des corps �nis au prix de devoir travailler dans un cadre relatif. On discutera de
ce point plus en détails plus tard, voir le chapitre 6.

19



1.2 Cadre relatif

L'objet principal de cette thèse est l'étude des notions introduites dans la section 1.1 dans un
cadre relatif et non pas absolu. C'est à dire qu'au lieu de considérer une unique variété X, on
étudie des familles de variétés.

Soit k un corps de caractéristique p ≥ 0 et soit X une variété lisse et géométriquement
connexe sur k avec un point générique η. Soit f : Y → X un morphisme propre et lisse et pour
tout x ∈ X, x un point géométrique au dessus de x. On note Yx et Yx la �bre de f : Y → X en
x et x respectivement.

On souhaite étudier comment les invariants de Yx et Yx varient avec x ∈ X. Un premier
résultat dans cette direction est le théorème de changement de base propre et lisse : la dimension
des di�érents groupes de cohomologie H i(Yx(C),Q), H i(Yx,Q`) et H i

crys(Yx) sont indépendants
de x ∈ X. Ce ne sont donc pas des invariants très intéressants de la famille si on les considère
seulement comme des espaces vectoriels. Toutefois il est très intéressant d'étudier les structures
supplémentaires que possèdent ces espaces vectoriels : la �ltration de Hodge, l'action de Galois et
celle du Frobenius. Les familles {H i

B(Yx,Q))}x∈X , {H i(Yx,Q`)}x∈X donnent lieu à des systèmes
locaux (une variation de structures de Hodge et une représentation de π1(X)) mais, dans
le cadre p-adique, {H i

crys(Yx)}x∈X donne lieu à deux systèmes locaux très di�érents : un F -
isocristal convergent et un F -isocristal surconvergent. Dans cette section on rappelle ce que
sont ces objets et di�érents outils qui permettent de les étudier.

1.2.1 Motifs et cycles algébriques

1.2.1.1 Cycles algébriques

Par [SGA6, X, App 7] (voir aussi [MP12, Sections 3.2 and 9.1]), pour tout x ∈ X il existe un
morphisme de spécialisation

spiη,x : CHi
alg(Yη)→ CHi

alg(Yx)

qui s'inscrit dans un diagramme commutatif

CHi
alg(Yk)

CHi
alg(Yη) CHi

alg(Yx),

i∗η

i∗x

spiη,x

où i∗η : CHi
alg(Yk) → CHi

alg(Yη) et ix : CHi
alg(Yk) → CHi

alg(Yx) sont induits par les inclusions
iη : Yη → Yk et ix : Yx → Yk. Pour tout nombre premier ` 6= p la construction est compatible
à l'équivalence homologique `-adique. On en déduit qu'après avoir tensorisé avec Q, on obtient
une injection

spi,`η,x : CHi
`(Yη)⊗Q ↪→ CHi

`(Yx)⊗Q,
dont on pourrait espérer qu'elle soit un isomorphisme au moins pour certains x ∈ X.

Exemple 1.2.1.1.1 ([MP12, Proof of Proposition 1.13]). Soit Y → X une famille non isotri-
viale de courbes elliptiques et soit f : Y ×X Y → X. Alors sp1,`

η,x est un isomorphisme si et
seulement si Yx n'a pas de multiplication complexe.

1.2.1.2 Variations de groupes de Galois motiviques

On �xe une théorie cohomologique de Weil H∗ à coe�cients dans un corps de caractéristique
nulle F et on suppose vraies les conjectures standards de la section 1.1.1.2. En particulier, pour
tout x ∈ X, on a un groupe algébrique réductif motivique G(H∗(Yx)) sur F .
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Alors, CH∗F (Yx)H est obtenu ([And04, Section 6.3]) comme étant l'ensemble des points �xes
de l'action de G(H∗(Yx)) sur la représentation canonique H∗(Yx) et, réciproqiement, puisque
G(H∗(Yx)) est réductif, il existe des entiers m,n ≥ 0 and v1, ...vr ∈ H∗(Yx)⊗m⊗ (H∗(Yx)

∨)⊗n ⊆
H∗(Y n+m

x ) tels G(H∗(Yx)) est le sous-groupe de GL(H∗(Y n+m
x )) �xant v1, ..., vr. Autrement dit

décrire les variations de cycles algébriques sur toutes les puissances Y n
x revient à décrire les

variations de G(H∗(Yx)).
Si le foncteur de réalisation RH : MotFH(k) → VectF se factorise à travers une catégorie

Tannakienne F -linéaire enrichie C, alors la conjecture de Grothendieck-Serre-Tate prédit que
décrire les variations de G(H∗(Yx)) revient à décrire les variations de G(RH(H∗(Yx))). Finale-
ment, la conjecture H = num suggère que la variation des di�érents groupes de Tannaka ne
devrait pas dépendre de la théorie de cohomologie considérée et donc que l'on devrait pouvoir
transférer de l'information entre les groupes de monodromie des di�érentes réalisations.

1.2.2 Faisceaux lisses et représentations

Dans cette section on suppose que ` est un nombre premier di�érent de p.

1.2.2.1 Faisceaux lisses motiviques

Pour tout x ∈ X on note π1(X, x) le groupe fondamental étale ([SGA1, V, 7]) de X pointé en
x. Par le théorème de changement de base propre et lisse Rif∗Q`(j) est un faisceau lisse sur X
([SGA4, XVI, Corollaire 2.2], [SGA4, XII, Theorem 2.2]) et induit donc, par l'équivalence de
catégorie LS(X,Q`) ' RepQ`(π1(X, η)) entre la categorie des faisceaux lisses et la categorie
des representations de π1(X, η), une action de π1(X, η) sur Rif∗Q`(j)η ' H i(Yη,Q`(j)). Pour
tout x ∈ X, le choix d'un chemin étale entre x et η induit un isomorphisme π1(X, x) ' π1(X, η)
et, respectivement à cet isomorphisme, des isomorphismes équivariants

H i(Yη,Q`(j))) ' Rif∗Q`(j)η ' Rif∗Q`(j)x ' H i(Yx,Q`(j))).

L'action de π1(x, x) induite par restriction via π1(x, x)→ π1(X, x) ' π1(X, η) surH i(Yη,Q`(j)) '
H i(Yx,Q`(j))) s'identi�e avec l'action naturelle de π1(x, x) sur H i(Yx,Q`(j))). Cette construc-
tion rends le diagramme suivant commutatif

CHi
`(Yη)⊗Q CHi

`(Yx)⊗Q

H2i(Yη,Q`(i)) H2i(Yx,Q`(i))

spi,`η,x

cYη cYx

'

L'application spi,`η,x est π1(x, x)-équivariante respectivement à l'action naturelle de π1(x, x) sur
CHi

`(Yη) et celle de π1(x, x) sur CHi
`(Yη) par restriction via le morphisme π1(x, x)→ π1(X, x) '

π1(X, η) ([SGA6, X, App 7]). En particulier spi,`η,x se restreint en une injection

spi,`,arη,x : CHi
`(Yη)⊗Q = (CHi

`(Yη)⊗Q)π1(k(η)) ↪→ (CHi
`(Yx)⊗Q)π1(k(x)) = CHi

`(Yx)⊗Q.

1.2.2.2 Lieu strictement exceptionnel

Plus généralement, pour tout ρ dans RepZ`(π1(X)) et tout x ∈ X le choix d'un chemin étale
entre x et η donne lieu à une représentation

ρx : π1(x, x)→ π1(X, x) ' π1(X, η)→ GLn(Z`),

et donc à une inclusion
Πx := Im(ρx) ⊆ Im(ρ) =: Π.

Suivant [CK16], on donne la dé�nition suivante.
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Dé�nition 1.2.2.2.1. On dit que x ∈ |X| est strictement Galois générique pour ρ, si Πx = Π.
Si x n'est pas strictement Galois générique, on dit que x est strictement Galois exceptionnel
pour ρ.

On note Xstex
ρ (resp. Xsgen

ρ ) l'ensemble des points strictement Galois exceptionnel (resp.
strictement Galois générique) pour ρ. On pose

Xstex
ρ (≤ d) := Xstex

ρ ∩X(≤ d); Xsgen
ρ (≤ d) := Xsgen

ρ ∩X(≤ d).

Au vu de la section 1.2.2.1, l'étude de Xstex
ρ est un problème important puisqu'il pourrait

contrôler des invariants �ns de la famille Yx, x ∈ X. Mentionnons que si k est su�samment
riche arithmétiquement Xsgen

ρ est non vide. Ce fait a été observé indépendamment par Serre
([Ser89, Section 10.6]) et Terasoma ([Ter85]). Plus précisément on a :

Fait 1.2.2.2.2. Si k est Hilbertien, il existe d ≥ 1 tel que Xsgen
ρ (≤ d) est in�ni.

Cela découle du lemme 1.2.2.3.1 ci-dessous et du fait que le sous-groupe de Frattini d'un
groupe de Lie `-adique est ouvert ([Ser89, 148]). D'après le théorème d'irréductibilité de Hilbert
([FJ05, Chapter 13]) le fait 1.2.2.2.2 est en particulier vrai si k est in�ni et �niment engendré.

1.2.2.3 Dictionnaire anabélien

Pour tout sous-groupe ouvert U ⊆ Π, on note XU → X le recouvrement étale induit par le sous-
groupe ouvert ρ−1(U) ⊆ π1(X). D'après le formalisme des catégories Galoisiennes ([SGA1, V,
3-5]), on obtient le dictionnaire anabélien suivant entre points rationnels de XU et sous-groupes
de Π :

Lemme 1.2.2.3.1 ([CT12b, Section 3.2 (2)]). Pour tout x ∈ |X|, les assertions suivantes sont
équivalentes

• Il y a une inclusion Πx ⊆ U .

• x : Spec(k(x))→ X se relève en un point k(x) rationnel de XU .

XU

Spec(k(x)) Xx

∃

Le lemme 1.2.2.3.1 traduit le problème de théorie des groupes de la variation de Πx en
fonction de x ∈ |X| en le problème Diophantien de la description de l'image de points rationnels
de XU dans X.

1.2.2.4 Argument de Frattini

On note Φ(Π) ⊆ Π le sous-groupe de Frattini de Π, c'est à dire l'intersection de tous les
sous-groupes ouverts maximaux de Π. On note C l'ensemble des sous-groupes U ⊆ Π tels que
Φ(Π) ⊆ U . Par [Ser89, Pag. 148] et la dé�nition du sous-groupe de Frattini, on déduit le résultat
suivant.

Lemme 1.2.2.4.1.

1. C est �ni.

2. Si C ⊆ Π est un groupe fermé propre, alors il existe un U ∈ C tel que C ⊆ U .

22



On en déduit que

x ∈ Xstex
ρ ⇔ il existe U ∈ C tel que Πx ⊆ U (lemme 1.2.2.4.1(2) )

⇔ il existe U ∈ C tel qu x ∈ Im(XU(k(x))→ X(k(x))) (remarque 1.2.2.3.1 ),

et donc que
Xstex
ρ =

⋃
U∈C

(
⋃

[k′:k]<+∞

Im(XU(k′)→ X(k′))). (1.2.2.4.2)

1.2.2.5 Propriété Hilbertienne

On rappelle ([MP12, De�nition 8.1]) la dé�nition d'un ensemble clairsemé.

Dé�nition 1.2.2.5.1. Soit B une variété irréductible sur k et S ⊆ |B| un sous-ensemble. On
dit que S est clairsemé si il existe un morphisme dominant et génériquement �ni π : T → B de
variétés irréductibles sur k tel que pour tout s ∈ S, la �bre Ts de π : T → B en s, est soit vide
soit contient plus d'un point fermé.

Puisque XU → X est un recouvrement étale �ni de degré > 1, l'ensemble⋃
k⊆k′

Im(XU(k′)→ X(k′)) ⊆ |X|

est clairsemé. L'union d'un nombre �ni de sous-ensembles clairsemés étant clairsemé ([MP12,
Proposition 8.5 (b)]) et puisque C est �ni (lemme 1.2.2.4.1(1)), on déduit de (1.2.2.4.2) que
Xstex
ρ est clairsemé. C'est su�sant, grâce au lemme suivant, pour prouver le fait 1.2.2.2.2.

Lemme 1.2.2.5.2. Si k est Hilbertien et si S ⊆ |X| est un sous-ensemble clairsemé, il existe
d ≥ 1 tel que |X| − S contient une in�nité de points de degré ≤ d.

Démonstration. Puisque pour tout sous-ensemble ouvert dense U ⊆ X, l'ensemble U ∩ S est
clairsemé dans U ([MP12, Proposition 8.5.(a)]), on peut remplacer X par un sous-ensemble
ouvert dense et donc supposer que X est a�ne de dimension n ≥ 1. Par le théorème de nor-
malisation de Noether, il existe un morphisme �ni surjectif π : X → An

k de degré d ≥ 1.
L'image d'un sous-ensemble clairsemé par un morphisme �ni surjectif étant clairsemée ([MP12,
Proposition 8.5 (c)]), l'ensemble π(S) ⊆ An

k est clairsemé. On en déduit, par ([MP12, Pro-
position 8.5 (d)]), que An

k(k) ∩ π(S) est mince (voir [Ser89, Section 9.1] pour la dé�nition).
Puisque k est Hilbertien, l'ensemble An

k(k) − (An
k(k) ∩ π(S)) est in�ni. On en conclut que

π−1(An
k(k)− (An

k(k) ∩ π(S))) ⊆ X − S contient une in�nité de points de degré ≤ d.

1.2.3 Caractéristique nulle : Variations de structures de Hodge mo-
tiviques

Soit k ⊆ C un sous-corps �niment engendré de C.

1.2.3.1 Systèmes locaux analytiques et image géométrique

Soit x ∈ |XC|. D'après le théorème de changement de base propre et lisse on obtient, à partir
de fan : Y an

C → Xan
C , un Q-système local Rifan∗ Q sur Xan

C . On note ΠB l'image de l'action de
πtop1 (XC, x) sur H i

B(Yx,Q) qui en résulte. Par l'invariance du site étale sous les extensions de
corps algébriquement clos en caractéristique nulle ([SGA1, XIII]), il existe un isomorphisme
naturel π1(Xk, x) ' π1(XC, x). Par le théorème d'existence de Riemann [SGA1, XII, Theo-
reme 5.1], il existe un morphisme naturel d'algébrisation πtop1 (XC, x)→ π1(XC, x) qui identi�e
π1(XC, x) avec la complétion pro�nie de πtop1 (XC, x) ([SGA1, XII, Corollaire 5.2]).
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L'action de πtop1 (XC, x) sur H i
B(Yx,Q)⊗Q`, se factorise à travers l'application de complétion

pro�nie πtop1 (XC, x)→ π1(XC, x) ' π1(Xk, x). L'action de π1(Xk, x) sur H i
B(Yx,Q)⊗Q` s'iden-

ti�e, via l'isomorphisme de comparaison H i
B(Yx,Q) ⊗ Q` ' H i(Yx,Q`), à l'action de π1(X, x)

sur H i(Yx,Q`) obtenue par restriction via le morphisme π1(Xk, x)→ π1(X, x).
On note Gi,geo

` l'adhérence de Zariski de l'image Πi,geo
` de l'action de π1(Xk, x) surH i(Yx,Q`).

Puisque πtop1 (XC, x) → π1(XC, x) a une image dense, la discussion précédente implique le ré-
sultat d'indépendance suivant pour Gi,geo

` , qui est un analogue géométrique de la conjecture
1.1.3.3.2.

Proposition 1.2.3.1.1. Il existe un Q-groupe algébrique Gi,geo, une représentation �dèle
Gi,geo ⊆ GL(V i) et un isomorphisme V i ⊗ Q` ' H i(Yk,Q`) pour tout `, tel que la compo-
sition Gi,geo ⊗Q` ⊆ GL(V i)⊗Q` ' GL(H i(Yx,Q`)) identi�e Gi,geo ⊗Q` avec G

i,geo
` .

1.2.3.2 La conjecture de Hodge variationnelle

La suite spectrale de Leray associée à fan : Y an
C → Xan

C induit un morphisme

H2
B(YC,Q(1))→ H0(Xan

C , R2fan∗ Q(1))

qui s'inscrit dans le diagramme commutatif suivant

H2
B(YC,Q(1)) Pic(YC)⊗Q

H0(Xan
C , R2fan∗ Q(1))⊗Q H2

B(Yx,Q(1)) Pic(Yx)⊗Q.

i∗x

cYC

i∗x

cYx

La conjecture de Hodge pour les diviseurs (Fact 1.1.3.1.2) et la théorie développée dans [Del71]
permettent de prouver une version variationnelle de la conjecture de Hodge pour les diviseurs
(voir aussi [Char11, Section 3.1]).

Fait 1.2.3.2.1. Pour tout x ∈ |XC| et tout zx ∈ Pic(Yx) ⊗ Q les assertions suivantes sont
équivalentes

1. Il existe un z ∈ Pic(YC)⊗Q tel que i∗x(cYC(z)) = cYx(zx) ;

2. Il existe un z ∈ H2
B(XC,Q(1)) tel que i∗x(z) = cYx(z) ;

3. cYx(z) est dans l'image de H0(Xan
C , R2fan∗ Q(1)) ↪→ H2

B(Y an
x ,Q(1)).

Démonstration. On a clairement (1) ⇒ (2) ⇒ (3). On montre (3) ⇒ (1). Soit i : YC ⊆ Y cmp
C

une compacti�cation lisse. Le diagramme commutatif cartésien de C-variétés suivant

Yx YC Y cmp
C

Spec(C) XC,

ix

�

i

f

x

induit un diagramme commutatif

H2
B(Y cmp

C ,Q(1)) Pic(Y cmp
C )⊗Q

H2
B(YC,Q(1)) Pic(YC)⊗Q

H0(Xan
C , R2fan∗ Q(1))⊗Q H2

B(Yx,Q(1)) Pic(Yx)⊗Q.

i∗

c
Y
cmp
C

i∗

i∗x

cYC

i∗x

cYx
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Par le thèorème global des cycles invariants ([Del71, 4.1.1]), l'application

H2
B(Y cmp

C ,Q(1))→ H2
B(YC,Q(1))→ H0(Xan

C , R2fan∗ Q(1))

est surjective. On en déduit, par (3), que cYx(zx) ∈ H2
B(Yx,Q(1)) est dans l'image de i∗x ◦

i∗ : H2
B(Y cmp

C ,Q(1)) → H2
B(Yx,Q(1)). Puisque H2

B(Y cmp
C ,Q(1)) est une Q-structure de Hodge

semi-simple, l'application H2
B(Y cmp

C ,Q(1)) → Im(i∗x) se scinde en tant que un morphisme de
Q-structures de Hodge. Puisque cYx(zx) est dans H2

B(Y cmp
C ,Q(1))0,0, cYx(zx) est l'image d'un

z′ ∈ H2
B(Y cmp

C ,Q(1))0,0 via H2
B(Y cmp

C ,Q(1))0,0 → H2
B(Yx,Q(1)). Par la conjecture de Hodge

pour les diviseurs (Fact 1.1.3.1.2) z = cY cmpC
(zcmp) pour un zcmp ∈ Pic(Y cmp

C ) ⊗ Q. Alors
z = i∗(zcmp) ∈ Pic(YC)⊗Q est tel que i∗x(cY (z)) = cYx(zx).

1.2.4 Caractéristique positive : F-isocristaux

En caractéristique positive, il y a deux catégories di�érentes de systèmes locaux p-adiques :
les F-isocristaux et les F-isocristaux surconvergents. Dans cette section on rappelle rapidement
leurs dé�nitions et les relations entre les deux. Soit k un corps parfait de caractéristique p > 0
et soit X une variété lisse et géométriquement connexe sur k.

1.2.4.1 F-isocristaux

En adaptant légèrement les arguments de 1.1.4.2, on dé�nit un topos cristallin (X/W )crys, un
site cristallin Crys(X/W ) sur X au dessus de W et un faisceau structural OX/W , cf. [B078,
Section 7.17] et [Mor13, Section 2]. Pour tout (U ↪→ T, γ)1 dans (X/W )crys et tout faisceau
en OX/W -modules cohérents E , on a un OT -module cohérent ET et pour tout morphisme g :
(U ′, T ′, γ′)→ (U, T, γ) dans (X/W )crys on a un morphisme naturel g∗ET → ET ′ de OT ′-modules
cohérents. Un cristal sur X est alors un faisceau E de OX/W -modules cohérents tel que pour
tout morphisme g : (U ′, T ′, γ′)→ (U, T, γ) dans Crys(X/W ), le morphisme naturel g∗ET ′ → ET
est un isogénie.

On note Crys(X|W ) la catégorie des cristaux, Crys(X|W )Q := Crys(X|W ) ⊗ Q et
OX/K := OX/W ⊗Q. Pour tout entier s ≥ 1, la sème-puissance F du Frobenius absolu ϕ de X
agit sur Crys(X|W )Q et la catégorie F-Crys(X|W )Q des F -isocristaux est dé�nie comme étant
la catégorie des couples (E ,Φ), où E est dans Crys(X|W )Q et Φ : F ∗E → E est une isogénie.
Pour tout E dans F-Crys(X|W )Q il y a un groupe de cohomologie H i(X, E) (un K-espace
vectoriel) muni d'une action semi-linéaire de F . On pose H i

crys(X) := H i
crys(X,OX/K).

1.2.4.2 La conjecture de Tate variationnelle cristalline

Par [Mor13], il existe un F -isocristal image directe supérieure Rifcrys,∗OY/K et la suite spectrale
de Leray pour f : Y → X induit, pour tout x ∈ |X|, un diagramme commutatif

H2
crys(Y ) Pic(Y )⊗Q

H0(X,R2fcrys,∗OY/K) H2
crys(Yx) Pic(Yx)⊗Q.

Leray
i∗x

cY

i∗x

cYx

Bien que le conjecture de Tate cristalline ne soit pas connue, Morrow en a démontré une version
variationnelle, qui est un analogue du fait 1.2.3.2.1.

Fait 1.2.4.2.1 ([Mor15, Theorem 1.4]). Si f : Y → X est projectif, pour tout zx ∈ Pic(Yx)⊗Q
les assertions suivantes sont équivalentes :

1U est un ouvert de X, U ↪→ T est une immersion fermée nilpotente de W -schémas et γ est une structure
de puissances divisées sur Ker(OT → OU ).
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1. Il existe z ∈ Pic(Y )⊗Q tel que cYx(zx) = i∗x(cY (z)) ;

2. Il existe z ∈ H2
crys(Y ) tel que cYx(zx) = i∗x(z) ;

3. cYx(zx) est dans l'image de H0(X,R2fcrys,∗OY/K) ↪→ H2
crys(Yx).

1.2.4.3 Pentes

Une des propriétés spéci�ques de F-Crys(X|W )Q, qui n'a pas d'analogue `-adique, est la théorie
des pentes (cf. [Kat79], [Ked17, Sections 3 and 4]). Soit E un élément de F-Crys(X|W )Q de rang
r. Pour tout x ∈ |X|, on considère l'ensemble de nombres rationnels {axi (E)}1≤i≤r des pentes
([Ked17, De�nition 3.3]) de E en x. On dit que E est isocline (de pente at1(E)) si at1(E) = axr (E)
pour tout x ∈ |X| et unité si il est isocline de pente nulle. On note F-Crysun(X|W )Q ⊆
F-Crys(X|W )Q la catégorie des F-isocristaux unité. Finalement, on dit que E a polygone de
Newton constant si la fonction

NE : |X| → Qr

x 7→ (axi (E))1≤i≤r

est constante.

Fait 1.2.4.3.1. Soit E un élément de F-Crys(X|W )Q.

1. ([Kat79, Theorem 2.3.1], [Ked17, Theorem 3.12]) : Il existe une immersion ouverte dense
i : U → X telle que i∗E a polygone de Newton constant.

2. ([Kat79, Theorem 2.6.2], [Ked17, Corollary 4.2]) : Si E a polygone de Newton constant,
alors il existe une unique �ltration

0 = E0 ⊆ E1 ⊆ ... ⊆ En−1 ⊆ En = E in F-Crys(X|W )Q

telle que Ei/Ei−1 est isocline de pente si avec s1 < s2 < ... < sn.

3. ([Tsu02], [Ked17, Theorem 3.9]) : Il y a une équivalence de catégorie naturelle F-Crysun(X|W )Q '
RepK(π1(X)).

La �ltration du fait 1.2.4.3.1(2) est appelé la �ltration par les pentes de E .

1.2.4.4 Comparaison I : F-isocristaux vs représentations `-adiques

Il serait naturel de penser que le F -isocristal Rifcrys,∗OY/K est l'analogue p-adique de Rif∗Q`.
Toutefois, le comportement de F-Crys(X|W )Q est très di�érent de celui de LS(X,Q`).

Exemple 1.2.4.4.1 ([Gro68, Section 2.1]). En général le K-espace vectoriel H1(X, E) n'est
pas de dimension �nie. Considérons X = A1

k et posons

K〈T 〉 := {
+∞∑
i=0

aiT
i telles que lim

i 7→+∞
|ai| = 0}.

Il y a un isomorphisme naturel

H1
crys(X) ' Coker(d : K〈T 〉 → K〈T 〉dT ).

Puisque
lim
i→+∞

|ai| = 0,
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n'implique pas en général que
lim
i→+∞

|ai/i+ 1| = 0,

on voit que H1
crys(X) est un K-espace vectoriel de dimension in�nie. Toutefois, suivant [MW68],

on peut remplacer K〈T 〉 par le sous-anneau

K〈T 〉† := {
+∞∑
i=0

aiT
i tel qu'il existe un c > 1 avec lim

n→+∞
ci|ai| = 0},

et montrer que d : Coker(K〈T 〉† → K〈T 〉†dT ) = 0. L'anneau K〈T 〉 est l'anneau des fonctions
rigides analytiques sur le disque unité ouvert alors que K〈T 〉† ⊆ K〈T 〉 est le sous-anneau des
fonctions qui convergent sur un voisinage ouvert analytique plus large.

Exemple 1.2.4.4.2 ([Ked17, Example 4.6]). Soit f : Y → X une famille non isotriviale de
courbes elliptiques dont l'une des �bres est supersingulière et soit E := Rif∗OY/K . Alors il
existe un sous-schéma ouvert et dense i : U ↪→ X tel que pour tout x ∈ U , la courbe elliptique
Yx est ordinaire. On a les résultats suivants :

1. E est irréductible ;

2. i∗E ' RifU,∗OYU/K a une �ltration a deux crans non scindée (la �ltration par les pentes
de la section 1.2.4.3) qui re�ète la �ltration du groupe p-divisible de la �bre générique,
donnée par la suite exacte connexe-étale

0→ Yη[p
∞]0 → Yη[p

∞]→ Yη[p
∞]et → 0.

On en déduit les observations suivantes :

1. Bien que dans le cadre `-adique la restriction à un ouvert d'un faisceau lisse irréductible
reste irréductible, dans le cas cristallin ce n'est pas le cas ;

2. Bien que RifU,∗Q` soit semi-simple, ce n'est pas le cas de i∗E .

En conclusion on voit que d'un côté la catégorie F-Crys(X|W )Q a un comportement patho-
logique respectivement à LS(X,Q`) mais que de l'autre elle contient des informations p-adiques
�nes.

1.2.4.5 F-isocristaux surconvergents

Les exemples 1.2.4.4.1 et 1.2.4.4.2 suggèrent que pour obtenir une catégorie de systèmes lo-
caux p-adiques ayant un comportement similaire à LS(X,Q`) il faut rigidi�er la catégorie
F-Crys(X|W )Q. Cela mène à l'introduction des catégories d'isocristaux surconvergents Isoc†(X|K)
et de F -iscocristaux surconvergents F-Isoc†(X|K) ainsi qu'à celle de la cohomologie rigide
H i(X, E) pour E dans Isoc†(X|K). Les dé�nitions de ces objets sont techniques et on renvoie
le lecteur à [Ber96] pour les dé�nitions précises. On se contente de donner un exemple.

Exemple 1.2.4.5.1. Soit X = A1
k. On garde les notations de l'exemple 1.2.4.4.1. Un isocristal

surconvergent sur X est un K〈T 〉†-module cohérent E , muni d'une connexion intégrable

d : E → E ⊗K〈T 〉† K〈T 〉†dT.

La cohomologie rigide de E est alors dé�nie par

H0(X, E) = Ker(d : E → E ⊗K〈T 〉† K〈T 〉†dT );

H1(X, E) = Coker(d : E → E ⊗K〈T 〉† K〈T 〉†dT );

H i(X, E) = 0 si i ≥ 2

27



Le morphisme naturel F : K〈T 〉 → K〈T 〉 qui envoie
∑
aiT

i sur
∑
F (ai)T

pi, induit un mor-
phisme F : K〈T 〉† → K〈T 〉†, et on peut donc considérer l'isocristal surconvergent F ∗E . Un
F -iscocristal surconvergent sur X est alors un isocristal surconvergent E sur K〈T 〉†, muni d'un
isomorphisme F ∗E → E .

Pour comparer les F-isocristaux et les F-isocristaux surconvergents, on introduit les ca-
tégories Isoc(X|K) et F-Isoc(X|K) des isocristaux convergents et F-isocristaux convergents
([Ogu84], [Ber96, 2.3.2]). Les catégories de cristaux que nous avons introduites jusqu'à présent
vivent dans un diagramme commutatif ([Ber96, Section 2.4]) de foncteurs �dèles :

F-Isoc†(X|K) Isoc†(X|K)

F-Isoc(X|K) Isoc(X|K)

F-Crys(X|W )Q Crys(X|W )Q.

(−)conv

(−)geo

(−)conv

(−)geo

Φ

(−)geo

(1.2.4.5.2)

De plus

Fait 1.2.4.5.3.

• ([Ber96, Theoreme 2.4.2]) : Le foncteur Φ : F-Isoc(X|K) → F-Crys(X|W )Q est une
équivalence de catégorie.

• ([Ked18]) : Le foncteur (−)conv : F-Isoc†(X|K)→ F-Isoc(X|K) est pleinement �dèle.

Un des résultats non triviaux de cette thèse dans le chapitre 4 assure que Rifcrys,∗OY/K est
dans l'image essentielle de (−)conv : F-Isoc†(X|K)→ F-Isoc(X|K) ' F-Crys(X|W )Q.

1.2.4.6 Groupes de monodromie

Si E est un Q`-faisceau lisse sur X, on a vu que l'on pouvait dé�nir, de manière équivalente,
le groupe de monodromie G(E) of E comme étant soit l'adhérence de Zariski de l'image de
π1(X, x) agissant sur Ex soit le groupe des automorphismes du foncteur d'oubli 〈E〉 → VectQ` .
Pour les isocristaux seule cette dernière construction est disponible. Ce fut fait en premier par
Crew dans [Cre92]. A partir de maintenant, on suppose que k = Fq, avec q = ps et, pour
simpli�er, que X a un point Fq-rationnel x : Spec(Fq) → X. Puisqu'il y a une équivalence de
catégories naturelle Isoc(Fq|K) ' VectK , le foncteur

x∗ : Isoc(X|K)→ Isoc(Fq|K) ' VectK

induit une neutralisation des quatre catégories dans le diagramme (1.2.4.5.2). Ainsi, pour tout
E dans F-Isoc†(X|K), on obtient un diagramme commutatif de catégories Tannakiennes :

〈E〉 〈Egeo〉

〈Econv〉 〈Egeo,conv〉.

(−)conv

(−)geo

(−)conv

(−)geo

Par la dualité Tannakienne, ce diagramme correspond à un diagramme commutatif exact d'im-
mersions fermées de groupes algébriques

28



G(Egeo,conv) G(Econv)

G(Egeo) G(E),

dans lequel ([D'Ad17, Appendix]) les sous-groupes G(Egeo,conv) ⊆ G(Econv) et G(Egeo) ⊆ G(E)
sont normaux.

Exemple 1.2.4.6.1. On garde les notations de l'exemple 1.2.4.4.2. On a

G(Econv) = G(E) = GL2 and G(Egeo,conv) = G(Egeo) = SL2

alors que

B = G(i∗Econv) ⊆ G(i∗E) = GL2 and B′ = G(i∗Egeo,conv) ⊆ G(i∗Egeo) = SL2

où B ⊆ GL2 et B′ ⊆ SL2 sont les sous-groupes de Borel des matrices triangulaires supérieures.
Cela re�ète le fait que i∗E admet une �ltration par des F -isocristaux qui ne viennent pas de
F -isocristaux surconvergents, qui correspond au drapeau stabilisé par B et B′ mais par GL2 et
SL2.

1.2.4.7 Comparaison II : F-isocristaux surconvergents vs représentations `-adiques

Alors qu'en caractéristique nulle on peut essayer de comparer les di�érents groupes de mono-
dromie via le théorème de comparaison entre le site singulier et le site étale, en caractéristique
positive on a besoin d'outils di�érents. On rappelle quelques résultats dans ce cadre. Pour des
raisons techniques il est plus facile de travailler avec des coe�cients dans des corps algébri-
quement clos. Soit ` un nombre premier. Suivant [Ked17], on note Coef(X, `) la catégorie des
Q`-faisceaux lisses ([Del80, 1.1.1]) et Coef(X, p) la catégorie des Qp-F-isocristaux surconver-
gents ([Abe18, Sections 2.4.14-2.4.18]). Soit E` un élément de Coef(X, `). Pour tout x ∈ |X| il
existe un polynôme caractéristique φx(E`) ∈ Q`[T ] de E en x (cf. par exemple [D'Ad17, 2.1.4
and 2.2.10.]). On �xe une collection ι := {ι`}`∈L d'isomorphismes ι` : Q` ' C. On dit que E` est
ι`-pure (de poids w), si toutes les racines de ι`(φx(E`)) ont valeur absolue complexe q[Fq(x):Fq ]w/2.
Soit {E`}`∈L une collection de E` dans Coef(X, `). On dit que {E`}`∈L est un ι-système com-
patible si ι`(φx(E`)) = ι`′(φx(E`′)), pour tout ` 6= `′ et tout x ∈ |X|. Via la théorie des poids
([Del80], [Ked06b], [AC13b]), les conditions de pureté et de compatibilité sont su�samment
fortes pour garantir que les di�érents E` partagent plusieurs propriétés.

Exemple 1.2.4.7.1. Soit deux nombres premiers ` 6= `′, on suppose pour simpli�er que ` 6=
p 6= `′. Si E` dans Coef(X, `) et E`′ dans Coef(X, `′) sont pures et compatibles, alors les faits
suivants découlent de la théorie des poids ([Del80]) et de la formule des traces de Grothendieck-
Lefschetz ([Fu15, Theorem 10.5.1, page 603]) :

• E` est irréductible si et seulement si E`′ est irréductible (cf. par exemple [D'Ad17, Corollary
3.5.6]) ;

• Dim(H0(XF, E`)) = Dim(H0(XF, E`′)) (cf. par exemple [D'Ad17, Corollary 3.4.11]).

On �xe x ∈ |X| et on note E`,x la �bre de E` en x. En utilisant le foncteur x∗, pour tout
E` dans Coef(X, `) on dé�nit un groupe de monodromie G(E`) ⊆ GL(E`,x). De plus, on peut
construire un groupe de monodromie géométrique G(Egeo` ) ⊆ G(E`) : si ` 6= p, G(Egeo` ) est
dé�ni comme étant le groupe de monodromie du changement de base de E` à XFq et si ` = p,
G(Egeop ) est dé�ni comme étant le groupe de monodromie de l'image de E dans la catégorie
des Qp-isocristaux linéaires surconvergents sur X. Un résultat frappant récent, se basant sur la
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correspondance de Langlands et la théorie des compagnons pour les faisceaux `-adiques et les
isocristaux surconvergents ([Laf02], [Dri12], [Abe18], [AE16]), est un analogue de la conjecture
1.1.3.3.2 et de la proposition 1.2.3.1.1.

Fait 1.2.4.7.2 ([Chi03], [D'Ad17]). Soit {E`}`∈L système compatible pure. Alors :

• Il existe un groupe algébrique connexe Ggeo sur Q, une représentation �dèle ρ : Ggeo ⊆
GL(V ) et un isomorphisme (non canonique) V ⊗ Q` ' E`,x pour tout `, tels que la
composition Ggeo ⊗Q` ⊆ GL(V )⊗Q` ' GL(E`,x) identi�e Ggeo ⊗Q` avec G(E`,x)0.

• Supposons de plus que E` est semi-simple pour tout ` ∈ L. Alors, il existe un groupe
algébrique connexe G sur Q, une représentation �dèle ρ : G ⊆ GL(V ) et un isomorphisme
(non canonique) V ⊗Q` ' E`,x pour tout `, tel que la composition G⊗Q` ⊆ GL(V )⊗Q` '
GL(E`,x) identi�e G⊗Q` avec G(E`,x)0.

1.3 Spécialisations de représentations `-adiques et groupes
de Néron-Severi en caractéristique nulle

Soit k un corps de caractéristique nulle. Soit X une variété lisse et géométriquement connexe
sur k et soit η le point générique de X. Dans cette section on rappelle certains résultats de
Cadoret-Tamagawa ([CT12b], [CT13]) et de André ([And96]).

1.3.1 Un théorème d'image uniforme pour les représentations `-adiques

Dans cette section on discute d'un résultat de �nitude de Cadoret et Tamagawa qui améliore
le fait 1.2.2.2.2 quand X est une courbe.

1.3.1.1 Lieu exceptionnel

Soit X une courbe et ρ : π1(X, η) → GLr(Z`) une représentation continue d'image Π. Dans la
section 1.2.2.2, on a rappelé que, pour tout x ∈ |X|, le choix d'un chemin étale entre η et x
induit une représentation Galoisienne locale

ρx : π1(x, x)→ π1(X, x) ' π1(X, η)
ρ−→ GLr(Z`)

d'image Πx et une inclusion Πx ⊆ Π. Suivant [CK16], on donne la dé�nition suivante.

Dé�nition 1.3.1.1.1. On dit que x ∈ |X| est Galois générique pour ρ si Πx ⊆ Π est un
sous-groupe ouvert. Si x n'est pas Galois générique on dit que x est Galois exceptionnel pour
ρ.

On note Xex
ρ et Xgen

ρ le lieu des points fermés Galois exceptionnels et Galois génériques
pour ρ et on pose

Xex
ρ (≤ d) := Xex

ρ ∩X(≤ d); Xgen
ρ (≤ d) := Xgen

ρ ∩X(≤ d).

1.3.1.2 Enoncé

La variété X étant géométriquement connexe, on peut considérer la représentation

ρgeo : π1(Xk, η)→ π1(X, η)→ GLr(Z`)

et son image Πgeo. Rappelons la dé�nition suivante de [CT12b, Section 1]
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Dé�nition 1.3.1.2.1. On dit que ρ est géométriquement Lie parfaite (ou GLP ) si 2 l'abélianisé
de tout sous-groupe ouvert de Πgeo est �ni.

Cadoret et Tamagawa montrent le résultat suivant

Fait 1.3.1.2.2 ([CT12b]). Supposons que k est �niment engendré et que X est une courbe. Si
ρ est GLP , pour tout entier d ≥ 1, l'ensemble Xex

ρ (≤ d) est �ni et il existe un entier N ≥ 1,
qui ne dépend que de d et ρ, tel que, pour tout x ∈ Xgen

ρ (≤ d), on a [Π : Πx] ≤ N .

Dans les sous-sections suivantes on rappelle les idées principales de la preuve du fait 1.3.1.2.2.

1.3.1.3 Théorie des groupes : un système projectif de sous-groupes

On rappelle que Φ(Π) est le sous-groupe de Frattini de Π, c'est à dire l'intersection de tous
les sous-groupes ouverts maximaux de Π. Dans la preuve du fait 1.2.2.2.2, un des ingrédients
principaux était de considérer l'ensemble �ni C des sous-groupes U ⊆ Π tels que Φ(Π) ⊆ U .
Pour prouver le fait 1.3.1.2.2, Cadoret et Tamagawa construisent dans [CT12b, Section 3] un
système projectif qui ra�ne C. Pour chaque sous-groupe C de Π, on note

C(n) := Ker(C ⊆ Π ⊆ GLr(Z`)→ GLr(Z`/`n).

On dé�nit C0(Π) := {Π} et pour tout entier n ≥ 1

Cn(Π) := {U ⊆ Π tels que Φ(Π(n− 1)) ⊆ U et Π(n− 1) 6⊆ U}.

Par [CT12b, Lemma 3.1], les applications ψn : Cn+1(Π)→ Cn(Π) qui envoient U sur UΦ(Π(n−
1)) sont bien dé�nies et munissent donc la collection {Cn(Π)}n∈N d'une structure de système
projectif. L'analogue du lemme 1.2.2.4.1 est alors le suivant.

Lemme 1.3.1.3.1 ([CT12b, Lemma 3.3]).

1. Pour tout entier n ≥ 0, l'ensemble Cn(Π) est �ni ;

2. Pour n � 0, si C ⊆ Π est un sous-groupe fermé tel que Π(n − 1) 6⊆ C, alors il existe
U ∈ Cn(Π) tel que C ⊆ U .

1.3.1.4 Dictionnaire anabélien I

Pour chaque entier n ≥ 0 on note

Xn :=
∐

U∈Cn(Π)

XU → X.

Alors, puisque la famille {Π(n)}n∈N forme un système fondamental de voisinages ouverts de 1
dans Π, on a

x ∈ Xex
ρ ⇔ pour n� 0 Π(n− 1) 6⊆ Πx

⇔ pour n� 0 il existe U ∈ Cn avec Πx ⊆ U (lemme 1.3.1.3.1(2) )

⇔ pour n� 0 x ∈ Im(Xn(k(x))→ X(k(x)) (remarque 1.2.2.3.1 )

Cela montre que
Xex
ρ (≤ d) =

⋂
n≥1

Im(Xn(≤ d)→ X(≤ d))

2La terminologie vient du fait que cette condition est équivalente à ce que (Lie(Πgeo))ab = 0.
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et que, pour n� 0, on a

{x ∈ X(≤ d) with [Π : Πx] ≤ [Π : Π(n)]} ⊆ X(≤ d)− Im(Xn(≤ d)→ X(≤ d)). (1.3.1.4.1)

Par (1.3.1.4.1), comme Π a un nombre �ni de sous-groupes ouverts d'indices bornés et Cn(Π) est
�ni, pour montrer le fait 1.3.1.2.2 il su�t de montrer que, pour n� 0 et pour tout U ∈ Cn(Π),
l'ensemble XU(≤ d) est �ni.

1.3.1.5 Enoncé Diophantien : genre et gonalité

La �nitude du nombre de points rationnels d'une courbe lisse Y est contrôlée par le genre gY
et la gonalité3 γY de la compacti�cation lisse de Yk. Plus précisément, on a le résultat suivant :

Fait 1.3.1.5.1. Soit k un corps �niment engendré de caractéristique nulle et soit Y une courbe
propre et lisse sur k.

1. ([FW84]) : Si gY ≥ 2 alors Y (k) est �ni.

2. ([Fal91], [Fre94]) : Si γY ≥ 2d+ 1 alors Y (≤ d) est �ni.

Revenons aux revêtements XU → X, on veut maintenant montrer que leurs genre et leur
gonalité sont grands. Pour chaque sous-groupe ouvert U ⊆ Π, on note k ⊆ kU la plus petite
extension �nie de k sur laquelle XU est géométriquement connexe et on note gU et γU le genre et
la gonalité d'une compacti�cation lisse de XU ×kU k. Alors, pour prouver le théorème 1.3.1.2.2,
il est su�sant de montrer le fait suivant.

Fait 1.3.1.5.2. Supposons que ρ est GLP et �xons des entiers d1 ≥ 0, d2 ≥ 1. Alors :

1. ([CT12b, Corollary 3.8]) : Il existe un entier Ng ≥ 1, dépendant uniquement de ρ, d1, d2,
tel que pour tout entier n ≥ Ng et tout U ∈ Cn(Π) on a gU ≥ d1 ou [kU : k] ≥ d2.

2. ([CT13, Corollary 3.11]) : Il existe un entier Nγ ≥ 1, dépendant uniquement de ρ, d1, d2,
tel que pour tout entier n ≥ Nγ et tout U ∈ Cn(Π) on a γ ≥ d1 ou [kU : k] ≥ d2.

Remarque 1.3.1.5.3. A posteriori, via la formule de Riemann-Hurwitz 1.3.1.5.2(2) implique
1.3.1.5.2(1) mais 1.3.1.5.2(1) est en fait utilisé dans la preuve de 1.3.1.5.2(2).

1.3.1.6 Dictionnaire anabélien II : l'hypothèse GLP

Pour illustrer l'idée de la preuve du fait 1.3.1.5.2(1), on montre dans cette section, suivant
[CT12a, Section 4.1.3], que si k = k, alors la représentation ρ est GLP et si Π est in�ni, alors
gΠ(n) tend vers l'in�ni. Soit n0 ≥ 1 un entier. Pour tout n ≥ n0, la formule de Riemann Hurwitz
pour le recouvrement XΠ(n) → XΠ(n0) implique que

lim
n→+∞

2gΠ(n) − 2 ≥ lim
n→+∞

(|Π(n0)/Π(n)|)(2gΠ(n0) − 2) (1.3.1.6.1)

Puisque Π est in�ni, on a

lim
n→+∞

|Π(n0)/Π(n)| = |Π(n0)| = +∞.

On en déduit que si supn(gΠ(n)) ≥ 2 il existe un n0 tel que gΠ(n0) ≥ 2 et l'équation (1.3.1.6.1)
impliquent que gΠ(n) tendent vers l'in�ni. On doit donc éliminer les deux possibilités suivantes :

3Rappelons que la gonalité d'une courbe propre et lisse Y sur k est le degré minimum d'un morphisme non
constant Y → P1

k
.
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1. sup(gΠ(n)) = 1. Alors il existe n0 tel que pour tout n ≥ n0 la compacti�cation lisse de
XΠ(n) est une courbe elliptique. Puisque tous les morphismes �nis entre courbes elliptiques
sont non rami�és, le groupe de Galois Π(n0)/Π(n) de XΠ(n) → XΠ(n0) est un quotient
du groupe fondamental étale de la compacti�cation lisse de XΠ(n0). En particulier il est
abélien et donc Π(n0) = lim←−n Π(n0)/Π(n) est abélien et in�ni. Mais cela contredit le fait
que ρ est GLP, puisque Π(n0) serait un sous-groupe ouvert abélien in�ni de Π.

2. sup(gΠ(n)) = 0. Alors pour tout n ≥ 0, la compacti�cation lisse de XΠ(n) est isomorphe
à P1. Le groupe de Galois Π(1)/Π(n) du recouvrement XΠ(n) → XΠ(1) est donc un sous-
groupe de PGL2(k). En utilisant la classi�cation des sous-groupes �nis de PGL2(k) (cf.
par exemple [Cad12a, Corollary 10]) on obtient une contradiction grâce à l'hypothèse
GLP comme dans le cas 1.

La preuve du fait 1.3.1.5.2(1) est signi�cativement plus di�cile, car les recouvrements XU → X
ne sont pas Galoisiens en général. L'idée est de prendre un recouvrement Galoisien XŨ → X
au dessus de XU → X et proche de la clôture Galoisienne de XU → X et alors :

• On applique d'abord l'argument précédent à XŨ ([CT12b, Section 3.3.1]) ;

• On compare ensuite le genre de XŨ et XU via la formule de Riemann-Hurwitz ([CT12b,
Section 3.3.2]).

On discutera plus en détails de cette stratégie dans la section 2.1.1.3.

1.3.2 Spécialisations du groupe de Néron-Severi

Soit Y → X un morphisme propre et lisse. Dans cette section on discute d'un résultat de André,
qui lie les faits 1.2.2.2.2 et 1.3.1.2.2 à la spécialisation du groupe de Néron-Severi.

1.3.2.1 Points NS-génériques

On spécialise la discussion de la section 1.2.1 au cas des diviseurs. Soit Z une variété propre
et lisse sur k. Dans ce cadre, puisque les équivalences algébriques et numériques coïncident
rationnellement pour les diviseurs, pour tout couple de nombres premiers `, `′ on a les égalités

CH1
`′(Zk)⊗Q = NS(Zk)⊗Q = CH1

`(Zk)⊗Q.

De plus, puisque H1(π1(k), P ic0(Z)) est de torsion, la suite exacte de k-schémas en groupes

0→ Pic0
Z → PicZ → NSZ → 0

montre que NS(Z) ⊗ Q = (NS(Zk) ⊗ Q)π1(k). Donc, pour tout x ∈ X, les morphismes de
spécialisation de la section 1.2.1 pour le morphismef : Y → X donnent

spη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q et sparη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q.

Dé�nition 1.3.2.1.1. On dit que x ∈ |X| est NS-générique (resp. arithmétiquement NS-
générique) pour f : Y → X si spη,x (resp. sparη,x) est un isomorphisme.
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1.3.2.2 NS-générique vs Galois générique

Pour tout x ∈ X, le choix d'un chemin étale entre x et η induit des isomorphismes

π1(X, x) ' π1(X, η), H2(Yη,Q`(1))) ' R2f∗Q`(1)η ' R2f∗Q`(1)x ' H2(Yx,Q`(1))),

qui identi�ent l'action de π1(x, x) induite par restriction via π1(x, x) → π1(X, x) ' π1(X, η)
sur H2(Yη,Q`(1)) ' H2(Yx,Q`(1))) avec l'action naturelle de π1(x, x) sur H2(Yx,Q`(1))). Rap-
pelons que le morphisme de spécialisation fait commuter le diagramme suivant

Pic(Yη)⊗Q Pic(Y )⊗Q Pic(Yx)⊗Q

NS(Yη)⊗Q NS(Yx)⊗Q

H2(Yη,Q`(1)) H2(Yx,Q`(1)).

cYη

i∗η i∗x

cYx

spη,x

'

et que x ∈ |X| est dit Galois générique (resp. strictement Galois générique) pour ρ2,1
` : π1(X)→

GL(H2(Yx,Q`(1))) si l'image de π1(x, x) agissant sur H2(Yη,Q`(1)) est ouverte (resp. coïncide)
dans (resp. avec) l'image de π1(X, η) agissant sur H2(Yη,Q`(1)). La conjecture 1.1.2.1.1 prédit
que tout point (strictement) Galois générique est (arithmétiquement) NS-générique. André a
montré que c'est vrai sans supposer la conjecture 1.1.2.1.1.

Fait 1.3.2.2.1 ([And96]). Tout point (strictement) Galois générique pour ρ2,1
` est (arithméti-

quement) Néron-Severi générique.

En combinant le fait 1.3.2.2.1 avec les faits 1.2.2.2.2 et 1.3.1.2.2, on obtient l'existence
et l'abondance des points (arithmétiquement) NS-génériques. La preuve du fait 1.3.2.2.1 se
décompose en deux étapes :

• On relie les cycles algébriques à la cohomologie via la conjecture de Hodge variationnelle
pour les diviseurs (fait 1.2.3.2.1) ;

• On relie la théorie de Hodge à la cohomologie `-adique via la comparaison entre le site
étale et le site singulier.

Dans la sous-section suivante, on rappelle plus en détails la preuve du fait 1.3.2.2.1 (cf. aussi
[CC18, Proposition 3.2.1]).

1.3.2.3 Preuve du fait 1.3.2.2.1

Soit x ∈ |X| un point Galois générique pour ρ2,1. En remplaçant X par un recouvrement �ni
étale on peut supposer que NS(Yη) ⊗ Q = NS(Yη) ⊗ Q, NS(Yx) ⊗ Q = NS(Yx) ⊗ Q et que
l'adhérence de Zariski G2,1

` de l'image de π1(X, η) agissant sur H2(Yη,Q`(1)) est connexe. Le
diagramme commutatif cartésien de variétés sur k suivant

Yx Y Yη

k(x) X k(η).

� �
x

induit un diagramme commutatif
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Pic(Yη)⊗Q Pic(Yk)⊗Q Pic(Yx)⊗Q

NS(Yη)⊗Q NS(Yx)⊗Q.spη,x

Il est su�sant de montrer que tout zx ∈ NS(Yx) ⊗ Q se relève en un élément de Pic(Yk) ⊗ Q.
Puisque l'image de Pic(Yk) ⊗ Q → H2(Yk,Q`(1)) s'identi�e4 à l'image de Pic(YC) ⊗ Q →
H2(YC,Q`(1)) via l'isomorphisme de changement de base H2(Yk,Q`(1)) ' H2(YC,Q`(1)) et
puisque le groupe de Néron-Severi est invariant par extension de corps algébriquement clos, il
est su�sant de montrer que tout zx ∈ NS(Yx,C) ⊗ Q se relève en un élément de Pic(YC) ⊗ Q.
Considérons le diagramme commutatif

Pic(YC)⊗Q Pic(Yx,C)⊗Q

NS(Yx,C)⊗Q

H0(Xan
C , R2f∗Q) H2

B(Yx,C,Q).

Soit zx ∈ NS(Yx,C) ⊗ Q. Par la conjecture de Hodge variationnelle pour les diviseurs (fait
1.2.3.2.1) il est su�sant de montrer que zx est dans l'image de H0(X,R2fan∗ Q) ↪→ H2

B(Yx,C,Q).
Puisque zx est �xé par π1(x, x), le groupe G2,1

` est connexe et x est Galois générique, zx est
�xé par π1(X, x), donc par π1(XC, x). Grâce à la comparaison entre le site étale et le site
singulier, zx est alors �xé par πtop1 (Xan

C , x), il est donc dans l'image de H0(X,R2fan∗ Q) '
H2
B(Yx,C,Q)π

top
1 (XC,x) ↪→ H2

B(Yx,C,Q). Cela termine la preuve du fait 1.3.2.2.1.

4Cela découle de l'invariance de la cohomologie étale sous les extensions de corps algébriquement clos en
caractéristique nulle, la suite exacte de Kummer et le fait que la �èche H2(Yk,Gm)→ H2(YC,Gm) est injective.
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Chapter 1

Preliminaries (in English)

1.1 Absolute setting

Let k be a �eld of characteristic p ≥ 0 and let X be a smooth proper k-variety.
The main topic of arithmetic geometry is to study the interplay between the arithmetic and

the geometric properties of X. Since these are extremely rich and complicated, the general
strategy developed in the 20th century is to associate to X abelian groups or vector spaces
endowed with some additional structure, encoding part of the properties of X. For example:

• the Chow group CHi(X) of co-dimensional i cycles modulo rational equivalence ([Ful98]);

• if k = C, the Betti cohomology H i(Xan,Q) endowed with an Hodge structure ([GH94]);

• if k is any �eld, for every ` 6= p the étale `-adic cohomology H i(Xk,Q`) endowed with a
continuous action of π1(k) ([SGA4]);

• if k is perfect and p > 0, the crystalline cohomology H i
crys(X,K) endowed with an action

of the absolute Frobenius of k ([B078]).

The theory of motives ([And04, Section 4]) and the fullness conjectures ([And04, Section 7])
(as the Hodge conjecture ([Hod50] and Tate conjecture ([Tat65])) give a conjectural framework
to compare these invariants. In this section we quickly review them.

1.1.1 Algebraic cycles and motives

1.1.1.1 Algebraic cycles

Let L be an integral ring of characteristic zero and let Zi(X) be the free abelian group generated
by codimension i integral subvarieties ofX. Let∼ be an adequate equivalence relation on Zi(X)
(see [And04, Section 3.1]) and write CHi

L(X)∼ for the quotient of Zi(X)⊗L by this equivalence.

If ∼= rat is the rational equivalence, then CHi(X) := CHi
Z(X)rat is called the Chow group

of co-dimensional i cycles modulo rational equivalence and if L ⊆ L′ is an inclusion of rings
then CHi

L(X)rat ⊗L L′ ' CHi
L′(X)rat ([And04, 3.2.2]). In general, the groups CHi(X) are

complicated and of in�nite rank. When i = 1, the group CH1(X) identi�es with the Picard
group Pic(X) of X, classifying line bundles up to isomorphism.

If ∼= alg is the algebraic equivalence, then CHi
alg(X) := CHi

Z(X)alg is called the Chow
group of co-dimensional i cycles modulo algebraic equivalence. If L ⊆ L′ is an inclusion of rings,
then CHi

L(X)alg ⊗L L′ ' CHi
L′(X)alg ([And04, 3.7.3]). Since rational equivalence is �ner than

algebraic equivalence, one has a canonical quotient morphism q : CHi
L(X)rat � CHi

L(X)alg,
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which, when i = 1, identi�es with the natural morphism Pic(X) ⊗ L → NS(X) ⊗ L, where
NS(X) := PicX(k)/P ic0

X(k) is the quotient of the k-points of the Picard scheme PicX of X
modulo the k-points of its neutral component Pic0

X .
If ∼= num is the numerical equivalence, then CHi

num(X) := CHi
Z(X)num is called the Chow

group of co-dimensional i cycles modulo numerical equivalence. In general CHi
L(X)num is a free

and �nitely generated L-module and if L ⊆ L′ is an inclusion of rings, then CHi
L(X)num⊗LL′ '

CHi
L′(X)num ([And04, 3.7.2.1]). Since algebraic equivalence is �ner than numerical equivalence,

one has a canonical quotient morphism q : CHi
L(X)alg � CHi

L(X)num which, when i = 1 and L
is a �eld, identi�es ([Mat57], [And04, Section 3.2.7]) the group CH1

num(X)⊗L with NS(X)⊗L.
Let nowH∗ be aWeil-cohomology theory with coe�cients in a characteristic zero �eld F ⊇ L

(see [Saa72, Appendices] and [And04, Section 3.3]). Set ciH : CHi(X) ⊗ L → H2i(X) for the
cycle class map for H∗ and de�ne the group of cycles of codimension i modulo (the appropriate)
H-homological equivalence CHi

L(X)H as the image of cX : CHi(X)⊗L→ H2i(X)(i). If L = F ,
since H2i(X)(i) has �nite F -dimension, CHi

F (X)H is a �nite dimensional F -vector space. It is
not true in general that the natural map CHi

L(X)H⊗LF → CHi
F (X)H is injective and it is still

unknown whether CHi
L(X)H is �nitely generated over L.

Since algebraic equivalence is �ner than homological equivalence and homological equiva-
lence is �ner than numerical equivalence, the quotient q : CHi

L(X)alg � CHi
L(X)num factorizes

as the composition of q1 : CHi
L(X)alg � CHi

L(X)H and q2 : CHi
L(X)H � CHi

L(X)num. Under
q2, CH1

F (X)H identi�es ([And04, Proposition 3.4.6.1]) with NS(X)⊗F . In general, one of the
standard conjecture of Grothendieck ([Kle94, Conjecture D], [And04, Section 5.4.1]), predicts
that CHi

F (X)H = CHi
F (X)num.

1.1.1.2 Motives

Assume now that L = F . For ∼∈ {num,H}, write MotF∼(k) for the F -linear pseudoabelian
rigid tensor category of pure motives up to ∼-equivalence ([And04, Section 4.1.3]), SPV(k)
for the category of smooth proper varieties and H∗ : SPV(k) → MotF∼(k) for the canonical
functor. On the one hand, there is a realization functor RH : MotFH(k) → GrVectF into
the category of graded F -vector spaces. On the other hand, Jannsen proved ([Jan92]) that
MotFnum(k) is a semisimple abelian category.

Under the standard conjectures of Grothendieck ([Gro69]), one should be able to modify
the commutativity constraint in MotFH(k) (see [And04, Section 5.1.3]) to obtain a �bre functor
RH : MotFH(k) → VectF . Combining [Jan92], the standard conjectures of Grothendieck and
the conjecture CHi

F (X)H = CHi
F (X)num, the category MotFH(k) should be a semisimple F -

linear Tannakian category ([Saa72]) endowed with a �bre functor RH : MotFH(k) → VectF .
So for every M in MotFH(k) one would then be able to consider the Tannakian subcategory
〈M〉 ⊆MotFH(k) generated byM and its reductive Tannakian group G(M) ([And04, Section
6]).

Assume now that the essential image of R : MotFH(k) → VectF factors trough an en-
riched F -linear Tannakian category ([And04, Section 7.1.1]) C (for example the category of
polarized Hodge structure, the category of continuous Q`-linear π1(k)-representations or the
category of K-vector spaces endowed with an automorphism). Then the fullness conjectures
([Hod50], [Tat65], [And04, Section 7.1]) predict that RH : MotFH(k) → C is fully faithful
and the Grothendieck-Serre semisimplicity conjecture ([And04, Section 7.3]) predicts that the
essential image of RH : MotFH(k) → C is a semisimple subcategory of C. Since reductive al-
gebraic groups are determined by their tensor invariants ([DM82, Proposition 3.1]), this would
imply that G(M) identi�es with the Tannakian group G(RH(M)) of the Tannakian category
〈RH(M)〉 generated byM in C.

Let H ′ be another cohomology theory with coe�cients in F ⊆ F ′ such that H ′ ⊗F F ′ ' H
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as Weil-cohomology theories. Then there is a natural functor − ⊗ F : MotFH(k) →MotF
′

H′(k)
and the fullness and the semisimplicity conjectures for H and H ′, together with the equivalence
of homological and numerical equivalence, imply that, for every M ∈ MotFH(k), one should
have

G(RH′(M⊗ F ′)) ' G((H ′)∗(M⊗ F ′)) ' G(H∗(M)⊗ F ′) ' G(RH(M))⊗ F ′.

1.1.2 `-adic cohomology

In this section ` is a prime 6= p.

1.1.2.1 Étale cohomology and the Tate conjecture

For every integers i ≥ 0, j ∈ Z, Grothendieck de�ned ([SGA4]) an étale cohomology group
H i(Xk,Q`(j)). It is a �nite dimensional Q`-vector space ([SGA4, XIV, Corollaire 1.2]) endowed
with a continuous action of π1(k) and the image CHi

` of the cycles class map ci` : CHi(X) →
H2i(Xk,Q`(i)) lies in the subspace ⋃

[k′:k]<+∞

H2i(Xk,Q`(i))
π1(k′).

In this setting, the fullness conjecture is the Tate conjecture ([Tat65]) and predicts the following
relation between algebraic cycles and cohomology.

Conjecture 1.1.2.1.1 (T(X, i, `)). If k is �nitely generated, then the cycle class map

ci` : CHi(Xk)⊗Q` →
⋃

[k′:k]<+∞

H2i(Xk,Q`(i))
π1(k)

is surjective.

Conjecture 1.1.2.1.1 is widely open in general, but when i = 1 it is known for abelian
varieties ([Tat66], [Zar75], [Zar77], [FW84]), K3 surfaces ([NO85], [Tan95], [And96a], [Char13],
[MP15], [KMP15]) and some other special class of k-varieties; see for example [MP15, Section
5.13] and [Moo17].

1.1.2.2 Monodromy groups

The action of π1(k) on H i(Xk,Q`(j)) gives rise to a continuous homomorphism

ρi,j` : π1(k)→ GL(H i(Xk,Q`(j)))

and we set Πi,j
` := ρi,j` (π1(k)). As any closed subgroup of GL(H i(Xk,Q`(j))), Πi,j

` is a com-
pact `-adic Lie group ([Ser65, Lie Groups, Chapter V, Section 9]), hence a topologically
�nitely generated almost pro-` group ([DdSMSeg91]). Write Gi,j

` for the Zariski closure of
Πi,j
` in GL(H i(Xk,Q`(j))). From the Tannakian point of view, if we write 〈ρi,j` 〉 for the Tan-

nakian subcategory in RepQ`(π1(k)) generated by ρi,j` , the algebraic group Gi,j
` is character-

ized ([And04, Section 7.1.3]) by the fact that RepQ`(G
i,j
` ) ' 〈ρi,j` 〉. If ρi,j` is semisimple, then

Gi,j
` can be also described as the subgroup of GL(H i(Xk,Q`(j))) �xing (H i(Xk,Q`(j))

⊗m ⊗
(H i(Xk,Q`(j))

∨)⊗n)π1(k) for all integers n,m ≥ 0.

1.1.3 Characteristic zero: Betti cohomology and Hodge theory

Assume now that p = 0 and, to simplify, that there is an inclusion k ⊆ C.
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1.1.3.1 Betti cohomology and the Hodge conjecture

To XC one can associated ([Ser56, Section 2], [SGA1, Exposé XII]) a complex analytic space
Xan

C and hence consider the Betti cohomology H i
B(X,Q) := H i(Xan

C ,Q) of X. The Hodge
decomposition ([Hod41], [GH94, Chapter 0]) gives a canonical isomorphism

H i(Xan
C ,Q)⊗ C '

⊕
p+q=i

Hp(Xan
C ,Ωq

Xan
C

).

HenceH i(Xan
C ,Q) is a polarizedQ-Hodge structure ([Moo04, Section 1]), which, for every j ∈ Z,

we can twist with Q(j) to obtain H i(Xan
C ,Q(j)). Combining the cycle class map CHi(Xan

C )⊗
Q→ H2i(Xan

C ,Q(i)) ⊆ H i(Xan
C ,Q(i))⊗C, with the isomorphism ([Ser56]) CHi(XC) ' CHi(Xan

C )
induced by the analyti�cation functor, we get a cycles class map ciB : CHi(XC) ⊗ Q →
H2i(Xan

C ,Q(i)) ⊆ Hn
B(X,Q(i))⊗C whose image is contained inH i(Xan

C ,Ωi
Xan

C
)∩H2i

B (X,Q(i)) =:

H2i
B (X,Q(i))0,0. In this setting, the fullness conjecture is the Hodge conjecture ([Hod50]):

Conjecture 1.1.3.1.1 (H(X, i)). The cycle class map

ciB : CHi(XC)⊗Q→ H2i
B (X,Q(i))0,0

is surjective

While T(X, 1, `) is widely open in general, from the exponential exact sequence ([GH94,
Pag. 163]) and the Hodge decomposition, one deduces the so called Lefschetz (1,1) theorem.

Fact 1.1.3.1.2 ([Lef24][GH94, Pag. 163-164]). Conjecture H(X, 1) holds.

Remark 1.1.3.1.3. Even if `-adic cohomology and Betti cohomology should be incarnations
of the same motive, we already see that they have some distinct speci�c features: `-adic coho-
mology enables us to use the theory of `-adic Lie groups and the action of π1(k), while Betti
cohomology enables us to use complex Hodge theoretic analytic techniques. Comparison results
between them could be then helpful to combine these di�erent information.

1.1.3.2 Monodromy groups

The Hodge structure on H i(Xan
C ,Q(j)) is described ([Moo04, Section 3]) via a morphism of

algebraic groups
hi,jB : ResC/RGm → GL(H i(Xan

C ,Q(j))⊗ R),

and the Mumford Tate group Gi,j
B is ([Moo04, Section 4]) the smallest connected subgroup of

GL(H i(Xan
C ,Q(j))) such that Gi,j

B ⊗R contains Im(hi,jB ) . As in the `-adic setting, the group Gi,j
B

can be characterized as the unique (up to isomorphism) algebraic group, such that RepQ(Gi,j
B ) is

equivalent to Tannakian subcategory 〈H i(Xan
C ,Q)〉 generated by H i(Xan

C ,Q) in the category of
polarized Hodge structures. Since the category of polarized Q-Hodge structures is semisimple
([Moo04, Proposition 4.9]), Gi,j

B is reductive, hence it can be described as the subgroup of
GL(H i(Xan

C ,Q(j))) �xing all the (0,0) classes in H i(Xan
C ,Q(j))⊗n⊗ (H i(Xan

C ,Q(j))∨)⊗m for all
integers m,n ≥ 0.

1.1.3.3 Comparison of singular and étale sites

By the invariance of étale cohomology under algebraically closed �eld extensions in character-
istic zero ([SGA41

2
, Corollaire 5.3.3]) and the Artin comparison theorem ([SGA4, XI, Theorem

4.4]), there are canonical isomorphisms

H i(Xk,Q`) ' H i(XC,Q`) ' H i(Xan
C ,Q)⊗Q`,

�tting into following diagram commutative
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(CHi(XC)⊗Q)⊗Q` CHi(Xk)⊗Q`

H2i(Xan
C ,Q(i))⊗Q` H2i(Xk,Q`(i)).

ciB⊗Q` ci`

'

The Mumford Tate group Gi,j
B ⊆ GL(H i(Xan

C ,Q(j))) maps, via the Artin comparison iso-
morphism, to a Q`-algebraic group G

i,j
B ⊗Q` ⊆ GL(H i(Xk,Q`(j))). The philosophy of motives

(Section 1.1.1.2), Conjectures 1.1.2.1.1 and 1.1.3.1.1 then predict the Mumford-Tate conjecture:

Conjecture 1.1.3.3.1. If k is �nitely generated, Gi,j
B ⊗ Q` = (Gi,j

` )0 modulo the Artin com-
parison isomorphism.

While in general Conjectures 1.1.2.1.1 and 1.1.3.1.1 are widely open, Conjecture 1.1.3.3.1
is known in some cases (see for example [Pin98]) and when X is an abelian variety, Deligne
proved ([DM82]) that there is an inclusion (Gi,j

` )0 ⊆ Gi,j
B ⊗Q`

Conjecture 1.1.3.3.1 predicts the following, which could be stated over any �nitely generated
�elds.

Conjecture 1.1.3.3.2. If k is �nitely generated, there exists a connected algebraic group Gi,j

over Q and a faithful representation G ⊆ GL(V i,j) such that for every ` 6= p there is an isomor-
phism V i,j ⊗ Q` ' H i(Xk,Q`(j)) identifying Gi,j ⊗ Q` ⊆ GL(V i,j ⊗ Q`) ' GL(H i(Xk,Q`(j)))
with (Gi,j

` )0.

1.1.4 Positive Characteristic: crystalline cohomology

Assume now that p > 0 and k is perfect. Write W (k) (or just W ) for the Witt ring of k and
K(k) (or just K) for the fraction �eld of W . In this section we recall the main ideas in the
construction of a p-adic Weil cohomology theory. A classical example of Serre (see for example
[Gro68, Section 1.7]) shows that there is no cohomology theory with Qp-coe�cients, so that we
will de�ne a Weil cohomology theory with K coe�cients.

1.1.4.1 In�nitesimal site

Let S be a scheme, f : Z → S a morphism and write H i
dr(Z/S) for relative algebraic de

Rham cohomology of Z over S ([Gro66], [MP12, Section 4.5]). While H i
dr(Z/S) has a somehow

concrete description in terms of di�erential forms, Grothendieck showed in [Gro68] that, at least
in characteristic zero, it could be also de�ned via topos theory. To do this, he de�ned ([Gro68,
Section 4]) an in�nitesimal site Inf(Z/S), a topos of sheaves of abelian groups (Z/S)inf on it
and a structural sheaf OZ/S. Writing H i

inf (Z/S,OZ/S) for the ith cohomology group of OZ/S
Grothendieck proved the following.

Fact 1.1.4.1.1 ([Gro68, Theorem 4.1 and Section 5.3]).

1. If f : Z → S is smooth and S has characteristic zero, there is a canonical isomorphism

H i
dr(Z/S) ' H i

inf (Z/S,OZ/S);

2. If Z ′ → Z is a nilpotent thickening of S-schemes, there is a canonical isomorphism

H i
inf (Z

′/S,OZ′/S) ' H i
inf (Z/S,OZ/S).

Fact 1.1.4.1.1 can be used to show that the de Rham cohomology of a deformation of a
smooth proper variety depends only on the variety.
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Remark 1.1.4.1.2 ([B078, Pag. 1.11]). Write S := Spec(C[[T ]]) and Sn := Spec(C[[T ]]/(T n)).
Let Z → S be a smooth proper morphism and write Zn := Z ×S Sn. Since f is proper, we
have Hdr(Z/S) ' lim←−nHdr(Zn/Sn). Since Zn → Sn is smooth and Z1 → Zn is a nilpotent
thickening, by Fact 1.1.4.1.1 we have

Hdr(Z/S) ' lim←−
n

Hdr(Zn/Sn) ' lim←−
n

H i
inf (Zn/Sn,OZn/Sn) ' lim←−

n

H i
inf (Z1/Sn,OZ1/Sn).

This shows that the relative de Rham cohomology of Z → S depends only on Z1.

1.1.4.2 Crystalline site

In light of Remark 1.1.4.1.2, to construct a cohomology theory with K-coe�cients for k-
varieties, one could try to lift X to a smooth proper W -scheme X and then take the De
Rham cohomology of XK := X ×W K. Besides the fact that not all varieties are liftable to
characteristic zero, it is not clear that the obtained cohomology is (canonically) independent
of the lifting. The arguments in Remark 1.1.4.1.2 suggest that, to prove this independence
one could use a cohomology theory in which an analogue of Fact 1.1.4.1.1 holds. But in Fact
1.1.4.1.1(1), the characteristic zero assumption is necessary.

Example 1.1.4.2.1. If S = k and Z = A1
k, then one wants to show that d : k[x] → k[x]dx is

surjective. If f =
∑
aix

idx and p = 0, then f = d(
∑

(ai/i+ 1)xi+1).

In light of Example 1.1.4.2.1, the idea is then to restrict the in�nitesimal site with a �ner
site, whose covering have an operation that looks like 1/i+ 1: the crystalline site. Let (S, I, γ)
be a P.D. scheme ([B078, Pag. 3.18]) and let f : Z → S be an S-scheme on which γ extends
([B078, De�nition 3.14]). In [B078, Section 5], Berthelot de�ned a crystalline site Crys(Z/S),
the topos of sheaves of abelian groups (Z/S)crys on it, a structural sheaf OZ/S and then proves:

Fact 1.1.4.2.2 ([B078, Corollary 7.4 and Theorem 5.17]). If p is nilpotent on S the following
hold.

• If Z → S is smooth, then there is a natural isomorphism

H i
dr(Z/S) ' H i

crys(Z/S,OZ/S);

• If Z ′ → Z is a nilpotent thickening, then there is a natural isomorphism

H i
crys(Z

′/S,OZ′/S) ' H i
crys(Z/S,OZ/S).

1.1.4.3 Crystalline cohomology

Let Wn := Wn(k) be the n-truncated ring of Witt vectors of k. The natural P.D. structure γ
on Wn, sending γm(p) = pm/(m!) if m < n and γm(p) = 0 otherwise, extends automatically
([B078, Proposition 3.15]) to every Wn-scheme T → Wn, so that we can de�ne the crystalline
cohomology of the smooth proper k-variety X ([B078, Summary 7.26]) as

H i
crys(X/K) := (lim←−

n

H i
crys(X/Wn,OX/Wn))⊗Q.

Then, if X → Spec(W (k)) is smooth and proper and Xn := X ×W Wn, by Fact 1.1.4.2.2 we
have:

H i
dr(X/K)⊗Q ' H i

dr(X/W (k))⊗Q ' H i
crys(X1/K).

The functor H i
crys(−/K) gives a Weil cohomology theory with coe�cients inK and the absolute

Frobenius ϕ of k induces a semi linear action on H i
crys(X/K).
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1.1.4.4 Crystalline Tate conjecture

The image of the cycle class map

cip : CHi(X)→ H2i
crys(X/K)

is contained in H2i
crys(X/K)ϕ=p. If k = Fq with q = ps, the action of F := ϕs on H2i

crys(X/K) is
then K-linear and, in this setting, the fullness conjecture is the following.

Conjecture 1.1.4.4.1 (T(X, i, p)). If k = Fq, the cycle class map

cip : CHi(X)⊗K → H2i
crys(X/K)F=q

is surjective

1.1.4.5 Comparison

While in characteristic zero one can compare directly `-adic and Betti cohomology via the Artin
comparison isomorphism, in positive characteristic one there is no such a direct comparison
isomorphism between `-adic and crystalline cohomology. When k = Fq is a �nite �eld with
q = ps elements, one can try and remedy the lack of a comparison isomorphism using the theory
of Frobenius weights. For every ` 6= p the arithmetic Frobenius F ∈ π1(Fq) acts linearly on the
�nite dimensional vector spaces H i

`(X) := H i(Xk,Q`) and if ` = p the s-power of the absolute
Frobenius F acts linearly on H i

p(X) := H i
crys(X). Let L be the set of all prime numbers.

Fact 1.1.4.5.1 ([Del74], [KM74]). For ? ∈ L, the characteristic polynomial Φ of F acting on
H i

?(X) is in Q[T ] and it is independent of ? ∈ L. Moreover for every roots α of Φ and for every
embedding ι : Q(α) ↪→ C, one has |ι(α)| = qi/2.

Remark 1.1.4.5.2.

• By Fact 1.1.4.5.1, the Zariski closure of the image of π1(Fq) acting of the semi simpli�ca-
tion ofH i

?(X) is de�ned over Q and independent of `. In particular a version of Conjecture
1.1.3.3.2 is true in this setting up to semisempli�cation.

• If k is a �nitely generated �eld of positive characteristic, to construct a reasonable notion
of independence and to get an analogue of Fact 1.1.4.5.1, one has to reduce to the �nite
�eld setting at the expense of working in a relative setting. We will discuss this in more
details later on; see Chapter 6.

1.2 Relative setting

The main topic of this thesis is the study of the various notions introduced in Section 1.1, not
in the absolute but in the relative setting. Instead of considering a single variety X, we will
study families of varieties.

Let k be a �eld of characteristic p ≥ 0 and let X be a smooth geometrically connected
k-variety X with generic point η. Let f : Y → X be a smooth proper morphism and for every
x ∈ X �x a geometric point x over it and write Yx and Yx for the �bre of f : Y → X at x and
x, respectively.

The general question is then how the invariants of Yx and Yx vary with x ∈ X. A �rst result
in this direction is the smooth proper base change theorem: the dimensions of the various
cohomology groups H i(Yx(C),Q), H i(Yx,Q`) and H i

crys(Yx) are independent of x ∈ X. Hence,
regarded only as vector spaces, their are not interesting invariants of the family. On the other
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hand what is rich and worth studying is the extra structure that these vector spaces have:
the Hodge �ltration, the Galois action and the Frobenius action. While each of the collection
{H i

B(Yx,Q))}x∈X , {H i(Yx,Q`)}x∈X gives rise to a local system (a variation of Hodge structure,
a representation of π1(X)), in the p-adic setting {H i

crys(Yx)}x∈X give rise to two very di�erent
local systems: a convergent and an overconvergent F -isocrystals. In this section we recall these
objects and various tools to study them.

1.2.1 Algebraic cycles and motives

1.2.1.1 Algebraic cycles

By [SGA6, X, App 7] (see also [MP12, Sections 3.2 and 9.1]), for every x ∈ X there is a
specialization morphism

spiη,x : CHi
alg(Yη)→ CHi

alg(Yx)

�tting into a commutative diagram

CHi
alg(Yk)

CHi
alg(Yη) CHi

alg(Yx),

i∗η

i∗x

spiη,x

where i∗η : CHi
alg(Yk)→ CHi

alg(Yη) and ix : CHi
alg(Yk)→ CHi

alg(Yx) are induced by the inclusions
iη : Yη → Yk and ix : Yx → Yk. For every prime ` 6= p the construction pass trough `-adic
homological equivalence and tensoring with Q we get an injection

spi,`η,x : CHi
`(Yη)⊗Q ↪→ CHi

`(Yx)⊗Q,

that one could hope to be an isomorphism at least for some x ∈ X.

Example 1.2.1.1.1 ([MP12, Proof of Proposition 1.13]). Let Y → X a non isotrivial family
of elliptic curves and consider f : Y ×X Y → X. Then sp1,`

η,x is an isomorphism if and only if
Yx has not complex multiplication.

1.2.1.2 Variation of motivic Galois groups

Fix a Weil cohomology theory H∗ with coe�cient in a characteristic zero �eld F and let us
assume the standard conjectures of Section 1.1.1.2, so that for every x ∈ X we have a motivic
reductive algebraic group G(H∗(Yx)) over F .

Then, CH∗F (Yx)H is described ([And04, Section 6.3]) as the �xed points of the action of
G(H∗(Yx)) on the canonical representation H∗(Yx) and, the other way around, since G(H∗(Yx))
is reductive, there exist integers m,n ≥ 0 and v1, ...vr ∈ H∗(Yx)⊗m⊗ (H∗(Yx)

∨)⊗n ⊆ H∗(Y n+m
x )

such that G(H∗(Yx)) is the subgroup in GL(H∗(Y n+m
x )) �xing v1, ..., vr. So describing the vari-

ation of algebraic cycles on all the powers Y n
x amounts to describing the variation of G(H∗(Yx))

If the realization functor RH : MotFH → VectF factors trough some enriched L-linear
Tannakian category C, the Grothendieck-Serre-Tate conjecture predicts that describing the
variation of G(H∗(Yx)) amounts to describing the variation of G(RH(H∗(Yx))). Finally, the
conjecture H = num suggests that the variation of the various Tannakian groups should not
depend on the cohomology theory, hence that one should be able to transfer information between
the monodromy groups of the various realizations.

1.2.2 Lisse sheaves and representations

In this section ` is a prime 6= p.

43



1.2.2.1 Motivic lisse sheaves

For every x ∈ X write π1(X, x) for the étale fundamental group ([SGA1, V, 7]) ofX pointed at x.
By smooth proper base changeRif∗Q`(j) is a lisse sheaves ([SGA4, XVI, Corollaire 2.2], [SGA4,
XII, Theorem 2.2]) on X. Via the equivalence of categories LS(X,Q`) ' RepQ`(π1(X, η)) be-
tween the category of `-adic lisse sheaves LS(X,Q`) and the category RepQ`(π1(X, η)) of `-adic
representation of π1(X), Rif∗Q`(j) induces an action of π1(X, η) onRif∗Q`(j)η ' H i(Yη,Q`(j)).
For every x ∈ X, the choice of an étale path between x and η induces an isomorphism
π1(X, x) ' π1(X, η) and, with respect to this, equivariant isomorphisms

H i(Yη,Q`(j))) ' Rif∗Q`(j)η ' Rif∗Q`(j)x ' H i(Yx,Q`(j))),

in the sense that the action of π1(x, x) induced by restriction via π1(x, x) → π1(X, x) '
π1(X, η) on H i(Yη,Q`(j)) ' H i(Yx,Q`(j))) identi�es with the natural action of π1(x, x) on
H i(Yx,Q`(j))). The construction makes the diagram

CHi
`(Yη)⊗Q CHi

`(Yx)⊗Q

H2i(Yη,Q`(i)) H2i(Yx,Q`(i))

spi,`η,x

cYη cYx

'

commutative and the map spi,`η,x is π1(x, x)-equivariant with respect to the natural action of
π1(x, x) on CHi

`(Yη) and the action of π1(x, x) on CHi
`(Yη) by restriction trough the morphism

π1(x, x)→ π1(X, x) ' π1(X, η) ([SGA6, X, App 7]). In particular spi,`η,x restricts to an injection

spi,`,arη,x : CHi
`(Yη)⊗Q = (CHi

`(Yη)⊗Q)π1(k(η)) ↪→ (CHi
`(Yx)⊗Q)π1(k(x)) = CHi

`(Yx)⊗Q.

1.2.2.2 Strictly exceptional locus

More generally, for every ρ in RepZ`(π1(X)) and every x ∈ X the choice of an étale path
between x and η gives rise to a representation

ρx : π1(x, x)→ π1(X, x) ' π1(X, η)→ GLn(Z`),

hence to an inclusion
Πx := Im(ρx) ⊆ Im(ρ) =: Π.

Following [CK16], we give the following de�nition.

De�nition 1.2.2.2.1. We say that x ∈ |X| is strictly Galois generic for ρ, if Πx = Π. If x is
not strictly Galois generic, we say that x is strictly Galois exceptional for ρ.

Write Xstex
ρ (resp. Xsgen

ρ ) for the set of strictly Galois exceptional (resp. strictly Galois
generic) points for ρ. For any integer d ≥ 1, let X(≤ d) be the set of all x ∈ |X| such that
[k(x) : k] ≤ d and set

Xstex
ρ (≤ d) := Xstex

ρ ∩X(≤ d); Xsgen
ρ (≤ d) := Xsgen

ρ ∩X(≤ d).

In light of Section 1.2.2.1, the study of Xstex
ρ is an important problem, since it could control �ne

invariants of the family Yx, x ∈ X. Let us �rst point out that - as soon as k is arithmetically
rich enough - Xsgen

ρ is non empty. This was observed independently by Serre ([Ser89, Section
10.6]) and Terasoma ([Ter85]). More precisely:

Fact 1.2.2.2.2. If k is Hilbertian, there exists an integer d ≥ 1 such that Xsgen
ρ (≤ d) is in�nite.

This follows from Lemma 1.2.2.3.1 below and the fact that the Frattini subgroup of an
`-adic Lie group is open ([Ser89, 148]). By Hilbert irreducibility theorem ([FJ05, Chapter 13]),
Fact 1.2.2.2.2 holds in particular if k is in�nite �nitely generated.
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1.2.2.3 Anabelian dictionary

For every open subgroup U ⊆ Π, write XU → X for the connected étale cover induced by the
open subgroup ρ−1(U) ⊆ π1(X). From the formalism of Galois categories ([SGA1, V, 3-5]), one
gets the following anabelian dictionary between rational points of XU and subgroups of Π:

Lemma 1.2.2.3.1. [CT12b, Section 3.2 (2)] For every x ∈ |X|, the following are equivalent:

• There is an inclusion Πx ⊆ U

• x : Spec(k(x))→ X lifts to a k(x)-rational point of XU .

XU

Spec(k(x)) Xx

∃

Lemma 1.2.2.3.1 translates the group theoretic problem of understanding how Πx varies
with x ∈ |X| to the diophantine problem of describing the image of rational points of XU in X.

1.2.2.4 Frattini argument

Write Φ(Π) ⊆ Π for the Frattini subgroup of Π, i.e. the intersection of all the maximal open
subgroups of Π and write C(Π) for the set of open subgroups U ⊆ Π such that Φ(Π) ⊆ U .
From [Ser89, Pag. 148] and the de�nition of the Frattini subgroup, one deduces the following.

Lemma 1.2.2.4.1.

1. C(Π) is �nite.

2. If C ⊆ Π is a proper closed subgroup, then there exists a U ∈ C(Π) such that C ⊆ U .

So

x ∈ Xstex
ρ ⇔ there exists U ∈ C(Π) with Πx ⊆ U (Lemma 1.2.2.4.1(2) )

⇔ there exists U ∈ C(Π) such that x ∈ Im(XU(k(x))→ X(k(x))) (Remark 1.2.2.3.1 ),

hence
Xstex
ρ =

⋃
U∈C(Π)

(
⋃

[k′:k]<+∞

Im(XU(k′)→ X(k′))) (1.2.2.4.2)

1.2.2.5 Hilbertian property

Recall ([MP12, De�nition 8.1]) the de�nition of sparse set.

De�nition 1.2.2.5.1. Let B an irreducible k-variety and S ⊆ |B| a subset. We say that S
is sparse if there exists a dominant and generically �nite morphism π : T → B of irreducible
k-varieties such that for each s ∈ S, the �bre Ts of π : T → B at s, is either empty or contains
more than one closed point.

Since XU → X is a �nite étale cover of degree > 1, the set⋃
k⊆k′

Im(XU(k′)→ X(k′)) ⊆ |X|

is sparse. Since a �nite union of sparse is sparse ([MP12, Proposition 8.5 (b)]) and C(Π) is
�nite (Lemma 1.2.2.4.1(1)), by (1.2.2.4.2) we see that Xstex

ρ is sparse. This is enough to prove
Fact 1.2.2.2.2, thanks to the following consequence of the de�nition of Hilbertian �eld.
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Lemma 1.2.2.5.2. If k is Hilbertian and S ⊆ |X| is a sparse set, there exists a d ≥ 1 such
that |X| − S contains in�nitely many points of degree ≤ d.

Proof. Since for every dense open subset U ⊆ X the set U∩S is sparse in U ([MP12, Proposition
8.5.(a)]), we may replace X with a dense open subset and hence assume that X is a�ne of
dimension n ≥ 1. By Noether normalization theorem, there exists a surjective �nite morphism
π : X → An

k of some degree d ≥ 1. Since the image of a sparse set via a surjective �nite
morphism is sparse ([MP12, Proposition 8.5 (c)]), the set π(S) ⊆ An

k is sparse. So, by ([MP12,
Proposition 8.5 (d)]) An

k(k) ∩ π(S) is thin; see [Ser89, Section 9.1] for the de�nition. Since k is
Hilbertian, the set An

k(k)−(An
k(k)∩π(S)) is in�nite. Hence π−1(An

k(k)−(An
k(k)∩π(S))) ⊆ X−S

contains in�nitely many points of degree ≤ d.

1.2.3 Characteristic zero: Variation of motivic Hodge structure

Let k ⊆ C be a �nitely generated sub �eld of C.

1.2.3.1 Analytic local systems and geometric image

Fix x ∈ |XC|. By smooth proper base change, from fan : Y an
C → Xan

C one obtains a Q-local
system Rifan∗ Q on Xan

C and writes ΠB for the image of the resulting action of πtop1 (XC, x)
on H i

B(Yx,Q). By the invariance of the étale site for algebraically closed �eld extensions in
characteristic zero ([SGA1, XIII]), there is a natural isomorphism π1(Xk, x) ' π1(XC, x). By
the Riemann existence theorem [SGA1, XII, Theoreme 5.1], there is a natural algebraiza-
tion morphism πtop1 (XC, x) → π1(XC, x) identifying π1(XC, x) with the pro�nite completion of
πtop1 (XC, x) ([SGA1, XII, Corollaire 5.2]).

The action of πtop1 (XC, x) on H i
B(Yx,Q) ⊗ Q`, factors trough the pro�nite completion map

πtop1 (XC, x) → π1(XC, x) ' π1(Xk, x) and, under the comparison isomorphism H i
B(Yx,Q) ⊗

Q` ' H i(Yx,Q`), the action of π1(Xk, x) on H i
B(Yx,Q) ⊗ Q` identi�es with the restriction via

π1(Xk, x)→ π1(X, x) of the action of π1(X, x) on H i(Yx,Q`).
WriteGi,geo

` for the Zariski closure of the image Πi,geo
` of the action of π1(Xk, x) onH i(Yx,Q`).

Since πtop1 (XC, x) → π1(XC, x) has dense image, the previous discussion implies the following
independence result for Gi,geo

` , which is a geometric analogue of Conjecture 1.1.3.3.2.

Proposition 1.2.3.1.1. There exist a Q-algebraic group Gi,geo, a faithful representation Gi ⊆
GL(V i) and an isomorphism V i ⊗ Q` ' H i(Yk,Q`) for every `, such that the composition
Gi,geo ⊗Q` ⊆ GL(V i)⊗Q` ' GL(H i(Yx,Q`)) identi�es Gi,geo ⊗Q` with G

i,geo
` .

1.2.3.2 Variational Hodge conjecture

The Leray spectral sequence for fan : Y an
C → Xan

C induces a morphism

H2
B(YC,Q(1))→ H0(Xan

C , R2fan∗ Q(1))

�tting, for every x ∈ |XC|, into a commutative diagram

H2
B(YC,Q(1)) Pic(YC)⊗Q

H0(Xan
C , R2fan∗ Q(1))⊗Q H2

B(Yx,Q(1)) Pic(Yx)⊗Q.

i∗x

cYC

i∗x

cYx

The Hodge conjecture for divisors (Fact 1.1.3.1.2) and the theory developed in [Del71] enable
to prove a variational version of the Hodge conjecture for divisors (see also [Char11, Section
3.1]).
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Fact 1.2.3.2.1. For every x ∈ |XC| and every zx ∈ Pic(Yx)⊗Q the following are equivalent.

1. There exists a z ∈ Pic(YC)⊗Q such that i∗x(cYC(z)) = cYx(zx);

2. There exists a z ∈ H2
B(XC,Q(1)) such that i∗x(z) = cYx(z);

3. cYx(z) is in the image of H0(Xan
C , R2fan∗ Q(1)) ↪→ H2

B(Y an
x ,Q(1)).

Proof. Clearly we have (1) ⇒ (2) ⇒ (3). We show that (3) ⇒ (1). Let i : YC ⊆ Y cmp
C be a

smooth compacti�cation. The commutative cartesian diagram of C-varieties

Yx YC Y cmp
C

Spec(C) XC,

ix

�

i

f

x

induces a commutative diagram:

H2
B(Y cmp

C ,Q(1)) Pic(Y cmp
C )⊗Q

H2
B(YC,Q(1)) Pic(YC)⊗Q

H0(Xan
C , R2fan∗ Q(1))⊗Q H2

B(Yx,Q(1)) Pic(Yx)⊗Q.

i∗

c
Y
cmp
C

i∗

i∗x

cYC

i∗x

cYx

By the Global invariant cycles theorem ([Del71]) the map

H2
B(Y cmp

C ,Q(1))→ H2
B(YC,Q(1))→ H0(Xan

C , R2fan∗ Q(1))

is surjective, hence, by (3), cYx(zx) ∈ H2
B(Yx,Q(1)) is in the image of i∗x ◦ i∗ : H2

B(Y cmp
C ,Q(1))→

H2
B(Yx,Q(1)). SinceH2

B(Y cmp
C ,Q(1)) is a semisimpleQ-Hodge structure, the mapH2

B(Y cmp
C ,Q(1))→

Im(i∗x) splits as a morphism of Q-Hodge structure. Since cYx(zx) is in H
2
B(Y cmp

C ,Q(1))0,0, then
cYx(zx) is the image of some z′ ∈ H2

B(Y cmp
C ,Q(1))0,0 via H2

B(Y cmp
C ,Q(1))0,0 → H2

B(Yx,Q(1)). By
the Hodge conjecture for divisors (Fact 1.1.3.1.2) z = cY cmpC

(zcmp) for some zcmp ∈ Pic(Y cmp
C )⊗

Q. Then z = i∗(zcmp) ∈ Pic(YC)⊗Q is such that i∗x(cY (z)) = cYx(zx).

1.2.4 Positive Characteristic: F-isocrystals

In positive characteristic, there are two di�erent categories of p-adic local systems: F-isocrystals
and overconvergent F-isocrystals. In this Section we brie�y recall their de�nitions and the
relations between them. Let k be a perfect �eld of characteristic p > 0, write W := W (k) for
the Witt ring of k and K := K(k) for the fraction �eld of W . Let X be a smooth geometrically
connected k-variety.

1.2.4.1 F-isocrystals

Slightly adapting the arguments in 1.1.4.2, one de�nes a crystalline topos (X/W )crys, a crys-
talline site Crys(X/W ) of X overW and a structural sheaf OX/W , see [B078, Section 7.17] and
[Mor13, Section 2]. For every (U ↪→ T, γ)1 in (X/W )crys and every sheaf of coherent OX/W -
modules E , one has a coherent OT -module ET and for every morphism g : (U ′, T ′, γ′)→ (U, T, γ)

1U is a Zariski open subset of X, U ↪→ T is a nilpotent closed immersion ofW -schemes and γ a P.D. structure
on Ker(OT → OU )
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in (X/W )crys a natural morphism g∗ET → ET ′ of coherentOT ′-modules. A crystal overX is then
a sheaf E of coherent OX/W -modules, such that for every morphism g : (U ′, T ′, γ′) → (U, T, γ)
in Crys(X/W ), the natural morphism g∗ET ′ → ET is an isogeny. Write Crys(X|W ) for the
category of crystals, Crys(X|W )Q := Crys(X|W ) ⊗ Q and OX/K := OX/W ⊗ Q. For every
integer s ≥ 1, the s-power F of the absolute Frobenius ϕ of X acts on Crys(X|W )Q and
the category F-Crys(X|W )Q of F -isocrystals is made by the couples (E ,Φ), where E is in
Crys(X|W )Q and Φ : F ∗E → E is an isogeny. For every E in F-Crys(X|W )Q there is a
cohomology group H i(X, E) (a K-vector space) endowed with a semi linear action of F . Set
H i
crys(X) := H i

crys(X,OX/K).

1.2.4.2 Crystalline variational Tate conjecture

By [Mor13], there is an higher direct image F -isocrystal Rifcrys,∗OY/K and the Leray spectral
sequence for f : Y → X induces, for every x ∈ |X|, a commutative diagram

H2
crys(Y ) Pic(Y )⊗Q

H0(X,R2fcrys,∗OY/K) H2
crys(Yx) Pic(Yx)⊗Q.

Leray
i∗x

cY

i∗x

cYx

Even though the crystalline Tate conjecture for divisors is not known, Morrow proved a varia-
tional version of it, giving an analogue of Fact 1.2.3.2.1.

Fact 1.2.4.2.1 ([Mor15, Theorem 1.4]). If f : Y → X is projective, for every zx ∈ Pic(Yx)⊗Q
the following are equivalent:

1. There exists z ∈ Pic(Y )⊗Q such that cYx(zx) = i∗x(cY (z));

2. There exists z ∈ H2
crys(Y ) such that cYx(zx) = i∗x(z);

3. cYx(zx) is in the image of H0(X,R2fcrys,∗OY/K) ↪→ H2
crys(Yx).

1.2.4.3 Slopes

One of the speci�c features of F-Crys(X|W )Q, which has no `-adic analogue, is the theory of
slopes; see [Kat79], [Ked17, Sections 3 and 4]. Let E be in F-Crys(X|W )Q of rank r. For every
x ∈ |X|, one considers the multi-set of rational numbers {axi (E)}1≤i≤r of the slopes ([Ked17,
De�nition 3.3]) of E at x. We say that E is isoclinic (of slope at1(E)) if at1(E) = axr (E) for every
x ∈ |X| and unit-root if it is isoclinic of slope 0. Write F-Crysur(X|W )Q ⊆ F-Crys(X|W )Q
for the category of unit-root F-isocrystals. Finally, we say that E has constant Newton polygon
if the function

NE : |X| → Qr

x 7→ (axi (E))1≤i≤r

is constant.

Fact 1.2.4.3.1. Let E be in F-Crys(X|W )Q.

1. ([Kat79, Theorem 2.3.1], [Ked17, Theorem 3.12]): There exists a dense open immersion
i∗ : U → X such that i∗E has constant Newton polygon;

2. ([Kat79, Theorem 2.6.2], [Ked17, Corollary 4.2]): If E has constant Newton polygon, then
there exists a unique �ltration

0 = E0 ⊆ E1 ⊆ ... ⊆ En−1 ⊆ En = E in F-Crys(X|W )Q

such that Ei/Ei−1 is isoclinic of some slope si with s1 < s2 < ... < sn.
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3. ([Tsu02], [Ked17, Theorem 3.9]): There is a natural equivalence of categories F-Crysur(X|W )Q '
RepK(π1(X))

The �ltration of Fact 1.2.4.3.1(2) is called the slope �ltration of E .

1.2.4.4 Comparison I: F-isocrystals versus `-adic representations

The F -isocrystal Rifcrys,∗OY/K could appear as a p-adic analogue of Rif∗Q`. However, the
behaviour of F-Crys(X|W )Q is quite di�erent from the one of LS(X,Q`).

Example 1.2.4.4.1 ([Gro68, Section 2.1]). In general the K-vector space H1(X, E) is not �nite
dimensional. Consider X = A1

k and write

K〈T 〉 := {
+∞∑
i=0

aiT
i such that lim

i 7→+∞
|ai| = 0}.

There is a natural isomorphism

H1
crys(X,OX/K) ' Coker(d : K〈T 〉 → K〈T 〉dT ).

Since
lim
i→+∞

|ai| = 0,

does not imply in general that
lim
i→+∞

|ai/i+ 1| = 0,

one sees that H1
crys(X/K) is an in�nite dimensional K-vector space. However, following

[MW68], one can replace K〈T 〉 with the sub ring

K〈T 〉† := {
+∞∑
i=0

aiT
i such that there exists a c > 1 with lim

n→+∞
ci|ai| = 0},

and then check that d : Coker(K〈T 〉† → K〈T 〉†dT ) = 0. While K〈T 〉 is the ring of function of
the rigid analytic open disc, K〈T 〉† ⊆ K〈T 〉 is the sub ring of functions that converge on some
larger analytic open neighbourhood.

Example 1.2.4.4.2 ([Ked17, Example 4.6]). Let f : Y → X be a non isotrivial family of
elliptic curves with a supersingular �bre and set E := Rif∗OY/K . Then there is a dense open
subscheme i : U ↪→ X such that for all x ∈ U , the elliptic curve Yx is ordinary. We have the
following:

1. E is irreducible;

2. i∗E ' RifU,∗OYU/K has a non split two steps �ltration (the slope �ltration of Section
1.2.4.3) re�ecting the �ltration of the p-divisible group of the generic �bre, given by the
connected-étale exact sequence

0→ Yη[p
∞]0 → Yη[p

∞]→ Yη[p
∞]et → 0.

Hence:

1. While in the `-adic setting the restriction to an open subset of an irreducible lisse sheaf
remains irreducible, in the crystalline setting this is not true;

2. While RifU,∗Q` is semisimple, i∗E is not.

So, on the one hand, the category F-Crys(X|W )Q has a somehow pathological behaviour
with respect to LS(X,Q`), but on the other hand, it contains �ne p-adic information.
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1.2.4.5 Overconvergent F-isocrystals

Examples 1.2.4.4.1 and 1.2.4.4.2 suggest that to get a category of p-adic local systems with a
behaviour similar to LS(X,Q`), one needs to rigidify the category F-Crys(X|W )Q. This leads
to the introduce the category of overconvergent isocrystals Isoc†(X|K) and overconvergent
F-isocrystals F-Isoc†(X|K) and of rigid cohomology H i(X, E) for E in Isoc†(X|K). The de�-
nitions of these objects are technical, so we refer the reader to [Ber96] for the precise de�nitions
and we recall the description on a speci�c example.

Example 1.2.4.5.1. Set X = A1
k and retain the notation of Example 1.2.4.4.1. An overcon-

vergent isocrystal on X is a coherent K〈T 〉†-module E , endowed with a integrable connection

d : E → E ⊗K〈T 〉† K〈T 〉†dT.

The rigid cohomology of E is then de�ned as

H0(X, E) = Ker(d : E → E ⊗K〈T 〉† K〈T 〉†dT );

H1(X, E) = Coker(d : E → E ⊗K〈T 〉† K〈T 〉†dT );

H i(X, E) = 0 if i ≥ 2

The natural morphism F : K〈T 〉 → K〈T 〉 sending
∑
aiT

i to
∑
F (ai)T

pi, induces a morphism
F : K〈T 〉† → K〈T 〉†, so that one can consider the overconvergent isocrystal F ∗E . An overcon-
vergent F -isocrystal on X is then a overconvergent isocrystal E on K〈T 〉†, endowed with an
isomorphism F ∗E → E .

To compare F-isocrystals and overconvergent F-isocrystals, one introduces the categories
Isoc(X|K) and F-Isoc(X|K) of convergent isocrystals and convergent F -isocrystals ([Ogu84],
[Ber96, 2.3.2]).The categories of isocrystals introduced so far, �t into a commutative diagram
([Ber96, Section 2.4]) of faithful functors:

F-Isoc†(X|K) Isoc†(X|K)

F-Isoc(X|K) Isoc(X|K)

F-Crys(X|W )Q Crys(X|W )Q.

(−)conv

(−)geo

(−)conv

(−)geo

Φ

(−)geo

(1.2.4.5.2)

Furthermore:

Fact 1.2.4.5.3.

• ([Ber96, Theoreme 2.4.2]): The functor Φ : F-Isoc(X|K)→ F-Crys(X|W )Q is an equiv-
alence of categories.

• ([Ked18]): The functor (−)conv : F-Isoc†(X|K)→ F-Isoc(X|K) is fully faithful.

It is a non trivial result of this thesis in Chapter 4 that Rifcrys,∗OY/K is in the essential
image of (−)conv : F-Isoc†(X|K)→ F-Isoc(X|K) ' F-Crys(X|W )Q.
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1.2.4.6 Monodromy groups

If E is a Q`-lisse sheaf on X, we could de�ne the monodromy group G(E) of E equivalently as
the Zariski closure of the image of π1(X, x) acting on Ex or as the automorphism group of the
forgetful tensor functor 〈E〉 → VectQ` . For isocrystals, only the latter construction is available.
This was �rst worked out by Crew in [Cre92]. From now on, assume that k = Fq, with q = ps

and, to simplify, that X has a Fq-rational point x : Spec(Fq) → X. Since there is a natural
equivalence of categories Isoc(Fq|K) ' VectK , the functor

x∗ : Isoc(X|K)→ Isoc(Fq|K) ' VectK

induces a neutralization for all the four categories in Diagram (1.2.4.5.2). Hence, for each E in
F-Isoc†(X|K), one obtains a commutative diagram of Tannakian categories:

〈E〉 〈Egeo〉

〈Econv〉 〈Egeo,conv〉.

(−)conv

(−)geo

(−)conv

(−)geo

By Tannakian duality, this diagram corresponds to a commutative exact diagram of closed
immersions of algebraic groups

G(Egeo,conv) G(Econv)

G(Egeo) G(E),

in which ([D'Ad17, Appendix]) the subgroups G(Egeo,conv) ⊆ G(Econv) and G(Egeo) ⊆ G(E) are
normal .

Example 1.2.4.6.1. Retain the notation of Example 1.2.4.4.2. Then one has

G(Econv) = G(E) = GL2 and G(Egeo,conv) = G(Egeo) = SL2

while

B = G(i∗Econv) ⊆ G(i∗E) = GL2 and B′ = G(i∗Egeo,conv) ⊆ G(i∗Egeo) = SL2

where B ⊆ GL2 and B′ ⊆ SL2 are the Borel subgroups of upper triangular matrices. This
re�ects the fact that i∗E admits a �ltration made by convergent F-isocrystals that are not
coming form overconvergent ones, which corresponds to the �ag stabilized by B and B′ but not
by GL2 and SL2.

1.2.4.7 Comparison II: overconvergent F-isocrystals vs `-adic representation

While in characteristic zero one can try to compare the various monodromy groups via the
comparison between the singular and étale sites, in positive characteristic one needs di�erent
tools. We recall some results in this setting. For technical reason it is easier to work with coe�-
cients in algebraically closed �elds. Let ` be a prime. Following [Ked17], let Coef(X, `) be the
category of Q`-lisse sheaves ([Del80, 1.1.1]) and let Coef(X, p) (denoted also with F-Isoc†(X0))
be the category of Qp-overconvergent F-isocrystals ([Abe18, Sections 2.4.14-2.4.18]). Let E` be
in Coef(X, `). For every x ∈ |X| there is a characteristic polynomial φx(E`) ∈ Q`[T ] of E in x
(see e.g. [D'Ad17, 2.1.4 and 2.2.10.]). Fix a collection ι := {ι`}`∈L of isomorphisms ι` : Q` ' C.
We say that E` is ι`-pure (of weight w), if all the roots of ι`(φx(E`)) have complex absolute
value q[Fq(x):Fq ]w/2. Let {E`}`∈L be a collection of E` in Coef(X, `). We say that {E`}`∈L is a
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ι-compatible system if ι`(φx(E`)) = ι`′(φx(E`′)), for every ` 6= `′ and every x ∈ |X|. Via the
theory of weights ([Del80], [Ked06b], [AC13b]) the conditions of purity and compatibility are
strong enough to guarantee that the di�erent E` share several properties.

Example 1.2.4.7.1. Take two primes ` 6= `′ and assume, for simplicity, that ` 6= p 6= `′. If E`
in Coef(X, `) and E`′ in Coef(X, `′) are pure and compatible, then the following follows from
the theory of weights ([Del80]) and the Grothendieck-Lefschetz trace formula ([Fu15, Theorem
10.5.1, page 603]):

• E` is irreducible if and only if E`′ is irreducible (see e.g. [D'Ad17, Corollary 3.5.6]);

• Dim(H0(XF, E`)) = Dim(H0(XF, E`′)) (see e.g. [D'Ad17, Corollary 3.4.11]).

Fix x ∈ |X| and write E`,x for the �bre of E` at x. Using the functor x∗, for every E` in
Coef(X, `) one de�nes a monodromy group G(E`) ⊆ GL(E`,x). Furthermore, one can construct
a geometric monodromy group G(Egeo` ) ⊆ G(E`): if ` 6= p, G(Egeo` ) is de�ned as the monodromy
group of the base change of E` to XFq and if ` = p, G(Egeop ) is de�ned as the monodromy group

of the image of E in the category of Qp-linear overconvergent isocrystal over X. A striking
recent result, building on the Langlands correspondence and the theory of companions for `-
adic sheaves and overconvergent F-isocrystals ([Laf02], [Dri12], [Abe18], [AE16]), is an analogue
of Conjecture 1.1.3.3.2 and Proposition 1.2.3.1.1.

Fact 1.2.4.7.2 ([Chi03], [D'Ad17]). Let {E`}`∈L be a pure compatible system. Then:

• There exist a connected Q-algebraic group Ggeo, a faithful representation ρ : Ggeo ⊆
GL(V ) and a (non canonical) isomorphism V ⊗ Q` ' E`,x for every `, such that the
composition Ggeo ⊗Q` ⊆ GL(V )⊗Q` ' GL(E`,x) identi�es Ggeo ⊗Q` with G(E`,x)0.

• Assume moreover that E` is semisimple for every ` ∈ L. There exist a Q-connected alge-
braic groupG, a faithful representation ρ : G ⊆ GL(V ) and a (non canonical) isomorphism
V ⊗ Q` ' E`,x for every `, such that the composition G ⊗ Q` ⊆ GL(V ) ⊗ Q` ' GL(E`,x)
identi�es G⊗Q` with G(E`,x)0.

1.3 Specialization of `-adic representations and Néron-Severi
groups in characteristic 0

Let k be a �eld of characteristic zero. Let X be a smooth geometrically connected k-variety
and write η for the generic point of X. In this section we recall results of Cadoret-Tamagawa
([CT12b], [CT13]) and André ([And96]).

1.3.1 A uniform open image theorem for `-adic representations

In this section we discuss a �niteness result of Cadoret and Tamagawa, which strengthens Fact
1.2.2.2.2 when X is a curve.

1.3.1.1 Exceptional locus

Let X be a curve and ρ : π1(X, η)→ GLr(Z`) be a continuous representation with image Π. In
Section 1.2.2.2, we recalled that, for every x ∈ |X|, the choice of an étale path between η and
x induces a local Galois representation

ρx : π1(x, x)→ π1(X, x) ' π1(X, η)
ρ−→ GLr(Z`)

with image Πx and an inclusion Πx ⊆ Π. Following [CK16], we give the following de�nition.
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De�nition 1.3.1.1.1. We say that x ∈ |X| is Galois generic for ρ if Πx ⊆ Π is an open
subgroup. If x is not Galois generic, we say that x is Galois exceptional for ρ.

Write Xex
ρ and Xgen

ρ for the set of closed Galois exceptional and Galois generic points for ρ
and set,

Xex
ρ (≤ d) := Xex

ρ ∩X(≤ d); Xgen
ρ (≤ d) := Xgen

ρ ∩X(≤ d).

1.3.1.2 Statement

Since X is geometrically connected, we can consider the representation

ρgeo : π1(Xk, η)→ π1(X, η)→ GLr(Z`)

and its image Πgeo. Recall the following de�nition from [CT12b, Section 1]

De�nition 1.3.1.2.1. We say that ρ is geometrically Lie perfect (GLP for short) if2 every
open subgroup of Πgeo has �nite abelianization.

Then Cadoret-Tamagawa prove:

Fact 1.3.1.2.2 ([CT12b]). Assume that k is �nitely generated and X is a curve. If ρ is GLP ,
for every integer d ≥ 1, the set Xex

ρ (≤ d) is �nite and there exists an integer N ≥ 1, depending
only on d and ρ, such that, for every x ∈ Xgen

ρ (≤ d), one has [Π : Πx] ≤ N .

In the following subsections we will recall the main ideas in the proof of Fact 1.3.1.2.2.

1.3.1.3 Group theory: A projective system of subgroups

Recall that Φ(Π) denotes the Frattini subgroup of Π, i.e. the intersection of the maximal open
subgroups of Π. In the proof of Fact 1.2.2.2.2, one of the key input was to consider the �nite
set C(Π) of subgroup U ⊆ Π such that Φ(Π) ⊆ U . To prove Fact 1.3.1.2.2, Cadoret-Tamagawa
construct in [CT12b, Section 3] a projective system re�ning C(Π). For every subgroup C of Π,
write

C(n) := Ker(C ⊆ Π ⊆ GLr(Z`)→ GLr(Z`/`n).

Set C0(Π) := {Π} and for every integer n ≥ 1

Cn(Π) := {U ⊆ Π such that Φ(Π(n− 1)) ⊆ U and Π(n− 1) 6⊆ U}.

By [CT12b, Lemma 3.1], the maps ψn : Cn+1(Π)→ Cn(Π) sending U to UΦ(Π(n− 1)) are well
de�ned, hence they endow the collection {Cn(Π)}n∈N with the structure of a projective system.
The analogue of Lemma 1.2.2.4.1 is then the following.

Lemma 1.3.1.3.1 ([CT12b, Lemma 3.3]).

1. For each integer n ≥ 0, the set Cn(Π) is �nite;

2. For n � 0, if C ⊆ Π is a closed subgroup such that Π(n − 1) 6⊆ C, then there exists
U ∈ Cn(Π) such that C ⊆ U .

2The terminology comes from the fact that this condition is equivalent to (Lie(Πgeo))ab = 0.
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1.3.1.4 Anabelian dictionary I

For each integer n ≥ 0 write
Xn :=

∐
U∈Cn(Π)

XU → X.

Then, since the collection {Π(n)}n∈N is a fundamental system of open neighbourhoods of 1 in
Π, one has

x ∈ Xex
ρ ⇔ for n� 0 Π(n− 1) 6⊆ Πx

⇔ for n� 0 there exists U ∈ Cn(Π) with Πx ⊆ U (Lemma 1.3.1.3.1(2) )

⇔ for n� 0 x ∈ Im(Xn(k(x))→ X(k(x)) (Remark 1.2.2.3.1 )

This shows that
Xex
ρ (≤ d) =

⋂
n≥1

Im(Xn(≤ d)→ X(≤ d))

and that, for n� 0, one has

{x ∈ X(≤ d) with [Π : Πx] ≤ [Π : Π(n)]} ⊆ X(≤ d)− Im(Xn(≤ d)→ X(≤ d)). (1.3.1.4.1)

By (1.3.1.4.1), since Π has a �nite number of open subgroups of bounded index and Cn(Π) is
�nite, to prove Fact 1.3.1.2.2 it is enough to show that, for n � 0 and for every U ∈ Cn(Π),
the set XU(≤ d) is �nite.

1.3.1.5 Genus and gonality

The �niteness of rational points of a smooth curve Y is controlled by the genus gY and the
gonality3 γY of the smooth compacti�cation of Yk. More precisely, one has the following:

Fact 1.3.1.5.1. Let k a �nitely generated �elds of characteristic 0 and let Y be a smooth
proper k-curve.

1. ([FW84]): Assume that gY ≥ 2. Then Y (k) is �nite.

2. ([Fal91], [Fre94]): Assume that γY ≥ 2d+ 1. Then Y (≤ d) is �nite.

Coming back to XU → X, we now aim to show that they have large genus and gonality.
For every open subgroup U ⊆ Π, write k ⊆ kU for the smallest �nite extension of k on which
XU is geometrically connected and write gU and γU for the genus and the gonality of the smooth
compacti�cation of XU ×kU k respectively. Then, to prove Theorem 1.3.1.2.2, it is enough to
show the following.

Fact 1.3.1.5.2. Assume that ρ is GLP and �x integers d1 ≥ 0, d2 ≥ 1. Then:

1. ([CT12b, Corollary 3.8]): There exists an integer Ng ≥ 1, depending only on ρ, d1, d2,
such that for every n ≥ Ng and every U ∈ Cn(Π) one has gU ≥ d1 or [kU : k] ≥ d2.

2. ([CT13, Corollary 3.11]): There exists an integer Nγ ≥ 1, depending only on ρ, d1, d2,
such that for every n ≥ Nγ and every U ∈ Cn(Π) one has γ ≥ d1 or [kU : k] ≥ d2.

Remark 1.3.1.5.3. A posteriori, via the Riemann-Hurwitz formula Fact 1.3.1.5.2(2) implies
Fact 1.3.1.5.2(1) but, actually, Fact 1.3.1.5.2(1) is used in the proof of Fact 1.3.1.5.2(2).

3Recall that the gonality of a smooth proper k-curve Y is the minimum degree of a non constant morphism
Y → P1

k
.
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1.3.1.6 Anabelian dictionary II: GLP assumption

To illustrate the idea in the proof of Fact 1.3.1.5.2(1), in this section we show, following [CT12a,
Section 4.1.3], that if k = k, the representation ρ is GLP and Π is in�nite, then gΠ(n) tends
to in�nity. Let n0 ≥ 1 be an integer. For each n ≥ n0, the Riemann Hurwitz formula for the
cover XΠ(n) → XΠ(n0) implies that

lim
n→+∞

2gΠ(n) − 2 ≥ lim
n→+∞

(|Π(n0)/Π(n)|)(2gΠ(n0) − 2) (1.3.1.6.1)

Since Π in in�nite, one has

lim
n→+∞

|Π(n0)/Π(n)| = |Π(n0)| = +∞.

Hence, if supn(gΠ(n)) ≥ 2 then there exists an n0 such that gΠ(n0) ≥ 2 and Equation (1.3.1.6.1)
implies that gΠ(n) tends to in�nity. So we need to rule out the following two possibilities:

1. sup(gΠ(n)) = 1. Then there exists n0 such that for all n ≥ n0 the smooth compacti�ca-
tion of XΠ(n) is an elliptic curve. Since all �nite morphisms between elliptic curves are
unrami�ed, the Galois group Π(n0)/Π(n) of XΠ(n) → XΠ(n0) would be a quotient of the
étale fundamental group of the smooth compacti�cation of XΠ(n0). In particular it would
be abelian and hence Π(n0) = lim←−n Π(n0)/Π(n) would be abelian and in�nite. But this
contradicts the fact that ρ is GLP, since Π(n0) would be an in�nite abelian open subgroup
of Π.

2. sup(gΠ(n)) = 0. Then for all n ≥ 0, the smooth compacti�cation of XΠ(n) is isomorphic to
P1. So the Galois group Π(1)/Π(n) of the cover XΠ(n) → XΠ(1) is a subgroup of PGL2(k).
Using the classi�cation of subgroups of PGL2(k) (see e.g. [Cad12a, Corollary 10]) one
gets a contradiction via the GLP assumption as in point 1.

The proof of Fact 1.3.1.5.2(1) is signi�cantly more involved, since the covers XU → X are not
in general Galois. The idea is then to take a Galois cover XŨ → X over XU → X and close to
the Galois closure of XU → X and then:

• First apply the previous argument to XŨ ([CT12b, Section 3.3.1]);

• Then compare the genus of XŨ and XU via the Riemann-Hurwitz formula ([CT12b,
Section 3.3.2]).

We will discuss in more details this strategy in Section 2.1.1.3.

1.3.2 Specialization of Neron-Severi groups

Let Y → X be a smooth proper morphism. In this section we discuss a result of André, which
relates Facts 1.2.2.2.2 and 1.3.1.2.2 to the specialization of the Néron-Severi group.

1.3.2.1 NS-generic points

We specialize the discussion of Section 1.2.1 to the case of divisors. Let Z be a smooth proper
k-variety. In this setting, since algebraic and numerical equivalence coincide rationally for
divisors, for every couples of primes `, `′ we have equalities

CH1
`′(Zk)⊗Q = NS(Zk)⊗Q = CH1

`(Zk)⊗Q.
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Moreover, since H1(π1(k), P ic0(Z)) is torsion, the exact sequence of k-group schemes

0→ Pic(Z)0 → Pic(Z)→ NS(Z)→ 0

shows that NS(Z)⊗Q = (NS(Zk)⊗Q)π1(k). So, for every x ∈ X, the specialization morphisms
of Section 1.2.1 for the morphism f : Y → X read:

spη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q and sparη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q.

De�nition 1.3.2.1.1. We say that x ∈ |X| is NS-generic (resp. arithmetically NS-generic) for
f : Y → X if spη,x (resp. sparη,x) is an isomorphism.

1.3.2.2 NS-generic vs Galois generic

For every x ∈ X, the choice of an étale path between x and η induces isomorphisms

π1(X, x) ' π1(X, η), H2(Yη,Q`(1))) ' R2f∗Q`(1)η ' R2f∗Q`(1)x ' H2(Yx,Q`(1))),

identifying the action of π1(x, x) induced by restriction via π1(x, x) → π1(X, x) ' π1(X, η) on
H2(Yη,Q`(1)) ' H2(Yx,Q`(1))) with the natural action of π1(x, x) on H2(Yx,Q`(1))). Recall
that the specialization morphism makes the following diagram commutative:

Pic(Yη)⊗Q Pic(Y )⊗Q Pic(Yx)⊗Q

NS(Yη)⊗Q NS(Yx)⊗Q

H2(Yη,Q`(1)) H2(Yx,Q`(1)).

cYη

i∗η i∗x

cYx

spη,x

'

and that x ∈ |X| is said to be Galois generic (resp. strictly Galois generic) for ρ2,1
` : π1(X) →

GL(H2(Yx,Q`(1))) if the image of π1(x, x) acting on H2(Yη,Q`(1)) is open (resp. coincide)
with the image of π1(X, η) acting on H2(Yη,Q`(1)). Conjecture 1.1.2.1.1 predicts that every
(strictly) Galois generic point is (arithmetically) NS-generic. André proved that this holds
without assuming Conjecture 1.1.2.1.1.

Fact 1.3.2.2.1 ([And96]). Every (strictly) Galois generic point for ρ2,1
` is (arithmetically)

Néron-Severi generic.

Combining Fact 1.3.2.2.1 with Facts 1.2.2.2.2 and 1.3.1.2.2, one gets the existence and the
abundance of (arithmetically) NS-generic points. The proof of Fact 1.3.2.2.1 decomposes into
two steps:

• One relates algebraic cycles to cohomology via the Variational Hodge conjecture for di-
visors (Fact 1.2.3.2.1);

• One relates Hodge theory to `-adic cohomology via the comparison between the étale and
the singular sites;

In the next subsection, we recall in more details the argument for Fact 1.3.2.2.1 (See also [CC18,
Proposition 3.2.1]).
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1.3.2.3 Proof of Fact 1.3.2.2.1

Let x ∈ |X| be a Galois generic point for ρ2,1. Replacing X with a �nite étale cover we can
assume that NS(Yη)⊗Q = NS(Yη)⊗Q, NS(Yx)⊗Q = NS(Yx)⊗Q and that the Zariski closure
G2,1
` of the image of π1(X, η) acting on H2(Yη,Q`(1)) is connected. The commutative cartesian

diagram of k-varieties

Yx Y Yη

k(x) X k(η).

� �
x

induces a commutative diagram:

Pic(Yη)⊗Q Pic(Yk)⊗Q Pic(Yx)⊗Q

NS(Yη)⊗Q NS(Yx)⊗Q.spη,x

Then, it is enough to show that every zx ∈ NS(Yx) ⊗ Q lifts to an element of Pic(Yk) ⊗ Q.
Since the image of Pic(Yk)⊗Q→ H2(Yk,Q`(1)) identi�es4 with the image of Pic(YC)⊗Q→
H2(YC,Q`(1)) via the base change isomorphism H2(Yk,Q`(1)) ' H2(YC,Q`(1)) and the Néron-
Severi group is invariant under algebraically closed �elds extension, it is enough to show that
every zx ∈ NS(Yx,C)⊗Q lifts to an element of Pic(YC)⊗Q. Consider the commutative diagram:

Pic(YC)⊗Q Pic(Yx,C)⊗Q

NS(Yx,C)⊗Q

H0(Xan
C , R2f∗Q) H2

B(Yx,C,Q).

Take any zx ∈ NS(Yx,C)⊗Q. By the Variational Hodge conjecture for divisors (Fact 1.2.3.2.1)
it is enough to show that zx is in the image of H0(X,R2fan∗ Q) ↪→ H2

B(Yx,C,Q). Since zx is �xed
by π1(x, x), the group G2,1

` is connected and x is Galois-generic, zx is �xed by π1(X, x), hence
by π1(XC, x). Via the comparison between the étale and the singular sites, zx is then �xed by
πtop1 (Xan

C , x), hence it is in the image of H0(X,R2fan∗ Q) ' H2
B(Yx,C,Q)π

top
1 (XC,x) ↪→ H2

B(Yx,Q).
This concludes the proof of Fact 1.3.2.2.1.

4This follows from the invariance of étale cohomology under algebraically closed �eld extension in character-
istic zero, the Kummer exact sequence and the fact that the map H2(Yk,Gm)→ H2(YC,Gm) is injective.
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Chapter 2

Presentation of the work

This Chapter is devoted to summarize in a uniform way the new results obtained in this thesis,
trying to explain how they relate to each others.

2.1 Specialization of `-adic representations and Néron-Severi
groups in positive characteristic

Chapters 3 and 4 are devoted to extend to positive characteristic of the results of Cadoret-
Tamagawa (Fact 1.3.1.2.2) and André (Fact 1.3.2.2.1). Let k be a �eld of characteristic p > 0
and let X be a smooth geometrically connected k-variety. Write η for the generic point of X.
Fix a prime ` 6= p.

2.1.1 A uniform open image theorem in positive characteristic

2.1.1.1 Statement

We brie�y recall the setting. Let

ρ : π1(X, η)→ GLr(Z`)

be a continuous representation. For every x ∈ X the choice of an étale path between x and η
give rise to a representation

ρx : π1(x, x)→ π1(X, x) ' π1(X, η)→ GLn(Z`),

hence to an inclusion Πx := Im(ρx) ⊆ Im(ρ) =: Π. Set Πgeo for the image of

ρgeo : π1(Xk, η)→ π1(X, η)→ GLr(Z`).

Recall that x ∈ |X| is Galois generic if Πx ⊆ Π is an open subgroup and that ρ is said to
be GLP if every open subgroup of Πgeo has �nite abelianization. Write Xgen

ρ (k) for the set of
k-rational Galois generic points and Xex

ρ (k) := X(k) − Xgen
ρ (k). The �rst main result is the

extension of the d = 1 case of Fact 1.3.1.2.2 to positive characteristic.

Theorem 2.1.1.1.1. Assume that k is �nitely generated, X is a curve and ρ is GLP. Then
Xex
ρ (k) is �nite and exists an integer N ≥ 1, depending only on ρ, such that for every x ∈

Xgen
ρ (k), one has [Π : Πx] ≤ C

Remark 2.1.1.1.2. Fact 1.3.1.2.2 holds not only for k-rational points but also for points of
bounded degree. The reason why we get only the statement for k-rational points is that the
analogue of Fact 1.3.1.5.1(2) does not hold in positive characteristic. See Sections 2.1.1.4 and
3.3.3 for more details.
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2.1.1.2 General Strategy

To prove Theorem 2.1.1.1.1 we follow the strategy of Cadoret-Tamagawa for Fact 1.3.1.2.2.
First recall (Section 1.3.1.4) that, for each integer n ≥ 0, there is a �nite set Cn of subgroups
of Π and a (possibly disconnected) étale cover

Xn :=
∐
U∈Cn

XU → X.

such that, for n� 0,

Xex
ρ (k) =

⋂
n≥1

Im(Xn(k)→ X(k)),

{x ∈ X(k) | [Π : Πx] ≤ [Π : Π(n)]} ⊆ X(k)− Im(Xn(k)→ X(k)).

Since the set Cn is �nite, to prove Theorem 2.1.1.1.1, it is enough to show that for n� 0 and
each U ∈ Cn the scheme XU has only �nitely many k-rational points. Then by [Sam66] and
an argument of Voloch (see [EElsHKo09, Theorem 3] for more details), we have the following
analogue of Fact 1.3.1.5.1.

Fact 2.1.1.2.1. There exists an integer g ≥ 2, depending only on k, such that every smooth
proper curve over k with genus ≥ g has only �nitely many k-rational points.

By Fact 2.1.1.2.1, Theorem 2.1.1.1.1 boils down to prove an analogue of Fact 1.3.1.5.2(1),
which, by group theoretic arguments, one reduces to the following:

Theorem 2.1.1.2.2. If ρ is GLP then for every closed but not open subgroup C ⊆ Πgeo, one
has

lim
n7→+∞

gCΠgeo(n) = +∞

The proof of Theorem 2.1.1.2.2 follows the strategy of the proof of Fact 1.3.1.5.2. However,
in positive characteristic, the Riemann-Huruwitz formula, used to study the growth of genus,
involves wild inertia terms. Even assuming ` 6= p, which is crucial here, controlling this wild
inertia terms is rather delicate. This is our main technical contribution.

2.1.1.3 Controlling the wild inertia

To simplify the notation, assume from now that k = k. For a group Γ and subgroups I, C ⊆ Γ
write

KC(Γ) := ∩g∈ΓgCg
−1 and IC := I/(I ∩KC(Γ))

for the largest normal subgroup of Γ contained in C and the largest quotient of I acting faithfully
on Γ/C. De�ne Π̃(n) ⊆ Π and ΠC(n) ⊆ ΠC by the following commutative exact diagram:

1 Π̃(n) Π (Πn)Cn 1

1 ΠC(n) ΠC (Πn)Cn 1

1

The diagram induces a commutative diagram of covers
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XΠ̃(n) XCΠ(n)

X

where XΠ̃(n) → X and XΠ̃(n) → XCΠ(n) are Galois. After a preliminary reduction where we

show that we can assume that Π̃(1)/Π̃(n) is an `-group, the proof decomposes into two steps:

1. We show that gΠ̃(n) tends to in�nity. Since Π̃(n) ⊆ Π is a normal open subgroup and ρ
is GLP , this will follow from the fact that Galois covers of curves of genus ≥ 1 contains
large abelian subgroups, as in Section 1.3.1.6;

2. We show that (1) implies that gCΠ(n) tends to in�nity. To do this one has to relate gΠ̃(n)

and gCΠ(n) via the Riemann Huruwitz formula for the cover XΠ̃(n) → XCΠ(n). This, in
turn, boils down to study the rami�cation of the cover XΠ̃(n) → XCΠ(n) and we do this
in two steps:

(a) We �rst consider the commutative diagram:

XΠ̃(n) XCΠ(n)

X.

The behaviour of the rami�cation under intermediate cover allows us to understand
the rami�cation of XΠ̃(n) → XCΠ(n) via the rami�cation of XΠ̃(n) → X.

(b) We then study the wild rami�cation of XΠ̃(n) → X via the commutative diagram:

XΠ̃(n) XΠ̃(1)

X.

By the preliminary reduction the Galois group of XΠ̃(n) → XΠ̃(1) is an `-group and
hence the morphism between the wild inertia subgroups of the covers XΠ̃(n) → X
and XΠ̃(1) → X is an isomorphism. This implies that the wild inertia of XΠ̃(n) → X
grows in an explicit linear way and this is enough to control it.

2.1.1.4 Gonality

We keep the notation of Section 2.1.1.1, but in this subsection we allow the prime ` to be equal
to p.

As already mentioned in Section 2.1.1.2, Theorem 2.1.1.2.2 implies the natural extension
to positive characteristic of Fact 1.3.1.5.2(1)). Moving from genus to gonality, in Appendix A,
we show how to adapt the arguments of Fact 1.3.1.5.2(2) to prove its positive characteristic
version. More precisely, we show the following, which can be used to extend Fact 1.3.1.5.2(2)
to positive characteristic.

Theorem 2.1.1.4.1. Let C ⊆ Πk be a closed subgroup of of codimension j. The following
hold:

1. If ` 6= p, the representation ρ is GLP and j ≥ 1, then

lim
n→+∞

γCΠk(n) = +∞.
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2. If ` 6= p and j ≥ 3, then
lim

n→+∞
γCΠk(n) = +∞,

3. If ` = p and j ≥ 2, then
lim

n→+∞
γCΠk(n) = +∞,

As mentioned in Remark 2.1.1.1.2, Fact 1.3.1.5.1(2) is not true in positive characteristic.
Hence one cannot use directly Theorem 2.1.1.4.1 to obtain the version of Theorem 2.1.1.1.1 for
points of bounded degree (see Section 3.3.3 in Chapter 3 for a discussion around this issue).
However, Theorem 2.1.1.4.1(2) and (3) can be used to obtain results on not necessarely GLP or
`-adic representations. We obtain the following, which extends [CT13, Theorem 1.3] to positive
characteristic.

Corollary 2.1.1.4.2. Assume that X is a curve and k is �nitely generated. The following
hold:

1. If ` = p, then for all but at most �nitely many x ∈ X(k), Πx ⊆ Π has codimension ≤ 1;

2. If ` 6= p, then for all but at most �nitely many x ∈ X(k), Πx ⊆ Π has codimension ≤ 2.

2.1.2 Specialization of Néron-Severi groups in positive characteristic

Let f : Y → X be a smooth proper morphism and set

ρ : π1(X, η)→ GL(H2(Yη,Q`(1)))

2.1.2.1 Statement

Let us recall (Section 1.3.2.1) that, for every x ∈ X there are specialization morphisms

spη,x : NS(Yη)⊗Q ↪→ NS(Yx)⊗Q and sparη,x : NS(Yη)⊗Q ↪→ NS(Yx)⊗Q

and that x is said to be NS-generic (resp. arithmetically NS-generic) if spη,x (resp. sparη,x) is
an isomorphism. The main result of this section is the analogue of Fact 1.3.2.2.1 in positive
characteristic.

Theorem 2.1.2.1.1. Assume that k is �nitely generated. If f : Y → X is projective, every
(strictly) Galois generic point for ρ is (arithmetically) Neron-Severi generic. If f : Y → X is
proper, the same is true replacing X with a dense open subset.

Remark 2.1.2.1.2. The reason why, contrary to the characteristic zero case, we are not able
to prove Theorem 2.1.2.1.1 for a general smooth proper morphism f : Y → X is that in Fact
1.2.4.2.1 the morphism is assumed to be projective. On the other hand, using De Jong alter-
ation's theorem ([dJ96]) one can prove Theorem 2.1.2.1.1 for not necessary proper morphism
up to replacing X with a dense open subset. For most of the applications Theorem 2.1.2.1.1 is
enough.

From now on assume, for simplicity, that f : Y → X is projective.
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2.1.2.2 General strategy

The starting point of our proof is to replace the use of Hodge theory used in Fact 1.3.2.2.1
with crystalline cohomology, since a variational form of the Tate conjecture (Fact 1.2.4.2.1) is
known in this setting. The main di�culty to overcome is to transfer the information about
the Galois invariants of the `-adic lisse sheaf R2f∗Q`(1) to the crystalline local system (F-
isocrystal) R2fcrys,∗OY/K(1). This is the main new contribution of Chapter 4. More precisely,
since the F-isocrystal R2fcrys,∗OY/K(1) has a behaviour which is quite di�erent from R2f∗Q`(1)
(see Section 1.2.4.4), this comparison cannot be done directly. The idea is then to show that
R2fcrys,∗OY/K(1) is coming from a smaller and better behaved category of p-adic local systems:
the category of overconvergent F-isocrystals. As it has been understood that overconvergent
F-isocrystals share many properties with lisse sheaves (see Section 1.2.4.7), the idea is to com-
pare �rst R2fcrys,∗OY/K(1) with its overconvergent incarnation R2f∗O†Y/K(1) via various p-adic

comparison theorems and then R2f∗O†Y/K(1) with R2f∗Q`(1) via the theory of weights ([Del80],
[KM74]).

In the next to subsections we explain the strategy in more details.

2.1.2.3 Spreading out

One additional di�culty in our setting is that crystalline cohomology has a good behaviour only
over a perfect �eld, while our base �eld k is, in general, not perfect. To overcome this problem
one uses a spreading out argument, so that our morphism f : Y → X will appear as the generic
�bre of a smooth projective morphism f : Y → X , where X is a smooth geometrically connected
Fq-variety. The idea is then to lift an element εx ∈ NS(Yx)⊗Q to NS(Yη)⊗Q by specializing
it �rst to an element εt ∈ NS(Yt)⊗Q of a closed �bre of Y → X and then to try and lift εt to
an element ε ∈ Pic(Y)⊗Q, via the crystalline variational Tate conjecture (Fact 1.2.4.2.1) over
Fq.

2.1.2.4 From ` to p

In order to show that εt ∈ NS(Yt) ⊗ Q satis�es the assumption of Fact 1.2.4.2.1, one has to
transfer the `-adic information that x is Galois generic to crystalline cohomology. Assume that
Z is a smooth geometrically connected Fq-variety admitting an Fq-rational point t and that
there is a map g : Z → X (in our application g : Z → X is a model for x : k(x) → X). The
cartesian square

YZ Y

Z X

fZ � f

g

induces representations

π1(Z, t)→ π1(X , t)→ GL(H i(Yt,Q`(j)).

Theorem 2.1.2.4.1. Assume that the image of π1(Z, t) → π1(X , t) → GL(H i(Yt,Q`(j)) is
open in the image of π1(X , t) → GL(H i(Yt,Q`(j)) and that the Zariski closures of the images
of π1(X , t) and π1(XFq , t) acting on H i(Yt,Q`(j)) are connected. Then the base change map

H0(X , Rifcrys,∗OY/W )F=qj ⊗Q→ H0(Z, RifZ,crys,∗OYZ/W )F=qj ⊗Q

is an isomorphism.
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In light of the general strategy explained in Section 2.1.2.2, the proof of Theorem 2.1.2.4.1
decomposes then as follows:

1. We prove thatRifcrys,∗OY/W⊗Q andRifZ,crys,∗OYZ/W⊗Q are overconvergent F -isocrystals
(building on the work of Shiho on relative log convergent cohomology and relative rigid
cohomology [Shi08a], [Shi08b]);

2. We use that one doesn't loose information passing from crystalline cohomology to over-
convergent F -isocrystals (Fact 1.2.4.5.3);

3. Let Gp and GZ,p be the Tannakian groups of Rifcrys,∗OY/W ⊗Q and RifZ,crys,∗OYZ/W ⊗Q
as overconvergent F -isocrystals. Theorem 2.1.2.4.1 amounts to showing that Gp = GZ,p.

4. The assumption implies that the Zariski closures G` and GZ,` of the image of π1(X , t)
and π1(Z, t) acting on H i(Yt,Q`(j)) are equal.

5. We show that (4) implies (3), using the theory of Frobenius weights and the fact that
reductive algebraic groups are essentially determined by their tensor invariants.

2.1.3 Applications

The �rst applications of Theorems 2.1.1.1.1 and 2.1.2.1.1 are to uniform boundedness problems.

2.1.3.1 Uniform boundedness for abelian varieties

If Z is a k-abelian variety write Z(k)tors and Z[`∞](k) for its k-rational torsion and its `-primary
torsion respectively. By the arithmetic Lang-Néron theorem ([LN59]), the group Z(k) is �nitely
generated, hence Z(k)tors and Z[`∞](k) are �nite. A folklore conjecture is the following:

Conjecture 2.1.3.1.1. Let g be an integer ≥ 1. If k is �nitely generated, then there exists an
integer N ≥ 1, depending only on k and g, such that |Z(k)tors| ≤ N for all k-abelian varieties
of dimension g.

Conjecture 2.1.3.1.1 is known when g = 1 ([Lev68]), but it is widely open in general. As
a consequence of Theorem 2.1.1.1.1 we prove the weaker form of Conjecture 2.1.3.1.1 for the
`-primary torsion of abelian varieties of arbitrary dimension in one-dimensional families.

Corollary 2.1.3.1.2. Assume that k is �nitely generated, f : Y → X is an abelian scheme,
X is a curve and ` 6= p. Then there exists an integer N ≥ 1, depending only on Y → X and `,
such that |Yx[`∞](k)| ≤ N for every x ∈ X(k).

2.1.3.2 Uniform boundedness for Brauer groups

Let Z be a smooth proper k-variety. As it is well known (see e.g. [CC18, Proposition 2.1.1]),
Conjecture T(Z, 1, `) holds if and only if the `-primary torsion Br(Zk)[`

∞]π1(k) of the Galois
invariants of the geometric Brauer group Br(Zk) := H2(Zk,Gm) of Zk is �nite. In [VAV17],
Várilly-Alvarado proposed an analogue of Conjecture 2.1.3.1.1 for the Brauer group of K3
surfaces in characteristic zero. Combining Theorem 2.1.2.1.1 with Theorem 2.1.1.1.1 and the
arguments of [CC18], one gets the following version for the `-primary part in one dimensional
families:

Corollary 2.1.3.2.1. Assume that k is �nitely generated, X is a curve and ` 6= p. If T(Yx, 1, `)
holds for all x ∈ |X|, then there exists an integer N ≥ 1, depending only on Y → X and `,
such that |Br(Yx)[`

∞]π1(x,x)| ≤ N for every x ∈ X(k).
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2.1.3.3 Geometric applications

Assume now that k has transcendence degree ≥ 1 over Fp. Then Theorem 2.1.2.1.1, together
with a spreading out argument, implies the following:

Corollary 2.1.3.3.1. For every smooth proper morphism Y → X there exists a NS generic
point. If k if �nitely generated, then there exists a arithmetically NS-generic point.

Corollary 2.1.3.3.1 implies in particular (see the proof of [MP12, Theorem 7.1]):

Corollary 2.1.3.3.2. Assume furthermore that Yx is projective for every x ∈ |X|. Then there
exists a dense open subscheme U ⊆ X such that the base change fU : U×XY → U of f : Y → X
is projective.

The second application of Corollary 2.1.3.3.1 is to hyperplane sections in smooth projective
varieties. Assume that Z is a smooth projective k-variety of dimension ≥ 3 and let Z ⊆ Pnk be
a projective embedding. Every smooth hyperplane section D ⊆ Z induces an injection

NS(Zk)⊗Q→ NS(Dk)⊗Q.

To reduce problems on the Néron-Severi groups to the case of surface, it could helpful to know
whether there exists a smooth hyperplane section D ⊆ Z, such that NS(Zk)⊗Q ↪→ NS(Dk)⊗Q
is an isomorphism. This is not true in general (see Example 4.4.1.1 in Chapter 4), but one can
apply Corollary 2.1.3.3.1 to an appropriate pencil of hyperplane sections to obtain the following
arithmetic variant.

Corollary 2.1.3.3.3. If k is �nitely generated and dim(Z) ≥ 3, then there are in�nitely many
smooth k-rational hyperplane sections D ⊆ Z such that the canonical map

NS(Z)⊗Q→ NS(D)⊗Q

is an isomorphism.

2.1.3.4 Applications to the Tate conjecture

As already mentioned in Section 2.1.2.1, Conjecture 1.1.2.1.1 implies Theorem 2.1.2.1.1. Using
the corollaries in Section 2.1.3.3, one can enlarge the class of varieties for which the `-adic Tate
conjecture holds.

Corollary 2.1.3.4.1. Assume that k is in�nite �nitely generated. Then:

• Let Z be a smooth projective k-variety of dimension ≥ 3 and choose a projective em-
bedding Z ⊆ Pnk . If T(D, 1, `) holds for every smooth hyperplane sections D ⊆ Z, then
T(Z, 1, `) holds.

• Let Y → X be a smooth proper morphism. If T(Yx, 1, `) holds for every x ∈ |X|, then
T(Yη, 1, `) holds.

2.2 p-adic monodromy groups

The proof of Theorem 2.1.2.1.1 suggests that studying the interplay between the categories of
F-isocrystals and overconvergent F-isocrystals could lead to �ne p-adic information on families
of varieties. The next Chapters 5 and 6 are devoted to the investigation of this problem in
more details.
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2.2.1 Maximal tori in monodromy groups of F-isocrystals and appli-
cations (joint with Marco D'Addezio)

In this section k = Fq is the �nite �eld with q = ps elements. For simplicity we assume that X
has an Fq-rational point x.

2.2.1.1 Maximal tori in monodromy groups of F-isocrystals

Let E be a pure and p-plain1 overconvergent F-isocrystal on X. As recalled in Section 1.2.4.6,
once x is �xed, to E we can associate four algebraic groups, �tting into a commutative diagram:

G(Egeo,conv) G(Econv)

G(Egeo) G(E).

If E has constant Newton polygon, Crew asks whether G(Egeo,conv) is a parabolic subgroup of
G(Egeo), hence whether G(Econv) is a parabolic subgroup of G(E). If G(Econv) ⊆ G(E) and
G(Egeo,conv) ⊆ G(Egeo) are parabolic subgroups then, in particular, G(Econv) and G(Egeo,conv)
contain a maximal torus of G(E) and G(Egeo) respectively. From the results in [D'Ad17] or in
[HP18], one deduces that G(Econv) contains a maximal torus of G(E); see Corollary 5.2.3.2.1 in
Chapter 5. We prove that this is also true for the inclusion G(Egeo,conv) ⊆ G(Egeo).

Theorem 2.2.1.1.1. If E is pure and p-plain, then G(Egeo,conv) contains a maximal torus of
G(Egeo).

Our main motivations to prove Theorem 2.2.1.1.1 were the applications that we explain in
the following two sections.

2.2.1.2 A special case of a conjecture of Kedlaya

The following corollary of Theorem 2.2.1.1.1 proves the particular case of the optimistic con-
jecture2 in [Ked17, Remark 5.14] where, with the notation of [Ked17, Remark 5.14], F1 ⊆ E1

has minimal slope and E2 is the convergent isocrystal OX .

Corollary 2.2.1.2.1. Let E be an (absolutely) irreducible overconvergent F -isocrystal. If Econv
admits a subobject of minimal slope F ⊆ Econv with a non-zero morphism F conv,geo → OgeoX

then Egeo ' OgeoX .

To deduce Corollary 2.2.1.2.1 from Theorem 2.2.1.1.1, one �rst reduces to the situation
where the determinant of E has �nite order. To simplify, let us assume that F = Econv1 and
that G(Econv) is connected. Then Theorem 2.2.1.1.1, together with the Global monodromy
theorem for overconvergent F-isocrystals ([D'Ad17, Corollary 3.5.5]), implies that G(Econv,geo) =
G(Econv), hence that the morphism Econv,geo1 → OgeoX induces a surjection Econv1 → OX . In
particular, Econv1 has slope zero, so that the minimal slope of Econv is zero. Since the determinant
of E has �nite order, this implies that Econv = Econv1 and hence that Econv admits a quotient
Econv � OX in F-Isoc(X). As (−)conv : F-Isoc†(X)→ F-Isoc(X) is fully faithful, E admits a
quotient E � OX in F-Isoc†(X). Since E is irreducible, this implies E ' OX .

1Recall that an algebraic number is p-plain if it is an `-adic unit for every prime ` 6= p and that an F -isocrystal
is said to be p-plain if the eigenvalues of the Frobenii at closed points are p-plain algebraic numbers.

2Note that the optimistic conjecture in [Ked17, Remark 5.14] turned out to be false in general
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2.2.1.3 Perfect torsion points of abelian varieties

Let F ⊆ F be a �nitely generated �eld extension and A a F -abelian variety without isotrivial
geometric isogeny factors. Write A(n) for the Frobenius twist of A by the pn-power absolute
Frobenius. Since A(F )tors is �nite by the Lang-Néron Theorem ([LN59]) there is a tower of
�nite groups A(F )tors ⊆ A(1)(F )tors ⊆ A(2)(F )tors ⊆ . . . . In June 2011, in a correspondence with
Langer and Rössler, Esnault asked whether this chain is eventually stationary. An equivalent
way to formulate the question is to ask whether the group of F perf-rational torsion points
A(F perf)tors is a �nite group, where F perf is a perfect closure of F . Using Corollary 2.2.1.2.1,
we can give a positive answer to her question.

Corollary 2.2.1.3.1. Let A be an abelian variety over F without isotrivial geometric isogeny
factors. Then the group A(F perf)tors is �nite.

To relate Corollaries 2.2.1.3.1 and 2.2.1.2.1 we use crystalline Dieudonné theory, as developed
in [BBM82]. The proof of Theorem 2.2.1.3.1 is by contradiction. If |A[p∞](F perf)| = ∞, there
exists an injective map Qp/Zp ↪→ A[p∞]ét from the trivial p-divisible group Qp/Zp over F and
the étale part of the p-divisible group of A. Spreading out to a �nice� model A/F of A/F
and applying the contravariant crystalline Dieudonné functor D, one gets a surjection of F -
isocrystals D(A[p∞]ét) � D((Qp/Zp)F) ' OF/K over F . By a descent argument and a careful
use of Corollary 2.2.1.2.1, the quotient extends to a quotient D(A[p∞]) � OF over F . Going
back to p-divisible groups, this gives an injective map Qp/Zp ↪→ A[p∞] over F . Therefore
A[p∞](F ) would be an in�nite group, contradicting Lang-Néron Theorem.

2.2.2 Specialization of p-adic monodromy groups over �nitely gener-
ated �elds

The main topic of Chapter 6 is the de�nition and the study of a category of (over)convergent
F-isocrystals for varieties de�ned over in�nite �nitely generated �elds.

2.2.2.1 (Over)convergent F-isocrystals over �nitely generated �elds

As already mentioned in Section 2.1.2.3, crystalline cohomology and in general the various
category of p-adic local systems work well when k is perfect. On the other hand Fact 1.2.2.2.2
and Theorem 2.1.1.1.1 require that k is arithmetically rich enough, i.e. that k is �nitely gener-
ated. So to obtain (variants of) Fact 1.2.2.2.2 and Theorem 2.1.1.1.1 in the p-adic setting, one
would like to have good categories of (over)convergent F-isocrystals for varieties de�ned over
in�nite �nitely generated �elds. Let k be an in�nite �nitely generated �eld of characteristic
p > 0 and X a smooth geometrically connected k-variety. To de�ne and study a category of
(over)convergent F-isocrystals we follow the main ideas in Sections 2.1.2.3 and 2.1.2.4, spread-
ing out X over a �nite �eld. We de�ne (roughly) an (over)convergent F-isocrystal over X as
an equivalence class [E ] of couples (X , E), where X is an appropriate model of X over Fq and

E is in F-Isoc(†)(X ). Write F̃-Isoc†(X) and F̃-Isoc(X) for the categories of overconvergent
F-isocrystals and convergent F-isocrystals over X respectively.

2.2.2.2 Monodromy groups of (Over)convergent F-isocrystals

To every couple (X , E) representing the equivalence class [E ] of an (over)convergent F-isocrystal
over X, we can associate an algebraic group G(E) as in Section 1.2.4.6. Showing that G(E) does
not depend on the choice of a representative (X , E) of the equivalence class of [E ], amounts
to showing that every dense open immersion i : U → X of smooth Fq-varieties induces an
isomorphism G(i∗E) ' G(E). While this is true for overconvergent F-isocrystals, it does not
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hold in general for every convergent F-isocrystal; see Example 1.2.4.6.1. Indeed if the Newton
polygon (see Section 1.2.4.3) of E is not constant on X , there exists an open immersion i : U →
X and a canonical �ltration

E1 ⊆ E2 ⊆ ... ⊆ i∗E in F-Isoc(U)

encoding the slopes of i∗E . In general the sub-objects Ei are not in the essential image of
i∗ : F-Isoc(X ) → F-Isoc(U) and this is an obstruction to have G(i∗E) = G(E). However,
we prove that this is the only obstruction, hence we get well de�ned monodromy groups for
convergent F-isocrystals with constant Newton polygon.

2.2.2.3 Specialization of overconvergent F-isocrystals

After having settled the general formalism, one attaches to every overconvergent F-isocrystals
(resp. convergent F-isocrystals with constant Newton polygon) [E ] an exceptional locus Xex

[E]

and a strictly exceptional locus Xstex
[E] . In the overconvergent setting our main result is an

analogue of Fact 1.2.2.2.2 and Theorem 2.1.1.1.1.

Theorem 2.2.2.3.1. Let [E ] be a geometrically semisimple overconvergent F -isocrystal over
X (see Section 6.3.2 for the de�nitions). Then:

• The set Xex
[E] is sparse. In particular there exists a d ≥ 1 such that Xgen

[E] (≤ d) is in�nite.

• If [E ] is algebraic, then the set Xstex
[E] is sparse. In particular there exists a d ≥ 1 such

that Xsgen
[E] (≤ d) is in�nite.

• If X is a curve, the set Xex
[E](≤ 1) is �nite.

The proof of Fact 1.2.2.2.2 and Theorem 2.1.1.1.1 relies heavily on the fact that ΠF` is
an `-adic Lie group, hence, implicitly, on the Galois-theoretic structure of LS(X, `). These
features are not available in this p-adic setting. Instead, the idea is to use companions theory
([Laf02], [Dri12], [Abe18], [AE16]) for both overconvergent F-isocrystals and lisse sheaves, which
associates to an overconvergent F -isocrystal [E ] with representative (X , E) an `-adic companion
[F`] with representative (X , E`) for some ` 6= p. Then we show that the exceptional loci of [E ]
and [F`] coincide, so that we can deduce Theorem 2.2.2.3.1 from Fact 1.2.2.2.2 and Theorem
2.1.1.1.1.

2.2.2.4 Specialization of convergent F-isocrystals

In the convergent setting, we get somehow weaker results. The fully faithful functor (−)conv :
F-Isoc†(X )→ F-Isoc(X ) induces a fully faithful functor

(−)conv : F̃-Isoc†(X)→ F̃-Isoc(X).

Let [E ] be in F-Isoc†(X ) represented by (X , E) and assume that Econv has constant Newton
polygon over X . Then there the slope �ltration of E over X induces a canonical �ltration

[E ]conv1 ⊆ [E ]conv2 ⊆ ... ⊆ [E ]conv

and morphisms of algebraic groups

G([E ]conv1 ) � G([E ]conv) ⊆ G([E ]).

For every algebraic group G write rk(G) for its reductive rank and recall that for any subgroup
H ⊆ G one has rk(G) ≥ rk(H).
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Theorem 2.2.2.4.1. Let [E ] be a pure and p-plain overconvergent F -isocrystal over X with
constant Newton polygon (see Section 6.5.2 for the de�nitions).

• The set of x ∈ |X| such that rk(G([E ]conv)) > rk(G(x∗[E ]conv)) is sparse. In particular,
if k is in�nite there exists an integer d ≥ 1 and in�nitely many x ∈ X(≤ d) such
rk(G(x∗[E ]conv)) = rk(G(x∗[E ]conv)).

• IfX is a curve for all but at most �nitely many k-rational points x one has rk(G([E ]conv)) =
rk(G(x∗[E ]conv)) and rk(G([E ]conv1 )) = rk(G(x∗[E ]conv1 )).

• If X is a curve and G([E ]conv,geo1 )0 is abelian, then Xex
[E]conv1

(≤ 1) is �nite.

Remark 2.2.2.4.2. If [E ]conv1 has slope zero, the fact that Xstex
[E]conv1

is sparse follows directly
from Fact 1.2.2.2.2 and 1.2.4.3.1.

Via Theorem 2.2.2.3.1, Theorem 2.2.2.4.1 amounts to compare Xstex
[E]conv1

, Xstex
[E]conv and Xstex

[E] .
To do this, one uses that for every x ∈ |X| there is a canonical diagram of algebraic groups

G(x∗[E ]) G([E ])

G(x∗[E ]conv) G([E ]conv)

G(x∗[E ]conv1 ) G([E ]conv1 ),

so that one can try and obtain information on Xgen
[E]conv1

and Xgen
[E]conv from Xgen

[E] , via the results
in Chapter 5.

2.3 Further results

Chapter 7 and 8 give complements the results of the previous Chapters.

2.3.1 Reduction to the Tate conjecture for divisors to �nite �elds

2.3.1.1 Statements

Corollary 2.1.3.3.1 and a spreading out argument show that T(Z, 1, `) for all smooth proper
varieties over �nitely generated �elds of transcendence degree 1 over Fp implies T(Z, 1, `) for
all smooth proper varieties over �nitely generated �elds of characteristic p. While Corollary
2.1.3.3.1 is false when k is �nite, mimicking the arguments in the proof of Fact 1.2.3.2.1, we
can further reduce T(Z, 1, `) to the case of �nite �eld.

Theorem 2.3.1.1.1. Assume p > 0. Then T(Z, 1, `) for every �nite �eld k of characteristic p
and every smooth projective k-variety Z implies T(Z, 1, `) for every �nitely generated �eld k
of characteristic p and every smooth proper k-variety Z.

By an unpublished result ([dJ]) of De Jong (whose proof has been simpli�ed in [Mor15,
Theorem 4.3]), over �nite �elds the `-adic Tate conjecture for divisors for smooth projective
varieties follows from the `-adic Tate conjecture for divisors for smooth projective surfaces and
hence Theorem 2.3.1.1.1 implies the following:

Corollary 2.3.1.1.2. Assume p > 0. Then T(Z, 1, `) for every �nite �eld k of characteristic p
and every smooth projective k-surface Z implies T(Z, 1, `) for every �nitely generated �eld k
of characteristic p and every smooth proper k-variety Z.
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2.3.1.2 Sketch of the proof

The idea is to try and transpose the Hodge theoretic arguments in the proof of Fact 1.2.3.2.1 to
the `-adic setting. We spread out Z to a smooth proper morphism Z → K of Fq-varieties such
that Z embeds as a dense open subset into a smooth proper Fq-variety Zcmp. By smooth proper
base change and the global invariant cycles theorem ([Del80]; see [And06, Theorem 1.1.1]), a
class in H2(Zk,Q`(1))π1(k) arises from a class in H2(ZcmpF ,Q`(1))π1(Fq), hence, by T(Zcmp, 1, `),
from a divisor on Zcmp. Compared to [And96, Section 5.1], the extra di�culties come from
the fact that resolution of singularities in positive characteristic and the semisimplicity of the
Galois action in `-adic cohomology are not known. The �rst issue can be overcome using De
Jong's alteration theorem and the second adjusting an argument of Tate ([Tat94, Proposition
2.6.]). Applying De Jong's alteration theorem, we �nd a generically étale alteration Z̃ → Z
such that Z̃ embeds as a dense open subset into a smooth proper Fq-variety. The problem
is that the resulting morphism Z̃ → Z → K is not, in general, generically smooth, so that
we cannot apply directly the global invariant cycles theorem. To solve this issue, we use the
main ingredients in its proof: Hard Lefschetz theorem [Del80, Theorem 4.1.1] and the theory
of weights for Fq-schemes of �nite type [Del80, Theorem 1].

2.3.2 Uniform boundedness of Brauer groups of forms in positive
characteristic

Let k be a �eld of characteristic p ≥ 0 and let X be a smooth proper k-variety .

2.3.2.1 Finiteness of Brauer groups

As already mentioned in Section 2.1.3.2, it is classically known that Conjecture T(X, 1, `) holds
if and only if Br(Xk)[`

∞]π1(k) is a �nite group. The results in Chapters 3 and 4 (Corollary
2.1.3.2.1) give uniform boundedness results for |Br(Xk)[`

∞]π1(k)| in one dimensional families
of varieties. However, recent results show that one can expect stronger �niteness statements.
Write Br(Xk)[p

′]π1(k) for the prime-to-p torsion of Br(Xk)
π1(k).

Fact 2.3.2.1.1. Assume that k is �nitely generated and X is a smooth, proper k-variety. Then:

1. ([OS18, Theorem 5.1]): If p = 0 and the integral Mumford Tate conjecture for X holds
([Ser77, Conjecture C.3]), then Br(Xk)

π1(k) is �nite.

2. ([CHT17, Corollary 1.2]): If p > 0 and T(X, 1, `) holds for every ` 6= p, then Br(Xk)[p
′]π1(k)

is �nite.

The results in Chapter 3 are not su�cient to give uniform boundedness results for |Br(Xk)[p
′]π1(k)|.

In Chapter 8, we give a few evidences that such boundedness results could hold.

2.3.2.2 Uniform boundedness in forms

Recall that for a �eld extension k ⊆ k′ ⊆ k, a (k/k′)-form of X is a k′-variety Y such that
Yk := Y ×k′ k ' Xk. Let k ⊆ k′ be a �nite �eld extension and Y a (k/k′)-form of X. If p = 0
and X satis�es the integral Mumford Tate conjecture (resp. if p > 0 and X satis�es the Tate
conjecture for divisors for every ` 6= p), then the same is true for Y , hence Br(Yk)

π1(k) (resp.
Br(Yk)[p

′]π1(k′)) is a �nite group. But, for an integer d ≥ 1, it is not clear whether one can
�nd a uniform bound (depending only on X and d) for |Br(Yk)

π1(k′)| (resp. |Br(Yk)[p
′]π1(k′)|),

while k′ is varying on the �nite �eld extensions k ⊆ k′ with [k′ : k] ≤ d and Y among all the
(k/k′)-forms of X. If p = 0, this is proven by Orr-Skorobogatov in [OS18, Theorem 5.1]. If
p > 0, this is the main result of this chapter.
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Theorem 2.3.2.2.1. Assume that k is �nitely generated, X is a smooth proper k-variety and
p > 0. If T(X, 1, `) holds for every ` 6= p, then for every integer d ≥ 1, there exists an integer
N ≥ 1, depending only on X and d, such that for every �nite �eld extension k ⊆ k′ of degree
≤ d and every (k/k′)-form Y of X one has

|Br(Y ×k′ k)[p′]|π1(k′) ≤ N.

2.3.2.3 Strategy

The proof of Theorem 2.3.2.2.1 is a combination of Tannakian, `-adic and ultra�lter techniques
and it is a consequence of a general theorem on forms of compatible systems of representations
over �nitely generated �elds of positive characteristic. First one reduces to prove Theorem
2.3.2.2.1 replacing Br(Yk)[p

′] with

M(Br(Yk)) :=
∏
`6=p

T`(Br(Yk))⊗Q`/Z`.

Then the Kummer exact sequence and the theory of weights ([Del80]) imply that the collection
{T`(Br(Yk))}` 6=p is a compatible system of π1(k)-representations. The key point are the following
to steps:

1. for every (k/k)-forms Y of X, there exists a �nite �eld extension k ⊆ kY of degree depend-
ing only on the Rank(T`(Br(Xk)) and an isomorphism of π1(kY )-modules M(Br(Yk)) '
M(Br(Xk));

2. Up to replacing k with a �nite extension, for every integer d ≥ 1 there exists an integer
N ≥ 1, depending only on X and d, such that, for every �eld extension k′ ⊆ k′′ with
[k′′ : k′] ≤ d, one has ∏

6̀=p

[M`(Br(Xk))
π1(k′′) : M`(Br(Xk))

π1(k′)] ≤ N.

Statements (1) and (2) hold more generally for every compatible system of Z`-representations
{T`} 6̀=p and, with Statements (1) and (2) in hands one can adjust the arguments in [OS18,
Section 5] to obtain Theorem 2.3.2.2.1.

To prove (1), �rst we bound the number of connected components of the Zariski closure
of the image of an `-adic representation of a pro�nite group, only in terms of ` and of the
rank of the representation. To get (1), one has to get rid of the dependency on `. This
follows formally from the compatibility assumption and the fact that the connectedness of the
`-adic monodromy group can be read o� the L-function of the various compatible systems
{T⊗n` ⊗ (T∨` )⊗m} 6̀=p. For (2), the key point is to show that, if the Zariski closure of the image
of π1(k) acting on V` is connected, then for each integer d ≥ 0 there exists an integer D,
depending only on d and {T`}` 6=p, such that, for every �nite �eld extension k ⊆ k′ of degree
≤ d, one has (T`/`)

π1(k) = (T`/`)
π1(k′) for every ` ≥ D. To prove this, one exploits again

independence results, not in the `-adic setting but in the ultra�lter setting, recently obtained
by Cadoret-Hui-Tamagawa in [CHT17] and by Cadoret in [Cad19a].
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Chapter 3

A uniform open image for `-adic
representations in positive characteristic

3.1 Introduction

3.1.1 Notation

In this Chapter k is a �eld of characteristic p > 0 with algebraic closure k ⊆ k. For a k-variety
X, write |X| for the set of closed points and for every integer d ≥ 1, X(≤ d) for the set of all
x ∈ |X| with residue �eld k(x) of degree ≤ d over k. If d = 1 we often write X(≤ 1) = X(k).
Let ` be a prime always 6= p.

3.1.2 Exceptional Locus

From now on, letX be a smooth geometrically connected k-variety. Let ρ : π1(X)→ GLr(Z`) be
a continuous representation of the étale fundamental group1 of X. By functoriality of the étale
fundamental group, every x ∈ |X| induces a continuous group homomorphism π1(x)→ π1(X),
hence a �local" Galois2 representation ρx : π1(x)→ π1(X)→ GLr(Z`). Set

Π = ρ(π1(X)) Πk = ρ(π1(Xk)) Πx = ρx(π1(x)).

Write Xgen
ρ for the set of all x ∈ |X| such that Πx ⊆ Π is an open subgroup of Π and set

Xex
ρ := |X| −Xgen

ρ ; Xgen
ρ (≤ d) := Xgen

ρ ∩X(≤ d); Xex
ρ (≤ d) := Xex

ρ ∩X(≤ d).

We call Xex
ρ the exceptional locus of ρ. The study of Xgen

ρ (≤ d) is an important problem
especially when the representation comes from a smooth proper morphism f : Y → X (see
Subsection 3.1.5), so that Πx controls �ne arithmetic and geometric invariants of the family Yx,
x ∈ |X|. Since the Frattini subgroup of Π is open ([Ser89, Pag. 148]), a classical argument (see
Fact 1.2.2.2.2) shows that if k is Hilbertian (in particular if k is �nitely generated) there exists
a d ≥ 1 such that Xgen

ρ (≤ d) is in�nite.

3.1.3 Uniform open image theorem

When X is a curve and k is �nitely generated, one can go further, under a mild assumption on
ρ : π1(X)→ GLr(Z`).

1As the choice of �bre functors will play no part in the following we will omit them for the notation for étale
fundamental group.

2Recall that π1(x) ' π1(Spec(k(x)) identi�es with the absolute Galois group of k(x).
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De�nition 3.1.3.1. A topological group Π is Lie perfect3 (or LP for short) if every open
subgroup of Π has �nite abelianization. We say that ρ : π1(X) → GLr(Z`) is Lie perfect (or
LP for short) if Π is LP and that ρ is geometrically Lie perfect (or GLP for short) if Πk is LP .

With this terminology, we can state our main result, which is an extension of [CT12b,
Theorem 1.1] to positive characteristic.

Theorem 3.1.3.2. Assume that X is a curve and k is �nitely generated. If ρ is GLP , then
Xex
ρ (≤ 1) is �nite and there exists an integer N ≥ 1, depending only on ρ, such that [Π : Πx] ≤

N for all x ∈ Xgen
ρ (≤ 1).

When X(k) is in�nite, Theorem 3.1.3.2 gives us uniform boundedness results that are im-
possible to achieve using Fact 1.2.2.2.2; see for example Corollaries 3.1.5.1.1 and 3.1.5.2.1.

3.1.4 Strategy

While the general strategy of the proof of Theorem 3.1.4.2.2 is similar to the one of [CT12b,
Theorem 1.1], the technical details are more complicated in positive characteristic. Indeed,
the proof of Theorem 3.1.3.2 is based on the genus computations, via the Riemann-Hurwitz
formula, of careful chosen abstract modular curves. In positive characteristic, the Riemann-
Hurwitz formula involves wild inertia terms and - even assuming ` 6= p - controlling those wild
inertia terms is rather delicate. To deal with them, we generalize the computations made in
[CT12a].

3.1.4.1 Abstract modular scheme

For every open subgroup U ⊆ Π write fU : XU → X for the connected étale cover corresponding
to the open subgroup ρ−1(U) ⊆ π1(X) and kU for the smallest separable �eld extension of k
over which XU is geometrically connected. Write Uk = U∩Πk and recall the following anabelian
dictionary.

Fact 3.1.4.1.1. For every open subgroup U ⊆ Π the following hold:

1. For every x ∈ |X|, we have that Πx ⊆ U if and only if x lifts to a k(x)-rational point on
XU ;

2. The cover XUk
→ Xk corresponding to the open subgroup Uk ⊆ Πk is X ×kU k → Xk.

In view of Fact 3.1.4.1.1, we call XU the connected abstract modular scheme associated to
U . Fact 3.1.4.1.1 enabled Cadoret-Tamagawa in [CT12b] to construct a projective system of
abstract modular schemes (whose de�nition is recalled in Section 3.3.1.2):

fn : Xn :=
∐

U∈Cn(Π)

XU → X.

This system has the property that if x ∈ |X| does not lift to a k(x)-rational point of Xn for
some n ≥ 1, then Πx ⊆ Π is not an open subgroup; see Lemma 3.3.1.2.1. The �niteness of
Xρ(≤ d) can be then formulated in diophantine terms as follows:

(1): The image of lim←−Xn(≤ d)→ X(≤ d) is �nite.

To prove (1) it is enough to show

(2): The set Xn(≤ d) is �nite for n� 0.
3The terminology comes from the fact that if Π is an ` adic Lie group this condition is equivalent to

Lie(Π)ab = 0.

73



3.1.4.2 Growth of Genus

If X is a curve, k is �nitely generated and d = 1, by [Sam66] and an argument of Voloch (see
[EElsHKo09, Theorem 3] for more details), the �niteness of Xn(k) is controlled by the genus
gU of the smooth compacti�cation of XUk

for U ∈ Cn(Π).

Fact 3.1.4.2.1. If k is �nitely generated of positive characteristic, there exists an integer g ≥ 2,
depending only on k, such that for every smooth proper k-curve Y with genus ≥ g, the set
Y (k) is �nite.

Fact 3.1.4.2.1 reduces (2) to the geometric Theorem 3.1.4.2.2 below, which extends [CT12b,
Theorem 3.4] to positive characteristic. Write Πk(n) := Ker(Πk → GLr(Z`/`n)).

Theorem 3.1.4.2.2. Assume that X is a curve, ρ is GLP and ` 6= p. Then for every closed
but not open subgroup C ⊆ Πk we have

lim
n→+∞

gCΠk(n) = +∞.

To prove Theorem 3.1.4.2.2, one may assume k = k, hence that Π = Πk. We �rst replace
XCΠ(n) → X with a Galois cover XΠ̃C(n) → X, closely related to the Galois closure of XCΠ(n) →
X, and we use the GLP hypothesis to show that the genus of XΠ̃C(n) goes to in�nity. Then we
translate into group theoretical terms the Riemann-Hurwitz formula for XΠ̃C(n) → XCΠ(n) to
show that the genus of XΠ̃C(n) tends to in�nity (if and) only if the genus of XCΠ(n) does. Here,
we use crucially that ` 6= p to control the wild inertia terms appearing in the Riemann-Hurwitz
formula for XΠ̃C(n) → XCΠ(n). This part of the argument is signi�cantly more di�cult than in
the proof of [CT12b, Theorem 3.4].

3.1.5 Applications to motivic representations

Let f : Y → X be a smooth proper morphism and let ` 6= p be a prime. For x ∈ X, choose
a geometric point x over x and set Yx (resp. Yx) for the �bre of f at x (resp. x). By smooth
proper base change Rif∗Z`(j) is a lisse sheaf hence, for every x ∈ |X|, gives rise to a continuous
representation

ρ` : π1(X)→ GL(H i(Yx,Z`(j)))

such that ρ`,x : π1(x)→ GL(H i(Yx,Z`(j))) identi�es with the natural Galois action of π1(x) on
H i(Yx,Z`(j)). By [CT12b, Theorem 5.8], the representation ρ` is GLP , so that we can apply
Theorem 3.1.3.2 to it.

3.1.5.1 Uniform boundedness `-primary torsion of abelian schemes

Let f : Y → X be a g-dimensional abelian scheme. For x ∈ X and any integer n ≥ 1, write
Yx[`

n] := Yx[`
n](k(x)) for the `n-torsion of Yx and set

Yx[`
∞] :=

⋃
n

Yx[`
n]; T`(Yx) := lim←−

n

Yx[`
n].

Since k is �nitely generated, Yx[`∞](k(x))(= Yx[`
∞]π1(x)) is �nite by the Mordell-Weil theorem.

From the π1(x)-equivariant isomorphisms

T`(Yx) ' H2g−1(Yx,Z`(g)); T`(Yx)⊗Q`/Z` ' Yx[`
∞](k(x))

and Theorem 3.1.3.2, we obtain the following uniform bound for Yx[`∞](k), x ∈ X(k).
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Corollary 3.1.5.1.1. Assume that k is �nitely generated, X is a curve and f : Y → X is an
abelian scheme. There exists an integer N ≥ 1, depending only on f : Y → X and `, such that
|Yx[`∞](k)| ≤ N for every x ∈ X(k).

Proof. Since Π` := ρ`(π1(X)) is a compact `-adic Lie group, it is topologically �nitely generated
hence it has only �nitely many open subgroups of bounded index. So, by Theorem 3.1.3.2, the
set of subgroups Π`,x ⊆ Π` appearing as ρ`,x(π1(x)) for x ∈ X(k) is �nite. In particular, the set
of abelian groups {Yx[`∞]π1(x) ' Yx[`

∞](k) | x ∈ X(k)} is �nite.

3.1.5.2 Further applications

In Chapter 4, Theorem 3.1.3.2 is used to prove the following results. For x ∈ |X|, let
Br(Yx)

π1(x)[`∞] denote the Galois invariants of the `-primary torsion of the geometric Brauer
group Br(Yx) := H2(Yx,Gm) of Yx.

Corollary 3.1.5.2.1. Assume that k is �nitely generated and that X is a curve with generic
point η. Then

• Corollary 4.1.7.3.1: Assume that all the closed �bres of f : Y → X satisfy4 the `-adic
Tate conjecture for divisors ([Tat65]). Then there exists an integer N ≥ 1, depending
only on f : Y → X and `, such that |Br(Yx)

π1(x)[`∞]| ≤ N for every x ∈ X(k).

• Corollary 4.1.7.1.2: For all but at most �nitely many x ∈ X(k), the rank of the Néron-
Severi group of Yx is the same as the one of the Néron-Severi group of Yη

Corollaries 3.1.5.1.1 and 3.1.5.2.1 are extensions to positive characteristic of previous results
obtained in [CT12b], [VAV17, Thm. 1.6, Cor. 1.7] and [CC18].

3.1.6 Organization of the chapter

In Section 3.2 we prove Theorem 3.1.4.2.2. In Section 3.3 we recall the construction of a
projective system of abstract modular schemes Xn → X, parametrizing points with small
image and some facts about them. After this, we prove Theorem 3.1.3.2. In Subsection 3.3.3,
we discuss possible extensions of Theorem 3.1.3.2 to points of bounded degree. All the results
and the proofs in this Chapter work in the characteristic zero setting but, since this situation
is already treated in [CT12b], we will assume that p > 0 to simplify the exposition.

3.2 Proof of Theorem 3.1.4.2.2

3.2.1 Notation

3.2.1.1

For a group Γ and subgroups I,H ⊆ Γ write

KH(Γ) := ∩g∈ΓgHg
−1 and IH := I/(I ∩KH(Γ))

for the largest normal subgroup of Γ contained in H and the largest quotient of I that acts faith-
fully on Γ/H. For every closed subgroup Γ ⊆ GLr(Z`), write Γ(n) := Ker(Γ → GLr(Z`/`n))
and Γn := Im(Γ → GLr(Z`/`n)). We use � and ↪→ to denote surjective and injective maps
respectively.

4This holds, for example, if f : Y → X is a family of abelian varieties or of K3 surfaces.
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3.2.1.2

From now on we retain the notation of Theorem 3.1.4.2.2. By Fact 3.1.4.1.1(2), we may assume
k = k, hence that Π = Πk is LP. Set

Π̃C(n) := Ker(ΠC � (Πn)Cn) and ΠC(n) := Ker(Π � (Πn)Cn).

The following exact diagram summarizes the situation:

1

1 Π̃C(n) 1

1 KC(Π) Π(n) 1

KCn(Πn) Π ΠC(n)

Πn ΠC

1 (Πn)Cn 1

1 1 1

After some preliminary reduction (Section 3.2.2), the proof of Theorem 3.1.3.2 decomposes as
follows:

1. We �rst show that gΠ̃C(n) → +∞ using that Π is LP (Section 3.2.3)

2. Then, we use that ` 6= p to show that gΠ̃C(n) → +∞ implies gCΠ(n) → +∞ (Section 3.2.4).

3.2.2 Preliminary reductions

In this section we show that we can assume that for every integer n ≥ 1:

1. KC(Π) = KC(CΠ(n));

2. Π̃C(1)/Π̃C(n) is an `-group.

Since we are interested in the asymptotic behaviour of gCΠ(n) we can freely replace Π with
CΠ(n0) for some integer n0 ≥ 1. So:

1. Follows from the fact the increasing sequenceKC(Π) ⊆ KC(CΠ(1)) ⊆ ... ⊆ KC(CΠ(n)) ⊆
... of closed subgroups of Π stabilizes ([CT12b, Theorem 6.1]);

2. Follows if we prove that Π̃C(n0)/Π̃C(n) is an `-group for some integer n0 ≥ 1 and any
n > n0. Write An := Π̃C(n)/Π(n). Using the commutative exact diagram

1 Π(n) Π̃C(n) An 1

1 Π(1) Π̃C(1) A1 1

we �nd an exact sequence

1→ B`,n → Π̃C(1)/Π̃C(n)→ A1/An → 1,

where B`,n is a quotient of Π(1)/Π(n), hence an `-group. Since A1 is �nite, for some
n0 � 0 and any n ≥ n0 the surjection A1/An � A1/An−1 is an isomorphism. The (non
abelian) snake lemma applied to the commutative diagram
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1 B`,n Π̃C(1)/Π̃C(n) A1/An 1

1 B`,n−1 Π̃C(1)/Π̃C(n− 1) A1/An−1 1,

'

shows that

Π̃C(n− 1)/Π̃C(n) = Ker(Π̃C(1)/Π̃C(n)→ Π̃C(1)/Π̃C(n− 1)) ⊆ B`,n,

hence that Π̃C(n − 1)/Π̃C(n) is an `-group. We conclude by induction on n ≥ n0 using
the exact sequence

1→ Π̃C(n− 1)/Π̃C(n)→ Π̃C(n0)/Π̃C(n)→ Π̃C(n0)/Π̃C(n− 1)→ 1.

So, from now on we may and do assume that (1) and (2) hold.

3.2.3 gΠ̃C(n) → +∞
We use that Π is Lie perfect and XΠ̃C(n) → X is Galois. Since C is closed but not open in Π,
|(Πn)Cn| → +∞ hence gΠ̃C(n) →∞ as soon as sup gΠ̃C(n) > 1. Indeed, assume that gΠ̃C(n0) > 1
for some n0 ≥ 1. Then, for every n > n0, the Riemann Hurwitz formula for XΠ̃C(n) → XΠ̃C(n0)

yields

lim
n→+∞

2gΠ̃C(n) − 2 ≥ lim
n→+∞

|(Πn)Cn|
|(Πn0)Cn0

|
(2gΠ̃C(n0) − 2) = +∞.

So it remains to show that sup gΠ̃C(n) = 1 and sup gΠ̃C(n) = 0 are not possible.

3.2.3.1 sup gΠ̃C(n) = 1

Assume sup gΠ̃C(n) = 1. Then there exists n0 such that for all n ≥ n0 the smooth compacti�ca-
tion of XΠ̃C(n) is an elliptic curve. Since �nite morphisms between elliptic curves are unrami�ed,

the Galois group Π̃(n0)/Π̃(n) ' ΠC(n0)/ΠC(n) of XΠ̃C(n) → XΠ̃C(n0) would be a quotient of
the étale fundamental group of the smooth compacti�cation of XΠ̃C(n0). In particular it would
be abelian, hence

ΠC(n0) = lim←−
n

ΠC(n0)/ΠC(n)

would be abelian and in�nite. But this contradicts the fact that Π is Lie perfect, since ΠC(n0)

would be an in�nite abelian quotient of the open subgroup Π̃C(n0) of Π.

3.2.3.2 sup gΠ̃C(n) = 0

Assume sup gΠ̃C(n) = 0. This means that for all n ≥ 0, the smooth compacti�cation of XΠ̃C(n)

is isomorphic to P1. So the Galois group Π̃C(1)/Π̃C(n) ' ΠC(1)/ΠC(n) of XΠ̃C(n) → XΠ̃C(1) is
a subgroup of PGL2(k). We use the following:

Fact 3.2.3.2.1 ([Cad12a, Corollary 10]). Suppose that k is an algebraically closed �eld of
characteristic p > 0. A �nite subgroup of PGL2(k) is isomorphic to one of the following groups:

• A cyclic group;

• A dihedral group D2m of order 2m, for some m > 0;

• A4, A5, S4;
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• An extension 1 → A → Π → Q → 1, with A an elementary abelian p-group and Q a
cyclic group of prime-to-p order;

• PSL2(Fpr), for some r > 0;

• PGL2(Fpr), for some r > 0;

where Fpr denotes the �nite �eld with pr elements.

From Fact 3.2.3.2.1 and the fact that ΠC(1)/ΠC(n) is an `-groups by Section 3.2.2(2), the
only possibility is that ΠC(1)/ΠC(n) is a cyclic group or ` = 2 and ΠC(1)/ΠC(n) ' D2m . If
the groups ΠC(1)/ΠC(n) are abelian for n� 0 we can conclude as in 3.2.3.1. So assume ` = 2
and ΠC(1)/ΠC(n) ' D2m . Since D2m �ts into an exact sequence

0→ Z/2m−1 → D2m → Z/2× Z/2→ 0,

the exactness of lim←− on �nite groups yields an in�nite abelian open subgroup Z2 ⊆ lim←−
n

ΠC(1)/ΠC(n) '

ΠC(1), and we conclude as in 3.2.3.1.

3.2.4 gCΠ(n) → +∞
3.2.4.1 De�nition of λ

If f : Y → X is a cover we de�ne

λY/X :=
2gY − 2

deg(f)
.

The following directly follows from the Riemann-Hurwitz formula.

Lemma 3.2.4.1.1. Let ... → Xn+1 → Xn → ... → ... → X be a sequence of �nite covers of
smooth proper connected curves over an algebraically closed �eld k. Then λXn+1/X ≥ λXn/X .
Assume furthermore thatDeg(Xn → X)→ +∞. Then gXn → +∞ if and only if lim

n→+∞
λXn/X >

0

For an open subgroup U ⊆ Π write λU := λXU/X . With this notation, applying Lemma
3.2.4.1.1 to

... XΠ̃C(n+1) XΠ̃C(n) ... XΠ̃C(1) X

... XCΠ(n+1) XCΠ(n) ... XCΠ(1) X

one gets inequalities

λCΠ(n+1) λCΠ(n)

λΠ̃C(n+1) λΠ̃C(n)

≥

≥

≥ ≥

hence λΠ̃C
:= lim

n→+∞
Π̃C(n) and λC := lim

n→+∞
λCΠ(n) exist with λΠ̃C

≥ λC . Also, since C ⊆ Π is

closed but not open

1. |(Πn)Cn| → +∞, hence gΠ̃C(n) → +∞ if and only if λΠ̃C
> 0;

2. |Πn/Cn| → +∞, hence gCΠ(n) → +∞ if and only if λC > 0.

By 3.2.3, λΠ̃C
> 0 hence it is enough to show that λΠ̃C

= λC . The remaining part of this section
is devoted to the proof of this fact.
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3.2.4.2 Inertia subgroups

Consider the commutative diagram:

XΠ̃C(n) XCΠ(n)

X

Cn/KCn (Πn)

enQ,d
n
Q

ei,n,di,n

(Πn)Cn

eQ,n,dQ,n

Πn/Cn

Suppose that Xcpt −X = {P1, ..., Pr} and denote with Ii ⊆ Π the image via π1(X) � Π of the
inertia group of the point Pi. The situation is then the following.

• XΠ̃C(n) → X is a Galois cover with Galois group (Πn)Cn . The inertia group and the
rami�cation index of any point of XΠ̃C(n) over Pi are given5 by (Ii,n)Cn ⊆ (Πn)Cn and
ei,n := |(Ii,n)Cn|. Write ((Ii,n)Cn)j ⊆ (Πn)Cn for the jth-rami�cation group in lower num-
bering (see [Ser68, Section 1, IV]) over the point Pi and (ei,n)j for its cardinality. Finally
set di,n for the exponent of the di�erent of any point of XΠ̃C(n) over Pi.

• XCΠ(n) → X is the cover corresponding to the open subgroup CΠ(n) ⊆ Π. If Q ∈ XCΠ(n)

is over Pi we denote with eQ,n, dQ,n the rami�cation index and the exponent of the di�erent
of Q over Pi.

• XΠ̃C(n) → XCΠ(n) is a Galois cover with Galois group Cn/KCn(Πn) ⊆ (Πn)Cn and there is
a natural bijection of sets

{Q ∈ XCΠ(n) | Q|Pi} ' (Ii,n)Cn\Πn/Cn.

If Q correspond to the element (Ii,n)Cnx ∈ (Ii,n)Cn\Πn/Cn, then the inertia group and the
rami�cation index at Q are given by Stab(Ii,n)Cn

((Ii,n)Cnx) and |Stab(Ii,n)Cn
((Ii,n)Cnx)| :=

enQ. The j
th-rami�cation group is given by ((Ii,n)Cn)j ∩Stab(Ii,n)Cn

(x). Write |((Ii,n)Cn)j ∩
Stab(Ii,n)Cn

(x)| = (enQ)j.

By [Ser68, Section 4, III, Pag. 51] we have the following relations:

ei,n = enQeQ,n; di,n = dnQ + enQdQ,n;
∑
Q|Pi

eQ,n = |Πn/Cn|.

3.2.4.3 Comparison

Using the Riemann-Hurwitz formula we get

λCΠ(n) = 2gX − 2 +
1

|Πn/Cn|
∑

1≤i≤r

∑
Q|Pi

dQ,n and λΠ̃C(n) = 2gX − 2 +
∑

1≤i≤r

di,n
ei,n

,

hence

λΠ̃C(n) − λCΠ(n) =
1

|Πn/Cn|

( ∑
1≤i≤r

di,n|Πn/Cn|
ei,n

−
∑
Q|Pi

dQ,nei,n
ei,n

)
5Since the cover is Galois the conjugacy class of the rami�cation group does not depend on the choice of the

point over Pi
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=
1

|Πn/Cn|

( ∑
1≤i≤r

di,n
∑

Q|Pi eQ,n

ei,n
−
∑
Q|Pi

dQ,nei,n
ei,n

)
=

1

|Πn/Cn|

( ∑
1≤i≤r

∑
Q|Pi

di,neQ,n − dQ,nei,n
ei,n

)

=
1

|Πn/Cn|

( ∑
1≤i≤r

∑
Q|Pi

di,n − dn,QenQ
enQ

)
=

1

|Πn/Cn|

( ∑
1≤i≤r

∑
Q|Pi

dnQ
enQ

)
.

So it is enough to show that for every integer 1 ≤ i ≤ r one has

lim
n→∞

1

|Πn/Cn|
∑
Q|Pi

dnQ
enQ

= 0.

By [Ser68, Proposition 4, IV, Pag. 64] we have

1

|Πn/Cn|
∑
Q|Pi

dnQ
enQ

=
1

|Πn/Cn|
∑
j≥0

∑
Q|Pi

(enQ)j − 1

enQ
.

3.2.4.4 Galois formalism

Consider the surjection

φj : ((Ii,n)Cn)j\Πn/Cn → (Ii,n)Cn\Πn/Cn

and recall the following elementary lemma.

Lemma 3.2.4.4.1 ([CT12a, Lemma 4.3]). Let G be a �nite group and H ⊆ G a normal
subgroup. Let X be a �nite set on which G acts and consider the natural surjection q :
H\X � G\X. If Gx ∈ G\X then

|q−1(Gx)| = |G||StabG(Gx) ∩H|
|H||StabG(Gx)|

.

If, under the bijection

(Ii,n)Cn\Πn/Cn ' {Q ∈ XCΠ(n) | Q|Pi},

the element (Ii,n)Cnx ∈ (Ii,n)Cn\Πn/Cn corresponds to the point Q ∈ XCΠ(n) above Pi, by
Lemma 3.2.4.4.1 we have

|φ−1
j ((Ii,n)Cnx)| = |(Ii,n)Cn|

|((Ii,n)Cn)j|
|((Ii,n)Cn)j ∩ Stab(Ii,n)Cn

((Ii,n)Cnx)|
|Stab(Ii,n)Cn

((Ii,n)Cnx)|
=

ei,n
(ei,n)j

(enQ)j

enQ
.

Summing over all the Q ∈ XCΠ(n) above Pi, we get∑
Q|Pi

ei,n
(ei,n)j

(enQ)j

(enQ)
= |((Ii,n)Cn)j\Πn/Cn|.

A similar reasoning gives ∑
Q|Pi

ei,n
enQ

= |Πn/Cn|,

hence

1

|Πn/Cn|
∑
j≥0

∑
Q|Pi

(enQ)j − 1

enQ
=

1

|Πn/Cn|

(∑
Q|Pi

enQ − 1

enQ

ei,n
ei,n

)
+

1

|Πn/Cn|

(∑
j≥1

∑
Q|Pi

(enQ)j − 1

enQ

(ei,n)jei,n
(ei,n)jei,n

)
.

The �rst term is
1

|Πn/Cn|
∑
Q|Pi

1− 1

|Πn/Cn|
1

ei,n

∑
Q|Pi

ei,n
enQ

=
|(Ii,n)Cn\Πn/Cn|
|Πn/Cn|

− 1

|(Ii,n)Cn|
.

Recall the following:
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Fact 3.2.4.4.2 ([CT12b, Theorem 2.1]). Let Π ⊆ GLr(Z`) be a closed subgroup and C ⊆ Π a
closed but not open subgroup. If KC(Π) = KC(CΠ(n)) for every integer n ≥ 0, then for every
closed subgroup I ⊆ Π one has

lim
n→+∞

|In\Πn/Cn|
|Πn/Cn|

=
1

|IC |
.

Since lim←−(Ii,n)Cn = (Ii)C , Fact 3.2.4.4.2 and Section 3.2.2(1) show that

lim
n→+∞

|(Ii,n)Cn\Πn/Cn|
|Πn/Cn|

− 1

|(Ii,n)Cn|
= 0.

The second term is

1

|Πn/Cn|

(∑
j≥1

(ei,n)j
ei,n

(∑
Q|Pi

(enQ)j

enQ

ei,n
(ei,n)j

)
− 1

ei,n

∑
Q|Pi

ei,n
enQ

)
=
∑
j≥1

(ei,n)j
ei,n

|((Ii,n)Cn)j\Πn/Cn|
|Πn/Cn|

− 1

|(Ii,n)Cn|
.

3.2.4.5 Stabilization of the wild inertia

Assume from now on that j ≥ 1. We compute (ei,n)j using the diagram

XΠ̃C(n) XΠ̃C(1)

X

Π̃C(1)/Π̃C(n)

(Πn)Cn (Π1)C1

Write ((Ii,n)Cn)+ for the wild inertia subgroup of (Ii,n)Cn and

(Ii,n)Cn(1) := Ker((Ii,n)Cn → (Ii,1)C1), ei,n(1) := |(Ii,n)Cn(1)|.

Consider the commutative diagram with exact rows

0 (Ii,n)Cn(1) (Ii,n)Cn (Ii,1)C1 0

0 Π̃C(1)/Π̃C(n) (Πn)Cn (Π1)C1 0.

Since (Ii,n)Cn(1) ⊆ Π̃C(1)/Π̃C(n) are `-groups by Section 3.2.2(1) and ((Ii,n)Cn)j ⊆ ((Ii,n)Cn)+

are p-groups by de�nition, we see that

1. the map (Ii,n)Cn � (Ii,1)C1 induces an isomorphism

φi,n : ((Ii,n)Cn)+ ' ((Ii,1)C1)+;

2. ((Ii,n)Cn)j ∩ Π̃C(1)/Π̃C(n) = 1, so that Fact 3.2.4.5.1 below yields

φi,n(((Ii,n)Cn)j) = ((Ii,1)C1)dj/ei,n(1)e.

Write ji,0 for smallest integer ≥ 0 such that (ei,1)ji,0 = 0 and

((Ĩi,n)Cn)j := φ−1
i,n((Ii,1)j) ⊆ (Ii,n)Cn , ((Ĩi)C)j := lim←−

i

((Ĩi,n)Cn)j ⊆ ΠC .
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Combining (1) and (2), we get

((Ii,n)Cn)j = ((Ĩi,n)Cn)dj/ei,n(1)e ={
((Ĩi,n)Cn)k = ((Ĩi)C)k if ∃ 1 ≤ k ≤ ji,0 such that ei,n(1)(k − 1) < j ≤ ei,n(1)k

1 if j > ei,n(1)ji,0.
.

Fact 3.2.4.5.1 ([Ser68, Lemma 5, IV, Pag. 75]). Let K ⊆ L a �nite Galois extension of local
�elds with group G. For −1 ≤ u ∈ R, write Gu for the dueth rami�cation group in lower
numbering and consider the function:

ψL/K(u) =

∫ u

0

1

[G0 : Gu]
dt.

If N ⊆ G if a normal subgroup corresponding to a Galois extension K ⊆ K ′, then

GuN/N = (G/N)ψL/K′ (u)

3.2.4.6 End of proof

We can continue the computation∑
j≥1

|((Ii,n)Cn)j|
|(Ii,n)Cn|

|((Ii,n)Cn)j\Πn/Cn|
|Πn/Cn|

− 1

|(Ii,n)Cn|
=

ei,n(1)
∑

1≤k≤ji,0

|((Ĩi,n)Cn)k||((Ĩi,n)Cn)k\Πn/Cn|
|(Ii,n)Cn ||Πn/Cn|

− 1

|(Ii,n)Cn|
=

ei,n(1)

|(Ii,n)Cn|
∑

1≤k≤ji,0

|((Ĩi)C)k|
( |((Ĩi,n)Cn)k\Πn/Cn|

|Πn/Cn|
− 1

|((Ĩi)C)k|
)

=

1

|(Ii,1)C1|
∑

1≤k≤ji,0

|((Ĩi)C)k|
( |((Ĩi,n)Cn)k\Πn/Cn|

|Πn/Cn|
− 1

|((Ĩi)C)k|
)
.

Setting (Ĩi)k for the preimage of ((Ĩi)C)k under the map Π � ΠC and observing that ((Ĩi)k)C =

((Ĩi)C)k, we conclude the proof since

lim
n→+∞

|((Ĩi,n)Cn)k\Πn/Cn|
|Πn/Cn|

− 1

|((Ĩi)C)k|
= lim

n→+∞

|((Ĩi,n)Cn)k\Πn/Cn|
|Πn/Cn|

− 1

|((Ĩi)k)C |
= 0

by Fact 3.2.4.4.2 and Section 3.2.2(1).

3.3 Proof of Theorem 3.1.3.2

3.3.1 Projective systems of abstract modular scheme

3.3.1.1 Group theory

Fix a closed subgroup Π of GLr(Z`), write Φ(Π) for the Frattini subgroup of Π, i.e. the
intersection of the maximal open subgroups of Π. Set C0(Π) := {Π} and for every integer n ≥ 1
de�ne Cn(Π) as the set of open subgroups U ⊆ Π such that Φ(Π(n−1)) ⊆ U but Π(n−1) 6⊆ U .
By [CT12b, Lemma 3.1], the maps ψn : Cn+1(Π) → Cn(Π) ψn : U 7→ UΦ(Π(n − 1)) are well
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de�ned and they endow to the collection {Cn(Π)}n∈N with a structure of a projective system.
For any C := (C[n])n≥0 ∈ lim←−Cn(Π) write

C[∞] := lim←−C[n] = ∩C[n] ⊆ Π.

By [CT12b, Lemma 3.3], one has the following.

Lemma 3.3.1.1.1.

1. Cn(Π) is �nite and, for n � 0 (depending only on Π), it coincide with set of open
subgroups U ⊆ Π such that Π(n) ⊆ U but Π(n− 1) 6⊆ U

2. For any C := (C[n])n≥0 ∈ lim←−n Cn(Π), the subgroup C[∞] is a closed but not open
subgroup of Π.

3. For any closed subgroup C ⊆ Π such that Π(n−1) 6⊆ C there exists U ∈ Cn(Π) such that
C ⊆ U .

3.3.1.2 Anabelian dictionary

Let X be a smooth geometrically connected k-variety and assume now that Π is the image of a
continuous representation ρ : π1(X)→ GLr(Z`). Consider the following (possibly disconnected)
étale covers:

fn : Xn :=
∐

U∈Cn(Π)

XU → X.

Proposition 3.3.1.2.1. Let n be an integer � 0 (depending only on Π). If x ∈ X(k) −
fn(Xn(k)), then Π(n− 1) ⊆ Πx, hence [Π : Πx] ≤ [Π : Π(n− 1)].

Proof. This follows from Fact 3.1.4.1.1 and Lemma 3.3.1.1.1(3).

Assume from now on that X is a curve. From Theorem 3.1.4.2.2 we deduce:

Corollary 3.3.1.2.2. Assume that ρ is GLP, ` 6= p and �x two integers d1, d2 ≥ 1. Then there
exists an integer N ≥ 1, depending only on ρ, d1, d2, such that for every n ≥ N and every
U ∈ Cn(Π) we have [kU : k] > d1 or gU > d2.

Proof. This follows from Theorem 3.1.4.2.2 arguing as in [CT12b, Corollaries 3.7 and 3.8].

3.3.2 Proof of Theorem 3.1.3.2 and a corollary

3.3.2.1 Proof of Theorem 3.1.3.2

Assume that X is a curve and ρ is GLP . Consider the projective system of covers constructed
in 3.3.1.2

fn : Xn :=
∐

U∈Cn(Π)

XU → X.

By Corollary 3.3.1.2.2 we can choose an n0 such that each connected component of Xn0 has
genus lager then the constant g of Fact 3.1.4.2.1 or is de�ned over a non trivial extension of k.
By the choice of n0, the image Xn0 of fn0 : Xn0(k) → X(k) has a �nite number of points. Up
to replace n0 with some integer n′0 ≥ n0, by Lemma 3.3.1.2.1 for all x ∈ X(k)−Xn0 we have
Π(n0) ⊆ Πx. Hence Xex(k) ⊆ Xn0 is �nite and one can take

N := max
x∈Xn0−Xex

ρ (k)

{
[Π : Π(n0)], [Π : Πx]

}
.

This concludes the proof of Theorem 3.1.3.2.

83



3.3.2.2 Uniform boundedness of `-primary torsion

For further use, we state a generalization of Corollary 3.1.5.1.1 for arbitrary GLP represen-
tations. We recall the notation and the terminology of [CT12b, Section 4]. Given a �nitely
generated free Z` module T ' Zr` with a continuous action of π1(X) write V := T ⊗ Q` and
M := V/T . For a character χ : π1(X) → Z∗` , a �eld extension k ⊆ L and a morphism
ξ : Spec(L) → X, let χξ (resp. ρξ) denote the composition of χ (resp. ρ) with the morphism
π1(L)→ π1(X). Consider the following π1(L)-sets

M ξ := {v ∈M | ρξ(σ)v ∈< v >}, T ξ := {v ∈ T | ρξ(σ)v ∈< v >},

and π1(L)-modules

Mξ(χ) := {v ∈M | ρξ(σ)v = χξ(σ)v}, Tξ(χ) := {v ∈ T | ρξ(σ)v = χξ(σ)v}.

Recall that χ is said to be non-sub-ρ if χx is not isomorphic to a sub representation of ρx for any
x ∈ X(k). Finally denote with T(0) the maximal isotrivial submodule of T , i.e. the maximal
submodule of T on which π1(Xk) acts via a �nite quotient.

Corollary 3.3.2.2.1. Assume that k is �nitely generated, X is a curve, ` 6= p and that
ρ : π1(X)→ GL(T ) is GLP . Then

1. For every non-sub-ρ character χ : π1(X)→ Z∗` , there exists an integer N ≥ 1, depending
only on ρ and χ, such that, for any x ∈ X(k) the π1(x)-module Mx(χ) is contained in
M [`N ].

2. Assume furthermore that T(0) = 0. Then there exists an integer N ≥ 1, depending only
on ρ, such that for every x ∈ X(k)−Xex

ρ (k), the π1(k)-set Mx is contained in M [`N ].

Proof. This follows from Theorem 3.1.3.2 as in the proof of [CT12b, Corollary 4.3].

3.3.3 Further remarks

Let k be a �nitely generated �eld of characteristic p ≥ 0, let X be a smooth geometrically
connected k-curve. Let ρ : π1(X) → GLr(Z`) be a continuous representation and retain the
notation of Section 3.1.2.

3.3.3.1 Points of bounded degree

As already mentioned in Section 3.1.3, Theorem 3.1.3.2 is the natural extension to positive char-
acteristic of the main result of [CT12b]. In the subsequent paper [CT13], Cadoret-Tamagawa
show ([CT13, Theorem 1.1]) that if p = 0 and ρ is GLP, then for every d ≥ 1, the set Xex

ρ (≤ d)
is �nite and there exists an integer N(ρ, d) := N ≥ 1, depending only on ρ and d, such that
[Π : Πx] ≤ N for all x ∈ Xgen

ρ (≤ d). To prove this they study the gonality of the connected
components of the abstract modular curves Xn.

3.3.3.2 Gonality

For a smooth proper k-curve Y , the (geometric) gonality γY of Y is the minimum degree of a
non constant map Yk → P1

k
. While the genus gY controls the �niteness of k-rational points, the

gonality, in characteristic zero, controls the �niteness of points of bounded degree.

Fact 3.3.3.2.1 ([Fal91], [Fre94]). If k is a �nitely generated �eld of characteristic zeros and
d ≥ 1 is an integer, for every smooth proper k-curve Y such that γY ≥ 2d+ 1, the set Y (≤ d)
is �nite.
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In light of Fact 3.3.3.2.1 and of the strategy described in Section 3.1.4.1, to prove [CT13,
Theorem 1.1] when p = 0, Cadoret-Tamagawa show ([CT13, Theorem 3.3]) that, for every
C ⊆ Π closed but not open subgroup, the gonality γCΠk(n) of the smooth compacti�cation
of XCΠk(n) tends to in�nity with n. While one can adapt (see Appendix A) the arguments
of [CT13, Theorem 3.3] to prove that γCΠk(n) tends to in�nity also when p > 0, the positive
characteristic variant6 of Fact 3.3.3.2.1 is not true, so that one cannot deduces directly from
the growth of the gonality the positive characteristic analogue of [CT13, Theorem 1.1].

3.3.3.3 Isogonality

However, in [CT15b, Appendix] Cadoret-Tamagawa have introduced a new invariant, the isog-
onality, that could be used to study points of bounded degree is positive characteristic.

De�nition 3.3.3.3.1. Let k a �eld of characteristic p > 0 and Y a smooth proper geometrically
connected k-curve. The k-isogonality γisoY of Y is de�ned as d+1, where d is the smallest integer
which satis�es the following condition:

• There is no diagram Yk ← Y ′ → B of non constant morphisms of smooth proper curves
over k, with B an isotrivial7 curve and deg(Y ′ → B) ≤ d.

Their result is the following:

Fact 3.3.3.3.2 ([CT15b, Corollary A.7]). If k is a �nitely generated �eld of positive charac-
teristic and d ≥ 1 is an integer, and d ≥ 1 is an integer, then for every smooth proper k-curve
Y such that γY ≥ 2d+ 1 and γisoY ≥ d+ 1, the set Y (≤ d) is �nite.

Since, by the results in Appendix A, we know that γCΠk(n) tends to in�nity, to extend
Theorem 3.1.3.2 to points of bounded degree it would be enough to show the following.

Conjecture 3.3.3.3.3. Assume that ρ is a GLP, p > 0 and ` 6= p. Then for every closed but
not open subgroup C ⊆ Πk one has

lim
n→+∞

γisoXCΠ
k

(n)
= +∞.

6This is due to isotriviality issues in the positive characteristic variant of the Mordell-Lang conjecture; see
[CT15b, Appendix].

7If k is a �eld of characteristic p > 0, a k-scheme S is said to be isotrivial, if there exists a �nite �eld Fq ⊆ k
and a Fq-scheme S0 such that S0 ×Fq

k ' Sk.
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Chapter 4

Specialization of Néron-Severi groups in
positive characteristic

4.1 Introduction

4.1.1 Conventions

For a �eld k and a k-variety X, write |X| for the set of closed points. If x ∈ X, write k(x) for
its residue �eld and x for a geometric point over x. If Y → X is a morphism and x ∈ X write
ix : Yx → Y for the natural inclusion of the �bre Yx at x in Y . We use � and ↪→ to denote
surjective and injective maps respectively. If Fq is a �nite �eld, write F for its algebraic closure.
If C is an abelian category write C ⊗ Q for its isogeny category and ⊗Q : C → C ⊗ Q for the
canonical functor.

4.1.2 Summary

Let k be a �nitely generated �eld of characteristic p > 0, ` 6= p a prime and f : Y → X a
smooth proper morphism. In �rst approximation, the main result of this chapter is a version of
the variational Tate conjecture for divisors in the generic case: for x ∈ |X|, if H2(Yx,Q`(1)) has
no more Galois invariants than the generic �bre, then Yx has no more divisors than the generic
�bre. When k is a �eld of characteristic zero, this has been proved by André as a consequence
of Lefschetz (1,1)-theorem and the Hodge theory in [Del71]; see Section 4.1.5 for more details.

The starting point of our proof is to replace Hodge theory with crystalline cohomology,
since a variational form of the Tate conjecture (Fact 4.1.6.1.1) is known in this setting. The
main di�culty to overcome is to transfer the information about the Galois invariants of the
`-adic lisse sheaf R2f∗Q`(1) to the crystalline local system (F-isocrystal) R2fcrys,∗OY/K(1).
This is the main new contribution of this chapter (Theorem 4.1.6.3.1). More precisely, since
the F-isocrystal R2fcrys,∗OY/K(1) has a behaviour which is quite di�erent from R2f∗Q`(1) (for
example, in general its cohomology is not �nite dimensional), this comparison cannot be done
directly. The idea is then to show (Theorem 4.6.5.4.1) that R2fcrys,∗OY/K(1) is coming from a
smaller and better behaved category of p-adic local systems: the category of overconvergent F-
isocrystals. As it has been understood that overconvergent F-isocrystals share many properties
with lisse sheaves ([Cre92], [Ked06a], [AC13b]), the idea is to compare �rst R2fcrys,∗OY/K(1)

with its overconvergent incarnation R2f∗O†Y/K(1) via various p-adic comparison theorems and

then R2f∗O†Y/K(1) with R2f∗Q`(1) via the theory of weights ([Del80], [KM74]).
However, the theory of weights allows us to transfer only information readable on char-

acteristic polynomials of the Frobenii, that is to compare R2f∗O†Y/K(1) and R2f∗Q`(1) only
up to semi-simpli�cation. The way to grasp the missing information is Tannakian: instead of
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considering only R2f∗O†Y/K(1) and R2f∗Q`(1), we consider all the possible tensor constructions
and sub quotients arising from them, obtaining, via the Tannakian formalism, two algebraic
groups Gp and G`. Since G` identi�es with the Zariski closure of the image of π1(X, x) acting
on (R2f∗Q`(1))x ' H2(Yx,Q`(1)), instead of asking that H2(Yx,Q`(1)) has no more Galois
invariants than the generic �bre, we ask that the Zariski closure G`,x of the image of π1(x, x)
acting on H2(Yx,Q`(1)) identi�es with G`. Then, the theory of weights, combined now with
some algebraic groups theory, allows us to relate the inclusion of the local p-adic monodromy
group Gp,x ⊆ Gp at x with the inclusion G`,x ⊆ G`.

Behind this is the idea that, while R2f∗O†Y/K(1) and R2f∗Q`(1) should be di�erent incar-
nations of the same motives, each of them contains some speci�c feature: R2f∗Q`(1) can be
studied via `-adic Lie groups theory, while R2f∗O†Y/K(1) is an overconvergent incarnation of
R2fcrys,∗OY/K(1), which, in turn, contains information on the deformations of cycles.

4.1.3 Galois generic points

Let k be a �eld of characteristic p > 0 with algebraic closure k, X a smooth and geometrically
connected k-variety with generic point η and f : Y → X a smooth proper morphism of k-
varieties. For x ∈ X, �x an étale path from x to η. For every ` 6= p, by smooth proper
base change R2f∗Q`(1) is a lisse sheaf on X and the choice of the étale path gives equivariant
isomorphisms

H2(Yη,Q`(1)) R2f∗Q`(1)η R2f∗Q`(1)x H2(Yx,Q`(1))

π1(X, η) π1(X, x) π1(x, x).

' ' '

'

De�nition 4.1.3.1. A point x ∈ X is `-Galois generic (resp. strictly `-Galois generic) for
f : Y → X if the image of π1(x, x) → π1(X, η) → GL(H2(Yη,Q`(1))) is open (resp. coincides
with) in the image of π1(X, η)→ GL(H2(Yη,Q`(1))).

By [Cad17, Theorem 1.1], x is `-Galois generic for one ` 6= p if and only if x is `-Galois generic
for every ` 6= p. So one simply says that x is Galois generic for f . This is not true for strictly
Galois generic points, and one says that x is strictly Galois generic if there exists an ` 6= p such
that x is strictly `-Galois generic.

4.1.4 Neron-severi generic points

4.1.4.1 Tate conjecture for divisors

The geometric Néron-Severi group NS(Zk) of a smooth proper k-variety Z is a �nitely generated
abelian group such that NS(Zk)⊗Q identi�es with the image of the cycle class map for `-adic
cohomology

cZk : Pic(Zk)⊗Q→ H2(Zk,Q`(1)).

Since NS(Zk) is a �nitely generated abelian group, π1(k) acts on it trough a �nite quotient and
hence NS(Zk) ⊆ H2(Zk,Q`(1)) is �xed under the action of the connected component G0

` of the
Zariski closure of the image G` of π1(k) acting on H2(Zk,Q`(1)). Recall that the `-adic Tate
conjecture for divisors ([Tat65]) predicts the following:

Conjecture 4.1.4.1.1 (T (Z, `)). Let k be a �nitely generated �eld and Z a smooth proper
k-variety. Then the map cZk : NS(Zk)⊗Q` → H2(Zk,Q`(1))G

0
` is an isomorphism
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4.1.4.2 Specialization morphisms

Retain the notation and the assumptions of Section 4.1.3. For every x ∈ X, there is an injective
specialization homomorphism (see e.g. [MP12, Proposition 3.6.])

spη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q

compatible with the cycle class map, in the sense that the following diagram commutes:

Pic(Yη)⊗Q Pic(Y )⊗Q Pic(Yx)⊗Q

NS(Yη)⊗Q NS(Yx)⊗Q

H2(Yη,Q`(1)) H2(Yx,Q`(1))

cYη

i∗η i∗x

cYx

spη,x

'

Since the Néron -Severi group is invariant under extensions of algebraically closed �elds (see
e.g. [MP12, Proposition 3.1]), the map spη,x is well de�ned, independently of the choice of the
geometric points η over η and x over x.

The abelian group NS(Yη) ⊗ Q is a π1(X, η)-module and hence the group π1(x, x) acts on
NS(Yη)⊗Q by restriction trough the morphism π1(x, x)→ π1(X, x) ' π1(X, η). Since the map
spη,x is π1(x, x)-equivariant with respect to the natural action of π1(x, x) on NS(Yx) ⊗ Q, one
constructs an injective specialization map

sparη,x : NS(Yη)⊗Q ⊆ (NS(Yη)⊗Q)π1(x,x) spη,x−−−→ NS(Yx)⊗Q,

where for a smooth proper k-variety Z one writes NS(Z)⊗Q := (NS(Zk)⊗Q)π1(k).

De�nition 4.1.4.2.1. One says that x is NS-generic (resp. arithmetically NS-generic) for
f : Y → X if spη,x (resp. sparη,x) is an isomorphism.

Conjecture 4.1.4.1.1 predicts that every (strictly) Galois generic point is (arithmetically)
NS-generic. Our main result is that this holds (without assuming Conjecture 4.1.4.1.1), at
least when f : Y → X is projective.

Theorem 4.1.4.2.2. Let k be a �nitely generated �eld and f : Y → X a smooth projective
morphism. If x ∈ X is Galois-generic (resp. strictly Galois generic) for f : Y → X then it is
NS-generic (resp. arithmetically NS-generic) for f : Y → X. If f : Y → X is smooth and
proper, the same is true for all x in a dense open subset of X.

4.1.5 Proof in characteristic zero

When k is a �eld of characteristic zero Theorem 4.1.4.2.2 is due to André ([And96]; see also
[Cad12b, Corollary 5.4] and [CC18, Proposition 3.2.1]) and it holds for f : Y → X proper.
Since it is the starting point for our proof we brie�y recall the argument when k ⊆ C and x
is a closed point. Fix a smooth compacti�cation Y ⊆ Y of Y . The commutative diagram of
k-varieties

Yx Y Y

k(x) X

�
x

induces a commutative diagram:
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H0(XC, R
2f∗Q(1)) H2(YC,Q(1)) NS(Yη)⊗Q

H2(Yx,Q(1))π
top
1 (XC) H2(Y C,Q(1)) NS(Y C)⊗Q

H2(Yx,Q(1)) NS(Yx)⊗Q

'

Ler

spη,x

cYx

where Ler is the edge map in the Leray spectral sequence attached to f : Y → X. Take any
zx ∈ NS(Yx) ⊗ Q. Since z is �xed by an open subgroup of π1(x) and x is Galois-generic, up
to replacing X with a �nite étale cover one can assume that zx is �xed by π1(XC). By the
comparison between the étale and the singular sites, zx is �xed by πtop1 (XC). By Deligne's �xed
part theorem ([Del71, Theoreme 4.1.1]) the map

H2(Y C,Q(1))→ H2(Yx,Q(1))π
top
1 (XC)

is surjective. By semisemplicity, the map H2(Y C,Q(1)) → H2(Yx,Q(1))π
top
1 (XC) splits in the

category of polarized Q-Hodge structures, so that zx is the image of a z ∈ H0,0(Y C,Q(1)). By
the Lefschetz (1,1) theorem, z lies in NS(Y C)⊗Q. One concludes the proof observing that, by
construction, the restriction zη of z to NS(Yη)⊗Q is such that spη,x(zη) = zx.

4.1.6 Strategy in positive characteristic

In characteristic zero the main ingredients are the combination of Deligne's �xed part theorem
and the Lefschetz-(1,1) theorem (what is called the variational Hodge conjecture for divisors;
see e.g. [MP12, Conjecture 9.6, Remark 9.7]) and the comparison between the étale and the
singular sites. To try and make the argument of Section 4.1.5 works in positive characteristic
the idea is to replace Betti cohomology with crystalline cohomology. The main reason for this
is that the variational Tate conjecture for projective morphisms (Fact 4.1.6.1.1), that we now
recall, is known in this setting.

4.1.6.1 Crystalline variational Tate conjecture

Let Fq be the �nite �eld with q = ps elements, X a connected smooth Fq-variety and f : Y → X
a smooth proper morphism of Fq-varieties (in our application f : Y → X is a model for
f : Y → X). Write respectively Mod(X|W ), Mod(Y|W ) for the categories of OX|W , OY|W
modules in the crystalline site of X , Y over W := W (Fq) ([Mor13, Section 2]). Then there is a
higher direct image functor

Rifcrys,∗ : Mod(Y|W )→Mod(X|W )

and, for every t ∈ X (Fq), a commutative diagram

H2
crys(Y) Pic(Y)⊗Q

H0(X , R2fcrys,∗OY/W )⊗Q H2
crys(Yt) Pic(Yt)⊗Q

Ler
i∗t

cY

i∗t

cYt

where H2
crys(Y) and H2

crys(Yt) are the (rational) crystalline cohomology of Y and Yt respectively,
Leray is the edge map in the Leray spectral sequence attached to f : Y → X and cY , cYt are the
crystalline cycle class maps. Write F for the s-power of the absolute Frobenius of X and recall
that the images of cY and cYt lie in H

2
crys(Y)F=q and H2

crys(Yt)
F=q, respectively. Then we have

the variational Tate conjecture in crystalline cohomology:
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Fact 4.1.6.1.1 ([Mor15, Theorem 1.4]). If f : Y → X is projective, for every zt ∈ Pic(Yt)⊗Q
the following are equivalent:

1. There exists z ∈ Pic(Y)⊗Q such that cYt(zt) = i∗t (cY(z));

2. cYt(zt) lies in H
0(X , R2fcrys,∗OY/W )⊗Q;

3. cYt(zt) lies in H
0(X , R2fcrys,∗OY/W )F=q ⊗Q.

However, to apply Fact 4.1.6.1.1 in our setting, there are two di�culties to overcome:

1. Crystalline cohomology works well only over a perfect �eld, while our base �eld k is not
perfect;

2. There is no direct way to compare the `-adic and the crystalline sites, so that one has to
�nd a di�erent way to transfer the Galois generic assumption to the crystalline setting.

4.1.6.2 Spreading out

To overcome (1) one uses a spreading out argument, so that our morphism f : Y → X will
appear as the generic �bre of a smooth projective morphism f : Y → X , where X is a smooth
geometrically connected Fq-variety. The idea is then to lift an element εx ∈ NS(Yx) ⊗ Q to
NS(Yη) ⊗ Q by specializing it �rst to an element εt ∈ NS(Yt) ⊗ Q of a closed �bre of Y → X
and then to try and lift εt to an element ε ∈ Pic(Y) ⊗ Q, via the crystalline variational Tate
conjecture over Fq.

4.1.6.3 From ` to p

In order to show that εt ∈ NS(Yt) ⊗ Q satis�es the assumption of Fact 4.1.6.1.1, one has to
transfer the `-adic information that x is Galois generic to crystalline cohomology. For this
the key ingredient is Theorem 4.1.6.3.1 below. Assume that Z is a smooth geometrically
connected Fq-variety admitting an Fq-rational point t and that there is a map g : Z → X (in
our application g : Z → X is a model for x : k(x)→ X). The cartesian square

YZ Y

Z X

fZ � f

g

induces representations

π1(Z, t)→ π1(X , t)→ GL(H i(Yt,Q`(j)).

Theorem 4.1.6.3.1. Assume that the image of π1(Z, t) → π1(X , t) → GL(H i(Yt,Q`(j)) is
open in the image of π1(X , t) → GL(H i(Yt,Q`(j)) and that the Zariski closures of the images
of π1(X , t) and π1(XF, t) acting on H i(Yt,Q`(j)) are connected. Then the base change map

H0(X , Rifcrys,∗OY/W )F=qj ⊗Q→ H0(Z, RifZ,crys,∗OYZ/W )F=qj ⊗Q

is an isomorphism.

As mentioned in Section 4.1.2, the subtle point in the proof of Theorem 4.1.6.3.1 is to
compare the category of F -isocrystals, where the crystalline variational Tate conjecture holds,
with the category of `-adic lisse sheaves. These categories behaves di�erently. For example, if
f : Y → X is a non-isotrivial family of ordinary elliptic curves, R1fcrys,∗OY/W ⊗Q carries a two
steps �ltrations, re�ecting the decomposition of the p-divisible groups of the generic �bre of
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f : Y → X into étale and connected parts, while R1f∗Q` is irreducible. This leads to consider
the smaller category of overconvergent F -isocrystals, whose behaviour is closer to the one of
`-adic lisse sheaves. Then the proof of Theorem 4.1.6.3.1 decomposes as follows:

1. We prove thatRifcrys,∗OY/W⊗Q andRifZ,crys,∗OYZ/W⊗Q are overconvergent F -isocrystals
(Theorem 4.2.1.1.2, which uses a technical result proved in the Part 3, building on the work
of Shiho on relative log convergent cohomology and relative rigid cohomology [Shi08a],
[Shi08b]);

2. We use that one doesn't loose information passing from crystalline cohomology to over-
convergent F -isocrystals (Fact 4.2.1.1.1);

3. Let Gp and GZ,p be the Tannakian groups of Rifcrys,∗OY/W ⊗Q and RifZ,crys,∗OYZ/W ⊗Q
as overconvergent F -isocrystals. Theorem 4.1.6.3.1 amounts to showing that Gp = GZ,p.

4. The assumption implies that the Zariski closures G` and GZ,` of the image of π1(X , t)
and π1(Z, t) acting on H i(Yt,Q`(j)) are equal.

5. To show that (4) implies (3), one uses the theory of Frobenius weights and that to compare
reductive algebraic groups it is enough to compare their tensor invariants.

Remark 4.1.6.3.2. In Theorem 4.1.6.3.1, the assumptions that Z has a Fq rational point
and that the Zariski closure of the image of π1(XF, t) is connected are not necessary, but the
proof without these assumptions requires the more elaborated formalism of Qp-overconvergent
isocrystals. In our application to Theorem 4.1.4.2.2 one can reduce to the case where these
assumptions are satis�ed, so that we did not include the proof of the general form of Theorem
4.1.6.3.1.

Remark 4.1.6.3.3. In characteristic 0, the proof sketched in 4.1.5 shows that the variational
Hodge conjecture implies the `-adic variational Tate conjecture over �elds of characteristic
zero. In positive characteristic, our method does not show that the crystalline variational Tate
conjecture implies the `-adic one. The issue comes from the fact that one does not know how
to compare the `-adic and the crystalline cycle class maps.

4.1.7 Applications

4.1.7.1 Existence of NS-generic points

Let k be a �eld of transcendence degree ≥ 1 over Fp and X a smooth geometrically connected
k-variety with generic point η. Let f : Y → X be a smooth proper morphism of k-varieties.
Recall the following:

Fact 4.1.7.1.1. Assume that k is �nitely generated. Then:

• ([Ser89, Section 10.6], Fact 1.2.2.2.2): The subset of non strictly `-Galois-generic points
for f : Y → X is sparse. In particular there exists an integer d ≥ 1 such that there
are in�nitely many x ∈ |X| with [k(x) : k] ≤ d that are strictly `-Galois-generic for
f : Y → X.

• (Theorem 3.1.3.2): If X is a curve, all but �nitely many x ∈ X(k) are Galois-generic for
f : Y → X.

Theorem 4.1.4.2.2, together with Fact 4.1.7.1.1 and the fact that if S ⊆ |X| is a subset and
U ⊆ X is a dense open subscheme such that U ∩ S ⊆ U is sparse then S ⊆ |X| is again sparse
([MP12, Proposition 8.5 (a)]), implies:
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Corollary 4.1.7.1.2. Assume that k is �nitely generated. Then:

• The subset of closed non arithmetically NS-generic points for f : Y → X is sparse. In
particular there exists an integer d ≥ 1 such that there are in�nitely many x ∈ |X| with
[k(x) : k] ≤ d that are arithmetically NS-generic for f : Y → X.

• If X is a curve, all but �nitely many x ∈ X(k) are NS-generic for f : Y → X.

Via a spreading out argument one has the following extension of the main result of [MP12]
to positive characteristic:

Corollary 4.1.7.1.3. If k is a �eld of transcendence degree ≥ 1 over Fp, then X has a closed
NS-generic point.

Remark 4.1.7.1.4. Atticus Christensen ([Chr18, Theorem 1.0.1]) has independently proved
Corollary 4.1.7.1.3. His proof is very di�erent from ours, since his approach is inspired from
the analytic approach in [MP12], while ours is inspired from the Hodge theoretic approach
in [And96]. On the other hand, it seems that Corollary 4.1.7.1.2 (that will be used to prove
Corollaries 4.1.7.2.1,4.1.7.2.2 and 4.1.7.3.1) can not be obtained via his method, that gives
di�erent information on the set of NS generic points ([Chr18, Theorems 1.0.3, 1.0.4.]).

From Corollary 4.1.7.1.3 one easily deduces the following results on the behaviour of the
Tate conjecture in families:

Corollary 4.1.7.1.5. If T (Yx, `) holds for all x ∈ |X|, then T (Yη, `) holds.

Remark 4.1.7.1.6. Corollary 4.1.7.1.5 together with a spreading out argument can be used to
reduce the Tate conjecture for smooth proper varieties over arbitrary �nitely generated �elds of
characteristic p, to �elds of transcendence degree one over Fp, extending results from [Mor77],
speci�c to abelian schemes, to arbitrary families of varieties.

The argument in [MP12, Theorem 7.1.] shows that Corollary 4.1.7.1.3 is enough to prove
the following:

Corollary 4.1.7.1.7. Assume furthermore that Yx is projective for every x ∈ |X|. Then there
exists a dense open subscheme U ⊆ X such that the base change fU : U×XY → U of f : Y → X
trough U ⊆ X is projective.

Remark 4.1.7.1.8. Whether the analogue of Corollary 4.1.7.1.7 holds over �elds algebraic
over Fp is not known. The problem over this kind of �elds is that it is not true in general that
there exists a NS-generic closed point (as the example of a family of abelian surfaces such that
the generic �bre has not complex multiplication shows).

4.1.7.2 Hyperplane sections

From now on, assume that k is �nitely generated. Assume that Z is a smooth projective k-
variety of dimension ≥ 3 and let Z ⊆ Pnk be a projective embedding. One can ask whether
there exists a smooth hyperplane section D of Z such that the canonical map

NS(Zk)⊗Q→ NS(Dk)⊗Q

is an isomorphism. This is not true in general (see Example 4.4.1.1), but one can apply Theorem
4.1.4.2.2 to obtain the following arithmetic variant:
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Corollary 4.1.7.2.1. If dim(Z) ≥ 3 there are in�nitely many smooth k-rational hyperplane
sections D ⊆ Z such that the canonical map

NS(Z)⊗Q→ NS(D)⊗Q

is an isomorphism.

As already mentioned in Section 4.1.4, Conjecture 4.1.4.1.1 implies Theorem 4.1.4.2.2. The
`-adic Tate conjecture for divisors conjecture is still widely open except for some special classes
of varieties like Abelian varieties and K3 surfaces. Using Corollary 4.1.7.2.1, one can enlarge
the class of varieties for which it holds:

Corollary 4.1.7.2.2. Let Z be a smooth projective k-variety of dimension ≥ 3 and choose a
projective embedding Z ⊆ Pnk . If T (D, `) holds for the smooth hyperplane sections D ⊆ Z,
then T (Z, `) holds.

Remark 4.1.7.2.3. Corollary 4.1.7.2.2 can be used to reduce the `-adic Tate conjecture for
divisors on smooth proper k-varieties to smooth projective k-surfaces, extending an unpublished
result ([dJ]) of De Jong (whose proof has been simpli�ed in [Mor15, Theorem 4.3]) to in�nite
�nitely generated �elds.

4.1.7.3 Uniform boundedness of Brauer groups

Combining Theorem 4.1.4.2.2 with the main result of Chapter 3 (Theorem 3.1.3.2) and the
arguments of [CC18], one gets the following application to uniform boundedness for the `-
primary torsion of the cohomological Brauer group in smooth proper families of k-varieties.

Corollary 4.1.7.3.1. Let X be a smooth geometrically connected k-curve and let f : Y → X
be a smooth proper morphism of k-varieties. If T (Yx, `) holds for all x ∈ |X|, then there exists
a constant C := C(Y → X, `) such that

|Br(Yx)[`
∞]π1(x,x)| ≤ C

for all x ∈ X(k).

Corollary 4.1.7.3.1 extends to positive characteristic the main result of [CC18] and gives some
evidence for a positive charateristic version of the conjectures on the uniform boundedness of
Brauer group in [VAV17]. Elaborating the argument in the proof of Corollary 4.1.7.3.1, one
gets also an unconditional variant of Corollary 4.1.7.3.1 (Corollary 4.5.2.2) and a result on the
specialization of the p-adic Tate module of the Brauer group (Corollary 4.5.3.1).

4.1.8 Organization of the chapter

In the �rst two sections we prove of Theorem 4.1.4.2.2: in Section 4.2 we prove Theorem
4.1.6.3.1 and in Section 4.3 we show Theorem 4.1.4.2.2. Sections 4.4 and 4.5 are devoted to
applications: in Section 4.4 we prove Corollary 4.1.7.2.1, and in Section 4.5 we give the proof
of Corollary 4.1.7.3.1. In Sections 4.6 and 4.7 we prove the overconvergence of the higher direct
image in crystalline cohomology (Theorem 4.6.5.4.1), which is used in the proof of Theorem
4.1.6.3.1.
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4.2 Proof of Theorem 4.1.6.3.1

This section is devoted to the proof of Theorem 4.1.6.3.1. In Section 4.2.1, after recalling the
various categories of isocrystals needed in our argument, we reformulate Theorem 4.1.6.3.1 in
terms of monodromy groups of F-overconvergent isocrystals. In Section 4.2.2, we use indepen-
dence techniques to prove Theorem 4.1.6.3.1.

4.2.1 Tannakian reformulation of Theorem 4.1.6.3.1

4.2.1.1 Overconvergent isocrystals

Let X be a smooth geometrically connected Fq-variety with q = ps and write F for s-power of
the absolute Frobenius on X . Write W := W (Fq) for the Witt ring of Fq, K for its fraction
�eld and Mod(X|W ) for the category of OX|W -modules in the crystalline site of X . Consider
the following categories:

Notation Name Reference
Crys(X|W )Q Isocrystals [Mor13, Section 2]
Isoc†(X|K) Overconvergent Isocrystals [Ber96, De�nition 2.3.6]
Isoc(X|K) Convergent isocrystals [Ber96, De�nition 2.3.2]

and their enriched version with Frobenius structure: F-Crys(X|W )Q, F-Isoc†(X|K) and
F-Isoc(X|K). They �t into the following commutative diagram:

F-Crys(X|W )Q F-Isoc(X|K) F-Isoc†(X|K)

Crys(X|W )Q Isoc†(X|K)

Mod(X|W )⊗Q

(1)

'

(−)geo

(3)

(2)

(4)

(−)geo

(5)
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where (−)geo are the forgetful functors, (1) is the equivalence of categories constructed in [Ber96,
Theoreme 2.4.2] and (2) is the obvious functor. Write

Rifcrys,∗OY/K := Rifcrys,∗OY/W ⊗Q ∈Mod(X|W )⊗Q

and recall the following fact:

Fact 4.2.1.1.1 ([Ked04, Theorem 1.1]). The functor (3) is fully faithful.

The following result, which gives us an overconvergent incarnation of Rifcrys,∗OY/K , is a
consequence of the main result (Theorem 4.6.5.4.1) of Sections 4.6 and 4.7, building on the
work of Shiho on relative rigid cohomology ([Shi08a], [Shi08b]).

Theorem 4.2.1.1.2. Let f : Y → X be a smooth proper morphism. Then Rifcrys,∗OY/K ∈
Mod(X|W )⊗Q lies in the essential image of (4).

Proof. By [Mor13, Proposition 3.2], Rifcrys,∗OY/K is in the essential image of (5) ◦ (−)geo.
Under the equivalence (1), Rifcrys,∗OY/K is sent to the Ogus higher direct image RifOgus,∗OY/K ,
see [Ogu84, Section 3, Theorem 3.1] and [Mor13, Corollary 6.2]. One concludes by Theorem
4.6.5.4.1, which says that RifOgus,∗OY/K is in the image of an F-overconvergent isocrystal.

WriteRif∗O†Y|K for the (unique up to isomorphism) object of F-Isoc†(X|K) liftingRifcrys,∗OY/K .

4.2.1.2 Tannakian formalism

Since X is a geometrically connected Fq variety, F-Isoc†(X|K) and Isoc†(X|K) are K-linear
Tannakian categories over K1, see [D'Ad17, Section 3.2] for more details. If one furthermore
assumes that X has a Fq-rational point t, the categories F-Isoc†(X|K), Isoc†(X|K) are neu-
tralized by the �bre functors

F-Isoc†(X|K) Isoc†(X|K)

Isoc†(Fq) ' V ectK .

(−)geo

t∗
t∗

Write π†1(X , t) and π†,geo1 (X , t) for the Tannakian groups of F-Isoc†(X|K) and Isoc†(X|K)
respectively. For F ∈ F-Isoc†(X|K), let G(F , t), Ggeo(F , t) denote the Tannakian groups of
〈F〉⊗ ⊆ F-Isoc†(X|K) and 〈Fgeo〉⊗ ⊆ Isoc†(X|K) respectively. By the general Tannakian
formalism the forgetful functor (−)geo : 〈F〉⊗ → 〈Fgeo〉⊗ corresponds to a closed immersion

Ggeo(F , t) ⊆ G(F , t).

Alternatively Ggeo(F , t), G(F , t) can be described as the images of

π†,geo1 (X , t)→ π†1(X , t)→ GL(Ft)

where Ft := t∗F . If g : Z → X is a morphism of geometrically connected Fq-varieties and
t ∈ Z(Fq) the canonical functors

〈F〉⊗ 〈g∗F〉⊗

〈Fgeo〉⊗ 〈g∗Fgeo〉

g∗

(−)geo (−)geo

g∗

1Recall that F is the s-power Frobenius, so that its action on Isoc†(X|K) is K-linear.
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correspond to a commutative diagram of closed immersions

Ggeo(g∗F , t) Ggeo(F , t)

G(g∗F , t) G(F , t).

Let f : Y → X be a smooth proper morphism of Fq-varieties and write Fp := Rif∗O†Y|K(j) for
the jth-twist of the F-overconvergent isocrystals provided by Theorem 4.2.1.1.2.

Proposition 4.2.1.2.1. There is a natural isomorphism

H0(X , Rifcrys,∗OY/K)F=qj ' FG(F ,t)
p,t .

Proof. Write OX/K and O†X/K for the structural sheaves in F-Crys(X|W )Q and F-Isoc†(X|K)
respectively. One has

H0(X , Rifcrys,∗OY/K) ' HomCrys(X|W )Q(OX/K , Rifcrys,∗OY/K)

and so an isomorphism

H0(X , Rifcrys,∗OY/K)F=qj ' HomF-Crys(X|W )Q(OX/K(−j), Rifcrys,∗OY/K).

By Fact 4.2.1.1.1

HomF-Crys(X|W )Q(OX/K(−j), Rifcrys,∗OY/K) ' HomF-Isoc†(X|K)(O
†
X/K(−j), Rif∗O†Y/K) '

' HomF-Isoc†(X|K)(O
†
X/K , R

if∗O†Y/K(j)) ' HomF-Isoc†(X|K)(O
†
X/K ,Fp).

Since F-Isoc†(X|K) is a Tannakian category with �bre functor t∗ and t∗O†X/K corresponds to

the trivial one dimensional representation K of π†1(X , t), one deduces

HomF-Isoc†(X|K)(O
†
X/K ,Fp) ' HomRepK(π†1(X ,t))(t

∗O†X/K , t
∗Fp) ' HomRepK(π†1(X ,t))(K,Fp,t) ' F

π†1(X ,t)
p,t .

Since the image of the action of π†1(X , t) on Fp,t is Gp(F , t), one sees that

Fπ
†
1(X ,t)

p,t ' FGp(F ,t)
p,t

and this concludes the proof.

4.2.1.3 Tannakian reinterpretation of Theorem 4.1.6.3.1

We now retain the notation and assumption of Theorem 4.1.6.3.1. With the notation of Theo-
rem 4.2.1.1.2, write

Fp := Rif∗O†Y/K(j)

FZ,p := RifZ,∗O†YZ |K(j) ' g∗Fp
where the isomorphism comes from smooth proper base change in crystalline cohomology (e.g.
[Mor13, Proposition 3.2]) and Fact 4.2.1.1.1. By Proposition 4.2.1.2.1 one has a commutative
diagram

H0(X , Rifcrys,∗OY/K)F=q FG(Fp,t)
p,t

H0(Z, RifZ,crys,∗OYZ/K)F=q FG(FZ,p,t)
p,t

''

'

Hence it is enough to show that the natural inclusion G(FZ,p, t) ⊆ G(Fp, t) is an isomorphism.
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4.2.2 End of the proof

4.2.2.1 Compatibility

For ` 6= p write
F` := Rif∗Q`(j) FZ,` := RifZ,∗Q`(j)

and let G(FZ,`, t) (resp. G(F`, t)) denotes the Zariski closure of the image of π1(Z, t) (resp.
π1(X , t)) acting on H i(Yt,Q`(j)). Since π1(Z, t)→ π1(X , t)→ GL(H i(Yt,Q`(j)) is open in the
image of π1(X , t)→ GL(H i(Yt,Q`(j)) and G(F`, t) is connected, one has G(F`, t) = G(FZ,`, t).
To prove that the natural inclusion G(FZ,p, t) ⊆ G(Fp, t) is an isomorphism, the idea is to
compare G(FZ,p, t) and G(Fp, t) with G(FZ,`, t) and G(F`, t). To do this, the main ingredient
is the following.

Fact 4.2.2.1 ([Del80], [KM74]). Fp,F` (resp. FZ,p,FZ,`) is a Q-rational compatible system on
X (resp. Z) pure of weight i+ 2j.

4.2.2.2 Geometric monodromy

Write Fgeo` (resp. FgeoZ,` ) for the restriction of F` (resp. FZ,`) to XF (resp. ZF) and Ggeo(F`, t)
(resp. Ggeo(FZ,`, t)) for the Zariski closure of the image of π1(XF, t) (resp. π1(ZF, t)) acting on
H i(Yt,Q`(j)). Recall the following:

Fact 4.2.2.2.1. For ? ∈ {`, p} one has:

1. The groups Ggeo(F?, t) and Ggeo(FZ,?, t) are reductive algebraic groups.

2. G(F?, t)
0 = G(FZ,?, t)0 if and only if Ggeo(F?, t)

0 = Ggeo(FZ,?, t)0

Proof.

1. Since Fgeo? and FgeoZ,? are pure, this follows from [Del80, Theorem 3.4.1] if ? = ` and from
[Ked17, Remark 10.6] if ? = p.

2. One implication follows from the fact that Ggeo(F?, t)
0 and Ggeo(FZ,?, t)0 are the derived

subgroup of G(F?, t)
0 and G(FZ,?, t)0 (a consequence of the global monodromy theorem,

see e.g. [D'Ad17, Corollary 3.4.10]). The other one follows from [D'Ad17, Corollary 3.2.7].

By assumption G(F`, t) = G(FZ,`, t) and Ggeo(F`, t) are connected, so by Fact 4.2.2.2.1
for ` 6= p, one gets that Ggeo(F`, t) = Ggeo(FZ,`, t) is connected. By [D'Ad17, Theorem
4.1.1.], being connected is independent from ? ∈ {`, p}, so that G(Fp, t), G(FZ,p, t), Ggeo(Fp, t)
and Ggeo(FZ,p, t) are connected. So, by Fact 4.2.2.2.1 for ` = p, it is enough to show that
Ggeo(FZ,p, t) = Ggeo(Fp, t).

4.2.2.3 Purity

For every integers n,m ≥ 0, write

Tm,n(F?,t) := F⊗m?,t ⊗ (F∨?,t)⊗n and Tm,n(F?) := F⊗m? ⊗ (F∨? )⊗n.

Since Ggeo(Fp, t) and Ggeo(FZ,p, t) are reductive (4.2.2.2.1), by Chevalley theorem it is enough
to show that

Tm,n(Fp,t)G
geo(Fp,t) = Tm,n(Fp,t)G

geo(FZ,p,t).
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Since Ggeo(F`, t) = Ggeo(FZ,`, t), it is enough to show that

Dim(Tm,n(F`,t)G
geo(F`,t)) = Dim(Tm,n(Fp,t)G

geo(Fp,t)) and

Dim(Tm,n(F`,t)G
geo(FZ,`,t)) = Dim(Tm,n(Fp,t)G

geo(FZ,p,t)).

We prove the �rst equality, the proof of second being analogue. As in Proposition 4.2.1.2.1,
one has

Tm,n(F`,t)G
geo(F`,t) = H0(XF, T

m,n(Fgeo` )) and Tm,n(Fp,t)G
geo(Fp,t) = H0(X , Tm,n(Fgeop )).

So it is enough to show that

Dim(H0(XF, T
m,n(F`)geo)) = Dim(H0(X , Tm,n(Fp)geo)).

Since F` and Fp are pure, the same is true for Tm,n(F`)∨(d) and Tm,n(Fp)∨(d), where d is
the dimension of X . Hence, by Grothendieck-Lefschetz �xed point formula ([Fu15, Theorem
10.5.1, page 603] if ? = ` and [ES93, Theorem 6.3] if ? = p) the left and the right hand sides are
the number of poles, counted with multiplicity, with absolute value qw/2 in the L-function of
Tm,n(F`)∨(d) and Tm,n(Fp)∨(d) (see e.g. [D'Ad17, Proposition 3.4.11] for more details). Since
F` and Fp are compatible, the same is true for Tm,n(F`)∨(d) and Tm,n(Fp)∨(d), hence the L-
function of Tm,n(F?)

∨(d) does not depend on ? ∈ {`, p}. This concludes the proof of Theorem
4.1.6.3.1

4.3 Proof of Theorem 4.1.4.2.2

In Section 4.3.1, we collect some preliminary remarks. The proof when f : Y → X is proper
is a technical elaboration (involving alteration and the trace formalism) of the proof when
f : Y → X is projective. To clarify the exposition we carry out the proof when f : Y → X is
projective in Section 4.3.2 and turn to the general case in Section 4.3.3.

4.3.1 Preliminary remarks

4.3.1.1 Strictly generic vs generic

Observe that the assertion for Galois generic points implies the assertion for strictly Galois
generic points. Indeed, strictly Galois generic implies Galois generic, hence for a strictly Galois
generic point x ∈ X the specialization morphism

spη,x : NS(Yη)⊗Q→ NS(Yx)⊗Q
is an isomorphism. Recall that, as explained in 4.1.4, the map spη,x is π1(x, x)-equivariant.
Since π1(x, x) and π1(X, η) ' π1(X, x) acting on H2(Yη,Q`(1)) ' H2(Yx,Q`(1)) have the same
image Π` (since x is strictly Galois generic), taking Π`-invariants in spη,x, one deduces the
statement for strictly Galois generic points. So, from on, we focus on the assertion for Galois
generic points. To simplify, in this section, we omit base points in our notation for the étale
fundamental group.

4.3.1.2 Finite cover

If X ′ → X is a surjective �nite morphism of smooth connected k-varieties, the map π1(X ′)→
π1(X) has open image. So x ∈ X is Galois generic (resp. NS generic) for f : Y → X if
and only if any lifting x′ ∈ X ′ of x if Galois generic (resp. NS generic) for the base change
fX′ : Y ′ ×X X ′ → X ′ of f : Y → X along X ′ → X. As a consequence we can freely replace X
with X ′ during the proof.
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4.3.2 Proof when f is projective

Let f : Y → X be smooth projective. For the general strategy of the proof see Section 4.1.6.2.

4.3.2.1 Step 1: Spreading out

Replacing k with a �nite �eld extension (4.3.1.2), one can assume that there exists a �nite
�eld Fq, smooth and geometrically connected Fq-varieties K, Z with generic points ζ : k → K,
β : k(x)→ Z and a commutative cartesian diagram

Yt YZ Y Y Yx

Fq Z X X k(x)

Fq K k

� fZ � f � f � fx

t

�

x

β

ζ

where f : Y → X is a smooth projective morphism and the base change of fZ : YZ → Z along
β : k(x)→ Z identi�es with fx : Yx → k(x). Replacing X with a �nite étale cover (4.3.1.2) one
can also assume that

1. NS(Yx)⊗Q = NS(Yx)⊗Q and NS(Yt)⊗Q = NS(Yt)⊗Q;

2. the Zariski closures of the images of π1(X )→ GL(H2(Yη,Q`(1))) and π1(XF)→ GL(H2(Yη,Q`(1)))
are connected.

Note that, by smooth proper base change, one has the following factorization

π1(x) π1(X) GL(H2(Yη,Q`(1))) ' GL(H2(Yt,Q`(1)))

π1(Z) π1(X ).

In particular, since x is Galois generic with respect to f : Y → X, the image of π1(Z) →
π1(X ) → GL(H2(Yt,Q`(1))) is open in the image of π1(X ) → GL(H2(Yt,Q`(1))). Hence by
4.3.2.1(2) and Theorem 4.1.6.3.1 the base change map

H0(X , R2fcrys,∗OY/W )F=q ⊗Q→ H0(Z, R2fZ,crys,∗OYZ/W )F=q ⊗Q

is an isomorphism.

4.3.2.2 Step 2: Using the variational Tate conjecture

Since t is a specialization of x (in Z) and x is a specialization of η (in X ), there is a canonical
commutative diagram

99



z ∈ Pic(Y)⊗Q Pic(YZ)⊗Q 3 zx

Pic(Yη)⊗Q Pic(Yt)⊗Q 3 zt Pic(Yx)⊗Q

εη ∈ NS(Yη)⊗Q NS(Yx)⊗Q 3 εx

NS(Yt)⊗Q = NS(Yt)⊗Q 3 εt

H2
crys(Y) H2

crys(YZ)

H2
crys(Yt)

H0(X , R2fcrys,∗OY/W )⊗Q H0(Z, R2fZ,crys,∗OYZ/W )⊗Q

H0(X , R2fcrys,∗OY/W )F=q ⊗Q H0(Z, R2fZ,crys,∗OYZ/W )F=q ⊗Q

cY

i∗t
(i)

cYZ

i∗t

(ii)

cYt

(ii)
spη,x

spη,t spx,t

i∗t

Ler Ler

i∗t

(iii)

where the arrow (i) is surjective, since an open immersion of smooth varieties induces a surjec-
tion on the Picard groups, the arrows (ii) are surjective by 4.3.2.1(1) and the arrow (iii) is an
isomorphism by Theorem 4.1.6.3.1.

The images of

Pic(Y)⊗Q→ H0(X , R2fcrys,∗OY/W )⊗Q and Pic(YZ)⊗Q→ H0(Z, R2fZ,crys,∗OYZ/W )⊗Q

lie in H0(X , R2fcrys,∗OY/W )F=q⊗Q and H0(Z, R2fZ,crys,∗OYW/K)F=q⊗Q respectively. Take an
εx in NS(Yx)⊗Q with lifting zx ∈ Pic(YZ)⊗Q and write

zt := i∗t (zx) ∈ Pic(Yt)⊗Q and εt = spx,t(εx) = cYti
∗
t (zx) ∈ NS(Yt)⊗Q.

By construction εt is in the image of

(iii) : H0(X , R2fcrys,∗OY/W )F=q ⊗Q ∼−→ H0(Z, R2fZ,crys,∗OYZ/W )F=q ⊗Q.

Moreover εt = cYti
∗
t (zx) and so, by Fact 4.1.6.1.1 applied to f : Y → Z and t, there exists

z ∈ Pic(Y)⊗Q such that i∗t cY(z) = εt. Let εη be the image of z in NS(Yη)⊗Q. By construction
and the commutativity of the diagram one has:

spx,t(spη,x(εη)) = spη,t(εη) = εt = spx,t(εx)

Since spx,t is injective, this concludes the proof of Theorem 4.1.4.2.2 when f is projective.

4.3.3 Proof when f is proper

Assume now that f : Y → X is only proper. Since Fact 4.1.6.1.1 is only available when f is
projective, we cannot longer apply it directly to f : Y → X . To overcome this di�culty we
proceed as follows. Using De Jong's alteration theorem and replacing X with a dense open
subset, one �rst constructs a commutative diagram

Ỹ Y

X

g

f̃ f
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with f̃ smooth projective and g dominant and generally �nite. While every x ∈ X which
is NS-generic for f̃ is NS-generic for f (as the argument in 4.3.3.4 shows), the hypothesis of
being Galois generic for f does not transfer to f̃ in general, so that one cannot reduce directly
the assertion for the (proper) morphism f : Y → X to the assertion for the (projective)
morphism f̃ : Ỹ → X. However, the trace formalism is functorial enough to allow us to
transfer information from f : Y → X to f̃ : Ỹ → X for cohomology classes coming from Y .

4.3.3.1 Step 1: De Jong's alterations theorem

First one reduces to the situation wheref has geometrically connected �bres (this hypothesis is
used in 4.3.3.4 to apply Poincare duality). By [SGA1, X, Proposition 1.2] and replacing X with
a �nite étale cover (4.3.1.2), one can assume that f : Y → X decomposes in a disjoint union
of morphisms fi : Yi → X with geometrically connected �bres. Since for every (not necessarily
closed) point x ∈ X there are natural decompositions

NS(Yx)⊗Q H2(Yx,Q`(i))

⊕i NS(Yi,x)⊗Q ⊕iH2(Yi,x,Q`(i))

cYx

' '
cYx

one may work with each fi : Yi → X separately and hence assume that f : Y → X has
geometrically connected �bres.

By De Jong's alterations theorem ([dJ96]) for Yη over k(η), there exists a proper, surjective
and generically �nite morphism Ỹη → Yη, where Ỹη is a connected, smooth and projective
k(η)-variety. By descent and spreading out, there exists a commutative diagram of connected
smooth k-varieties:

Ỹη Ỹη′ Ỹ

Yη Yη′ YU ′ YU Y

k(η) k(η′) U ′ U X

� � gf̃

� � fU′ � fU � f

η′ j i

where η′ : k(η′) → U ′ is the generic point of U ′, i : U → X is a open immersion with dense
image, j : U ′ → U is a �nite surjective morphism, f̃ : Ỹ → U ′ is smooth, projective with
geometrically connected �bres and g : Ỹ → YU ′ is proper, surjective and generically �nite. In
conclusion, replacing X with U ′ (4.3.1.2), one can assume that there exists a diagram

Ỹ Y

X

g

f̃ f

where f̃ : Ỹ → X is smooth projective with geometrically connected �bres, f : Y → X is
smooth proper with geometrically connected �bres and g : Ỹ → Y is generically �nite and
dominant.
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4.3.3.2 Step 2: Spreading out

Now one spreads out to �nite �elds. Up to replacing k with a �nite �eld extension (4.3.1.2),
there exists a �nite �eld Fq, smooth and geometrically connected Fq-varieties K,Z with generic
points ζ : k → K, β : k(x)→ Z and a commutative cartesian diagram:

Ỹt ỸZ Ỹ Ỹ Ỹx

Yt YZ Y Y Yx

Fq Z X X k(x)

Fq K k

gt �f̃t gZ �f̃Z g �f̃ f̃ g � gx

� fZ � f � f � fx

t

�

x

β

ζ

where f : Y → X is smooth proper with geometrically connected �bres, f̃ : Ỹ → X is smooth
projective with geometrically connected �bres, g : Ỹ → Y is a dominant generically �nite
morphism and the base change of ỸZ → YZ → Z along k(x) → Z identi�es with Ỹx → Yx →
k(x). Replacing X with a �nite étale cover (4.3.1.2) one can also assume that

1. NS(Yx)⊗Q = NS(Yx)⊗Q, NS(Yt)⊗Q = NS(Yt)⊗Q, NS(Ỹt)⊗Q = NS(Ỹt)⊗Q;

2. the Zariski closures of the images of π1(X )→ GL(H2(Yη,Q`(1))) and π1(XF)→ GL(H2(Yη,Q`(1)))
are connected.

Note that, by smooth proper base change, one has the following factorization

π1(x) π1(X) GL(H2(Yη,Q`(1))) ' GL(H2(Yt,Q`(1)))

π1(Z) π1(X )

In particular, since x is Galois generic for f : Y → X, the image of π1(Z) → π1(X ) →
GL(H2(Yt,Q`(1))) is open in the image of π1(X ) → GL(H2(Yt,Q`(1))). Hence by (2) and
Theorem 4.1.6.3.1 the base change map

H0(X , R2fcrys,∗OY/W )F=q ⊗Q→ H0(Z, R2fZ,crys,∗OYZ/W )F=q ⊗Q

is an isomorphism.

4.3.3.3 Step 3: Using the Variational Tate conjecture

Take an εx in NS(Yx) ⊗ Q. The goal of this subsection is to prove that there exists a ε̃η ∈
NS(Ỹη)⊗Q such that s̃pη,x(ε̃η) = g∗(εx), where

s̃pη,x : NS(Ỹη)⊗Q→ NS(Ỹx)⊗Q

is the specialization map for f̃ : Ỹ → X. Consider the commutative diagram in 4.3.2.2. Let
zx ∈ Pic(YZ)⊗Q be a lift of εx and write

zt := i∗t (zx) ∈ Pic(Yt)⊗Q and εt = spx,t(εx) = cYti
∗
t (zx) ∈ NS(Yt)⊗Q.

102



By construction εt is in the image of

(iii) : H0(X , R2fcrys,∗OY/W )F=q ⊗Q ∼−→ H0(Z, R2fZ,crys,∗OYZ/W )F=q ⊗Q.

Moreover εt = cYti
∗
t (zx). Since f : Y → X is only assumed to be proper, one cannot apply

directly Fact 4.1.6.1.1 to it. However the previous reasoning shows that

H0(X , R2̃f∗,crysOỸ/W )⊗Q ⊇ g∗(H0(X , R2fcrys,∗OY/W )⊗Q) 3 g∗t (εt) = g∗t (cYti
∗
t (zx)) = cỸt ĩ

∗
t g
∗
Z(zx),

where the notation is as in the canonical commutative diagram:

z̃ ∈ Pic(Ỹ)⊗Q Pic(ỸZ)⊗Q 3 g∗Z(zx)

Pic(Ỹη)⊗Q Pic(Ỹt)⊗Q 3 zt Pic(Ỹx)⊗Q

ε̃η ∈ NS(Ỹη)⊗Q NS(Ỹx)⊗Q 3 g∗(εx)

NS(Ỹt)⊗Q 3 gt(εt)

H2
crys(Ỹ) H2

crys(ỸZ)

H2
crys(Ỹt)

g∗(εt) ∈ H0(X , R2̃fcrys,∗OỸ/W )⊗Q H0(Z, R2̃fZ,crys,∗OỸZ/W )⊗Q 3 g∗Z(εt)

εt ∈ H0(X , R2fcrys,∗OY/W )⊗Q H0(Z, R2fZ,crys,∗OYZ/W )⊗Q 3 εt

cỸ

ĩη
ĩ∗t (i)

cỸZ

ĩ∗t

cỸt

(ii)

s̃pη,x

s̃pη,t s̃px,t

ĩ∗t

Ler Ler

ĩ∗t

g∗ g∗Z

So, by Fact 4.1.6.1.1 applied to f̃ : Ỹ → X and t, there exists z̃ ∈ Pic(Ỹ) ⊗ Q such that
g∗t (εt) = ĩ∗t cỸ(z̃). Write ε̃η := ĩ∗ηcỸ(z̃). From the commutative diagram

Pic(Ỹ)⊗Q Pic(Ỹη)⊗Q NS(Ỹη)⊗Q

NS(Ỹx)

Pic(Ỹt) NS(Ỹt)⊗Q

ĩ∗η c
Ỹη

s̃pη,t

s̃pη,x

s̃px,tcỸt

one deduces
s̃px,t(s̃pη,x(ε̃η)) = s̃px,t(g

∗εx).

Since s̃px,t is injective this implies

s̃pη,x(ε̃η) = g∗(εx).

103



4.3.3.4 Step 4: Trace argument

To conclude the proof one has to descend from Ỹ to Y . For this we use the trace formal-
ism. Since f : Y → X and f̃ : Ỹ → X are smooth proper morphisms with geometrically
connected �bres, by the relative Poincaré duality ([SGA4, Exposé XVIII]), there are canonical
isomorphisms

R2f∗Q` ' (R2d−2f∗Q`(d))∨ and R2f̃∗Q` ' (R2d−2f̃∗Q`(d))∨,

where d = Dim(Yx) = Dim(Ỹx). Dualizing and twisting the base change map

R2d−2f∗Q`(d)→ R2d−2f̃∗Q`(d),

one gets a morphism

g∗ : R2f̃∗Q`(1) ' (R2d−2f̃∗Q`(d))∨(1)→ (R2d−2f∗Q`(d))∨(1) ' R2f∗Q`(1).

By the compatibility of Poincaré duality with base change, for every (not necessarily closed)
x ∈ X, the �bre of g∗ at x is the usual push forward map gx,∗ : H2(Ỹx,Q`(1))→ H2(Yx,Q`(1))
in étale cohomology. In particular it is compatible with the push forward of algebraic cycles
gx,∗ : Pic(Ỹx) ⊗ Q → Pic(Yx) ⊗ Q. Since g∗ and g∗ are maps of sheaves, they are compatible
with the specialization isomorphisms and hence the following canonical diagram commutes:

Pic(Yη)⊗Q Pic(Ỹη)⊗Q Pic(Yη)⊗Q

H2(Yη,Q`(1)) H2(Ỹη,Q`(1)) H2(Yη,Q`(1))

H2(Yx,Q`(1)) H2(Ỹx,Q`(1)) H2(Yx,Q`(1))

Pic(Yx)⊗Q Pic(Ỹx)⊗Q Pic(Yx)⊗Q

g∗

cYη

g∗

c
Ỹη

cYη

g∗

spη,x

g∗

sp′η,x spη,x

g∗ g∗

g∗

cYx

g∗

c
Ỹx cYx

Since the the horizontal arrows are the multiplication by n := deg(g), one concludes observing
that g∗cỸη(ε̃η) ∈ NS(Yη)⊗Q is such that spη,x( 1

n
g∗cỸη(ε̃η)) = εx.

4.4 Hyperplane sections

Let k be an in�nite �nitely generated �eld of characteristic p > 0. In this section we apply
Theorem 4.1.4.2.2 to Lefschetz pencils of hyperplane sections. The main result is Corollary
4.1.7.2.1.

4.4.1 Geometric versus arithmetic hyperplane sections

Let Z be a smooth projective k-variety and �x a closed embedding Z ⊆ Pnk . One can ask
whether there exists a smooth hyperplane section D of Z such that the canonical map

iDk := NS(Zk)⊗Q→ NS(Dk)⊗Q

is an isomorphism. If Dim(Z) = 2, then D is a curve so that NS(Dk) ⊗ Q = Q hence iDk
is not injective as soon as NS(Zk) ⊗ Q has rank ≥ 2. Weak Lefschetz ([Mil80, Thm. 7.1, p.
318]) and Grothendieck�Lefschetz ([SGA2, Exp. XI]) theorems ensure that iDk is injective if
Dim(Z) ≥ 3, and an isomorphism if Dim(Z) ≥ 4. There are smooth projective varieties of
dimension 3 such that the surjectivity of iDk fails for all smooth hyperplane sections.
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Example 4.4.1.1. Take Z = P3
k embedded in P9

k via the Veronese embedding:

P3
k → P9

k

[x : y : z : w] 7→ [x2 : y2 : z2 : w2 : xy : xz : xw : yz : yw : zw].

Then a smooth hyperplane section D ⊆ Z in P9
k is a smooth quadric surface in P3

k, so that
Dk ' P1

k
× P1

k
. Hence NS(Dk) ' Z× Z, while NS(Zk) = Z.

But things change if one replaces the geometric Néron-Severi groups with their arithmetic
counterparts.

Example 4.4.1.2. Assume p ≥ 17 and consider the pencil of hyperplane sections of Z in P9
k

given by the hyperplanes a(x1 +x2 +x3 +x4)+b(x1 +4x2 +9x3 +16x4), where [a : b] ∈ P1(k) and
x1, ..., x10 are the coordinates in P9

k. This corresponds in P3 to the pencil of quadric surfaces

Q[a,b] : a(x2 + y2 + z2 + w2) + b(x2 + 4y2 + 9z2 + 16w2) = 0.

When Q[a:b] is smooth, it a is quadric surface and, for a [a : b] in an open subset of P1
k

NS(D)⊗Q ' (NS(Dk)⊗Q)π1(k) = (Q2)π1(k) = Q

is generated by the sum of the two families of P1
k
. So there are �lots" of [a : b] ∈ P1(k) such

that the canonical map
NS(P3

k)⊗Q→ NS(Q[a:b])⊗Q

is an isomorphism.

The main result is of this subsection is Corollary 4.1.7.2.1 that we now recall:

Corollary. If dim(Z) > 2 there are in�nitely many k-rational hyperplane sections D such that

the canonical map

NS(Z)⊗Q→ NS(D)⊗Q

is an isomorphism.

4.4.2 Proof of Corollary 4.1.7.2.1

By ([SGA7, Exp. XVII]) there exists a pencil of hyperplanes L := {Hx}x∈P̌1
k
such that:

• For all x in an dense open subscheme U ⊆ P̌1
k, the intersection Hx ∩ Z is smooth;

• The base locus B := ∩x∈LZ ∩Hx ⊆ Z is smooth.

Then one gets a diagram

Z Z̃ P̌1
k

π f

where π : Z̃ → Z is the blow up of Z along B, f : Z̃ → P̌1
k is a projective �at morphism, smooth

over U and for each x ∈ P̌1
k the �bre Z̃x of f : Z̃ → P̌1

k at x identi�es via π : Z̃ → Z with the
hyperplane section Z ∩Hx ⊆ Z. Write E := π−1(B) for the exceptional divisor. Explicitly Z̃
is the closed subscheme of Z × P̌1

k de�ned by

Z̃ := {(z, x) ∈ Z × P̌1
k with z ∈ Z ∩Hx} ↪→ Z × P̌1

k

π : Z̃ → Z, f : Z̃ → P̌1
k identify with the canonical projections onto Z, P̌1

k respectively and E
with B× P̌1

k. Write η for the generic point of P̌1
k. Combing Lemma 4.4.2.1 below with Corollary

4.1.7.1.2 one gets Corollary 4.1.7.2.1.
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Lemma 4.4.2.1. If Dim(Z) > 2, the canonical map

i∗
Z̃η

: NS(Z)⊗Q→ NS(Z̃η)⊗Q

is an isomorphism.

Proof. This is inspired from [Mor15, Corollary 1.5]. Fix x ∈ U . The natural commutative
diagram

Z̃η k(η)

Z Z̃ P̌1
k

Z̃U U

Z̃x = Z ∩Hx k(x)

i
Z̃η

�iη η

π f

iU

fU

�

i
Z̃x

ix x

induces a commutative diagram:

Pic(Z)⊗Q Pic(Z̃)⊗Q Pic(Z̃U)⊗Q Pic(Z̃x)⊗Q Pic(Z̃η)⊗Q

NS(Z)⊗Q NS(Z̃)⊗Q NS(Z̃x)⊗Q NS(Z̃η)⊗Q

π∗

cZ

i∗U

c
Z̃

i∗η

i∗x

c
Z̃x

c
Z̃η

π∗

i∗
Z̃x

sparη,x

Since Dim(Z) > 2, the map

i∗
Z̃η

: NS(Z)⊗Q→ NS(Z̃η)⊗Q

is injective. To prove the surjectivity, let ε ∈ NS(Z̃η)⊗Q with lift z ∈ Pic(Z̃η)⊗Q. Since sparη,x
is injective, it is enough to show that εx := sparη,x(ε) is in the image of i∗

Z̃x
. Since the maps i∗U

and i∗η are surjective, z ∈ Pic(Z̃η) lifts to a z̃ ∈ Pic(Z̃) ⊗ Q and, by the commutativity of the

diagram, z̃ maps to εx in NS(Z̃x)⊗Q. Now, since π is the blow up of Z along B, cZ̃(z̃) can be
written as π∗cZ(z′) + bcZ̃(E), where z′ ∈ Pic(Z) ⊗ Q and b ∈ Q. The conclusion follows from
the following claim, since it implies that εx is the image of cZ(z′) + bcZ(Z ∩Hx) ∈ NS(Z)⊗Q.
Claim: The restrictions of cZ̃(E) and π∗cZ(Z ∩Hx) to Z̃x coincide.

Proof of the claim. By direct computations, one sees that E = B × P̌1
k intersects transversally

Z̃x and that E∩Z̃x = B, so that the restriction of cZ̃(E) to Z̃x is given by cZ̃x(B) ∈ Pic(Z̃x)⊗Q.

To compute the restriction π∗cZ(Z ∩ Hx) to Z̃x observe that it is equal to i∗
Z̃x

(cZ(Z ∩ Hx)).
Then take any y 6= x ∈ L and compute i∗

Z̃x
(cZ(Z ∩Hx)) as cZ̃x(Z ∩Hx ∩Hy) = cZ̃x(B), since

B = Z ∩Hx ∩Hy for any x 6= y ∈ L.

Remark 4.4.2.2. The key fact that Pic(Z̃)⊗Q→ Pic(Z̃η)⊗Q is surjective, does not hold for
Pic(Z̃k) ⊗ Q → Pic(Z̃η) ⊗ Q (see Example 4.4.1.2). This is why it is not true in general that
for a point x ∈ |U |, which is Galois-generic for Z̃U → U the canonical map

iZ̃x : NS(Z̃x)⊗Q→ NS(Z)⊗Q
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is an isomorphism and one really needs to restrict to strictly Galois generic points: during
the proof one cannot replace U with a �nite étale cover, since any base change destroys the
geometry of the pencil.

4.4.3 Proof of Corollary 4.1.7.2.2

Replacing k with a �nite extension, it is enough to show that the map

NS(Z)⊗Q` → H2(Zk,Q`(1))π1(k)

is an isomorphism. By Corollary 4.1.7.2.1, there exists k-rational hyperplane section D → Z
such that the canonical map NS(Z) ⊗ Q`

∼−→ NS(D) ⊗ Q` is an isomorphism. The conclusion
follows from the commutative diagram

NS(Z)⊗Q` H2(Zk,Q`(1))π1(k)

NS(D)⊗Q` H2(Dk,Q`(1))π1(k)

i∗D i∗D

(2)

since i∗D is an isomorphism by the choice of D and (2) is an isomorphism by T (D, `).

4.5 Brauer groups in families

Let k be a �eld of transcendence degree ≥ 1 over Fp. We assume that k is �nitely generated
except in Subsection 4.5.3.

4.5.1 Specialization of Brauer groups

4.5.1.1 Brauer group

For a smooth proper k-variety Z write H2(Zk,Gm) := Br(Zk) for the (cohomological) Brauer
group of Zk, Br(Zk)[n] for its n-torsion subgroup and

T`(Br(Zk)) := lim←−
n

Br(Zk)[`
n], Br(Zk)[`

∞] := lim−→
n

Br(Zk)[`
n], Br(Zk)[p

′] := lim−→
n-p

Br(Zk)[n].

Recall that Br(Zk) is a torsion group and that Kummer theory induces, for every p - n ∈ N,
an exact sequence:

0→ NS(Zk)/n→ H2(Zk, µn)→ Br(Zk)[n]→ 0.

It is classically known that if T (Z, `) holds, then Br(Zk)[`
∞]π1(k) is �nite (see e.g. [CC18,

Proposition 2.1.1]).

4.5.1.2 Brauer generic points

Let X be a smooth geometrically connected k-variety with generic point η and f : Y → X
a smooth proper morphism of k-varieties. Taking the direct limit over p - n on the Kummer
exact sequence, one gets a commutative specialization exact diagram

0 lim−→n-p
NS(Yη)/n lim−→n-p

H2(Yη, µn) Br(Yη)[p
′] 0

0 lim−→n-p
NS(Yx)/n lim−→n-p

H2(Yx, µn) Br(Yx)[p
′] 0

spη,x ' spBrη,x
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Since the group Ker(spη,x) is of p-torsion and Coker(spη,x)tors = Coker(spη,x)[p
∞] (see [MP12,

Proposition 3.6]), one sees that a x ∈ |X| is NS-generic if and only if the map

spBrη,x : Br(Yη)[p
′]→ Br(Yx)[p

′]

is an isomorphism. In particular (Corollary 4.1.7.1.2) the set of x ∈ |X| such that spBrη,x is not
an isomorphism is sparse and if X is a curve it contains at most �nitely many of k-rational
points.

4.5.2 Uniform boundedness

Retain the notation and the assumptions as in the previous Section 4.5.1.2. Taking inverse
limit in the Kummer exact sequence, one gets a commutative exact diagram

0 NS(Yη)⊗ Z` H2(Yη,Z`(1)) T`(Br(Yη)) 0

0 NS(Yx)⊗ Z` H2(Yx,Z`(1)) T`(Br(Yx)) 0

spη,x ' spBrη,x

The group π1(x, x) acts on T`(Br(Yη)) by restriction trough the map π1(x, x) → π1(X, x) '
π1(X, η) and spBrη,x is π1(x, x)-equivariant with respect to the natural action of π1(x, x) on
T`(Br(Yx)). Hence the arguments in Section 4.5.1 combined with Theorem 4.1.4.2.2 show the
following

Lemma 4.5.2.1. Up to replacing X with an open subset, for every Galois generic x ∈ |X| and
every ` 6= p, the π1(x, x)-equivariant specialization morphism

spBrη,x : T`(Br(Yη))→ T`(Br(Yx))

is an isomorphism

Replacing [CC18, Proposition 3.2.1] with Lemma 4.5.2.1 and [CC18, Fact 3.4.1] with the
main result of Chapter 3 (Theorem 3.1.3.2), one can make the arguments in the proof of [CC18,
Theorem 1.2.1] work in positive characteristic and prove Corollary 4.1.7.3.1. In the same way,
using the arguments in the proof of [CC18, Theorem 3.5.1], one gets the following unconditional
variant:

Corollary 4.5.2.2. Let X be a curve and assume that the Zariski closure of the image of
π1(X) acting on H2(Yη,Q`(1)) is connected. Then there exists an integer C := C(Y → X, `)
such that

[Br(Yx)
π1(x,x)[`∞] : Br(Yη)

π1(X,η)[`∞]] ≤ C

for all but �nitely many x ∈ X(k).

4.5.3 p-adic Tate module

Assume that X is a smooth connected k-variety with generic point η, where k is an algebraically
closed �eld of characteristic p and that Y → X is a smooth projective morphism.

Corollary 4.5.3.1. There exists an x ∈ |X| such that Rank(Tp(Br(Yx))) = Rank(Tp(Br(Yη)))

Proof. For every geometric point t ∈ X, one has ([Ill79, Proposition 5.12]):

Dim(NS(Yt)⊗Qp) = Dim(H2
crys(Yt))− 2Dim(H2

crys(Yt))[1])−Rank(Tp(Br(Yt)))
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where H2
crys(Yt)[1] is the slope one part of the crystalline cohomology of Yt (see e.g. [Ked17,

Section 3] for the de�nition). By [Ked17, Theorem 3.12, Corollary 4.2] there exists a dense
open subset U of X such that for all x ∈ |U | one has

Dim(H2
crys(Yx)[1]) = Dim(H2

crys(Yη)[1])

Since Dim(H2
crys(Yx)) is independent of x ∈ X (smooth proper base change in crystalline

cohomology), one concludes applying Corollary 4.1.7.1.2 to YU → U .

4.6 Preliminaries for Theorem 4.6.5.4.1

In the next two sections, we use the work of Shiho on relative rigid cohomology to prove
Theorem 4.6.5.4.1, which is a key ingredient in the proof of Theorem 4.2.1.1.2. In Section 4.6,
we recall the de�nitions of various categories of isocrystals, the relations between them and we
state Theorem 4.6.5.4.1. In Section 4.7, we prove Theorem 4.6.5.4.1.

4.6.1 Notation

Let k be a perfect �eld of characteristic p > 0. Write K for the fraction �eld of the Witt ring
W := W (k) of k and | − | : K → R for the norm induced by the ideal pW ⊆ W . For any
k-variety X, write FX for a power of the absolute Frobenius on X and, if there is no danger of
confusion, one often drops the lower index and writes just F .

Gothic letters (T,X,U...) denote separated, p-adic formal schemes overW . Write X1 for the
special �bre of X, XK for its rigid analytic generic �bre and sp : XK → X1 for the specialization
map. There is an equivalence between the isogeny category Coh(X)⊗Q of the category Coh(X)
of coherent sheaves on X and the category Coh(XK) of coherent sheaves on XK (see [Ogu84,
Remark 1.5]).

If f : X → X1 is a closed immersion, one can consider the open tube ]X[X:= sp−1(X) and
the closed tube of radius |p|, [X]X,|p| of X in X (see [Ber96, De�nition 1.1.2, Section 1.1.8]).
They are admissible open subsets of XK and there is an inclusion [X]X,|p| ⊆]X[X.

A couple (X,X) is an open immersion of k-varieties X → X and a frame (X,X,X) is a
couple (X,X) together with a closed immersion ofX into a p-adic formal schemes X. Morphisms
of couples and frames are de�ned in the obvious way. A couple (Y, Y ) over a frame (X,X,X)
is a morphism of couples (Y, Y ) → (X,X) and a frame (X,X,X) over a couple (Y, Y ) is a
morphism of couples (X,X) → (Y, Y ). If (X,X,X) is a frame, for any sheaf F over ]X[X one
writes

j†XF := lim−→
V

jV ∗j
∗
VF

where the limit runs over all the strict neighbourhoods V of X in X (see [Ber96, De�nition
1.2.1]) and jV : V →]X[X in the inclusion map.

If f : Y → X is a morphism of k-varieties, for every morphism Z → X write:

YZ Y

Z X

fZ � f

4.6.2 Categories of isocrystals

To a k-variety X one can associate the following categories of isocrystals:

• Isoc(p)(X|K), the p-adically convergent isocrystals (see [Ogu84, De�nition 2.1]);
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• Isoc(1)(X|K), the convergent isocrystals (see [Ogu84, De�nition 2.1]);

If (X,X) is a couple there is a category Isoc†(X,X|K) of isocrystal on X overconvergent
along X − X see [Ber96, De�nition 2.3.2]. If X is a compacti�cation of X, one writes
Isoc†(X,X|K) := Isoc†(X|K) and calls the object in there overconvergent isocrystals on X.
It is known that Isoc†(X|K) does not depend on the choice of the compacti�cation, so that
Isoc†(X|K) is well de�ned (see [Ber96, 2.3.6]).

• Isoc(p)(X|K) (resp. Isoc(1)(X|K)). Write I(p)
X (resp. I

(1)
X ) for the category of p-adic

enlargements (resp. enlargements). This is the category of pairs (T, zT) such that T is
a �at p-adic formal W -scheme and zT is a morphism T1 → X (resp. (T1)red → X). A
morphism g : (Z, zZ) → (T, zT) between p-adic enlargements (resp. enlargements) is a
morphism g : Z→ T such that zZ ◦ g1 = zT (resp. zZ ◦ (g1)red = zT), where g1 : Z1 → T1

(resp. (g1)red : (Z1)red → (T1)red) are the natural morphisms induced by g. A p-adically
convergent isocrystals (resp. a convergent isocrystal) is the following set of data:

� For every (T, zT) ∈ Ob(I(p)
X ) (resp. ∈ Ob(I(1)

X )), aM(T,zT) ∈ Coh(TK);

� For every morphism g : (Z, zZ)→ (T, zT) in I(p)
X (resp. I(1)

X ) an isomorphism

φg : g∗M(T,zT) →M(Z,zZ)

in Coh(ZK) such that φId = Id and for every other morphism h : (T, zT) → (U, zU)
one has g∗φh = φh◦g.

A morphism of p-adically convergent isocrystals (resp. convergent isocrystals)M→N is
a collection of morphisms {M(T,zT) → N(T,zT)}(T,zT)∈Ob(I(p)

X )
(resp.

(T,zT)∈Ob(I(1)
X )

) compatible

with the isomorphism φg for all morphisms g.

• Isoc†(X,X|K). Write I(X,X|K) for the category of frames over (X,X). Then an isocrystals

on X overconvergent along X −X is the following set of data:

� For every (T, T ,T) ∈ Ob(I(X,X)) a coherent j†TO]T [T
moduleM(T,T ,T);

� For every morphism g : (Z,Z,Z)→ (T, T ,T) in I(X,X) an isomorphism

φg : g∗M(T,T ,T) →M(Z,Z,Z)

of coherent j†ZO]Z[Z
modules such that φId = Id and for every other morphism

h : (T, T ,T)→ (U,U,U) one has g∗φh = φh◦g.

A morphism M → N in Isoc†(X,X|K) is a collection of morphisms {M(T,T ,T) →
N(T,T ,T)}(T,T ,T)∈Ob(I(X,X))

compatible with the isomorphism φg for all morphisms g.

There are also enriched versions of the previous categories with Frobenius structure, which
we denote F-Isoc(p)(X|K), F-Isoc(1)(X|K) and F-Isoc†(X,X|K). For example, the absolute
Frobenius FX induces an endofunctor

F ∗X : Isoc(p)(X|K)→ Isoc(p)(X|K)

and F-Isoc(p)(X|K) is the category of pairs (M,Φ), where M ∈ Isoc(p)(X|K) and Φ is a
Frobenius structure onM, i.e. an isomorphism F ∗XM→M. A morphism in F-Isoc(p)(X|K)
is a morphism in Isoc(p)(X|K) compatible with the Frobenius structures. The constructions
of F-Isoc(1)(X|K) and F-Isoc†(X,X|K) are similar.
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4.6.3 Functors between the categories

For every couple (X,X) there is a canonical commutative diagram of functors:

F-Isoc(p)(X|K) F-Isoc(1)(X|K) F-Isoc†(X,X|K) F-Isoc†(X,X|K)

Isoc(p)(X|K) Isoc(1)(X|K) Isoc†(X,X|K) Isoc†(X,X|K)

F1−Fp Fconv−F1 Fov−Fconv

1−p conv−1 ov−conv

and

• F1−Fp, conv− 1, F conv−F1 are equivalences of categories ([Ogu84, Proposition 2.18],
[Ber96, 2.3.4]) ;

• Fov − Fconv is fully faithful if X is smooth ([Ked04, Theorem 1.1]).

All the functors are easy to construct from the de�nitions. For example, to construct conv− 1,
to an enlargement (T, zT) one associates the frame ((T1)red, (T1)red,T) over (X,X) and so, for
everyM∈ F-Isoc†(X,X|K), one de�nes

conv − 1(M)(T,zT) :=M((T1)red,(T1)red,T).

The constructions of 1 − p, ov − conv are similar. In view of these functors, if M is in
F-Isoc†(X,X|K) and (T, zT) is a p-adic enlargement of X, write

M(T,zT) :=M(T1,T1,T).

4.6.4 Strati�cation

Assume that X admits a closed immersion into a p-adic formal scheme X formally smooth
over W . Then the categories of isocrystals on X admit a more concrete description in term of
modules with a strati�cation. We now recall the notion of universal p-adic enlargement and we
use it to de�ne modules with a strati�cation.

4.6.4.1 Universal p-adic enlargements

By [Ogu84, Proposition 2.3], there exists a universal p-adic enlargement (T(X), zT(X)) of X in
X. The p-adic enlargement (T(X), zT(X)) of X is endowed with a map g : T(X) → X making
the following diagram commutative:

T(X)1 T(X)

X X1 X

zT(X) g1 g

which is universal for all the p-adic enlargements (Y, zY) of X in X, i.e for all the p-adic
enlargements (Y, zY) admitting a map g : Y→ X making the previous diagram commutative.

Write T(X)(1) for the universal p-adic enlargements of X in X × X, where one considers
X embedded in X1 × X1 via the diagonal immersion. The p-adic formal schemes T(X) and
T(X)(1) are such that such that T(X)K = [X]X,|p| and T(X)(1)K = [X]X×X,|p| (see [Ber96,
1.1.10]).
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4.6.4.2 Strati�cations

Let Strat(p)(X,X|K) be the category of modules with a p-adically convergent strati�cations
([Ogu84, Proposition 2.11]). An object (M, ε) in Strat(p)(X,X|K) is a coherent moduleM over
[X]X,|p| = T(X)K together with an isomorphism ε : p∗1M → p∗2M satisfying a natural cocycle
condition, where the p′is are the two projections T(X)(1)K = [X]X×X,|p| → T(X)K = [X]X,|p|.
The projections p1, p2 : X×X→ X give morphisms of enlargements p1, p2 : (T(X)(1), zT(X)(1))→
(T(X), zT(X)). Hence, ifM is in Isoc(p)(X|K), there is an isomorphism

εM,X : p∗1(M(T(X),zT(X))) 'M(T(X)(1),zT(X)(1)) ' p∗2(M(T(X),zT(X))).

This gives a functor

(−(T(X),zT(X)), ε−,X) : Isoc(p)(X|K)→ Strat(p)(X,X|K)

that sends M to (M(T(X),zT(X)), εM,X). By the universal property of T(X), this functor is an
equivalence of categories ([Ogu84, Proposition 2.11]).

Given a frame (X,X,X), one can de�ne the category Strat(X,X,X|K) of modules with
a strati�cation on X overconvergent along X − X, see [Shi08a, P. 50] where it is denoted
by I†((X,X)/W |X)). An object (M, ε) in Strat(X,X,X|K) is a coherent j†XO]X[X

module

together with a j†XO]X[X×X
-linear isomorphism ε : p∗1M ' p∗2M satisfying a natural cocycle

condition, where the p′is are the two projection maps ]X[X×X→]X[X. As in the p-adically
convergent situation, one constructs a functor

(−(X,X,X), ε−,X) : Isoc†(X,X|K)→ Strat(X,X,X|K)

which is an equivalence of categories (see [LeS07, Propositions 7.2.2 and 7.3.11]).

4.6.5 Relative p-adic cohomology theories

4.6.5.1 Relative p-adic cohomology theories

Fix a smooth proper morphism of k-varieties f : Y → X and a closed immersion i : X → X,
where X is a �at p-adic formal scheme. Assume that f : Y → X has (log-) smooth parameter
in the sense of [Shi08a, De�nition 3.4].

Remark 4.6.5.1.1. If f : Y → X has (log-) smooth parameter, for every morphism of k-
varieties Z → X, the base change YZ → Z has (log-) smooth parameter ([Shi08a, Remark
3.5]). Moreover, if X is smooth, every smooth proper morphism f : Y → X of k-varieties has
(log-) smooth proper parameter.

Depending on the nature of i : X → X one de�nes di�erent p-adic cohomology theories:

• If X = X1 and i : X → X is the canonical inclusion, then one can de�ne the crystalline
higher direct image RifX,crys,∗OY/X, that is the higher direct image in the relative crys-
talline site of X in X, well de�ned since X ⊆ X is de�ned by the ideal (p). It lives in
Coh(XK), see e.g [Shi08a, Section 1].

• If i : X → X is an homeomorphism, then one can de�ne the convergent higher direct
image RifX,conv,∗OY/X, that is the higher direct image in the relative convergent site of X
in X. It lives in Coh(XK). See e.g [Shi08a, Sections 2-3].

• If i : X → X is an arbitrary closed immersion, one can de�ne the analytic higher direct
image RifX,an,∗OY/X. It is de�ned via descent using De Rham cohomology, and it lives in
Coh(]X[X). For details see [Shi08a, Section 4].
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We complete the picture discussing higher direct images for couples and frames, in the context
of overconvergent isocrystals. If (Y, Y ) is a couple, write O†

(Y,Y )
∈ Isoc†(Y, Y ) for the unique

overconvergent isocrystal such that, for every frame (Z,Z,Z) over (Y, Y ), the restriction of
O†

(Y,Y )
to (Z,Z,Z) is given by j†ZO]Z[Z

. If (Y, Y ) is a couple over a frame (X,X,X) and the
�rst arrow f : Y → X is smooth and proper, one can de�ne the overconvergent higher direct
image Rif(Y,Y )/X,rig,∗O

†
(Y,Y )

. It is again de�ned using De Rham cohomology and descent. See

[Shi08b, Section 5] for the de�nition, it is a j†XO]X[X
module. It is still an open question whether

Rif(Y,Y )/X,rig,∗O
†
(Y,Y )

is a coherent j†XO]X[X
- module.

4.6.5.2 Comparison

In some particular situation one can compare the various higher direct images de�ned in Section
4.6.5.1. Assume that i : X → X is a closed immersion, X is formally smooth over W and
f : Y → X is smooth proper with (log-) smooth parameter. Using f one considers (Y, Y ) as a
couple over the frame (X,X,X). The universal p-adic enlargement T(X) of X in X induces a
commutative diagram:

YT(X)1 T(X)1 T(X)

X1

Y X X

fT(X)1

� u u

f

By remark 4.6.5.1.1, the morphism fT(X)1 : YT(X)1 → T(X)1 has (log-) smooth parameter.
In this situation one has j†XO]X[X = O]X[X , so that Rif(Y,Y )/X,rig,∗O†(Y,Y ) and RifX,an,∗OY/X
are coherent O]X[X modules (see [Shi08a, Theorem 5.13]), while RifT(X)1,T(X),an,∗OYT(X)1

/T(X),
RifT(X)1,T(X),conv,∗OYT(X)1

/T(X) andRifT(X)1,T(X),crys,∗OYT(X)1
/T(X) are coherent modules over [X]X,|p| =

T(X)K . Write
u : [X]X,|p| →]X[X

for the natural inclusion. By [Shi08a, Theorem 5.13], one has a canonical isomorphism of
O]X[X-modules

Rif(Y,Y )/X,rig,∗O†(Y,Y ) ' RifX,an,∗OY/X.

Pulling back along u, one �nds canonical isomorphisms of coherent [X]X,|p|-modules

u∗Rif(Y,Y )/X,rig,∗O†(Y,Y ) ' u∗RifX,an,∗OY/X ' RifT(X)1,T(X),an,∗OYT(X)1
/T(X)

' RifT(X)1,T(X),conv,∗OYT(X)1
/T(X) ' RifT(X)1,T(X),crys,∗OYT(X)1

/T(X).
(4.6.5.2.1)

where the second isomorphism comes from [Shi08a, Remark 4.2], the third from [Shi08a, The-
orem 4.6] and the last one from [Shi08a, Theorem 2.3.6].

These isomorphisms are functorial in the following sense. Assume that there is a k-variety
Z, a closed embedding Z → Z into a p-adic formal scheme Z formally smooth over W and a
commutative diagram

Z Z

X X

g g

113



By the universal property of T(X), there is an induced map T(Z) → T(X) that �ts into a
commutative diagram

YZ Y

YT(Z)1 YT(X)1 Z X

T(Z)1 T(X)1 Z X

T(Z) T(X)

fZ � f

fT(Z)1 �fT(X)1

g
�

�

g

g

u u

Then the following diagram is commutative

u∗g∗Rif(Y,Y )/X,rig,∗O†(Y,Y ) u∗Rif(YZ ,YZ)/Z,rig,∗O†(YZ ,YZ)

g∗u∗Rif(Y,Y )/X,rig,∗O†(Y,Y ) u∗Rif(YZ ,YZ)/Z,rig,∗O†(YZ ,YZ)

g∗u∗RifX,an,∗OY/X u∗RifZ,an,∗OYZ/Z

g∗RifT(X)1,T(X),an,∗OYT(X)1
/T(X) RifT(Z)1,T(Z),an,∗OYT(Z)1

/T(Z)

g∗RifT(X)1,T(X),conv,∗OYT(X)1
/T(X) RifT(Z)1,T(Z),conv,∗OYT(Z)1

/T(Z)

g∗RifT(X)1,T(X),crys,∗OYT(X)1
/T(X) RifT(Z)1,T(Z),crys,∗OYT(Z)1

/T(Z)

' '

' '

' '

' '

' '

(4.6.5.2.2)

where the vertical arrows are the isomorphisms in (4.6.5.2.1) and the horizontal arrows are the
base change maps.

4.6.5.3 Ogus higher direct image

Fix a smooth proper morphism f : Y → X of k-varieties. Write RifOgus,∗OY/K in F-Isoc(p)(X)
for the Ogus higher direct image ([Ogu84, Section 3, Theorem 3.1]) and recall that its formation
is compatible with base change ([Ogu84, Proposition 3.5]).

As object in Isoc(p)(X), RifOgus,∗OY/K is characterized by the property that for every p-adic
enlargement (T, zT) one has

(RifOgus,∗OY/K)(T,zT) = RifT1,T,crys,∗OYT1
/T

and if g : (T, zT)→ (Z, zZ) if a morphism of p-adic enlargements, the map

g∗(RifOgus,∗OY/K)(Z,zZ) (RifOgus,∗OY/K)(T,zT)

g∗RifZ1,Z,crys,∗OYZ1
/Z RifT1,T,crys,∗OYT1

/T

φg

φg
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is the base change morphism induced by g (see the proof of [Ogu84, Theorem 3.1]). In particular
if X admits a closed immersion into a p-adic formal scheme X formally smooth over W , the
image of RifOgus,∗OY/K in Strat(p)(X,X|K) is given by the couple

(RifT(X)1,T(X),crys,∗OYT(X)1
/T(X), εRifOgus,∗OY/K ,X),

where εRifOgus,∗OY/K ,X is induced by the base change morphisms

p∗1R
ifT(X)1,T(X),crys,∗OYT(X)1

/T(X) RifT(X)(1)1,T(X)(1),crys,∗OYT(X)(1)1
/T(X)(1) p∗2R

ifT(X)1,T(X),crys,∗OYT(X)1
/T(X).

' '

The Frobenius structure
F ∗XR

ifOgus,∗OY/K → RifOgus,∗OY/K
is constructed in the following way (see the proof of [Ogu84, Theorem 3.7]). Consider the
commutative cartesian diagram

Y ′ Y

X X

f ′ � f

FX

and for every p-adic enlargement (T, zT) of X, consider the following diagram

YT1 Y ′T1
YT1

T1 T1 T1

T T

FYT1

FrYT1
/T1

fT1 f ′T1 � fT1

FT1

where FrYT1
/T1 is the relative Frobenius morphism. By the compatibility of RifOgus,∗OY/K with

base change, there is a canonical isomorphism

F ∗XR
ifOgus,∗OY/K ' Rif ′Ogus,∗OY ′/K

and hence

(F ∗XR
ifOgus,∗OY/K)(T,zT) ' (Rif ′Ogus,∗OY ′/K)(T,zT) = Rif ′T1,T,crys,∗OY ′T1

/T.

Then the Frobenius structure is constructed as the base change map

(F ∗XR
ifOgus,∗OY/K)(T,zT) (RifOgus,∗OY/K)(T,zT)

Rif ′T1,T,crys,∗OY ′T1
/T RifT1,T,crys,∗OYT1

/T

' '

induced by FrYT1
/T1 .
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4.6.5.4 Statement of Theorem 4.6.5.4.1

The aim of the following Section 4.7 is to prove the following theorem.

Theorem 4.6.5.4.1. Assume that X is a smooth k-variety and f : Y → X a smooth proper
morphism. ThenRifOgus,∗OY/K is in the essential image of F-Isoc†(X|K)→ F-Isoc†(X,X|K) '
F-Isoc(p)(X|K).

Remark 4.6.5.4.2. Theorem 4.6.5.4.1 already appears in the literature as [Laz16, Corollary
6.2], but, as pointed out to us by T.Abe, there might be a gap in the proof. The problem is
in the gluing process in [Laz16, Corollary 6.1]. The author uses the theory of arithmetic D-
modules and he tries to compare the higher direct image in that world with Rifcrys,∗OY/K(j).
Locally they coincide, but it is not so clear that the gluing data are compatible, since the
isomorphism is de�ned not at level of complex but only on the level of the derived category. So,
following a suggestion of T.Abe, we give another proof of Theorem 4.6.5.4.1, using the work of
Shiho on the relative log crystalline cohomology ([Shi08b]).

Remark 4.6.5.4.3. The proof actually works more generally for every E ∈ F-Isoc(p)(Y ). The
construction of RifOgus,∗E does not appear in the literature, so we decided to restrict ourself
to RifOgus,∗OY/K .

4.7 Proof of Theorem 4.6.5.4.1

4.7.1 Construction of an overconvergent F-isocrystal

Fix compacti�cations Y ⊆ Y and X ⊆ X such that the morphism f : Y → X extends to a
map of couples (Y, Y ) → (X,X) and X (resp. Y ) is dense in X (resp. Y ). We start recalling
the main result of [Shi08b]. This gives a M in F-Isoc†(X,X|K) which, after a base change
and on appropriate frames, looks like RifOgus,∗OY/K . To recall the statement, it is helpful to
give the following de�nition.

De�nition 4.7.1.1. If (Z,Z,Z) → (X ′, X
′
,X′) is a morphism of frames over (X,X) we say

that (Z,Z,Z) has (P(X′,X
′
,X′)) if Z = X ×X Z and Z→ X′ is formally smooth.

By [Shi08b, Theorem 7.9] (and its proof) there exists a frame (X ′, X
′
,X′) over (X,X) such

that

• X ′ := X ×X X
′
;

• X′ is formally smooth over W ;

• the map X
′ → X is a composition of a surjective proper map followed by a surjective

étale map;

and anM in F-Isoc†(X,X|K) with the following properties:

1. Let (Z,Z,Z) be a frame over (X ′, X
′
,X′) that has (P(X′,X

′
,X′)), so that there is a commu-

tative diagram

(Y, Y ) (YX′ , Y X
′) (YZ , Y Z)

(X,X) (X ′, X
′
,X′) (Z,Z,Z).

� �
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Then, the image ofM in Strat(Z,Z,Z|K) is given by

(Rif(YZ ,Y Z)/Z,rig,∗O
†
(YZ ,Y Z)

, ε)

where ε is an isomorphism:

p∗1R
if(YZ ,Y Z)/Z,rig,∗O

†
(YZ ,Y Z)

→ Rif(YZ ,Y Z)/Z×Z,rig,∗O
†
(YZ ,Y Z)

← p∗2R
if(YZ ,Y Z)/Z,rig,∗O

†
(YZ ,Y Z)

and p1, p2 :]Z[Z×W Z→]Z[Z are the projection maps. If moreover Z = Z, then ε is induced
by the base change morphisms ([Shi08b, Last paragraph of page 74] and [Shi08a, Theorem
5.14]);

2. Let h : (Z,Z,Z) → (T, T ,T) be a morphism of frames over (X ′, X
′
,X′) that have

(P(X′,X
′
,X′)), so that there is a commutative diagram

(YZ , Y Z) (YT , Y T )

(Z,Z,Z) (T, T ,T).

Then, the isomorphism

h∗M(Z,Z,Z) M(T,T ,T)

h∗Rif(YZ ,Y Z)/Z,rig,∗O
†
(YZ ,Y Z)

Rif(YT ,Y T )/T,rig,∗O
†
(YT ,Y T )

φh

' '

given by the isocrystals structure is the base change morphism (This is the functoriality
in the statement of [Shi08b, Theorem 7.9], see [Shi08a, Proof of Theorem 4.8]);

3. Let (Z,Z,Z) be a frame over (X,X) that has (P(X′,X
′
,X′)) and assume that Z admits a

lifting σZ of FZ1 , so that there is a commutative diagram

(YZ , Y Z) (YZ , Y Z)

(Z,Z,Z) (Z,Z,Z).

(FYZ ,FY Z
)

(FZ ,FZ ,σZ)

Then, the isomorphism induced by the Frobenius structure

σ∗ZM(Z,Z,Z) ' (F ∗XM)(Z,Z,Z) M(Z,Z,Z)

σ∗ZR
if(YZ ,Y Z)/Z,rig,∗O

†
(YZ ,Y Z)

Rif(YZ ,Y Z)/Z,rig,∗O
†
(YZ ,Y Z)

' '

is given by the base change morphism induced by σZ and FYZ ([Shi08b, Proof of Theorem
7.9]).
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4.7.2 Strategy

To prove Theorem 4.6.5.4.1, it is enough to show that the image of M in F-Isoc(p)(X|K) is
isomorphic to RifOgus,∗OY/K . Since X ′ does not admit a closed immersion directly in X′ and X′

does not admits a lifting of the absolute Frobenius of X′1, one can't use directly the description
ofM given in previous Section 4.7.1. But there exists2 an étale surjective morphism U → X ′

such that U admits a closed immersion into a p-adic formal scheme U which is formally smooth
over X′ and it is endowed with a lifting σU of FU1 . Write g for the composition U → X ′ → X.

To prove Theorem 4.6.5.4.1, �rst one constructs an isomorphism

ψ : g∗M' g∗RifOgus,∗OY/K ' RifU,Ogus,∗OYU/K in F-Isoc(1)(U |K)

where the isomorphism on the right comes from the fact that the formation of RifOgus,∗OY/K
is compatible with base change, see Section 4.6.5.3. Then one uses étale and proper descent for
convergent isocrystals to deduce that ψ descent to F-Isoc(p)(X|K). More precisely the proof
decomposes as follows:

1. One constructs an isomorphism

ψ : g∗M' RifU,Ogus,∗OYU/K

in Isoc(p)(U |K) ' Strat(p)(U,U|K). This is done in Section 4.7.3, using that (U,U,U|K)
has (P(X′,X

′
,X′)) (so that one can apply the property (1) of M) and the comparison

isomorphisms in 4.6.5.2;

2. One veri�es that the ψ commutes with the Frobenius structures i.e. that ψ makes the
following diagram commutative

F ∗Ug
∗M g∗M

F ∗UR
ifU,Ogus,∗OYU/K RifU,Ogus,∗OYU/K

F ∗Uψ ψ

in Isoc(p)(U |K) ' Strat(p)(U,U|K). This is done in Section 4.7.4, using that U has
a lifting of FU1 (so that one can apply the property (3) of M) and the comparison
isomorphisms in 4.6.5.2;

3. By the equivalence F1 − Fp in Section 4.6.3, the �rst two steps imply that there is an
isomorphism

ψ : g∗M' RifU,Ogus,∗OYU/K

in F-Isoc(1)(U |K);

4. To apply descent for convergent isocrystals, one has to check that ψ makes the following
diagram in F-Isoc(1)(U ×X U |K) commutative:

2To construct it, consider a �nite covering {Spf(Ai)} of X′ by formal a�ne open sub schemes. Then
{Spec(Ai,1)} is a covering of X′

1 by a�ne open sub schemes and {Vi := Spec(Ai,1) ×X′
1
X ′} is a Zariski open

covering of X ′. Consider a �nite covering {Ui,j} of Vi by a�ne open sub schemes. Then the maps Ui,j →
Spec(Ai,1) are a�ne and of �nite type, so that there are closed immersions Ui,j → Ani,j

Spec(Ai,1)
. Write Ui,j for

the formal a�ne space of dimension ni,j over Spf(Ai). Then U :=
∐

i,j Ui,j admits a closed immersion into
U :=

∐
i,j Ui,j and U is formally smooth over X′. To show that U admits a lifting of FU1

it is enough to show
that each Ui,j admits a lifting of FUi,j,1

. This follows from the fact that Ui,j is formally a�ne and formally
smooth over W .
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q∗1g
∗M q∗2g

∗M

q∗1g
∗RifOgus,∗OY/K q∗2g

∗RifOgus,∗OY/K

q∗1ψ q∗2ψ

where q1, q2 : U×XU → U are the projections. To check this, by the equivalence F1−Fp,
it is enough to show that it is commutative in F-Isoc(p)(U ×X U |K) or equivalently
in Isoc(p)(U ×X U |K) ' Strat(p)(U ×X U,U ×W U|K). This is done in Section 4.7.5,
using that q1, q2 : (U ×X U,U ×X U,U ×W U) → (U,U,U) are morphisms of frames that
have (P(X′,X

′
,X′)) (so that one can apply the property (2) of M) and the comparison

isomorphisms in 4.6.5.2.

Remark 4.7.2.1. The reason why one needs to pass back and forth between F-Isoc(p)(U |K)
and F-Isoc(1)(U |K) is that proper descent is not known for the category Isoc(p)(U |K), while
proper descent for the category Isoc(1)(U |K) (and hence for F-Isoc(1)(U |K)) is proved in
[Ogu84]. On the other hand one knows the value of RifU,Ogus,∗OYU/K only on p-adic enlarge-
ments. The equivalences of categories in Section 4.6.3 allow to combine these informations.

4.7.3 Comparison of isocrystals

In this section we construct an isomorphism

ψ : g∗M' RifU,Ogus,∗OYU/K in Isoc(p)(U |K).

Consider the universal p-adic enlargements T(U) and T(U)(1) of U in U and U× U and write
u, p1, p2 for the natural morphisms

(T(U)(1)1,T(U)(1)1,T(U)(1)) (U,U,U× U)

(T(U)1,T(U)1,T(U)) (U,U,U)

u

p1p2 p1p2

u

Since (U,U,U) has (P(X′,X
′
,X′)), by the property (1) ofM in 4.7.1, one has:

M(U,U,U) = Rif(YU ,YU )/U,rig,∗O†(YU ,YU ) in Coh(]U [U).

SinceM is an isocrystal, one getsM(T(U)1,T(U)1,T(U)) ' u∗M(U,U,U) in Coh(T(U)K). Then as in
(4.6.5.2.1):

M(T(U),zT(U)) ' u∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU ) ' u∗RifU,U,an,∗OYU/U ' RifT(U)1,T(U),an,∗OYT(U)1
/T(U)

' RifT(U)1,T(U),conv,∗OYT(U)1
/T(U) ' RifT(U)1,T(U),crys,∗OYT(U)1

/T(U) in Coh(T(U)K).

Since, by construction (4.6.5.3),

RifT(U)1,T(U),crys,∗OYT(U)1
/T(U) = (RifU,Ogus,∗OYU/K)(T(U),zT(U))

one has an isomorphism

ψ :M(T(U),zT(U)) ' (RifU,Ogus,∗OYU/K)(T(U),zT(U)) in Coh(T(U)K).

To promote ψ to an isomorphism in Strat(p)(U,U|K) ' Isoc(p)(U |K) one has to check that ψ is
compatible with the strati�cations εg∗M,U on g∗M and εRifU,Ogus,∗OYU/K ,U on (RifU,Ogus,∗OYU/K)(T(U),zT(U)).

Since (U,U,U) has (P(X′,X
′
,X′)), by the property (1) in 4.7.1, the strati�cation εg∗M,U is given

by the base change morphisms:

p∗1R
if(YU ,YU )/U,rig,∗O†(YU ,YU ) → Rif(YU ,YU )/U×U,rig,∗O†(YU ,YU ) ← p∗2R

if(YU ,YU )/U,rig,∗O†(YU ,YU ).

As in (4.6.5.2.2) pulling back to u∗, one has a commutative diagram
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u∗p∗1R
if(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗Rif(YU ,YU )/U×U,rig,∗O†(YU ,YU ) u∗p∗2R

if(YU ,YU )/U,rig,∗O†(YU ,YU )

p∗1u
∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗Rif(YU ,YU )/U×U,rig,∗O†(YU ,YU ) p∗2u

∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU )

p∗1u
∗RifU,U,an,∗OYU/U u∗RifU,U×U,an,∗OYU/U×U p∗2u

∗RifU,U,an,∗OYU/U

p∗1R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U)(1)1,T(U)(1),crys,∗OYT(U)(1)1
/T(U)(1) p∗2R

ifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

'

' ' '

'

'

'

' ' '

'

'

'

' '

'

'

'
''

where the horizontal maps are the natural base change maps. So, the strati�cation εg∗M,U on
g∗M

p∗1M(T(U),zT(U)) M(T(U)(1),zT(U)(1)) p∗2M(T(U),zT(U))

p∗1R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U)(1)1,T(U)(1),crys,∗OYT(U)(1)1
/T(U)(1) p∗2R

ifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

' ' '

'
''

is induced by the base change morphisms. Since εRifU,Ogus,∗OYU/K ,U is induced by the base change
morphisms by construction (4.6.5.3), one concludes that

ψ :M(T(U),zT(U)) ' (RifU,Ogus,∗OYU/K)(T(U),zT(U)) in Coh(T(U)K)

is compatible with the strati�cations and hence induces an isomorphism

ψ : g∗M' RifU,Ogus,∗OYU/K in Strat(p)(U,U|K) ' Isoc(p)(U |K).

4.7.4 Comparison of Frobenius structures

We now check that ψ is compatible with the Frobenius structures, i.e. that the following
diagram in Isoc(p)(U |K) is commutative:

F ∗Ug
∗M g∗M

F ∗UR
ifU,Ogus,∗OYU/K RifU,Ogus,∗OYU/K

F ∗Uψ ψ

Since
(−(T(U),zT(U)), ε−,U) : Isoc(p)(U |K)→ Strat(p)(U,U|K)

is an equivalence of categories, it is enough to show that

(F ∗Ug
∗M)(T(U),zT(U)) g∗M(T(U),zT(U))

(F ∗UR
ifU,Ogus,∗OYU/K)(T(U),zT(U)) (RifU,Ogus,∗OYU/K)(T(U),zT(U))

is commutative. Since (U,U,U) has (P(X′,X
′
,X′)) and it is endowed with a morphism σU lifting

FU1 , by the property (3) ofM in 4.7.1, the Frobenius structure onM(U,U,U) is given by the base
change map induced by σU and FYU :

σ∗UR
if(YU ,YU )/U,rig,∗O†(YU ,YU ) → Rif(YU ,YU )/U,rig,∗O†(YU ,YU ).
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By the universal property of the universal p-adic enlargement one gets a commutative diagram:

U T(U) U

U T(U) U

FU

u

σT(U) σU

u

Pulling back via u, there is a commutative diagram (4.6.5.2.2):

u∗σ∗UR
if(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU )

σ∗T(U)u
∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU )

σ∗T(U)R
ifT(U)1,T(U),an,∗OYT(U)1

/T(U) RifT(U)1T(U),an,∗OYT(U)1
/T(U)

σ∗T(U)R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

' '

' '

' '

where the horizontal morphisms are the base change morphisms. So the morphism

σ∗TM(T(U),zT(U)) ' (F ∗Ug
∗M)(T(U),zT(U)) g∗M(T(U),zT(U))

σ∗T(U)R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

' '

is induced by the base change morphism for FYT(U)1
and σT(U).

We check that the same is true for RifU,Ogus,∗OYU/K . Consider the commutative diagram

YT(U)1 Y ′T(U)1
YT(U)1

T(U)1 T(U)1 T(U)1

T(U) T(U) T(U)

FYT(U)1

FrYT(U)1
/T(U)1

fT(U)1
f ′
T(U)1 � fT(U)1

FT(U)1

σT(U)

and recall (4.6.5.3) that the Frobenius structure is de�ned by the base change map induced by
FrYT(U)1

/T(U)1 :

(F ∗UR
ifU,Ogus,∗OYU/K)(T(U)1,T(U)1,T(U)) ' Rif ′T(U)1,T(U),crys,∗OY ′T(U)1

/T(U) → RifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

Since there is a lifting σT(U) of FT(U)1 , there is a morphism of enlargements

σT(U) : (T(U), zT(U))→ (T(U), zT(U) ◦ FT(U)1).

Since F ∗UR
ifOgus,∗OYU/K is a crystal, there is an isomorphism

σ∗T(U)R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) → Rif ′T(U)1,T(U),crys,∗OY ′T(U)1
/T(U).

that, as recalled in section 4.6.5.3, identi�es with the base change map induced by σT(U) and
FT(U)1 . So the Frobenius structure
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σ∗T(U)(R
ifU,Ogus,∗OYU/K)(T(U),zT(U)) ' (F ∗UR

ifU,Ogus,∗OYU/K)(T(U),zT(U)) (RifU,Ogus,∗OYU/K)(T(U),zT(U))

σ∗T(U)R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U)1,T(U),crys,∗OYT(U)1
/T(U)

' '

is given by the composition of the base change maps induced by FrYT(U)1
/T(U)1 followed by the

base change map induced by σT(U) and FT(U)1 , hence it is given by the base change map induced
by FYT(U)1

and σT(U).
In conclusion, ψ is compatible with the Frobenius structures of M and RifU,Ogus,∗OYU/K ,

so that ψ is gives an isomorphism

ψ : RifU,Ogus,∗OYU/K ' g∗M in F-Isoc(p)(U |K)

and hence an isomorphism

ψ : RifU,Ogus,∗OYU/K ' g∗M in F-Isoc(1)(U |K).

4.7.5 Descent

Now one has to descend from U to X. To do this, consider the closed immersion

U ×X U → U ×k U → U1 ×k U1 → U×W U

where the �rst map is a closed immersion by [SP, Tag 01KR] since X is separated. Write
T(U ×X U) for the universal p-adic enlargement of U ×X U in U ×W U and q1, q2 for the
projections

U ×X U → U and U×W U→ U.

Finally write uT(U×XU), qT(U×XU),1 and qT(U×XU),2 for the natural morphisms:

(T(U ×X U)1,T(U ×X U)1,T(U ×X U)) (U ×X U,U ×X U,U×W U)

(T(U)1,T(U)1,T(U)) (U,U,U)

uT(U×XU)

qT(U×XU),1qT(U×XU),2 q1q2

u

and g′ for U ×X U → X. By the equivalence F1−Fp in Section 4.6.3, to show that the descent
diagram in F-Isoc(1)(U ×X U |K)

q∗1g
∗M q∗2g

∗M

q∗1g
∗RifOgus,∗OY/K q∗2g

∗RifOgus,∗OY/K

(4.7.5.1)

is commutative, it is enough to show that it is commutative in F-Isoc(p)(U ×X U |K). Then
one decomposes 4.7.5.1 as follows:

q∗1g
∗M g

′,∗M q∗2g
∗M

q∗1R
ifOgus,∗OY/K g

′,∗RifOgus,∗OY/K q∗2R
ifOgus,∗OY/K

So it is enough to show that, for ? ∈ {1, 2}, the following diagram is commutative
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q∗?g
∗M g

′,∗M

q∗?g
∗RifOgus,∗OY/K g

′,∗RifOgus,∗OY/K

in F-Isoc(p)(U ×X U |K) or, equivalently, in Isoc(p)(U ×X U |K). Since

(−(T(U×XU),zT(U×XU)), ε−,U×WU) : Isoc(p)(U ×X U |K)→ Strat(p)(U ×X U,U×W U|K)

is an equivalence of categories, it is enough to show that

(q∗?g
∗M)(T(U×XU),zT(U×XU)) (g

′,∗M)(T(U×XU),zT(U×XU))

(q∗?g
∗RifOgus,∗OY/K)(T(U×XU),zT(U×XU)) (g

′,∗RifOgus,∗OY/K)(T(U×XU),zT(U×XU))

commutes. Since q? : (U ×X U,U ×X U,U ×W U) → (U,U,U) is a morphism of frame over
(X ′, X

′
,X′) that have (P(X′,X

′
,X′)), by the property (2) ofM in 4.7.1, the morphism given by

the isocrystals structure

q∗?R
if(YU ,YU )/U,rig,∗O†(YU ,YU ) → Rif(YU×XU ,YU×XU )/U×U,rig,∗O†(YU×XU ,YU×XU )

is the natural base change map. Pulling back via uT(U×XU) one �nds a commutative diagram
(4.6.5.2.2)

u∗T(U×XU)q
∗
?R

if(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗T(U×XU)R
if(YU×XU ,YU×XU )/U×WU,rig,∗O†(YU×XU ,YU×XU )

q∗T(U×XU),?u
∗Rif(YU ,YU )/U,rig,∗O†(YU ,YU ) u∗T(U×XU)R

if(YU×XU ,YU×XU )/U×WU,rig,∗O†(YU×XU ,YU×XU )

q∗T(U×XU),?R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U×XU)1,T(U×XU),crys,∗OYT(U×XU)1
/T(U×XU)

' '

' '

such that the horizontal morphism are the base change morphism. So the morphism

(q∗?g
∗M)(T(U×XU),zT(U×XU)) (g

′,∗M)(T(U×XU),zT(U×XU))

q∗T(U×XU),?R
ifT(U)1,T(U),crys,∗OYT(U)1

/T(U) RifT(U×XU)1,T(U×XU),crys,∗OYT(U×XU)1
/T(U×XU)

' '

is induced by the base change morphism. Since the same is true for RifOgus,∗OY/K by construc-
tion (4.6.5.3), this shows that the descent diagram 4.7.5.1 is commutative, hence

ψ : g∗M' g∗RifOgus,∗OY/K

gives an isomorphism in the category of descent data for the category F-Isoc(1)(U |K) of U over
X.

By étale and proper descent for convergent isocrystals ([Ogu84, Theorems 4.5 and 4.6]), this
implies that ψ descends to an isomorphism

M' RifOgus,∗OY/K in F-Isoc(1)(X|K)

and concludes the proof of Theorem 4.6.5.4.1.
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Chapter 5

Maximal tori in monodromy groups of
F-isocrystals and applications (joint with
Marco D'Addezio)

5.1 Introduction

Let p be a prime, let Fq be the �nite �eld with q = ps elements and write Fq ⊆ F for an algebraic
closure. If X0 is a Fq-variety, set X := X0 ×Fq F and write F for the s-power of the absolute
Frobenius on X0.

5.1.1 Convergent vs overconvergent F-isocrystals

From now on let X0 be a smooth geometrically connected Fq-variety.

5.1.1.1 Convergent and overconvergent F-isocrystals

The �rst Weil cohomology which has been introduced to studyX0 is the `-adic étale cohomology,
where ` 6= p is a prime. Its associated category of local systems Weil(X0,Q`) is the category
of Weil lisse Q`-sheaves. While p-adic étale cohomology is not a Weil cohomology theory,
moving from ` to p one encounters two main p-adic cohomology theories: crystalline and rigid
cohomology. These two give rise to di�erent categories of p-adic �local systems�: the category
F-Isoc(X0) of Qp-linear convergent F -isocrystals over X0 and the category F-Isoc†(X0) of
Qp-linear overconvergent F -isocrystals over X0. By [Ked04], the two categories are related
by a natural fully faithful functor (−)conv : F-Isoc†(X0) → F-Isoc(X0). When X0 is proper,
(−)conv : F-Isoc†(X0) → F-Isoc(X0) is an equivalence, but in general the two categories
have di�erent behaviours. While F-Isoc†(X0) shares with Weil(X0,Q`) many properties (see
[D'Ad17] or [Ked18]), the category F-Isoc(X0) has some exceptional p-adic features.

5.1.1.2 Slopes

One of the exceptional p-adic features of F-Isoc(X0) is the theory of slopes; see [Ked17, Sections
3 and 4]. For every E0 in F-Isoc(X0) of rank r and every x0 ∈ X0, let {ax0

i (E0)}1≤i≤r be the
set of slopes of E0 at x0 (with the convention that ax0

1 (E0) ≤ · · · ≤ ax0
r (E0)). If η0 ∈ X0 is the

generic point, we call aη0

i (E0) the generic slopes of E0. A subobject F0 ⊆ E0 is said to be of
minimal generic slope if all its slopes are equal to aη0

1 (E0).
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5.1.1.3 Main result

Let E†0 be in F-Isoc†(X0). Write Isoc†(X0) and Isoc(X0) for the Qp-linear categories of over-
convergent isocrystals and convergent isocrystals respectively and consider the natural commu-
tative diagram of functors

F-Isoc†(X0) Isoc†(X0)

F-Isoc(X0) Isoc(X0).

(−)geo

(−)conv (−)conv

(−)geo

(5.1.1.3.1)

To simplify the notation we set:

E† := (E†0)geo; E0 := (E†0)conv; E := ((E†0)conv)geo.

Our main result highlights a new relationship between E†0 and the subobjects F0 ⊆ E0 in
F-Isoc(X0) of minimal generic slope. Write 1†0 for the overconvergent F-isocrystals O†X0

en-
dowed with the trivial Frobenius structure. Our main result is the following.

Theorem 5.1.1.3.2. If E†0 is irreducible in F-Isoc†(X0) and there exists a subobject F0 ⊆ E0

of minimal generic slope in F-Isoc(X0) such that HomIsoc(X0)(F ,1) 6= 0, then E† ' 1
† in

Isoc†(X0).

Remark 5.1.1.3.3. Theorem 5.1.1.3.2 proves a particular case of the conjecture in [Ked17,
Remark 5.14]. Even if the conjecture turned out to be false in general, Theorem 5.1.1.3.2
corresponds, with the notation of [Ked17, Remark 5.14], to the case when F1 ⊆ E1 has minimal
slope and E2 is the convergent isocrystal OX0 endowed with some Frobenius structure.

5.1.1.4 Torsion points of abelian varieties

Before explaining the main ingredients in the proof of Theorem 5.1.1.3.2, let us describe an
application to torsion points of abelian varieties. Let F ⊆ k be a �nitely generated �eld
extension. Let A be a k-abelian variety and recall the Lang-Néron Theorem.

Fact 5.1.1.4.1 ([LN59]). If Trk/F(A) = 0, then A(k) is a �nitely generated abelian group.

By Fact 5.1.1.4.1, denoting by A(n) the Frobenius twist of A by the pn-power of the absolute
Frobenius, we have a tower of �nite groups A(k)tors ⊆ A(1)(k)tors ⊆ A(2)(k)tors ⊆ . . . . In
June 2011, in a correspondence with Langer and Rössler, Esnault asked whether this chain is
eventually stationary. An equivalent way to formulate the question is to ask whether the group
of kperf-rational torsion points A(kperf)tors is a �nite group, where kperf is a perfect closure of k.
As an application of Theorem 5.1.1.3.2 we give a positive answer to her question.

Theorem 5.1.1.4.2. If Trk/F(A) = 0, then A(kperf)tors is a �nite abelian group.

Remark 5.1.1.4.3. Theorem 5.1.1.4.2 was already known for elliptic curves ([Lev68]) and
ordinary abelian varieties ([Rös17, Theorem 1.4]).

When ` is a prime 6= p, one has A[`∞](kperf) = A[`∞](k), hence Theorem 5.1.1.4.2 amounts to
show that A[p∞](kperf) is �nite. To relate Theorem 5.1.1.4.2 with Theorem 5.1.1.3.2 we use then
crystalline Dieudonné theory ([BBM82]). The proof of Theorem 5.1.1.4.2 is by contradiction. If
|A[p∞](kperf)| =∞, there exists a monomorphism Qp/Zp ↪→ A[p∞]ét from the trivial p-divisible
group Qp/Zp to the étale part A[p∞]ét of the p-divisible group A[p∞] of A. Spreading out to
a �nice� model A/X of A/k and applying the contravariant crystalline Dieudonné functor D,
one gets an epimorphism of F -isocrystals D(A[p∞]ét) � D((Qp/Zp)X ) ' OX over X . By a
descent argument and a careful use of Theorem 5.1.1.3.2, the quotient extends to a quotient
D(A[p∞]) � OX over X . Going back to p-divisible groups, this gives an injective map Qp/Zp ↪→
A[p∞] over k. Therefore A[p∞](k) would be an in�nite group, contradicting Fact 5.1.1.4.1.
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5.1.2 Maximal tori of monodromy groups

To prove Theorem 5.1.1.3.2, we study the monodromy groups associated to the objects involved.

5.1.2.1 Monodromy groups

The categories in (5.1.1.3.1) are neutral Tannakian categories and the choice of an F-point x
of X0 induces �bre functors for all of them. Hence, via the Tannakian formalism, one obtains
an algebraic group G(−) for each of E†0 , E†, E0 and E and a commutative diagram of closed
immersions:

G(E) G(E0)

G(E†) G(E†0).

5.1.2.2 Maximal tori

By the global monodromy theorem for overconvergent F -isocrystals ([D'Ad17, Corollary 3.5.5]),
if E†0 is irreducible in F-Isoc†(X0) with �nite order determinant, the group G(E†0)/G(E†) is �nite.
Even though E0 is not irreducible in general in F-Isoc(X0) and the global monodromy theorem
does not hold in F-Isoc(X0), we show that G(E0)/G(E) is still �nite (Proposition 5.3.1.1).

Recall ([D'Ad17, De�nition 3.1.11]) that E†0 is said to be p-plain, if the eigenvalues of the
Frobenii at closed points are algebraic number which are `-adic unit for every prime ` 6= p. To
prove that G(E) is �big enough�, we prove the following.

Theorem 5.1.2.2.1. If E†0 in F-Isoc†(X0) is pure and p-plain, then G(E) contains a maximal
torus of G(E†).

The key input in the proof of Theorem 5.1.2.2.1 is the existence of Frobenius tori ([D'Ad17,
Theorem 4.2.6]) of overconvergent F -isocrystals realizing a maximal torus of G(E†0).

Remark 5.1.2.2.2. In [Cre92, page 460] Crew asks whether, under the assumptions of Theorem
5.1.2.2.1, G(E) is a parabolic subgroup ofG(E†). In the subsequent articles [Cre92b] and [Cre94],
he gives a positive answer to his question in some particular cases. Since parabolic subgroups of
reductive groups always contain a maximal torus, Theorem 5.1.2.2.1 is an evidence for Crew's
expectation.

To deduce Theorem 5.1.1.3.2 from Proposition 5.3.1.1, one �rst reduces to the situation
where E0 has �nite order determinant. To simplify, let us assume that F0 = E1

0 is the maximal
subobject of minimal generic slope and that G(E0) is connected. Then Proposition 5.3.1.1
implies that G(E) = G(E0), hence that the quotient E1 � 1 in Isoc(X0) promotes to a quotient
E1

0 � 10 in F-Isoc(X0). In particular, the minimal slope of E0 is zero. Since the determinant
of E0 has �nite order, this implies that E0 = E1

0 hence that E0 admits a quotient E0 � 10 in
F-Isoc(X0). As (−)conv : F-Isoc†(X0) → F-Isoc(X0) is fully faithful, E†0 admits a quotient
E†0 � 1

†
0 in F-Isoc†(X0) hence, since E†0 is irreducible, E†0 ' 1

†
0.

5.1.2.3 Weak (weak) semi-simplicity

As an additional outcome of Theorem 5.1.2.2.1, we get a semi-simplicity result for extensions
of constant F -isocrystals. For us, a constant convergent F -isocrystal will be an object E0 ∈
F-Isoc(X0) such that E ' 1

r for some integer r ≥ 0.
Write F-Isocpure†(X0) for the Tannakian subcategory of F-Isoc(X0) generated by the es-

sential image via (−)conv : F-Isoc†(X0) → F-Isoc(X0) of pure objects in F-Isoc†(X0). The
category F-Isocpure†(X0) is large enough to contain all the convergent F -isocrystals �coming
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from geometry�: for every smooth and proper morphism f0 : Y0 → X0 and every i ∈ N, the
subquotients of the higher direct image Rif0,crys∗OY0 are in F-Isocpure†(X0) by [KM74] and
[Shi08b] (see Theorem 4.2.1.1.2 and Fact 4.2.2.1 in Chapter 4). Thanks to a group-theoretic
argument (Lemma 5.2.3.2.3), Theorem 5.1.2.2.1 implies the following.

Corollary 5.1.2.3.1. A convergent F -isocrystal in F-Isocpure†(X0) which is an extension of
constant convergent F -isocrystals is constant.

Remark 5.1.2.3.2. In [Chai13, Conjecture 7.4 and Remark 7.4.1], Chai conjectures that if E†0
is the higher direct image of a family of ordinary abelian varieties, and E1

0 ⊆ E0 is the maximal
subobject of minimal generic slope, then the monodromy group G(E1) of E1 is reductive. Since
G(E1) is a quotient of G(E), Corollary 5.1.2.3.1 implies that G(E1) has no unipotent quotients,
hence it may be thought as a �rst step towards his conjecture.

5.1.3 Organization of the chapter

In Section 5.2 we study the monodromy groups of (over)convergent F-isocrystals and we prove
Theorem 5.1.2.2.1. The remain part of the Chapter is devoted to applications: in Section 5.3
we prove Theorem 5.1.1.3.2 and in Section 5.4 we prove Theorem 5.1.1.4.2.

5.1.4 Acknowledgements

We learned about the problem on perfect torsion points on abelian varieties reading a question
of Damian Rössler on the website Mathover�ow [Rös11]. We would like to thank him and Hélène
Esnault for their interest and comments on our result. We are grateful to Brian Conrad and
Michel Brion for some enlightening discussions about epimorphic subgroups and maximal rank
subgroups of reductive groups. We thank Simon Pepin Lehalleur for pointing out a simpler
proof of Lemma 5.2.3.2.3 and Raju Krishnamoorthy for some discussions on the crystalline
Dieudonné module functor.

5.2 Proof of Theorem 5.1.2.2.1

Let X0 be a smooth geometrically connected Fq-variety. Let E†0 be in F-Isoc†(X0).

5.2.1 Monodromy groups of (over)convergent F-isocrystal

For ? ∈ {∅, †}, write 〈E?
0〉 (resp. 〈E?〉) for the smallest Tannakian subcategory of F-Isoc?(X0)

(resp. Isoc?(X0)) containing E?
0 (resp. E?). The choice of a geometric closed point x1 of X0

induces �bre functors x∗1 for all these categories, hence via Tannakian duality, we get algebraic
groups G(E?

0) and G(E?). The natural commutative diagram of faithful tensor functors

〈E†0〉 〈E†〉

〈E0〉 〈E〉.

(−)geo

(−)conv (−)conv

(−)geo

induces a commutative diagram of closed immersions of algebraic groups

G(E) G(E0)

G(E†) G(E†0).
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5.2.2 Constant F-isocrystals and the fundamental exact sequence

Recall ([D'Ad17, De�nition A.2.3]) that a F?
0 in F-Isoc?(X0) is said to be constant if F? ' (1?)r

for some integer r ≥ 1. Then a F?
0 in F-Isoc?(X0) is constant if and only if there existsM0 in

F-Isoc†(Spec(Fq)) ' F-Isoc(Spec(Fq)) such that g∗M0 ' F?
0 , where g : X0 → Spec(Fq) is the

structural morphism.
By [D'Ad17, Appendix], the subgroup G(E?) ⊆ G(E?

0) is normal. The quotient G(E?
0)/G(E?)

is abelian and identi�es canonically with the Tannakian group G(E?
0) of the full Tannakian

subcategory 〈E?
0〉cst ⊆ 〈E?

0〉 made by the F?
0 in 〈E?

0〉 which are constant.
The natural functor 〈E†0〉cst → 〈E0〉cst is fully faithful and its essential image is closed under

subquotients. Hence we have the following natural commutative exact diagram

0 G(E) G(E0) G(E0)cst 0

0 G(E†) G(E†0) G(E†0)cst 0,

(5.2.2.1)

in which the left and the central vertical arrows are injective and the right one is surjective.

Remark 5.2.2.2. It is not clear, a priori, whether the surjection ϕ : G(E0)cst � G(E†0)cst is an
isomorphism. Via the Tannakian formalism, to prove the injectivity of ϕ, one has to show that
the functor 〈E†0〉cst → 〈E0〉cst is essentially surjective. While every F0 ∈ 〈E0〉cst comes from an
object F †0 in F-Isoc†(X0), it is not clear whether F †0 is in 〈E†0〉. One can use Theorem 5.1.2.2.1
to show that, if E†0 is pure and p-plain, then ϕ : G(E0)cst � G(E†0)cst is an isogeny.

5.2.3 Maximal tori of (over)convergent F-isocrystals

For every algebraic group G, write rk(G) for the reductive rank of G (i.e. the dimension of
a maximal torus of G) and recall that a subgroup H ⊆ G is said to be of maximal rank if
rk(H) = rk(G).

5.2.3.1 Maximal tori of overconvergent F-isocrystals

For every x0 ∈ |X0|, the natural functor

F-Isoc†(Spec(Fq(x0)))→ F-Isoc(Spec(Fq(x0)))

is an equivalence of categories. Hence there is a commutative diagram of closed immersions

G(x∗0E0) G(E0)

G(x∗0E
†
0) G(E†0)

' (5.2.3.1.1)

where the map G(x∗0E0) → G(x∗0E
†
0) is an isomorphism. Recall the following result from

[D'Ad17].

Fact 5.2.3.1.2. If E†0 is and pure and p-plain, there exist in�nitely many x0 ∈ |X0| such that
G(x∗0E

†
0) ⊆ G(E†0) is a subgroup of maximal rank.

Proof. In [D'Ad17, Theorem 4.2.6] the result is proven for subquotients of an E-rational, p-plain
and pure overconvergent F -isocrystal which admits an E-compatible lisse sheaf (cf. [D'Ad17]).
Thanks to [D'Ad17, Theorem 3.4.3], this condition is always satis�ed by E†0 .
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5.2.3.2 Maximal tori of convergent F-isocrystals

From Fact 5.2.3.1.2 and (5.2.3.1.1) we get:

Corollary 5.2.3.2.1. If E†0 is pure and p-plain, then G(E0) ↪→ G(E†0) is a subgroup of maximal
rank.

Corollary 5.2.3.2.2. If E†0 is semi-simple, then G(E0)cst and G(E†0)cst are groups of multiplica-
tive type.

Proof. Since the groups G(E†0)cst and G(E0)cst are commutative, it is enough to show that they
are also reductive. The former is a quotient of G(E†0), which is reductive because E†0 is semi-
simple. The latter is a quotient of G(E0), which by Corollary 5.2.3.2.1 is a subgroup of G(E†0)
of maximal rank. Since G(E0)cst is commutative, Ru(G(E0)cst) is a quotient of G(E0). Thus
Ru(G(E0)cst) is trivial by the (group theoretic) Lemma 5.2.3.2.3 below.

Lemma 5.2.3.2.3. Let L be an algebraically closed �eld of characteristic 0, let G be a reductive
group over L and H a subgroup of G of maximal rank. There does not exist any non-trivial
morphism from H to a unipotent group. Equivalently, the group Ext1

H(L,L) vanishes.

Proof. It is enough to show that there are no non-trivial morphisms from H to Ga. Assume by
contradiction that there exists a normal subgroup K ⊆ H such that H/K ' Ga. Since every
map from a torus to Ga is trivial, K would be a subgroup of G of maximal rank, so that, by
[Mil15, Lemma 18.52], NG(K◦)◦ = K◦. Since K ⊆ H is normal, H ⊆ NG(K◦). Hence H◦ = K◦

so that H/K ' Ga would be �nite, a contradiction.

5.2.4 Proof of Theorem 5.1.2.2.1

Retain the notation and the assumptions as in Theorem 5.1.2.2.1. Since it is enough to prove
Theorem 5.1.2.2.1 after twist, we may assume that E†0 is pure of weight 0. For every algebraic
group G, write X∗(G) for its group of characters.

Choose a set of rank 1 convergent F-isocrystals χ1,0, . . . , χn,0 in 〈E0〉cst that generates
X∗(G(E0)cst). As every constant F -isocrystal comes from an overconvergent F -isocrystal, for
every i, the character χi,0 is the essential image of a χ†i,0 in F-Isoc†(X0) via F-Isoc†(X0) →
F-Isoc(X0). Write

Ẽ†0 := E†0 ⊕
n⊕
i=1

χ†i,0 in F-Isoc†(X0).

By construction, the groups X∗(G(Ẽ0)cst) and X∗(G(E0)cst) are isomorphic. Moreover, since
Ẽ† ' E† ⊕ Qp

⊕n
and Ẽ ' E ⊕ Qp

⊕n
, we get isomorphisms G(Ẽ†) ' G(E†) and G(Ẽ) ' G(E).

Hence it is enough to show that rk(G(Ẽ†)) = rk(G(Ẽ)). Consider the commutative exact
diagram (5.2.2.1)

0 G(Ẽ) G(Ẽ0) G(Ẽ0)cst 0

0 G(Ẽ†) G(Ẽ†0) G(Ẽ†0)cst 0.

h

As Ẽ†0 is still p-plain and pure of weight 0, by Corollary 5.2.3.2.1, rk(G(Ẽ0)) = rk(G(Ẽ†0)). Since
the reductive rank is additive in exact sequences, it is enough to show that h : G(Ẽ0)cst �
G(Ẽ†0)cst is an isomorphism. Since h : G(Ẽ0)cst � G(Ẽ†0)cst is surjective and G(Ẽ0)cst and
G(Ẽ†0)cst are groups of multiplicative type by Corollary 5.2.3.2.2, it is enough to show that the
map h∗ : X∗(G(Ẽ†0)cst) → X∗(G(Ẽ0)cst) is surjective. Recall that X∗(G(Ẽ0)cst) = X∗(G(E0)cst)
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is generated by χ1,0, . . . , χn,0. Since, by construction, the character χ†i,0 ∈ X∗(G(Ẽ†0)cst) is sent

by h∗ to χi,0 the morphism h∗ : X∗(G(Ẽ†0)cst)→ X∗(G(Ẽ0)cst) is surjective. This concludes the
proof of Theorem 5.1.2.2.1.

5.2.5 Corollaries

From Fact 5.2.3.1.2, Theorem 5.1.2.2.1, diagram (5.2.2.1) and the additivity of the reductive
ranks with respect to exact sequences we deduce:

Corollary 5.2.5.1. The reductive rank of G(E†0)cst is the same as the one of G(E0)cst.

Another consequence of Theorem 5.2.2.1 is the following result that we will not use, but
which has its own interest. We have already discussed it in �5.1.2.3.

Corollary 5.2.5.2. If E†0 is pure, then every F0 ∈ 〈E0〉 which is an extension of constant
F -isocrystals is constant.

Proof. The statement is equivalent to the fact that the group Ext1
G(E)(Qp,Qp) vanishes. Since

E†0 is pure, by [D'Ad17, Corollary 3.4.9], E† is semi-simple. Therefore, we may take the semi-
simpli�cation of E†0 without changing G(E). Moreover, by [D'Ad17, Proposition 3.4.2], we may
twist each irreducible summand of E†0 in order to get a p-plain overconvergent F -isocrystal.
Even this operation does not change G(E). The result then follows from Theorem 5.1.2.2.1 by
Lemma 5.2.3.2.3.

5.3 Proof of Theorem 5.1.1.3.2

Let X0 be a smooth geometrically connected Fq-variety and let E†0 be in F-Isoc†(X0).

5.3.1 Proof of Theorem 5.1.1.3.2

Before proving Theorem 5.1.1.3.2, let us show the following consequence of Theorem 5.1.2.2.1
and of the global monodromy theorem for overconvergent F-isocrystals.

Proposition 5.3.1.1. If E†0 is irreducible with �nite order determinant, then G(E0)cst is �nite.
In particular, every constant subquotient of the F -isocrystal E0 is �nite.

Proof. By the Langlands correspondence for lisse sheaves and overconvergent F -isocrystals
([Laf02], [Abe18]) every irreducible overconvergent F -isocrystal with �nite order determinant
is pure and p-plain (see for example [D'Ad17, Theorem 3.6.6]). Since G(E†0)cst is �nite by
the global monodromy theorem for overconvergent F-isocrystals (see e.g. [D'Ad17, Corollary
3.4.5]), it is enough to show that G(E†0)cst and G(E0)cst have the same dimension. Since, by
Corollary 5.2.3.2.2, the groups G(E0)cst and G(E†0)cst are of multiplicative type, we conclude by
Corollary 5.2.5.1.

Proof of Theorem 5.1.1.3.2. Retain the notation and the assumptions as in Theorem 5.1.1.3.2.
Since both the hypothesis and the conclusion are invariant under twist, by [Abe15, Lemma 6.1],
we can then assume that E†0 has �nite order determinant, so that Det(E†0) is unit-root. We �rst
prove that E†0 is unit-root as well. If r is the rank of E†0 , since

r∑
i=1

aηi (E
†
0) = aη1(det(E†0)) = 0 and aη1(E†0) ≤ · · · ≤ aηr(E

†
0),
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it su�ces to show that aη1(E†0) = 0. Let F � T be the maximal trivial quotient of F . By
maximality, it lifts to a quotient F0 � T0, where T0 is a constant F -isocrystal. Since E†0 in
F-Isoc†(X0) satis�es the assumptions of Proposition 5.3.1.1, T0 is �nite. As the F -isocrystal
F0 is of minimal generic slope and it admits a non-zero quotient which is �nite, it is unit-root.
This implies that aη1(E†0) = 0, as we wanted.

We now prove that E†0 has rank 1. Since E†0 is unit-root, by [Ked17, Theorem 3.9], the
functor 〈E†0〉 → 〈E0〉 is an equivalence of categories. Therefore, if E0 has a constant subquotient,
the same is true for E†0 . But E

†
0 is irreducible by assumption, thus E†0 has to be itself a constant

F -isocrystal. Since irreducible constant F -isocrystals have rank 1, this ends the proof.

Remark 5.3.1.2. Theorem 5.1.1.3.2 is false in general if we do not assume that F0 ⊆ E0 is of
minimal generic slope. A counterexample is provided in [Ked17, Example 5.15].

5.3.2 A corollary

Corollary 5.3.2.1. If E† is semi-simple and F0 ⊆ E0 is of minimal generic slope, then the
restriction morphism HomIsoc(X0)(E ,1)→ HomIsoc(X0)(F ,1) is surjective.

Proof. As E† is semi-simple, replacing E†0 with its semi-simpli�cation we do not change the
isomorphism class of E†. Thus we may assume that E†0 is semi-simple. The proof is then an
induction on the number n of summands of some decomposition of E†0 in irreducible overconver-
gent F -isocrystals. If n = 1 this follows from Theorem 5.1.1.3.2. Suppose now that the result
is known for every positive integer m < n and take an irreducible subobject G†0 of E†0 . Write
H0 := G0×E0F0 and consider the following commutative diagram with exact rows and injective
vertical arrows

0 H F F/H 0

0 G E E/G 0.

As E†0 is semi-simple, the quotient E†0 � E†0/G
†
0 admits a splitting. So, applying HomIsoc(X0)(−,1),

we get the following commutative diagram with exact rows

0 HomIsoc(X0)(E/G,1) HomIsoc(X0)(E ,1) HomIsoc(X0)(G,1) 0

0 HomIsoc(X0)(F/H,1) HomIsoc(X0)(F ,1) HomIsoc(X0)(H,1).

Since H0 and F0/H0 are subobjects of minimal slope of G0 and E0/G0 respectively, by the
induction hypothesis, the left and the right vertical arrows are surjective. By diagram chasing,
this implies that the central vertical arrow is also surjective, as we wanted.

Remark 5.3.2.2. Corollary 5.3.2.1 is false in general if E† is not semi-simple, as any extension
of two rank 1 constant F-isocrystals with di�erent slopes which does not split in Isoc(X0)
shows.

5.4 Proof of Theorem 5.1.1.4.2

Let F ⊆ k be a �nitely generated extension and A a k-abelian variety. As already mentioned
in Section 5.1.1.4, Theorem 5.1.1.4.2 amounts to show that if Trk/F(A) = 0 then |A[p∞](kperf)|
is �nite.
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5.4.1 Notation

If C is an additive category write CQ for its isogeny category. For every Fp-scheme S, write
p-div(S) for the category of p-divisible groups over S. For every perfect �eld L of character-
istic p > 0, write W (L) for the ring of Witt vectors of L and K(L) for its fraction �eld. For
every smooth L-variety X write Isoc(X/K(L)) and (resp. Crys(X/W (L))) for the category of
convergent isocrystal (resp. of crystals of �nite OX,crys-modules) and F-Isoc(X/K(L)) (resp.
F-Crys(X/W (L))) for the category of objects in Isoc(X/K(L)) (resp. in Crys(X/W (L)))
endowed with a Frobenius structure. By [Ber96, Theoreme 2.4.2], there exists a natural equiv-
alence of categories

F-Crys(X/W (L))Q
∼−→ F-Isoc(X/K(L)). (5.4.1.1)

5.4.2 p-torsion and p-divisible groups

Consider the exact sequence in p-div(k):

0→ A[p∞]0 → A[p∞]→ A[p∞]ét → 0. (5.4.2.1)

Since (5.4.2.1) splits over kperf and A[p∞]ét is étale, one has A[p∞](kperf ) = A[p∞]ét(k). Since
A[p∞](k) is in�nite if and only if Homp-div(k)Q(Qp/Zp, A[p∞]) 6= 0, Fact 5.1.1.4.1 implies that
Trk/F(A) = 0 if and only if Homp-div(k)Q(Qp/Zp, A[p∞]) 6= 0. So, since A[p∞](kperf ) = A[p∞]ét(k)
is in�nite if and only if Homp-div(k)Q(Qp/Zp, A[p∞]ét), Theorem 5.1.1.4.2 amounts to show that

Homp-div(k)Q(Qp/Zp, A[p∞]) = 0 implies Homp-div(k)Q(Qp/Zp, A[p∞]ét) = 0. (5.4.2.2)

5.4.3 Spreading out

Let k0 ⊆ k be a �nitely generated �eld with k = Fk0 and such that there exists an abelian
variety A0/k0 with A ' A0 ×k0 k. Let Fq be the algebraic closure of Fp in k0. We choose
a smooth geometrically connected Fq-variety X0 with generic point η0 : Spec(k0) → X0 and
an abelian scheme f0 : A0 → X0 with constant Newton polygon �tting into a commutative
cartesian diagram:

A0 A0

Spec(k0) X0.

� f0

η0

Since f0 : A0 → X0 has constant Newton polygon, the exact sequence

0→ A0[p∞]0 → A0[p∞]→ A0[p∞]ét → 0

in p-div(k0)Q, extends to an exact sequence

0→ A0[p∞]0 → A0[p∞]→ A0[p∞]ét → 0

in p-div(X0)Q. By [deJ98, Corollary 1.2], the horizontal arrows in the diagram

Homp-div(X )Q((Qp/Zp)X ,A[p∞]) Homp-div(k)Q(Qp/Zp, A[p∞])

Homp-div(X )Q((Qp/Zp)X ,A[p∞]ét) Homp-div(k)Q(Qp/Zp, A[p∞]ét)

'

'

are isomorphism. So, by (5.4.2.2), Theorem 5.1.1.4.2 amounts to show that

Homp-div(X )Q((Qp/Zp)X ,A[p∞]) = 0 implies Homp-div(X )Q((Qp/Zp)X ,A[p∞]ét) = 0. (5.4.3.1)
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5.4.4 Reformulation in terms of convergent F-isocrystals

Let

DX : p-div(X )Q → F-Crys(X/W (F))Q
(5.4.1.1)
' F-Isoc(X/K(F))

be the crystalline Dieudonné module (contravariant) functor, cf. [BBM82]. In [BBM82], it is
proven that this functor is fully faithful and that D(A[p∞]) ' R1fcrys∗OA. Since A0 → X0 has
constant Newton polygon, R1f0,crys∗OA0 has a maximal subobject F0 of slope zero. Write

(−)X : F-Isoc(X0/K(Fq))→ F-Isoc(X/K(F))

for the natural functor.

Lemma 5.4.4.1. DX (A[p∞]ét) = (F0)X .

Proof. For every t ∈ X , DSpec(F(t)) induces an anti-equivalence

DSpec(F(t)) : p-div(Spec(F(t)))Q
∼−→ F-Isoc[0,1](Spec(F(t))/K(F)),

where F-Isoc[0,1](Spec(F(t))/K(F)) is the category of F -isocrystals with slopes between 0 and
1. Since DX is compatible with base change, this implies that DX sends epimorphism to
monomorphism, it preserves the heights/ranks and it sends étale p-divisible groups to unit-root
F -isocrystals. In particular, the quotient A[p∞] � A[p∞]ét is sent to the maximal unit-root
subobject

DX (A[p∞]ét) ↪→ DX (A[p∞]) ' R1fcrys∗OA.

Since F0 ⊆ R1f0,crys∗OA0 is the maximal unit-root subobject, (F0)X is also the maximal unit-
root subobject of (R1f0,crys∗OA0)X ' R1fcrys∗OA.

Since DX is fully faithful, by Lemma 5.4.4.1 and (5.4.3.1), Theorem 5.1.1.4.2 amounts to
show that

HomF-Isoc(X/K(F))(R
1fcrys∗OA,OX ) = 0 implies HomF-Isoc(X/K(F))((F0)X ,OX ) = 0. (5.4.4.2)

5.4.5 Using Corollary 5.3.2.1

Now we show that

HomIsoc(X/K(F))(R
1fcrys∗OA,OX )→ HomIsoc(X/K(F))((F0)X ,OX )

is surjective using Corollary 5.3.2.1. By a descent argument (see the proof of [Kat79, Proposition
1.3.2]), the natural functor

(−)X : Isoc(X0/K(Fq))→ Isoc(X/K(F))

satis�es
HomIsoc(X0/K(Fq))(A,B)⊗K(F) = HomIsoc(X/K(F))(AX , BX ).

Hence it is enough to show that

HomIsoc(X0/K(Fq))(R
1f0,crys∗OA0 ,OX0)→ HomIsoc(X0/K(Fq))(F0,OX0)

is surjective. Since the extension of scalar functor

−⊗Qp : Isoc(X0/K(Fq))→ Isoc(X0)
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satis�es ([AK02, Proposition 5.3.1])

HomIsoc(X0/K(Fq))(A,B)⊗Qp = HomIsoc(X0)(A⊗Qp, B ⊗Qp),

it is enough to show that

HomIsoc(X0)(R
1f0,crys∗OA0 ⊗Qp,1)→ HomIsoc(X0)(F0 ⊗Qp,1) (5.4.5.1)

is surjective. By [Ete02, Théorème 7], R1f0,crys∗OA0 ⊗ Qp in F-Isoc(X0) is the image via
F-Isoc†(X0)→ F-Isoc(X0) of a E†0 in F-Isoc†(X0). Let E1

0 be the maximal unit-root subobject
of E0, so that E1

0 ' F0 ⊗ Qp. Since E†0 is pure by [Del80] and [KM74], E† is semisimple by
[Ked17, Remark 10.6.]. So the surjectivity of (5.4.5.1) follows from Corollary 5.3.2.1.

5.4.6 End of the proof

Now we conclude the proof proving (5.4.4.2). Consider the diagram

HomF-Isoc(X/K(F))(R
1fcrys∗OA,OX ) HomF-Isoc(X/K(F))((F0)X ,OX )

HomIsoc(X/K(F))(R
1fcrys∗OA,OX ) HomIsoc(X/K(F))((F0)X ,OX )

(1)

in which (1) is surjective by Section 5.4.5. Assume now that HomF-Isoc(X/K(F))(R
1fcrys∗OA,OX ) =

0 and suppose by contradiction that HomF-Isoc(X/K(F))((F0)X ,OX ) 6= 0. Then, by the surjectiv-
ity of (1), there exists a morphism g : R1fcrys∗OA → OX in Isoc(X/K(F)) which, once restricted
to (F0)X is not trivial and compatible with the Frobenius structure. Let R1fcrys∗OA → T be the
maximal trivial quotient in Isoc(X/K(F)). By maximality, R1fcrys∗OA → T descend to a quo-
tient R1fcrys∗OA � T0 in F-Isoc(X/K(F)), where T0 is an F-isocrystals coming from Spec(F).
Since F is algebraically closed, by [Ked17, Theorem 3.5] the category F-Isoc(Spec(F)/K(F)) is
semisimple and every unit-root object in F-Isoc(Spec(F)/K(F)) is trivial as F-isocrystal. So,
T0 decomposes in F-Isoc(X/K(F)) as

T0 = (T ′0 )X ⊕O⊕nX

where O⊕nX is the maximal unit-root subobject of T0 and n is an integer ≥ 0. Since (F0)X is unit-
root and the restriction of g : R1fcrys∗OA → T0 to (F0)X ⊆ R1fcrys∗OA is non trivial and compat-
ible with the Frobenius structure, we see that n > 0. Thus there exists a quotient R1fcrys∗OA �
T0 � OX in F-Isoc(X/K(F)) in contradiction with HomF-Isoc(X/K(F))(R

1fcrys∗OA,OX ) = 0.

Remark 5.4.6.1. In Fact 5.2.3.1.2, quoting [D'Ad17], we are using the Langlands correspon-
dence for lisse sheaves and overconvergent F -isocrystals ([Laf02], [Abe18]). However, the proof
of Theorem 5.1.1.4.2 can be obtained without using it. Indeed the overconvergent F-isocrystal
E†0 provided by [Ete02, Théorème 7] it admits an explicit `-adic companion: R1f0,∗Q` (see also
[D'Ad17, Remark 4.2.7]).
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Chapter 6

Specialization of p-adic monodromy
groups

6.1 Introduction

6.1.1 Notation

In this chapter k is a �nitely generated �eld of characteristic p > 0 with algebraic closure k ⊆ k.
Set Fq for the algebraic closure of Fp in k, so that Fq a �nite �eld with q = ps elements and
write F for the algebraic closure of Fq in k. For a k-variety X and for every integer d ≥ 1, let
X(≤ d) denote the set of all x ∈ |X| with residue �eld k(x) of degree ≤ d over k. If d = 1 we
often write X(≤ 1) = X(k). Write ϕX for the absolute Frobenius of X (or just ϕ if there is no
danger of confusion) and FX (or just F ) for its s-power.

6.1.2 `�adic exceptional locus

From now on, let X be a smooth geometrically connected k-variety. For every prime `, consider
the category LS(X, `) of étale lisse Q`-sheaves over X. For a geometric point x ∈ X and a
F` in LS(X, `), write F`,x for the �bre of F` at x. Then F`,x is endowed with a continuous
action ρF` : π1(X)→ GL(F`,x) of1 π1(X) and the functor F` 7→ F`,x induces an equivalence of
categories

LS(X,Q`) ' RepQ`(π1(X))

onto the category RepQ`(π1(X)) of Q`-linear continuous representations of π1(X) factorizing
trough a �nite extension of Q`

By functoriality of the étale fundamental group, every x ∈ |X| induces a continuous group
homomorphism π1(x)→ π1(X), hence a �local" Galois2 representation ρF`,x : π1(x)→ π1(X)→
GL(F`,x). Write

ρF`,x(π1(x)) =: ΠF`,x ⊆ ΠF` := ρF`(π1(X)), ΠF`,k := ρF`(π1(Xk)).

Write

Xgen
F` := {x ∈ |X| with [ΠF` : ΠF`,x] < +∞}; Xsgen

F` := {x ∈ |X| with ΠF` = ΠF`,x}

and de�ne the following sets:

Xex
F` := |X| −Xgen

F` ; Xex
F`(≤ d) := Xex

F` ∩X(≤ d); Xgen
F` (≤ d) := Xgen

F` ∩X(≤ d);

1As the choice of �bre functors will play no part in the following we will omit them for the notation for étale
fundamental group.

2Recall that π1(x) ' π1(Spec(k(x))) identi�es with the absolute Galois group of k(x).
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Xstex
F` := |X| −Xsgen

F` ; Xstex
F` (≤ d) := Xstex

F` ∩X(≤ d); Xsgen
F` (≤ d) := Xsgen

F` ∩X(≤ d).

Following [CK16], we call Xex
F` the exceptional locus of ρF` and X

stex
F` the strict exceptional locus

of ρF` .
An important problem in arithmetic geometry, especially when F` ' Rif∗Q` for some

smooth proper morphism f : Y → X, is to understand how ΠF`,x varies with x ∈ |X|; see for
example [CT12b], [CT13], [Cad12b], [CC18], Chapters 3 and 4. When k is arithmetically rich
enough one expects that there are lots of x ∈ |X| such that ΠF`,x is open in ΠF` . More precisely
we have:

Fact 6.1.2.1.

1. ([Ser89, Section 10.6], Fact 1.2.2.2.2): The set Xstex
F` is sparse. In particular, if k is in�nite

there exists a d ≥ 1 such that Xsgen
F` (≤ d) is in�nite.

2. (Theorem 3.1.3.2): Assume that ` 6= p. If X is a curve and (Lie(ΠF`,k))
ab = 0, the set

Xex
F`(≤ 1) is �nite.

In [Cad17], Cadoret extends Fact 6.1.2.1 to adelic representations. The goal of this paper
is the extension of Fact 6.1.2.1 to various p-adic settings.

6.1.3 (Over)convergent F-Isocrystals over X

Even though Fact 6.1.2.1(1) holds for LS(X, p), the category of p-adic representations presents
some pathologies which makes it very di�erent from LS(X, `) for ` 6= p. A �rst problem is then
to �nd an analogue of the category LS(X, `) when ` = p.

If k = Fq is a �nite �eld, there are at least two possible Tannakian categories of p-adic �local
systems�: the category F-Isoc(X) of Qp-convergent F-isocrystals and the category F-Isoc†(X)

of Qp-overconvergent F-isocrystals. One has a fully faithful functor

(−)conv : F-Isoc†(X)→ F-Isoc(X)

which is an equivalence only if X is proper. The category F-Isoc†(X) behaves very much
like LS(X, `). For example, we have the �niteness of cohomology [Ked06a], a theory of weights
[AC13b] and a trace formula [ES93]. On the other hand, the category F-Isoc(X) has a somehow
pathological p-adic behaviour but it contains �ne p-adic information; see for example [DK17]
and Chapter 5.

However, to have results on the existence of (strictly) generic points, like Fact 6.1.2.1, one
needs that k is arithmetically rich enough. So, to study the specialization theory of p-adic
invariants, one would like to have categories of p-adic �local systems� for varieties de�ned over
in�nite �nitely generated �elds. The construction of Qp-linear categories of (over)convergent
F-isocrystals for variety over in�nite �nitely generated �elds of positive characteristic is then
the �rst topic of this chapter. Roughly, an (over)convergent F -isocrystals [E ] over X is de�ned
as an equivalence class [E ] of couples (X , E), where X is an appropriate model of X over Fq
and E is an (over)convergent F -isocrystal over X ; see Section (6.3.2.1) 6.5.2.1 for the precise

de�nitions. Write F̃-Isoc
(†)

(X) for the category of (over)convergent F-isocrystals over X.

6.1.4 Monodromy groups of (over)convergent F-Isocrystals over X

Since (over)convergent F -isocrystals do not correspond directly to representations, to de�ne
their exceptional loci, one has to use the Tannakian formalism.

If E is a Q`-lisse sheaf on X, we could de�ne the monodromy group G(F`) of F` equivalently
as the Zariski closure of the image of π1(X) acting on F`,x or as the automorphism group of
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the forgetful tensor functor 〈F`〉 → VectQ` . For F-isocrystals, only the latter construction is
available. If [E ] is an (over)convergent F-isocrystals over X represented by (X , E), the choice
of a point geometric point t of X de�nes a �bre functor 〈E〉 → VectQp , hence a monodromy
group G(E) of E over X . Showing that G(E) does not depend on the choice of a representative
(X , E) of the equivalence class of [E ], amounts to showing that every dense open immersion
j : U → X of smooth Fq-varieties induces an isomorphism G(j∗E) ' G(E). While this is true for
overconvergent F-isocrystals (Fact 6.3.1.5.1), it does not hold in general for every convergent
F-isocrystals; see Example 6.5.1.4.2. Indeed if the Newton polygon (see Section 6.5.1.2.2) of E
is not constant on X , there exists an open immersion j : U → X and a canonical �ltration

E1 ⊆ E2 ⊆ ... ⊆ j∗E in F-Isoc(U) (6.1.4.1)

encoding the slopes of j∗E . In general the sub-objects Ei are not in the essential image of
j∗ : F-Isoc(X ) → F-Isoc(U) and this is an obstruction to have G(j∗E) = G(E). However,
we prove (Proposition 6.5.1.4.3) that this is the only obstruction, hence we get well de�ned
monodromy groups for convergent F-isocrystals with constant Newton polygon.

6.1.5 Exceptional loci

After having settled the general formalism, one attaches to every overconvergent F-isocrystals
(resp. convergent F-isocrystals with constant Newton polygon) [E ] an exceptional locus Xex

[E]

and a strictly exceptional locus Xstex
[E] .

6.1.5.1 Overconvergent F-isocrystals

In the overconvergent setting our main result is an analogue of Fact 6.1.2.1.

Theorem 6.1.5.1.1. Let [E ] be a geometrically semisimple overconvergent F -isocrystal over
X (see Section 6.3.2 for the de�nitions). Then:

• The setXex
[E] is sparse. In particular, if k is in�nite there exists a d ≥ 1 such thatXgen

[E] (≤ d)
is in�nite.

• If [E ] is algebraic, then the set Xstex
[E] is sparse. In particular, if k is in�nite there exists a

d ≥ 1 such that Xsgen
[E] (≤ d) is in�nite.

• If X is a curve, the set Xex
[E](≤ 1) is �nite.

The proof of Fact 6.1.2.1 relies heavily on the fact that ΠF` is an `-adic Lie group, hence,
implicitly, on the Galois-theoretic structure of LS(X, `). These features are not available in
this p-adic setting. Instead, the idea is to use companions theory (Fact 6.4.2.3.1) for both over-
convergent F-isocrystals and lisse sheaves, which associates to an overconvergent F -isocrystal
[E ] with representative (X , E) an `-adic companion [F`] with representative (X ,F`) for some
` 6= p. Then we show that the exceptional loci of [E ] and [F`] coincide, so that we can deduce
Theorem 6.1.5.1.1 from Fact 6.1.2.1.

6.1.5.2 Convergent F-isocrystals

In the convergent setting, we get somehow weaker results. The fully faithful functor (−)conv :
F-Isoc†(X )→ F-Isoc(X ) induces a fully faithful functor

(−)conv : F̃-Isoc†(X)→ F̃-Isoc(X).
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Let [E ] be in F-Isoc†(X ) with representative (X , E) and assume that Econv has constant Newton
polygon over X . Then the �ltration (6.1.4.1) induces a canonical �ltration

[E ]conv1 ⊆ [E ]conv2 ⊆ ... ⊆ [E ]conv

and morphisms of algebraic groups

G([E ]conv1 ) � G([E ]conv) ⊆ G([E ]).

For every algebraic group G write rk(G) for its reductive rank and recall that for any subgroup
H ⊆ G one has rk(G) ≥ rk(H).

Theorem 6.1.5.2.1. Let [E ] be a pure and p-plain overconvergent F -isocrystal over X with
constant Newton polygon (see Section 6.5.2 for the de�nitions).

• The set of x ∈ |X| such that rk(G([E ]conv)) > rk(G(x∗[E ]conv)) is sparse. In particular,
if k is in�nite there exists an integer d ≥ 1 and in�nitely many x ∈ X(≤ d) such
rk(G(x∗[E ]conv)) = rk(G(x∗[E ]conv)).

• IfX is a curve for all but at most �nitely many k-rational points x one has rk(G([E ]conv)) =
rk(G(x∗[E ]conv)) and rk(G([E ]conv1 )) = rk(G(x∗[E ]conv1 )).

• If X is a curve and G([E ]conv,geo1 )0 is abelian, then Xex
[E]conv1

(≤ 1) is �nite.

Remark 6.1.5.2.2. If [E ]conv1 has slope zero, the fact that Xstex
[E]conv1

is sparse follows directly
from Facts 6.1.2.1(1) and 6.5.1.2.1.

Via Theorem 6.1.5.1.1, Theorem 6.1.5.2.1(3) amounts to compareXstex
[E]conv1

, Xstex
[E]conv andX

stex
[E] .

To do this, one uses that for every x ∈ |X| there is a canonical diagram of algebraic groups

G(x∗[E ]) G([E ])

G(x∗[E ]conv) G([E ]conv)

G(x∗[E ]conv1 ) G([E ]conv1 ),

so that one can try and obtain information on Xgen
[E]conv1

and Xgen
[E]conv from Xgen

[E] , via the results
in Chapter 5.

6.1.6 An application to motivic p-adic representations

Let f : Y → X be a smooth proper morphism of k-varieties. Up to replacing X with a dense
open subset, the constructible sheaf Fp := Rif∗Qp is a p-adic lisse sheaf. Hence, for every
x ∈ |X|, it corresponds to a representation ρFp such that ρFp,x identi�es with the natural action
of π1(x) on GL(H i(Yx,Qp)).Write G(Fp) and G(x∗Fp) for the Zariski closure of ΠFp and ΠFp,x
respectively and G(Fp)0 and G(x∗Fp)0 for their neutral components. By Fact 6.1.2.1, we know
that Xstex

Fp is thin. As a consequence of Theorem 6.1.5.2.1 we obtain some �niteness results
when X is a curve.

Corollary 6.1.6.1. Assume that X is a curve.

• For all but at most �nitely many k-rational points one has rk(G(Fp)) = rk(G(x∗Fp)).

• If G(Fp)0 is abelian, for all but �nitely many x ∈ X(k) we have G(Fp)0 = G(x∗Fp)0.
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To prove Corollary 6.1.6.1 one observes that there is is a pure and p-plain [E ] in F̃-Isoc†(X)
such that G(Fp) identi�es naturally with G([E ]conv1 ), so that one can deduce Corollary 6.1.6.1
from Theorem 6.1.5.2.1.

6.1.7 A conjecture

While the results in Theorem 6.1.5.2.1 are limited to a small class of overconvergent F-isocrystals,
we conjecture (Conjecture 6.6.2.2.1) that for every pure p-plain overconvergent F-isocrystals
one should have

Xgen
[E]conv = Xgen

[E] ⊆ Xgen
[E]conv1

.

We end the chapter discussing this conjecture and giving some evidences for it.

6.1.8 Organization of the chapter

In Section 6.2 we introduce some notation for algebraic groups and models. Sections 6.3 and
6.4 are devoted to the study of coe�cient objects over �nitely generated �elds. In Section 6.3
we �rst recall various properties of overconvergent F-isocrystals and lisse sheaves over �nite
�elds and then we use them to extend the de�nitions to �nitely generated �elds. In Section
6.4 we de�ne their exceptional loci and we prove Theorem 6.1.5.1.1. Sections 6.5 and 6.6 are
devoted to the study of convergent F-isocrystals over �nitely generated �elds. In Section 6.5 we
�rst recall various properties of convergent F-isocrystals over �nite �elds and then we use them
to extend the de�nitions to �nitely generated �elds. In Section 6.6 we de�ne their exceptional
loci, we prove Theorem 6.1.5.2.1 and its Corollary 6.1.6.1. We end Section 6.6 proposing a
conjecture relating the various exceptional loci associated to an overconvergent F-isocrystal. In
Appendix 6.A, we prove some easy lemma on epimorphic subgroups used in the paper.

6.2 Preliminaries

6.2.1 Notation for groups and representations

If G is an algebraic group over a �eld L of characteristic zero, we write G0 for its neutral com-
ponent, π0(G) := G/G0 for the group of connected components, Ru(G) for its unipotent radical
and X∗(G) for its group of characters. Set RepL(G) for the category of �nite dimensional
L-representations of G. Write rk(G) for the reductive rank of G and recall that a subgroup
of H ⊆ G is of maximal rank if rk(H) = rk(G). If V is in RepL(G) we write V ss for its
semisempli�cation and V ∨ for its dual. Let f : H → G be a morphism of algebraic groups over
L. We say that f : H → G is epimorphic if the induced functor f ∗ : RepL(G) → RepL(H)
is fully faithful. If f : H → G is an epimorphic closed immersion, we say that H is an epi-
morphic subgroup of G. See Appendix 6.A for more details and basic properties of epimorphic
morphism.

If Γ is a pro�nite group and ` is a prime, we write RepQ`(Γ) for the category of �nite
dimensional, continuous Q`-linear representations of Γ that factors trough a �nite extension of
Q`.

6.2.2 Models

To de�ne (over)convergent F-isocrystals and their monodromy groups, we need to work with
models of k-varieties and morphisms over Fq. We collect here some notation and preliminaries
on these models.
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6.2.2.1 Models of varieties

An Fq-model K of k is a smooth geometrically connected Fq-variety with generic point η :
Spec(k) → K. If K1 and K2 are two models of k, there are two dense open subsets U1 → K1

and U2 → K2 and an isomorphism of Fq-varieties U1 ' U2.
If X → k is a smooth connected k-variety, an Fq-model X of X is a smooth morphism

X → K of smooth connected Fq varieties, where K is an Fq-model of k, such that the base
change of X → K along η : Spec(k)→ K identi�es withX → k. IfX is geometrically connected
over k, then every Fq-model of X is geometrically connected over Fq.

If X1 → K1 and X2 → K2 are two models of X → k, we write X2 � X1 if there exists a
commutative cartesian diagram of Fq-varieties

X2 X1

K2 K1

j

�
i

in which i (hence j) is an open immersion. If we want to specify the map j : X2 → X1 in the
diagram we write X2 �j X1. For every model X write jX for the morphism jX : X → X . Every
X admits a model and given two models X1 and X2 of X, there exists always a model X3 such
that X3 � Xi, i = 1, 2. We write Model(X) for the set of model of X.

6.2.2.2 Models of morphisms

If f : Y → X is a morphism of smooth connected k-varieties, an Fq-model f : Y → X of
f : Y → X is a commutative diagram

Y X

K

f

where X → K and Y → K are Fq-models of X → k and Y → k and f : Y → X identi�es with
f : Y → X after base change along η : Spec(k) → K. If f : Y → X is smooth (resp. proper,
resp. an open immersion, resp. a closed immersion) we require that f : Y → X is smooth (resp.
proper, resp. an open immersion, resp. a closed immersion).

If f1 : Y1 → X1 and f2 : Y2 → X2 are two models of f : Y → X, we write (f2 : Y2 → X2) �
(f1 : Y1 → X1) if X1 � X2 and there exists a commutative cartesian diagram

Y2 Y1

X2 X1

f2 � f1

Any f : Y → X admits a model and if f1 : Y1 → X1 and f2 : Y2 → X2 are two models there
exists a model f3 : Y3 → X3 of f : Y → X such that (f3 : Y3 → X3) � (fi : Yi → Xi), i = 1, 2.

6.3 Coe�cient objects over �nitely generated �elds

For every prime `, �x an isomorphism ι` : Q` ' C and write ι := {ι`}`.
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6.3.1 Coe�cient objects over �nite �elds

Let X be a connected smooth Fq-variety. We quickly review the theory of overconvergent F-
isocrystals and lisse sheaves over X . For more details see e.g. [D'Ad17, Section 2], [Abe18],
[Ked18].

6.3.1.1 Coe�cient objects

Write Coef(X , p) for the category of Qp-linear overconvergent F-isocrystals F-Isoc†(X ,Qp)

and Coef geo(X , p) for the category of Qp-linear overconvergent isocrystals Isoc†(X ,Qp). See
[Abe18, 1.4.11, 2.2.14] for the de�nitions and [D'Ad17, Section 2] for a careful discussion.

If ` 6= p is a prime, write Coef(X , `) for the category LS(X, `) of étale lisse Q`-sheaves over
X and Coef geo(X , `) for the category of étale lisse Q`-sheaves over XF; see [Del80, Section 1.1].
The category Coef(X , `) is equivalent to RepQ`(π1(X )) and if X is geometrically connected
Coef geo(X , `) is equivalent to RepQ`(π1(XF)).

For every prime `, including ` = p, write (−)geo : Coef(X , `) → Coef geo(X , `) for the
canonical functor. We say that E is geometrically semisimple if Egeo is semisimple. Write Ess
and Egeo,ss for the semisimpli�cation of E and Egeo inCoef(X , `) andCoef geo(X , `) respectively.

For every j ∈ Qp and every E in Coef(X , p) write E (j) for the jth twist of E (see [D'Ad17,
Section 3.18]).

If ` 6= p, for every algebraic number j such that j is an λ-adic unit3 for every place λ of Q
over ` and every E in Coef(X , `) write E (j) for the jth twist of E .

If ` 6= p, for every F in Coef(X , `) write ρF , ρFgeo for the associated representations and
ΠF , ΠFgeo for their images.

6.3.1.2 Monodromy groups

For every prime `, including ` = p, Coef(X , `) is a neutral Tannakian category and the choice
of an F-point of X induces a �bre functor

Coef(X , `)→ VectQ` .

Since Q` is algebraically closed, any two �bre functors are, non canonically, isomorphic. So, to
simplify the notation, we omit the base points.

(Resp. if X is geometrically connected) For every E inCoef(X , `) (resp. Egeo inCoef geo(X , `)),
write G(E) (resp. G(Egeo)) for the Tannaka group of the Tannakian subcategory 〈E〉 ⊆
Coef(X , `) (resp. 〈Egeo〉 ⊆ Coef geo(X , `)) generated by E (resp. Egeo).

The faithful functor (−)geo : Coef(X , `)→ Coef geo(X , `) induces a faithful functor (−)geo :
〈E〉 → 〈Egeo〉, hence, if X is geometrically connected, a closed immersion G(Egeo) ⊆ G(E).
Furthermore, by [D'Ad17, Appendix] the subgroup G(Egeo) ⊆ G(E) is normal. The algebraic
group G(E)cst := G(E)/G(Egeo) is then abelian and identi�es with the Tannakian group of the
full Tannakian subcategory 〈E〉cst ⊆ 〈E〉 of objects isomorphic to an object of the form q∗E ′,
where q : X → Spec(Fq) is the structural morphism and E ′ is in Coef(Spec(Fq), `).

Every morphism f : Y → X of smooth connected Fq-varieties, induces a faithful tensor func-
tor f∗ : Coef(X , `)→ Coef(Y , `), hence for every E in F-Isoc(X) a natural closed immersion
G(f∗E) ⊆ G(E). If moreover Y and X are geometrically connected, f∗ induces a faithful tensor
functor f∗ : Coef geo(X , `)→ Coef geo(Y , `) �tting into a commutative diagram

3We need this condition to guarantee that E(j) is still a étale lisse Q`-sheaf and not only a Weil lisse Q`-sheaf.
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Coef(X , `) Coef(Y , `)

Coef geo(X , `) Coef geo(Y , `),

hence for every E in F-Isoc(X) a commutative exact diagram

0 G(f∗Egeo) G(f∗E) G(f∗E)cst 0

0 G(Egeo) G(E) G(E)cst 0.

(6.3.1.2.1)

where, by [D'Ad17, Corollary 3.2.7], the left and the middle vertical arrows are closed immer-
sions and the right vertical arrow is surjective.

If ` 6= p, the groups G(E) and G(Egeo) identi�es with the Zariski closure of ΠE and ΠEgeo
respectively.

6.3.1.3 Independence

Let E be in Coef(X , `). For every t ∈ |X | there is a characteristic polynomial φt(E) ∈ Q`[T ] of
E in t (see e.g. [D'Ad17, 2.1.4 and 2.2.10.]). One says that E is algebraic if for every t ∈ |X |,
the polynomial φt(E) lies in Q[T ]. Recall that E is called ι`-pure (of weight w ∈ Z) if i`(φt(E))
has all the roots of complex absolute value q[k(t):Fq ]w/2. Moreover we say that E is p-plain if it
algebraic and the roots of φt(E) are λ-adic units for every place λ of Q over every ` 6= p. Take
another prime `′ 6= ` and �x E` in Coef(X , `) and E`′ in Coef(X , `′). We say that E` and E`′ are
ι-compatible (or that E` is an `-adic companion of E`′) if ι`(φt(E`)) = ι`′(φt(E`′)) for all t ∈ |X |.

6.3.1.4 Properties

We recall the following properties:

Fact 6.3.1.4.1. Assume that X is geometrically connected and let E be in Coef(X , `).

1. If E is ι`-pure, then it is geometrically semisimple.

2. If E is geometrically semisimple then G(Egeo)0 is a semisimple algebraic group.

3. Take another E ′ inCoef(X , `) such that φt(E) = φt(E ′) for every t ∈ |X |. Then Ess ' E ′ss.

4. The category of geometrically semisimple objects is stable by pull-back.

5. Every semisimple object is geometrically semisimple.

6. Assume that E is geometrically semisimple and that f : Y → X is a morphism of smooth
geometrically connected Fq-varieties. Then G(f∗E)0 = G(E)0 if and only if G(f∗Egeo)0 =
G(Egeo)0

Proof.

1. This is [Del80, Theorem 3.4.1] if ` 6= p and [Ked17, Remark 10.6.] if ` = p.

2. This is the Global monodromy theorem: [Del80, Corollarie 1.3.9] if ` 6= p and the proof
of [Cre92, Corollary 4.10] if ` = p. See [D'Ad17, Theorem 3.4.3] for more details.

3. If ` 6= p this is Chebotarev's theorem and if ` = p it is [Abe18, Proposition A.4.1].
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4. This follows from the fact that being geometrically semisimple is equivalent to being
a direct sum in Coef geo(X , `) of ι`-pure coe�cient objects (this uses the companion
conjecture ([Abe18], [Laf02])) and this condition is stable by pull-back; see [D'Ad17,
Corollary 3.5.8.] for more details.

5. This follows from the fact that G(Egeo) ⊆ G(E) is a normal subgroup.

6. One implication follows from the fact that G(Egeo)0 and G(x∗Egeo)0 are the derived sub-
groups of G(E)0 and G(x∗E)0 respectively; this is a consequence of the Global monodromy
theorem see e.g. the proof of [D'Ad17, Corollary 3.4.10]. The other implication follows
from [D'Ad17, Proposition 3.2.6].

6.3.1.5 Behaviour under open immersion

Fact 6.3.1.5.1. Let j : U → X be a dense open immersion of smooth connected Fq-varieties.
Then the following hold:

1. The functor j∗ : Coef(X , `)→ Coef(U , `) is fully faithful;

2. For every E in Coef(X , `), the natural inclusion G(j∗E) ⊆ G(E) is an isomorphism;

3. If X and U are geometrically connected, for every E in Coef(X , `) the natural inclusion
G(j∗Egeo) ⊆ G(Egeo) is an isomorphism.

is fully faithful.

Proof.

1. If ` 6= p, this follows from the fact that j : U → X induces a surjection π1(U) → π1(X ).
If ` = p this is [Ked17, Theorem 5.3].

2. By the general Tannakian formalism it is enough to show that the functor j∗ : Coef(X , `)→
Coef(U , `) is fully faithful and that the essential image is closed under sub-objects. The
�rst condition is point (1). If ` = p, the second condition is [AC13b, Lemma 1.4.6] and,
if ` 6= p, the second condition follows from the normality of X .

3. The proof is the same as the one of (2), replacing, when ` = p, [Ked17, Theorem 5.3]
and [AC13b, Lemma 1.4.6] with [Ked07, Theorem 5.2.1.] and [Ked07, Proposition 5.3.1]
respectively.

Fact 6.3.1.5.2. Let j : U → X be a dense open immersion of smooth connected Fq-varieties.
Then E in Coef(X , `) is algebraic (resp. ι`-pure, resp. p-plain) if and only j∗E in Coef(U , `)
is algebraic (resp. ι`-pure, resp. p-plain).

Proof. This follows from [Ked18, Theorem 3.3.1] (resp. [Del80, Corollaire 1.8.10] if ` 6= p and
[AC13b, Remark 2.1.11] if ` = p, resp. [D'Ad17, Proposition 3.1.12])

6.3.2 Coe�cient objects over �nitely generated �elds

Let k be an in�nitely generated �eld of characteristic p > 0 and let X be a smooth connected
k-variety. In this section we de�ne and study coe�cient objects over X.
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6.3.2.1 De�nitions

For every couples (Xi, Ei), i = 1, 2, with Xi ∈ Model(X) and Ei is in Coef(Xi, `), write
(X2, E2) �j (X1, E1) (or simply (X2, E2) � (X1, E1)) if X2 �j X1 and E2 ' j∗E1.

De�nition 6.3.2.1.1. The category of `-adic coe�cient objects C̃oef(X, `) over X is the
following category:

• The objects are equivalence classes [E ] of couples (X , E) where X ∈ Model(X) and E
is in Coef(X , `). The equivalence relation is given by the relations (X1, E1) ∼ (X2, E2) if
there exists a couple (X3, E3) such that (X3, E3) � (Xi, Ei), i = 1, 2.

• A morphism [g] : [E ] → [E ′] between [E ] and [E ′] in C̃oef(X, `) with representatives
(X , E) and (X ′, E ′) is an equivalence class of couples (U ,g) where U in Model(X) is such
that U �j X and U �j′ X ′ and g is a morphism j∗E → j

′,∗E ′. The equivalence relation is
given by the relations (U1,g1) ∼ (U2,g2) if there exists U3 in Model(X) with U3 �ji Ui,
i = 1, 2, and j∗1g1 = j∗2g2.

If ` = p we write also C̃oef(X, p) := F̃-Isoc†(X) and we call them overconvergent F -
isocrystals over X.

We write [0] for the equivalence class of (X , 0) where 0 is the trivial coe�cient object over
X . The equivalence class of [0] does not depend on the choice of the model X of X.

6.3.2.2 Operations and properties

For [E ] in C̃oef(X, `) with representatives (Xi, Ei), i = 1, 2, there exists a representative (X3, E3)
with (X3, E3) �ji (Xi, Ei), i = 1, 2. Then:

• Since, by Fact 6.3.1.5.1, Ei is irreducible (resp. semisimple, resp. geometrically semisim-
ple) if and only if j∗iEi is irreducible (resp. semisimple, resp. geometrically semisimple),
we say that [E ] is irreducible (resp. semisimple, resp. geometrically semisimple) if for
any representative (X , E) of [E ], E is irreducible (resp. semisimple, resp. geometrically
semisimple) over X . The equivalence class [Ess] of (X , Ess) is then semisimple and it does
not depend on the choice of the representative of (X , E) of [E ].

• Since, by Fact 6.3.1.5.2, Ei is algebraic (resp. ι`-pure, p-plain) if and only if j∗iEi is
algebraic (resp. ι`-pure, p-plain) we say that if for any of the representative (X , E) of [E ],
E is algebraic (resp. ι`-pure, p-plain) over X .

6.3.2.3 Tensor products and direct sums

If [E ] and [E ′] are in C̃oef(X, `) with representatives (X , E) and (X ′, E ′), there exists always a
model X̃ of X with X̃ �j X and X̃ �j′ X ′. Since the functors j∗ : Coef(X̃ , `) → Coef(X , `)
and j

′,∗ : Coef(X̃ , `) → Coef(X ′, `) preserve the operation ⊕ (resp. ⊗), the equivalence class
[E ⊕F ], (resp. [E ⊗F ]) of (X̃ , j∗E ⊕ j

′,∗E ′) (resp. (X̃ , j∗E ⊗ j
′,∗E ′)) does not depend on the choice

of the representatives (X , E) and (X ′, E ′) of [E ] and [E ′]. Then every semisimple [E ] is direct
sum of irreducible objects.

6.3.2.4 Kernels and cokernels

If [g] : [E ]→ [E ′] is a morphism in C̃oef(X, `) represented by (Ui, [gi]), i = 1, 2, there exists a
model U3 of X with U3 � Ui and j∗1g1 = j∗2g2. Since the functors j∗i : Coef(Ui, `)→ Coef(U3, `)
are exact, the equivalence class Ker([g]) (resp. [Coker([g])]) of (U ,Ker(g)) (resp. (U ,Coker([g]))
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does not depend on the choice of the representative (U ,g) of [g] : [E ] → [E ′]. We say that [g]
is a monomorphism (resp. epimorphism) if [Ker(g)] = 0 (resp. [Coker([g])]).

6.3.2.5 Compatibility

Take an `′ 6= `. If [E`] is in C̃oef(X, `) with representative (X`, E`) and [E`′ ] is in C̃oef(X, `′)
with representative (X`′ , E`′), we say that [E`′ ] and [E`] are compatible (or that [E`] is an `′-adic
companion of [E`′ ]) if there exists X in Model(X) with X �j` X` and X �j`′

X`′ such that j∗`E`
and j∗`′E`′ are compatible over X .

6.3.2.6 Functoriality

Every morphism f : Y → X of smooth connected k-varieties induces a functor

f ∗ : C̃oef(X, `)→ C̃oef(Y, `)

as follow.
For every morphism f : Y → X of smooth connected k-varieties and every [E ] in C̃oef(X, `),

with representative (X , E), there is always a model f : Y1 → X1 of f such that X1 �j X . Since
for every couple of such models fi : Yi → Xi, i = 1, 2, there exists always a model f3 : Y3 → X3

with (f3 : Y3 → X3) � (fi : Yi → Xi), the equivalence class f ∗[E ] of (Y1, f
∗j∗E) does not depend

on the choice of the model f : Y1 → X1 of f : Y → X such that X1 �j X .
Similarly, if [g] : [E1] → [E2] is a morphism in C̃oef(X, `) represented by (U ,g), there is

always a model f : Y1 → U1 of f such that U1 �j U and the equivalence class [f ∗(g)] : [E1]→ [E2]
of (Y1, f∗j∗g) does not depend on the choice of the model f : Y1 → U1 of f such that U1 �j U .

6.3.2.7 Monodromy groups

For [E ] in C̃oef(X, `) with representatives (Xi, Ei), i = 1, 2, there exists a representative
(X3, E3) with (X3, E3) �ji (Xi, Ei). If G(Ei) denotes the monodromy group of Ei over Xi (see
Section 6.3.1.5), by Fact 6.3.1.5.1(2) we have G(E1) ' G(j∗1E1) ' G(j∗2E2) ' G(E2). Hence
G([E ]) := G(E) is well de�ned independently on the choice of (X , E) of [E ]. We call it the
arithmetic monodromy group of [E ]. Similarly, using Fact 6.3.1.5.1(3), if X is also geometri-
cally connected, G([E ]geo) := G(Egeo) is independent from the choice of (X , E). We call it the
geometric monodromy group of [E ].

6.3.3 Comparison with the category of lisse sheaves

Let X be a smooth connected k-variety. In this subsection we assume ` 6= p. In this case,
we have another candidate for a category of `-adic local systems: LS(X, `). In this section we
compare these two options.

6.3.3.1 Comparison functor

We construct a functor:
Φ : C̃oef(X, `)→ LS(X, `).

Let [F ] be in C̃oef(X, `) with representative (Xi,Fi), i = 1, 2, then there exists a (X3,F3) such
that (X3,F3) � (Xi,Fi). Then the commutative diagram
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X1

X3 X

X2

jX1

jX2

jX3

shows that Φ([F ]) := j∗XF does not depend on the choice of the representative (X ,F) of the
equivalence class of [F ].

Similarly, if [g] : [F ]→ [G] is a morphism in C̃oef(X, `) represented by (U ,g), the morphism
Φ([g]) : Φ([F ])→ Φ([G]) de�ned by j∗U(g) does not depend on the choice of the representative
(U ,g) of [g] : [F ]→ [G]

Since for every X ∈ Model(X) the natural morphism π1(X) → π1(X ) is surjective, the

image ΠΦ([F ]) of ρΦ([F ]) coincide with ΠF and Φ : C̃oef(X, `)→ LS(X, `) is fully faithful. The

functor Φ : C̃oef(X, `)→ LS(X, `) is not essentially surjective in general.

Remark 6.3.3.1.1. If X = k = Fp(T ), any Fp-model of X is a dense open subscheme U ⊆ P1
Fp

and there is an exact sequence

0→ IU → π1(k)→ π1(U)→ 0

where IU is the subgroup generated by the inertia groups of the points in P1
Fp − U . Hence a

representation of π1(k) is in the essential image of Φ : C̃oef(X, `)→ LS(X, `) if and only if it
is unrami�ed outside �nitely many places.

However, its essential image is big enough to contains all the representations coming from
geometry. More precisely, if the f : Y → X is a smooth proper morphism, choose a smooth
proper model f : Y → X of f : Y → X. By smooth proper base change, Rif∗Q` is LS(X, `)
and Rif∗Q` is in LS(X , `). If we write [Rif∗Q`] for the equivalence class of (X , Rif∗Q`), then
we have Φ([Rif∗Q`]) = Rif∗Q`.

6.3.3.2 Geometric image

Assume now that X is geometrically connected. Then, for every [F ] in C̃oef(X, `), we can
restrict ρΦ([F ]) to π1(Xk) obtaining a representation

ρΦ([F ])k
: π1(Xk)→ GLr(Q`),

with image ΠΦ([F ])k
. If (X ,F) is a representative for [F ], in general ΠΦ([F ])k

is very di�erent
from ΠFgeo .

Example 6.3.3.2.1. If X = P1
k, then π1(Xk) = 0 so that ΠΦ([F ])k

= 0 for all [F ] in C̃oef(X, `).
However, if K is any model of k, then P1

K → K is a model of P1
k, hence it is not true in general

that ΠFgeo = 0

However, there is a commutative exact diagram of groups

1 π1(Xk) π1(X) π1(k) 1

1 π1(XF) π1(X ) π1(Fq) 1

(6.3.3.2.2)
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where the central and right arrows are surjective. Since the image of a normal subgroup trough
a surjection is a normal subgroup, π1(Xk)→ π1(XF) has normal image, hence ΠΦ([F ])k

⊆ ΠFgeo
is a normal subgroup. As a consequence, we get the following (a mild generalization of [CT12b,
Theorem 5.7]), which is needed to apply Fact 6.1.2.1(2) in our setting.

Lemma 6.3.3.2.3. If [F ] is geometrically semisimple, then:

Lie(ΠΦ([F ])k
)ab = 0.

Proof. Let (X ,F) be a representative for [F ]. Since ΠΦ([F ])k
is a normal subgroup of ΠFgeo ,

the Zariski closure G(Φ([F ])k) of ΠΦ([F ])k
is a normal subgroup of G(Fgeo). Since Fgeo is ge-

ometrically semisimple, by Fact 6.3.1.4.1(2) G(Fgeo) is a semisimple algebraic group, hence
G(Φ([F ])k) is a semisimple algebraic group. By [Ser66, �1, Corollaire], this implies that
Lie(ΠΦ([F ])k

)ab = Lie(G(Φ([F ])k))
ab = 0.

6.4 Exceptional loci of coe�cient objects

Let X be a smooth geometrically connected k-variety.

6.4.1 De�nitions and �rst properties

6.4.1.1 De�nitions

For every morphism f : Y → X of smooth connected k-varieties and every [E ] in C̃oef(X, `),
with representative (X , E), there is always a model f∗ : Y1 → X1 of f such that X1 �j X . Hence,
as in Section 6.3.2.7, we get a well de�ned closed immersion G(f ∗[E ]) = G(f∗j∗E) ⊆ G(j∗E) '
G(E) = G([E ]). So we can de�ne:

De�nition 6.4.1.1.1. We say that x ∈ |X| is algebraically generic (resp. algebraically strictly
generic) for [E ] if G(x∗[E ])0 = G([E ])0 (resp. G(x∗[E ]) = G([E ])).

Write Xgen
[E] (resp. Xsgen

[E] ) for the set of x ∈ |X| that are algebraically generic (resp. alge-
braically strictly generic) for [E ]. De�ne the following sets:

Xex
[E] := |X| −Xgen

[E] ; Xex
[E](≤ d) := Xex

[E] ∩X(≤ d); Xgen
[E] (≤ d) := Xgen

[E] ∩X(≤ d)

Xstex
[E] := |X| −Xsgen

[E] ; Xstex
[E] (≤ d) := Xstex

[E] ∩X(≤ d); Xsgen
[E] (≤ d) := Xsgen

[E] ∩X(≤ d).

We call Xex
[E] the algebraic exceptional locus of [E ] and Xstex

[E] its algebraic strictly-exceptional
locus. For further use we gather an easy lemma on the behaviour of the exceptional locus under
�nite étale cover.

Lemma 6.4.1.1.2. Let f : Y → X be a connected �nite étale cover. Then we have:

f(Y ex
f∗[E]) = Xex

[E]

Proof. Choose a model of f : Y → X such that f : Y → X is �nite étale and a representative
class of (X , E) is de�ned over X . Then Lemma 6.4.1.1.2 follows from the fact that G(f ∗[E ]) =
G(f∗E) ⊆ G(E) = G([E ]) is an open subgroup by [D'Ad17, Proposition 3.3.4].
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6.4.1.2 Comparison with the exceptional locus of Φ([F ])

Assume ` 6= p. In the introduction, for any F in LS(X,Q`), we de�ned the exceptional locus

Xex
F and the strictly exceptional locus Xstex

F . So, if we have a [F ] in C̃oef(X, `), we have four
subsets of X:

Xgen
[F ] ; Xsgen

[F ] ; Xgen
Φ([F ]); Xsgen

Φ([F ]).

To apply Fact 6.1.2.1 in our setting, we need to compare them.

Lemma 6.4.1.2.1. The following hold:

1. Xsgen
Φ([F ]) ⊆ Xsgen

[F ] and Xgen
Φ([F ]) ⊆ Xgen

[F ]

2. If F is geometrically semisimple then Xgen
Φ([F ]) = Xgen

[F ] .

Proof. Choose a model f : K′ → X of x → X such that a representative (X ,F) of
[F ] is de�ned over X . Since ΠF = ΠΦ([F ]) and Πf∗F = ΠΦ([F ]),x, (1) amounts to show
that if Πf∗F = ΠF (resp. Πf∗F ⊆ ΠF is an open subgroup) then G(f∗F) = G(F) (resp.
G(f∗F)0 = G(F)0). So (1) follow from the fact that G(F) and G(f∗F) are the Zariski
closures of ΠF and Πf∗F respectively.

Then (2) amounts to show that if G(f∗F)0 = G(F)0 then Πf∗F ⊆ ΠF is an open sub-
group. So assume that G(f∗F)0 = G(F)0. Replacing Fq with a �nite �eld extension,
we can assume that K′ is geometrically connected over Fq. Since G(f∗F)0 = G(F)0,
Fact 6.3.1.4.1(6) implies that G(f∗Fgeo)0 = G(Fgeo)0. Since G(f∗Fgeo)0 = G(Fgeo)0 is a
semisimple algebraic group (6.3.1.4.1(2)), by [Ser66, �1, Corollaire] we deduce that Πf∗Fgeo

is open in ΠFgeo . There is a commutative diagram with exact rows:

0 Πf∗Fgeo Πf∗F
Πf∗F

Πf∗Fgeo
0

0 ΠFgeo ΠF
ΠF

ΠFgeo
0,

where the right vertically arrow is surjective, since K′ is geometrically connected over Fq.
So there is a surjection

ΠFgeo

Πf∗Fgeo
→ ΠF

Πf∗F

In particular ΠF
Πf∗F

is �nite hence Πf∗F is open in ΠF .

6.4.2 Proof of Theorem 6.1.5.1.1

Now we are ready to prove Theorem 6.1.5.1.1. Let [E ] be a geometrically semisimple overcon-
vergent F-isocrystal over X. For every x ∈ |X|, choose a model f : K′ → X of x→ X such that
a representative (X , E) of [E ] is de�ned over X .

6.4.2.1 Reducing to the semisimple case

We �rst reduce to the semisimple situation.

Lemma 6.4.2.1.1. Let [E ] be in C̃oef(X, `). If [E ] is geometrically semisimple then

Xex
[E] = Xex

[Ess] and Xstex
[E] = Xstex

[Ess]
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Proof. The �rst (resp. the second) equality amounts to show that G(f∗E)0 = G(E)0 if and only
if G(f∗Ess)0 = G(Ess)0 (resp. G(f∗E) = G(E) if and only if G(f∗Ess) = G(Ess)).

1. To prove the �rst equality, we can replace Fq with a �nite �eld extension, hence as-
sume that K′ is geometrically connected over Fq. Using Fact 6.3.1.4.1(4) we see that
f∗E is again geometrically semisimple. Since semisimple implies geometrically semisimple
(6.3.1.4.1(5)) we get isomorphisms

Egeo ' (Egeo)ss ' (Ess)geo

f∗(Egeo) ' (f∗E)geo ' ((f∗E)ss)geo
(∆)
' ((f∗(Ess))ss)geo ' f∗(Ess)geo

where the equality (∆) follows from Fact 6.3.1.4.1(3) since it implies that (f∗E)ss '
(f∗(Ess))ss. By Fact 6.3.1.4.1(6) we see that G(E)0 = G(f∗E)0 if and only G(Egeo)0 =
G(f∗Egeo)0. So G(Egeo)0 = G(f∗Egeo)0 if and only if G((Ess)geo)0 = G(f∗(Ess)geo)0. But
Ess is again geometrically semisimple so that we can apply again Fact 6.3.1.4.1(6) to get
that G((Ess)geo)0 = G(f∗(Ess)geo)0 if and only if G(Ess)0 = G(f∗(Ess))0. This concludes
the proof of the �rst equality.

2. Now we deduce the second equality from the �rst one, via a purely group theoretic
argument. For ? ∈ {∅, ss} we have an exact commutative diagram

0 G(f∗(E?))0 G(f∗(E?)) π0(G(f∗(E?))) 0

0 G(E?)0 G(E?) π0(G(E?)) 0

g?,0 g? π0(g?)

By (1), gss,0 is an isomorphism if and only if g0 is an isomorphism. Assume this is the
case, so that π0(g?) is injective. Then g? is an isomorphism if and only if π0(g?) is an
isomorphism if and only if |π0(G(E?))| = |π0(G(f∗(E?)))|. We conclude observing that,
since taking semisimpli�cation does not change the group of connected components, we
have:

|π0(G(E))| ' |π0(G(Ess))|

|π0(G(f∗E))| ' |π0(G((f∗E)ss))| ' |π0(G((f∗(Ess))ss))| ' |π0(G(f∗(Ess)))|

This concludes the proof

So from now assume that [E ] is semisimple, hence that [E ] ' ⊕i[Ei] with each [Ei] irreducible.
By [Abe15, Lemma 6.1], there exists a twist E (ji)

i of Ei such that E (ji)
i has determinant of �nite

order under tensor.

6.4.2.2 Reducing to the algebraic case

Assume �rst that E is not algebraic. We reduce to the situation in which E is algebraic using
the following, which is a consequence of the companion conjecture ([Laf02], [Dri12], [Abe18],
[AE16], see [Ked18, Corollary 3.3.3])

Fact 6.4.2.2.1. Let X be a smooth geometrically connected Fq-variety and let E be inCoef(X , `)
irreducible with �nite order determinant. Then E is algebraic.

By Fact 6.4.2.2.1 E (ji)
i is algebraic, hence [E ′] := ⊕i[E (ji)

i ] is algebraic. Then we have:

149



Lemma 6.4.2.2.2. There is an equality

Xex
[E] = Xex

[E ′]

Proof. We need to show that G(f∗E)0 = G(E)0 if and only if G(f∗E ′)0 = G(E ′)0. Replacing Fq
with a �nite �eld extension, we can assume that K′ is geometrically connected over Fq. By Fact
6.3.1.4.1(6) G(f∗E)0 = G(f∗E)0 if and only if G(f∗Egeo)0 = G(f∗Egeo)0 and G(f∗E ′)0 = G(E ′)0 if
and only if G(f∗E ′geo)0 = G(E ′geo)0. Since E ′geo = Egeo this concludes the proof.

So, using Lemma 6.4.2.2.2, we may and do assume that E is algebraic.

6.4.2.3 Companions and independence

The idea is then to take, for some ` 6= p, an `-adic companion F` of E , to which we can apply
Fact 6.1.2.1(2) thanks to Proposition 6.3.3.2.3, and to prove that the exceptional loci of F and
E coincide. To do this, we exploit the companions conjecture ([Laf02], [Abe18], [AE16]).

Fact 6.4.2.3.1 ([AE16, Theorem 4.2]). Let X be a smooth geometrically connected Fq-variety
and let E be in Coef(X , p) irreducible with �nite order determinant. Then, for every ` 6= p
there exists a (unique) F in Coef(X , `) which is ι-compatible with E .

Since Ei and E (ji)
i are algebraic, for every i ≥ 0, ji ∈ Qp is an algebraic number. In particular

there exists an ` such that for every i ≥ 0 and every place λ in Q over `, ji is a λ-adic unit.
Fix such ` and write F`,i for the `-adic companion of Ei over X given by Fact 6.4.2.3.1. Since
for every i ≥ 0 and every place λ in Q over `, ji is a λ-adic unit, F (1/ji)

`,i is in Coef(X , `) (see
Section 6.3.1.1) and it is an `-adic companion of Ei. Consider [F`] in Coef(X, `) represented by
(X ,⊕iF (1/ji)

` ), so that [F`] is an `-adic companion of E . Then from Lemmas 6.4.1.2.1, 6.3.3.2.3
and Fact 6.1.2.1 it is enough to prove the following.

Fact 6.4.2.3.2. For ? ∈ {`, `′} �x a [E?] in C̃oef(X, ?). Assume that [E`] and [E`′ ] are geomet-
rically semisimple and ι-compatible. Then

Xgen
[E`] = Xgen

[E`′ ]
and Xsgen

[E`] = Xsgen
[E`′ ]

Proof. By Lemma 6.4.2.1.1 we can assume that [E`] and [E`′ ] are semisimple. Choose a model
f : K′ → X of x → X such that there are representatives (X , E`) and (X , E`′) of [E`] and
[E`′ ] are de�ned over X . Then the �rst (resp. the second) equality amounts to show that
G(f∗E`)0 = G(E0

` ) if and only if G(f∗E`′)0 = G(E`′)0 (resp. G(f∗E`) = G(E`) if and only if
G(f∗E`′) = G(E`′)). They both follows from the proof of [Cad19b, Corollaire 8.7].

6.5 Convergent F-isocrystals over �nitely generated �elds

6.5.1 Convergent F-isocrystals over �nite �elds

Let X be a smooth connected Fq-variety. We �rst quickly review the theory of convergent
F-isocrystals over X and its relation with the theories of overconvergent F-isocrystals and p-
adic representations. Then we study the behaviour of convergent F-isocrystals under open
immersions of smooth Fq-varieties.
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6.5.1.1 Convergent and overconvergent F-isocrystals

Write F-Isoc(X ) (resp. Isoc(X )) for the category of Qp-convergent F -isocrystals on X (resp.
convergent F -isocrystals) and consider the canonical diagram of functors:

F-Isoc†(X ) Isoc†(X )

F-Isoc(X ) Isoc(X ).

(−)geo

(−)conv (−)conv

(−)geo

Recall the following.

Fact 6.5.1.1.1. [Ked04] The functor (−)conv : F-Isoc†(X )→ F-Isoc(X ) is fully faithful.

6.5.1.2 Slopes

Let E be in F-Isoc(X ) of rank r. For every t ∈ |X |, one considers the multi-set {ati(E)}1≤i≤r
of slopes of E at t. These are rational numbers that we assume to be ordered as at1(E) ≤ · · · ≤
atr(E). See [Ked17, Sections 3 and 4] for more details on the theory of slopes. We say that
E is isoclinic (of slope at1(E)) if at1(E) = atr(E) for every t ∈ |X | and that E is unit-root if
it is isoclinic of slope 0. Write F-Isocur(X ) ⊆ F-Isoc(X ) for the Tannakian subcategory of
unit-root convergent F-isocrystals.

Fact 6.5.1.2.1. [Tsu02] There is a natural equivalence of categories

ΦX : F-Isocur(X ) ' LS(X , p).

We say that E has constant Newton polygon if the function

NE :|X | → Qr

t 7→ (ati(E))1≤i≤r

is constant. Write F-IsocCNP(X ) ⊆ F-Isoc(X ) for the Tannakian subcategory of convergent
F-isocrystals with constant Newton Polygon.

Fact 6.5.1.2.2 ([Ked17, Theorem 3.12, Corollary 4.2]). Let E be in F-Isoc(X ).

1. There exists a dense open immersion j : U → X such that j∗E is in F-IsocCNP(U);

2. If E is in F-IsocCNP(X ), then there exists a unique �ltration

0 = E0 ⊆ E1 ⊆ ... ⊆ En−1 ⊆ En = E in F-Isoc(X )

such that Ei/Ei−1 is isoclinic of some slope si with s1 < s2 < ... < sn.

In general, if (P ) is a property of convergent F-isocrystals, we say that a E in F-Isoc†(X )
has (P ) if Econv has (P ).

6.5.1.3 Monodromy groups

F-Isoc(X ) is a Tannakian Qp-linear category and the choice of a geometric point t of X , de�nes
a �bre functor t∗ : F-Isoc(X) → VectQp . For E in F-Isoc(X ) write G(E) for the Tannaka
group of the Tannakian subcategory 〈E〉 ⊆ F-Isoc(X ). If X is geometrically connected, de�ne
similarly G(Egeo). The fully faithful functor 〈E〉 → 〈Egeo〉 induces a closed immersion G(Egeo) ⊆
G(E), with G(Egeo) normal in G(E); [D'Ad17, Appendix] and [AD18, Propositon 2.2.4]. The
algebraic group G(E)cst := G(E)/G(Egeo) is abelian and identi�es with the Tannakian group
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of the full Tannakian subcategory 〈E〉cst ⊆ 〈E〉 of objects isomorphic to an object of the form
q∗E ′, where q : X → Spec(Fq) is the structural morphism and E ′ is in F-Isoc(Fq).

If E is in F-Isoc†(X ) the fully faithful functor (−)conv : 〈E〉 → 〈Econv〉 of Section 6.5.1.1,
induces a closed immersion G(Econv) ⊆ G(E). Similarly, if X is geometrically connected there
is a natural closed immersion G(Egeo,conv) ⊆ G(Egeo) �tting into a commutative exact diagram

0 G(Econv,geo) G(Econv) G(Econv)cst 0

0 G(Egeo) G(E) G(E)cst 0,

where the right vertical arrow is surjective (see Section 5.2.2 in Chapter 5).

Fact 6.5.1.3.1. Let E be in F-Isoc†(X ) and assume that it is pure and p-plain. Then
G(Econv) ⊆ G(E) is an epimorphic subgroup of maximal rank. If moreover X is geometri-
cally connected the following hold:

1. G(Egeo,conv) ⊆ G(Egeo) is a subgroup of maximal rank;

2. The abelianization of G(Egeo,conv) is reductive;

3. If E is semisimple the natural map

G(Econv)/G(Egeo,conv)→ G(E)/G(Egeo)

is an isogeny.

Proof. All the statement follow from Fact 6.5.1.1.1 and the results in Chapter 5. More precisely,
the �rst statement follows from Fact 6.5.1.1.1 and Corollary 5.2.3.2.1. Assume that X is
geometrically connected. Then (1) is Theorem 5.1.2.2.1, (2) follows from (1), Fact 6.3.1.4.1(1)
and Lemma 5.2.3.2.3. Finally (3) follows froms from the �rst statement, (1) and Corollary
5.2.3.2.2.

Every morphism f : Y → X of smooth connected Fq-varieties, induces a faithful tensor func-
tor f∗ : F-Isoc(X ) → F-Isoc(Y), hence for every E in F-Isoc(X ) a natural closed immersion
G(f∗E) ⊆ G(E). If moreover Y and X are geometrically connected, f∗ induces a faithful tensor
functor f∗ : Isoc(X )→ Isoc(Y) �tting into a commutative diagram

F-Isoc(X ) F-Isoc(Y)

Isoc(X ) Isoc(Y),

hence for every E in F-Isoc(X ) a commutative exact diagram

0 G(f∗Egeo) G(f∗E) G(f∗E)cst 0

0 G(Egeo) G(E) G(E)cst 0

(6.5.1.3.2)

where the left and the vertical arrows are closed immersion and the right vertical arrow is
surjective.
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6.5.1.4 Behaviour under open immersion

The analogue of Fact 6.3.1.5.1(1) holds in the setting of convergent F-isocrystals.

Fact 6.5.1.4.1 ([DK17, Theorem 2.2.3]). Let j : U → X be a dense open immersion of con-
nected smooth Fq-varieties. The functor j∗ : F-Isoc(U)→ F-Isoc(X ) is fully faithful.

However the analogues of Fact 6.3.1.5.1(2-3) do not hold in the setting of convergent F-
isocrystals.

Example 6.5.1.4.2. Let f : Y → X be a non isotrivial family of elliptic curves with at least
one supersingular �bre. Write j : U ⊆ X for the dense open subset with ordinary �bres and
E := R1f∗OY/Qp for the �rst convergent higher direct image. Then one has G(E) = GL2, while
G(j∗E) ⊆ GL2 is the Borel subgroup of upper triangular matrices. So, while E is irreducible
and doesn't have constant Newton polygon, j∗E has constant Newton polygon hence it acquires
a two steps �ltration, re�ecting the �ltration of the p-divisible group of the generic �bre of
f : Y → X into étale and multiplicative part.

In Example 6.5.1.4.2, we see that the obstruction on G(j∗E) ⊆ G(E) to be an isomorphism is
the presence of new subobjects of j∗E arising from the slope �ltration on U . We show that this
is the only obstruction, obtaining an analogue of Fact 6.3.1.5.1(2-3) for convergent F-isocrystal
with constant Newton polygon.

Proposition 6.5.1.4.3. Let j : U → X be a dense open immersion of connected smooth
Fq-varieties and let E be in F-IsocCNP(X ). Then:

1. The natural closed immersion G(j∗E) ⊆ G(E) is an isomorphism.

2. If U and X are geometrically connected, the natural closed immersion G(j∗Egeo) ⊆ G(Egeo)
is an isomorphism.

Proof.

1. By Fact 6.5.1.4.1, the functor F-Isoc(X )→ F-Isoc(U) is fully faithful, so that G(Econv) ⊆
G(E) is an epimorphic subgroup. Since any E ′ in 〈E〉 is in F-IsocCNP(X ), by the group
theoretic Lemma 6.5.1.4.4 below, it is enough to show that that if E ′ is in F-IsocCNP(X )
and semisimple, then j∗E ′ is semisimple. Since every semisimple convergent F-isocrystal
in F-IsocCNP(X ) is a direct sum of isoclinic semisimple F-isocrystals, we may and do
assume that E ′ is isoclinic and semisimple. As twisting is an equivalence of categories,
we can assume that E ′ is in F-Isocur(X ). By Fact 6.5.1.2.1, it is enough to show that
that any semisimple ρ in RepQp(π1(X )) stays semisimple after restriction via the map
π1(U) → π1(X ). We conclude observing that, since U → X is an open immersion of
connected normal schemes, the map π1(U)→ π1(X ) is surjective.

2. We deduce (2) from (1) and Fact 6.5.1.4.1. There is a commutative exact diagram:

0 G(j∗Egeo) G(j∗E) G(j∗E)cst 0

0 G(Egeo) G(E) G(E)cst 0.

'

Since the middle vertical arrow is an isomorphism by point (1), it is enough to show that
the right vertical surjection is an isomorphism. By the Tannakian formalism, one needs
to prove that the fully faithful functor

RepQp(G(E)cst)→ RepQp(G(j∗E)cst).

153



is essentially surjective. Write qX : X → Fq and qU : U → Fq for the structural morphisms.
By Section 6.5.1.3, the categories RepQp(G(E)cst) and RepQp(G(j∗E)cst) are canonically
equivalent to the Tannakian subcategories 〈E〉cst ⊆ 〈E〉 and 〈j∗E〉cst ⊆ 〈j∗E〉 made by
convergent F-isocrystals of the form q∗XE ′ and q∗UE ′ for some E ′ in F-Isoc(Fq), respectively.
Take any q∗UE ′ in 〈j∗E〉cst. Since q∗XE ′ in F-Isoc(X ) is such that j∗q∗XE ′ = q∗UE ′, it is enough
to show that q∗XE ′ is in 〈E〉cst. Since it is of the form q∗XE ′, it is enough to show that
q∗XE ′ is in 〈E〉. By the point (1), the natural functor j∗ : 〈E〉 → 〈j∗E〉 is an equivalence of
categories, so that there exists a T in 〈E〉 such that j∗T ' q∗UE ′ and it is enough to show
that q∗XE ′ ' T . Since, by Fact 6.5.1.4.1, the functor j∗ : F-Isoc(X )→ F-Isoc(U) is fully
faithfully, hence conservative, we conclude observing that j∗q∗XE ′ ' q∗UE ′ ' j∗T .

Lemma 6.5.1.4.4. Let H ⊆ G be a closed immersion of algebraic groups over an algebraically
closed �eld L of characteristic zero. Assume that H is an epimorphic subgroup and that
RepL(G) → RepL(H) sends semisimple representations to semisimple representations. Then
H = G.

Proof. text

• Assume �rst that G and H are connected. Since H ⊆ G is epimorphic, by [AE16, Lemma
1.6] it is enough to show that the the map X∗(G) → X∗(H) induced at the level of the
groups of characters is an isogeny. Since Rep(G) → Rep(H) sends semisimple repre-
sentations to semisimple representations, the inclusion H ⊆ G restricts to an inclusion
Ru(H) ⊆ Ru(G). So there is a commutative exact diagram:

1 Ru(H) H H/Ru(H) 1

1 Ru(G) G G/Ru(G) 1.

Hence it is enough to show that the induced morphism H/Ru(H) → G/Ru(G) is an
isogeny Since H → G is epimorphic, by Lemma 6.A.3(2) also H/Ru(H) → G/Ru(G)
is epimorphic. Since H/Ru(H) is reductive, by Lemma 6.A.2(1), we see that the right
vertical arrow is surjective. So it is enough to show that

Dim(G/Ru(G)) ≥ Dim(H/Ru(H)).

By the Levi decomposition, the surjection H → H/Ru(H) admits a splitting j. Write
L := j(H/Ru(H)) for the corresponding Levi factor. To conclude, we have to show that
L injects into G/Ru(G), i.e. that L ∩Ru(G) = 1. Since Ru(G) is normal in G, the group
Ru(G) ∩ L is normal in L. Since Ru(G) ∩ L is unipotent it is also connected. But L is
reductive, so that all the connected normal unipotent subgroups are trivial.

• We reduce to the case in which G and H are connected. There is a commutative diagram
with exact rows:

1 H0 H π0(H) 1

1 G0 G π0(G) 1.

Since H ⊆ G is epimorphic, by Lemma 6.A.3(2), the morphism π0(H) → π0(G) is
epimorphic as well. Since π0(H) is �nite (hence reductive), this implies that π0(H) →
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π0(G) is surjective. By diagram chasing, it is enough to show that the left vertical arrow
is an isomorphism. Since Ru(H

0) = Ru(H) ⊆ Ru(G) = Ru(G
0), the functor RepL(G0)→

RepL(H0) sends semisimple representations to semisimple representations. So, by the
previous point it is enough to show that H0 ⊆ G0 is an epimorphic subgroup. This
follows from the fact that H ⊆ G is an epimorphic subgroup and Lemma 6.A.3(1).

6.5.2 Convergent F-isocrystals over �nitely generated �elds

Let k be a �nitely generated �eld of characteristic p > 0 and let X be a connected smooth
k-variety. In this section, mimicking Section 6.3.2, we construct and study a Qp-linear category

F̃-Isoc(X) of convergent F-isocrystals over X.

6.5.2.1 De�nitions

For every couples (Xi, Ei), i = 1, 2, with Xi ∈Model(X) and E in F-Isoc(X ), write (X2, E2) �j

(X1, E1) (or simply (X2, E2) � (X1, E1)) if X2 �j X1 and E2 ' j∗E1.

De�nition 6.5.2.1.1. The category F̃-Isoc(X) of convergent F-isocrystals over X is the fol-
lowing category:

• The objects are equivalence classes [E ] of couples (X , E) where X ∈ Model(X) and E
is in F-Isoc(X ). The equivalence relation is given by the relations (X1, E1) ∼ (X2, E2) if
there exists a couple (X3, E3) such that (X3, E3) � (Xi, Ei), i = 1, 2.

• A morphism [g] : [E ]→ [E ′] between [E ] and [E ′] in F̃-Isoc(X) with representatives (X , E)
and (X ′, E ′) is an equivalence class of couples (U ,g) where U ∈ Model(X) is such that
U �j X and U �j′ X ′ and g is a map j∗E → j

′,∗E ′. The equivalence relation is given by
(U1,g1) ∼ (U2,g2) if there exists U3 in Model(X) with U3 �ji Ui, i = 1, 2 and j∗1g1 = j∗2g2.

If [E ] and [E ′] are in F̃-Isoc(X ), we can always choose representatives of the forms (X , E) and
(X , E ′). By Fact 6.3.1.5.1, once such representatives are chosen, one has Hom

F̃-Isoc(X)
([E ], [E ′]) =

HomF-Isoc(X )(E , E ′).

6.5.2.2 Operations

Most of the constructions of Sections 6.3.2.2, 6.3.2.3, 6.3.2.4 go trough without any change.
For example:

• For every [E ′] and [E ] in F̃-Isoc(X) there are well de�ned tensor product [E ] ⊗ [E ′] and
direct sum [E ]⊕ [E ′];

• For every morphism [g] : [E ] → [E ′], there are well de�ned notion of kernel [Ker[g]], of
cokernel [Coker([g])], of monomorphism and of epimorphism. If there exists a monomor-
phism [g] : [E ′]→ [E ], we write [E ′] ⊆ [E ] and [E/E ′] := [Coker([g])]

However, since Facts 6.3.1.5.1 fails for convergent F-isocrystals, the notions of irreducibility

and semisimplicity behave di�erently in F̃-Isoc(X) (see Example 6.5.1.4.2).
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6.5.2.3 Slopes and slope �ltration

Also the notion of having constant Newton polygon (resp. being isoclinic (of slope s), resp.
being unit-root) is not stable under open immersion. So we give the following de�nition.

De�nition 6.5.2.3.1. We say that [E ] has constant Newton polygon (resp. is isoclinic (of slope
s), resp. is unit-root) if there exists a representative class of (X , E) such that E has constant
Newton polygon (resp. is isoclinic (of slope s), resp. is unit-root) over X .

If [E ] has constant Newton polygon (resp. is unit-root) we call any representative (X , E)
of the equivalence class of [E ] such that E has constant Newton polygon (resp. is unit-root)
over X , a representative with constant Newton polygon (resp. a unit-root representative).

Let F̃-IsocCNP(X) (resp. F̃-Isocur(X)) be the subcategory of F̃-Isoc(X) of convergent F-
isocrystals that have constant Newton polygon (resp. that are unit-root).

If [E ] in F̃-IsocCNP(X) has representatives (Xi, Ei), i = 1, 2, with constant Newton polygon,
then there exists a representative (X3, E3) with (X3, E3) �ji (Xi, Ei). If

0 = Ei,0 ⊆ Ei,1 ⊆ ... ⊆ Ei,r−1 ⊆ Ei,r = Ei

is the slope �ltration of Ei over Xi of Fact 6.5.1.2.2, then

0 = j∗iEi,0 ⊆ j∗iEi,1 ⊆ ... ⊆ j∗iEi,r−1 ⊆ j∗iEi,r = j∗i Ei

identi�es with the slope �ltration of j∗iE over X3. Hence, by the unicity of the slope �ltration,
the equivalence class [Ei] of (X , Ei) does not depend on the choice of the representative (X , E)
with constant Newton polygon of [E ].

In particular, every [E ] in F̃-IsocCNP(X) has a canonical �ltration

0 = [E0] ⊆ [E1] ⊆ [E2] ⊆ ... ⊆ [E ],

such that [Ei/Ei−1] is isoclinic of slope si with s1 < s2 < ... < sr.

6.5.2.4 Functoriality

As in Section 6.3.2.6, every morphism f : Y → X of smooth connected k-varieties induces a
functor

f ∗ : F̃-Isoc(X)→ F̃-Isoc(Y )

as follow.
For every morphism f : Y → X of smooth connected k-varieties and every [E ] in F̃-Isoc(X),

with representative (X , E), there is always a model f : Y1 → X1 of f such that X1 �j X . Since
for every couple of such models fi : Yi → Xi, i = 1, 2, there exists always a model f3 : Y3 → X3

with (fi : Y3 → X3) � (fi : Yi → Xi), the equivalence class f ∗[E ] of (Y1, f
∗j∗E) does not depend

on the choice of the model f : Y1 → X1 of f such that X1 �j X .
Similarly, if [g] : [E1] → [E2] is a morphism in F̃-Isoc(X) represented by (U ,g), there is

always a model f : Y1 → X1 of f such that U �j X and the equivalence class [f ∗(g)] : [E1]→ [E2]
of (Y1, f∗j∗g) does not does not depend on the choice of the model f : Y1 → X1 of f such that
X1 �j X .

If [E ] is in F̃-Isoc(X)CST (resp. F̃-Isoc(X)ur), we can always choose a model f : Y1 → X1

of f such that X1 �j X and such that j∗E has constant Newton polygon (resp. is unit-root)
over X1. This shows that if [E ] has constant Newton Polygon (resp. is unit-root) then f ∗[E ]
has constant Newton Polygon (resp. is unit-root).
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6.5.2.5 Monodromy groups

For [E ] in F̃-IsocCNP(X) with representatives (Xi, Ei), i = 1, 2, with constant Newton polygon,
there exists a representative (X3, E3) with (X3, E3) �ji (Xi, Ei). If G(Ei) denotes the monodromy
group of Ei over Xi (see Section 6.3.1.5), by Fact 6.5.1.4.3(1) we have G(E1) ' G(j∗1E1) '
G(j∗2E2) ' G(E2). Hence G([E ]) := G(E) is well de�ned independently on the choice of the
representative class (X , E) with constant Newton polygon of [E ]. We call it the arithmetic
monodromy group of [E ].

Similarly, using Fact 6.3.1.5.1(2), if X is also geometrically connected, G([E ]geo) := G(Egeo)
is independent from the choice of (X , E) with constant Newton polygon. We call it the geometric
monodromy group of [E ].

6.5.3 Comparisons

Let X be a smooth connected k-variety. In the p-adic setting, we have other two candidate
for a category of p-adic local systems over X: the category LS(X, p) of étale lisse Qp-sheaves

and the category F̃-Isoc†(X) of overconvergent F-isocrystals introduced in Section 6.3. In this
section we compare these options.

6.5.3.1 Comparison with the category of p-adic lisse sheaves

We use the equivalence of categories ΦX of Fact 6.5.1.2.1 to construct a functor:

Φ : F̃-Isoc(X)ur → LS(X, p).

For every [E ] in F̃-Isoc(X)ur with unit-root representative (X , E), the equivalence of category

in Fact 6.5.1.2.1 induces a ΦX (E) in LS(X , p). Let [E ] be in F̃-Isocur(X) with unit-root
representatives (Xi, Ei), i = 1, 2. Then there exists a (X3, E3) such that (X3, E3) � (Xi, Ei).
Then the commutative diagram

X1

X3 X

X2

jX1

jX2

jX3

shows that Φ([E ]) := j∗XΦX (E) does not depend on the choice of the representative (X , E) of
the equivalence class of [E ].

Similarly, if [g] : [E ] → [E ′] is a morphism in F̃-Isocur(X) represented by (U ,g), the
morphism Φ([g]) : Φ([E ])→ Φ([E ′]) de�ned by j∗U(ΦU(g)) does not depend on the choice of the
representative (U ,g) of [g] : [E ]→ [E ′].

Since the morphism π1(X)→ π1(X ) is surjective, the functor Φ : F̃-Isocur(X)→ LS(X, p).
is fully faithful and the monodromy group G([E ]) of [E ] identi�es with the Zariski closure of
the image ΠΦ([E]) of ρΦ([E]).

6.5.3.2 Comparison with the category of overconvergent F-isocrystals

Similarly, we use the functor (−)conv in Section 6.5.1.1 to construct a functor:

(−)conv : F̃-Isoc†(X)→ F-Isoc(X, p).
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Let [E ] be in F̃-Isoc†(X)ur with representative (Xi, Ei), i = 1, 2, then there exists a (X3, E3)
such that (X3, E3) � (Xi, Ei). Then the commutative diagram

X1

X3 X

X2

jX1

jX2

jX3

shows that the equivalence class [E ]conv of (X , Econv) does not depend on the choice of the
representative (X , E) of the equivalence class of [E ].

Similarly, if [g] : [E ]→ [E ′] is a morphism in F̃-Isoc†(X) represented by (U ,g), the morphism
[g]conv : [E ]conv → [E ′]conv represented by (U , (g)conv) does not depend on the choice of the
representative (U ,g) of [g] : [E ]→ [E ′].

We say that [E ] in F̃-Isoc†(X) has constant Newton polygon if [E ]conv has constant Newton

polygon. For every [E ] in F̃-Isoc†(X) with constant Newton Polygon, there is well de�ned
closed immersion G([E ]conv) ⊆ G([E ]). If moreover X is geometrically connected, there is well
de�ned closed immersion G([E ]conv,geo) ⊆ G([E ]geo) �tting into a commutative diagram closed
immersions:

G([E ]conv,geo) G([E ]conv)

G([E ]geo) G([E ]).

6.6 Exceptional loci of convergent F-isocrystals

Let X be a smooth geometrically connected k-variety. In this section we de�ne the exceptional
loci of convergent F-isocrystals, we prove Theorem 6.1.5.2.1 and Corollary 6.1.6.1 and �nally
we discuss the relation between various exceptional loci associated to an overconvergent F-
isocrystal.

6.6.1 Exceptional loci and Theorem 6.1.5.2.1

6.6.1.1 De�nitions

As mentioned in Section 6.5.2.4 every morphism f : Y → X of smooth connected k-varieties

induces a functor F̃-IsocCNP(X) → F̃-IsocCNP(Y ). Hence, arguing as in Section 6.4.1.1, for

every [E ] be in F̃-IsocCNP(X), there is a well de�ned closed immersion G(f ∗[E ]) ⊆ G([E ]).

De�nition 6.6.1.1.1. We say that x ∈ |X| is algebraically generic (resp. algebraically strictly
generic) for [E ] if G(x∗[E ])0 ' G([E ])0 (resp. G(x∗[E ]) ' G([E ])).

Write Xgen
[E] (resp. Xsgen

[E] ) for the set of x ∈ |X| that are algebraically generic (resp. alge-
braically strictly generic) for [E ]. De�ne the following sets:

Xex
[E] := |X| −Xgen

[E] ; Xex
[E](≤ d) := Xex

[E] ∩X(≤ d); Xgen
[E] (≤ d) := Xgen

[E] ∩X(≤ d);

Xstex
[E] := |X| −Xsgen

[E] ; Xstex
[E] (≤ d) := Xstex

[E] ∩X(≤ d); Xsgen
[E] (≤ d) := Xsgen

[E] ∩X(≤ d).
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We call Xex
[E] the algebraic exceptional locus of [E ] and Xstex

[E] its algebraic strictly-exceptional
locus.

Lemma 6.6.1.1.2. Let f : Y → X be a connected �nite étale cover. Then we have:

f(Y ex
f∗[E]) = Xex

[E]

Proof. Choose a model of f : Y → X of f : Y → X such that f : Y → X is �nite étale and
a representative class of (X , E) is de�ned over X . Then Lemma 6.6.1.1.2 follows from the fact
that G(f ∗[E ]) = G(f∗E) ⊆ G(E) = G([E ]) is an open subgroup by [HP18, Lemma 6.2].

6.6.1.2 Proof of Theorem 6.1.5.2.1

Let [E ] be in F̃-Isoc†(X) pure and p-plain with constant Newton polygon. Points (1) and (2)
of Theorem 6.1.5.2.1, follow from Theorem 6.1.5.1.1 and Lemma 6.6.1.2.1 below.

Lemma 6.6.1.2.1. If x ∈ Xgen
E then

rk(G(x∗[E ]conv)) = rk(G([E ]conv)) and rk(G(x∗[E ]conv1 )) = rk(G([E ]conv1 )).

Proof. Choose a model f : K′ → X of x → X such that a representative (X , E) of [E ] is
de�ned over X and E has constant Newton polygon over X . Then Lemma 6.6.1.2.1 amounts
to show that if G(f∗E)0 = G(E)0 then rk(G(f∗Econv)) = rk(G(Econv)) and rk(G(f∗Econv1 )) =
rk(G(f∗Econv1 )). Then the �rst equality follows from Fact 6.5.1.3.1. The second equality follows
from the �rst and the commutative diagram with surjective vertical arrows:

G(f∗Econv)0 G(Econv)0

G(f∗Econv1 )0 G(Econv1 )0.

Theorem 6.1.5.2.1(3) follows from Theorem 6.1.5.1.1 and Lemma 6.6.1.2.2 below.

Lemma 6.6.1.2.2. If G([E ]conv,geo1 )0 is abelian then

Xgen
[E] ⊆ Xgen

[E]conv1

Proof. Choose a model f : K′ → X of x→ X such that a representative (X , E) of [E ] is de�ned
over X and E has constant Newton polygon over X . Then Lemma 6.6.1.2.1 amounts to show
that if G(f∗E)0 = G(E)0 and G(Econv,geo1 )0 is abelian then G(f∗Econv1 )0 = G(Econv1 )0

Replacing Fq with a �nite �eld extension, we can assume that K′ is geometrically connected
over Fq. Replacing X with a �nite étale cover we can assume that G(Econv) is connected. Then
there is a exact commutative diagram

0→ G(f∗Egeo,conv1 ) G(f∗Econv1 ) G(f∗Econv1 )cst 0

0→ G(Egeo,conv1 ) G(Econv1 ) G(Econv1 )cst 0

on which the right vertical arrow is surjective. So it is enough to show thatDim(G(f∗Egeo,conv1 )) ≥
Dim(G(Egeo,conv1 )). Since G(Egeo1 ) is abelian by assumption, by Fact 6.5.1.3.1(2) G(f∗Egeo,conv1 )0

and G(Egeo,conv1 )0 are tori and so, by the commutative diagram

G(f∗Econv) G(Econv) G(f∗Econv)0 G(Econv)0

G(f∗Econv1 ) G(Econv1 ) G(f∗Econv1 )0 G(Econv1 )0,
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it is enough to show that rk(G(f∗Egeo,conv)) = rk(G(Egeo,conv)). But since x ∈ Xgen
[E] , by Fact

6.3.1.4.1(6) we have G(Egeo)0 = G(Egeo)0 and we conclude by Fact 6.5.1.3.1(1).

6.6.1.3 Proof of Corollary 6.1.6.1

Before proving Corollary 6.1.6.1, let us observe that if we have a [E ] in F̃-Isocur(X), we have
four subset of X:

Xgen
[E] ; Xsgen

[E] ; Xgen
Φ([E]); Xsgen

Φ([E]).

and, as in Lemma 6.4.1.2.1(1), one has inclusions

Xsgen
Φ([E]) ⊆ Xsgen

[E] and Xgen
Φ([E]) ⊆ Xgen

E .

Proof of Corollary 6.1.6.1. Let f : Y → X be a smooth proper morphism of k-varieties. Up
to replace X with a dense open subset, the constructible sheaf Fp := Rif∗Qp is a p-adic lisse
sheaf. Hence, for every x ∈ |X|, it corresponds to a representation

ρFp : π1(X)→ GL(H i(Yx,Qp))

such that ρFp,x identi�es with the natural action of π1(x) on GL(H i(Yx,Qp)). By spreading out
we �nd a smooth connected Fq-variety K with generic point η : Spec(k)→ K and a commutative
cartesian diagram

Y Y

X X

K k.

f � f

�

η

By [Mor13], the higher direct image in crystalline cohomology Rif∗OY/Qp is in F-Isoc(X ). Let

[Rif∗OY/Qp ] be the object in F̃-Isoc(X) represented by (X , Rif∗OY/Qp). By Theorem 4.6.5.4.1

in Chapter 4, there exists a Rif∗O†Y/Qp in F-Isoc†(X ) such that

(Rif∗O†Y/Qp)
conv = Rif∗OY/Qp .

Let [Rif∗O†Y/Qp ] be the object in F̃-Isoc†(X) represented by (X , Rif∗OY/Qp), so that [Rif∗O†Y/Qp ]
conv =

[Rif∗OY/Qp ]. Upon replacing X with a dense open subset, [E ] := [Rif∗O†Y/Qp ] has constant New-

ton polygon and its minimal slope is 0, hence [E ]conv1 is in F̃-Isocur(X). By [Ill79, II, 5.4] and

proper base change, the functor Φ : F̃-Isocur(X) → LS(X, p) constructed in Section 6.5.3.1,
identi�es Φ([Econv1 ]) with ρFp and the groups G([E ]conv1 ) and G(x∗[E ]conv1 ) with G(Fp) and G(Fp,x)
respectively. Since by [Del80] and [KM74] the overconvergent F-isocrystal Rif∗O†Y/Qp is pure

and p-plain, Corollary 6.1.6.1 follows then from Theorem 6.1.5.2.1.

6.6.2 Comparison with the overconvergent exceptional locus

Let [E ] be in F̃-Isoc†(X) pure and p-plain with constant Newton polygon. To prove Theorem
6.1.5.2.1 we related in some case the exceptional loci of [E ], [E ]conv and [E ]conv1 . We conclude
the chapter discussing further the comparison between these exceptional loci and proposing a
conjecture.
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6.6.2.1 A few inclusions

In the following two Lemmas 6.6.2.1.1 and 6.6.2.1.2 we prove that the exceptional locus of
[E ]conv is always larger than the others.

Lemma 6.6.2.1.1. There are inclusions Xgen
[E]conv ⊆ Xgen

[E]conv1
and Xsgen

[E]conv ⊆ Xsgen
[E]conv1

.

Proof. Let x ∈ |X| and choose a model f : K′ → X of x → X such that a representative
(X , E) of [E ] is de�ned over X and E has constant Newton polygon over X . Then Lemma
6.6.2.1.1 amounts to show that that if G(f∗Econv)0 = G(Econv)0 (resp. G(f∗Econv) = G(Econv))
then G(f∗E1)0 = G(E1)0 (resp. G(f∗E1) = G(E1)). This follows from the commutative diagram
with surjective vertical arrows

G(f∗Econv) G(Econv) G(f∗Econv)0 G(Econv)0

G(f∗Econv1 ) G(Econv1 ) G(f∗Econv1 )0 G(Econv1 )0.

Lemma 6.6.2.1.2. There are inclusions Xgen
[E]conv ⊆ Xgen

[E] and Xsgen
[E]conv ⊆ Xsgen

[E] .

Proof. By Proposition 6.4.2.1.1, Xgen
[E] = Xgen

[Ess] (resp. X
sgen
[E] = Xsgen

[Ess] ). Since there is also an
inclusion Xgen

[E]conv ⊆ Xgen
([Ess])conv (resp. X

sgen
[E]conv ⊆ Xsgen

[Ess]conv) we can assume that [E ] is semisimple.
Let x ∈ |X| and choose a model f : K′ → X of x→ X such that a representative (X , E) of [E ]

is de�ned over X and E has constant Newton polygon over X . Then Lemma 6.6.2.1.2 amounts
to show that if G(f∗Econv)0 = G(Econv)0 (resp. G(f∗Econv) = G(Econv)) then G(f∗E)0 = G(E)0

(resp. G(f∗E) = G(E)).

1. We show �rst that if G(f∗Econv)0 = G(Econv)0 then G(f∗E)0 = G(E)0.

Replacing Fq with a �nite �eld extension, we can assume that K′ is geometrically con-
nected over Fq and replacing X with a �nite étale cover we can assume that G(Econv) and
G(E) are connected. Since G(f∗Econv) = G(Econv) and

G(f∗Econv) ⊆ G(f∗E) and G(f∗Econv) = G(Econv) ⊆ G(E)

are epimorphic subgroups, by Lemma 6.A.2(2) also G(f∗E) ⊆ G(E) is an epimorphic
subgroup. By Lemma 6.A.2(1), it is enough to show that G(f∗E) is reductive. Consider
the commutative diagram with exact rows:

0 G(f∗Egeo) G(f∗E) G(f∗E)cst 0

0 G(Egeo) G(E) G(E)cst 0.

Since Egeo is semisimple, by Fact 6.3.1.4.1(4) also f∗Egeo is semisimple. Hence it is enough
to show that G(f∗E)cst is reductive. Since E is semisimple, G(E) is reductive. By Fact
6.5.1.3.1, G(f∗Econv) = G(Econv) is a subgroup of maximal rank of both G(E) and G(f∗E).
In particular G(f∗E) is a subgroup of maximal rank of the reductive group G(E). Hence,
by the group theoretic Lemma 5.2.3.2.3 in Chapter 5, G(f∗E) has no unipotent quotient
so that all the abelian quotient of G(f∗E) are reductive. Since G(f∗E)cst is such a quotient,
we conclude the proof.

2. We deduce from point (1) via a group theoretic argument, that if G(f∗Econv) = G(Econv)
then G(f∗E) = G(E).

By point (1), G(f∗E)0 = G(E)0. Considering the commutative diagram:
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0 G(f∗E)0 G(f∗E) π0(G(f∗E)) 0

0 G(E)0 G(E) π0(G(E)) 0

'

one sees that it is enough to show that the natural map π0(G(f∗E)) → π0(G(E))) is
surjective. Since G(Econv) = G(f∗Econv) ⊆ G(f∗E) ⊆ G(E) is an epimorphic subgroup of
both G(f∗E) and G(E), also G(f∗E) ⊆ G(E) is an epimorphic subgroup. Hence also the
map π0(G(f∗E)) → π0(G(E)) is epimorphic. Since π0(G(f∗E)) is �nite (hence reductive),
we conclude by Lemma 6.A.2(1).

6.6.2.2 A conjecture

Let us formulate a conjecture

Conjecture 6.6.2.2.1. Assume that [E ] is pure and p-plain with constant Newton polygon.
Then:

Xgen
[E]conv = Xgen

[E] ; Xgen
[E] ⊆ Xgen

[E]conv1

To explain the conjecture, let us choose a representative (X , E) of [E ] with constant Newton
polygon and let us recall a question of Crew.

In [Cre92, page 460] Crew asks whether G(Egeo,conv) is a parabolic subgroup of G(Egeo)
hence, by (6.5.1.3.2) whether G(Econv) is a parabolic subgroup of G(E). Since, by [Saa72, Pag
223, Proposition 2.2.5], the stabilizer of a Tannakian �ltration is a parabolic subgroup, it is
natural to wonder if G(Econv) is the stabilizer Stabsl(G(E)) inside G(E) of the slope �ltration.
Clearly we have an inclusion G(Econv) ⊆ Stabsl(G(E)), but it not know whether this is an
equality.

Assume that G(Econv) = Stabsl(G(E)) for all pure p-plain overconvergent F -isocrystals
with constant Newton polygon. Then G(Econv) is uniquely determined by G(E) and the slope
�ltration hence one would get the inclusion Xgen

[E] ⊆ Xgen
[E]conv . Since the inclusion X

gen
[E]conv ⊆ Xgen

[E]

has been proved in Lemma 6.6.2.1.2, the equality Xgen
[E] = Xgen

[E]conv is then predicted by a positive
answer to a variant of Crew's question. Since the inclusion Xgen

[E]conv ⊆ Xgen
[E]conv1

has been proved
in Lemma 6.6.2.1.1, one would get also the inclusion Xgen

[E] ⊆ Xgen
[E]conv1

.
In Lemma 6.6.1.2.2 the inclusion Xgen

[E] ⊆ Xgen
[E1] is proved when G([Egeo1 ]) is abelian. We end

the chapter giving a further evidence for Conjecture 6.6.2.2.1. If [E ] be pure and p-plain by
Lemma 6.4.2.1.1 one has Xgen

[E]ss = Xgen
[E] . If Conjecture 6.5.1.1 holds for [E ] and [E ]ss, then one

should have
Xgen

[Ess]conv = Xgen
[Ess] = Xgen

[E] = Xgen
[E]conv .

We prove this equality, without assuming Conjecture 6.6.2.2.1.

Lemma 6.6.2.2.2. Let [E ] be pure and p-plain. Then

Xgen
[Ess]conv = Xgen

[E]conv and Xsgen
[Ess]conv = Xsgen

[E]conv

Proof. Since the inclusions

Xgen
[E]conv ⊆ Xgen

[Ess]conv and Xsgen
[E]conv ⊆ Xsgen

[Ess]conv

follows from the de�nitions, we focus on the other inclusions.
Let x ∈ |X| and choose a model f : K′ → X of x → X such that a representative (X , E)

of [E ] is de�ned over X and E has constant Newton polygon over X . Then Lemma 6.6.2.2.2
amounts to show that if G(f∗(Ess)conv)0 = G((Ess)conv)0 (resp. G(f∗(Ess)conv) = G((Ess)conv))
then G(f∗E)0 = G(E)0 (resp. G(f∗E) = G(E)).
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1. Assume �rst G(f∗(Ess)conv)0 = G((Ess)conv)0.

Replacing Fq with a �nite �eld extension, we can assume that K′ is geometrically con-
nected over Fq and replacing X with a �nite étale cover we can assume that G(Econv) is
connected. By counting dimension in the commutative diagram with exact rows

0→ G(f∗Egeo,conv) G(f∗Econv) G(f∗Econv)cst 0

0→ G(Egeo,conv) G(Econv) G(Econv)cst 0

it is enough to show that G(Egeo,conv)0 = G(f∗Egeo,conv)0. By Lemma 6.6.2.1.1, one has
G(f∗Ess)0 = G(Ess)0, hence, by Fact 6.3.1.4.1(6), we see that G(f∗Ess,geo)0 = G(Ess,geo)0.
Then, the commutative diagram with exact rows

0→ G(f∗(Ess,geo)) G(f∗(Ess)) G(f∗(Ess))cst 0

0→ G(Ess,geo) G(Ess) G(Ess)cst 0

shows that
G(f∗(Ess))cst → G(Ess)cst

is an isogeny. Hence, by Fact 6.5.1.3.1(3), also the map

G((f∗(Ess))conv)cst → G((Ess)conv)cst

is an isogeny. Consider the commutative diagram with exact rows

0→ G((f∗(Ess,geo))conv) G((f∗(Ess))conv) G((f∗(Ess))conv)cst 0

0→ G((Ess,geo)conv) G((Ess)conv) G((Ess)conv)cst 0.

'

Since the right vertical arrow is an isogeny, dimension counting implies thatG((f∗(Ess,geo))conv)0 =
G((Ess,geo)conv)0. Since E is geometrically semisimple, by Fact 6.3.1.4.1(4), also f∗E is ge-
ometrically semisimple. Hence

f∗(Ess,geo) ' f∗Egeo and Ess,geo ' Egeo,

so that
(f∗(Ess,geo))conv ' f∗Egeo,conv and (Ess,geo)conv ' Egeo,conv,

hence

G((f∗(Ess,geo))conv) ' G(f∗Egeo,conv) and G((Ess,geo)conv) ' G(Egeo,conv).

Since G((f∗(Ess,geo))conv)0 = G((Ess,geo)conv)0, also G(f∗Egeo,conv)0 = G(Egeo,conv)0 and this
concludes the proof.

2. We deduce for point (1) and a group theoretic argument that ifG(f∗(Ess)conv) = G((Ess)conv)
then G(f∗Econv) = G(Econv).
Assume that G(f∗(Ess)conv) = G((Ess)conv). By point (1), G(f∗Econv)0 = G(Econv)0.
Thanks to the commutative diagram with exact rows
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0 G(f∗(Econv))0 G(f∗(Econv)) π0(G(f∗(Econv))) 0

0 G(Econv)0 G(Econv) π0(G(Econv)) 0,

'

it is enough to show that |π0(G(f∗Econv))| ≥ |π0(G(Econv))|. One has

π0(G(f∗(Ess)conv)) ' π0(G((Ess)conv))

hence the surjection
π0(G(f∗Econv)) � π0(G(f∗(Ess)conv))

shows that it is enough to prove that

π0(G(Econv))→ π0(G((Ess)conv))

is an isomorphism. Since the functor π0 is right exact, there is an exact sequence

π0(K)→ π0(G(Econv))→ π0(G((Ess)conv))→ 0

where K is the kernel of G(Econv) → G((Ess)conv). But K is contained in Ru(G(E)) =
Ker(G(E)→ G(Ess)), so that it is unipotent hence connected. Hence π0(K) = 0 and this
concludes the proof.

6.A Epimorphic morphisms

To control the exceptional locus of convergent F-isocrystals we used the notion of epimorphic
morphism. In this section, L is algebraically closed �eld of characteristic zero.

De�nition 6.A.1. Let f : H → G be a morphism of algebraic groups over L. We say that
f : H → G is epimorphic if the induced functor RepL(G) → RepL(H) is fully faithful. If
f : H → G is a closed immersion, we say that H is an epimorphic subgroup of G.

Epimorphic subgroup have been studies in details in [BB92], [BB92b] and [Bri16]. For the
lack of a reference we prove a couple of easy lemmas that have been used several times in this
paper.

Lemma 6.A.2. Let f : H → G be a morphism of algebraic groups over L.

1. If H is reductive, then f : H → G is epimorphic if and only if is surjective.

2. Let g : L → H be another morphism of algebraic groups. If g and f ◦ g are epimorphic,
then f is epimorphic.

Proof.

1. If f : H → G is surjective then it is clearly epimorphic. Assume now that H is re-
ductive. By the Tannakian formalism, it is enough to show that the essential image of
f ∗ : RepL(G)→ RepL(H) is closed under sub quotient. Let V be in RepL(G). Since H
is reductive, every H-invariant subquotient of V is an H-invariant sub object, so that it
is enough to show that every H-invariant sub object W ⊆ V in also G-invariant. Since
H is reductive, there exist an ψ ∈ EndH(V ) such that Ker(ψ) = W . Since f : H → G is
epimorphic ψ is also G-invariant, hence W = Ker(ψ) is also G-invariant.
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2. Let V a representation of G. Then, since f ◦g is epimorphic, we have V G = V L and, since
g is epimorphic, we have V L = V H . Hence V H = V L = V G and f is epimorphic.

Lemma 6.A.3. Let

0 H ′ H H/H ′ 0

0 G′ G G/G′ 0

be a commutative diagram of algebraic groups over L with exact rows.

1. If H is an epimorphic subgroup of G, G′ is connected and the right vertical arrow is an
isogeny, then H ′ is an epimoprhic subgroup of G′.

2. If H if an epimorphic subgroup of G, then H/H ′ → G/G′ is epimorphic

3. If H ′ is an epimorphic subgroup of G′ and right vertical arrow is surjective then H is an
epimorphic subgroup of G

Proof.

1. Applying [DK17, Lemma B.6.1] to the epimorphic inclusionH ⊆ G we see thatH0(G/H,OG/H) =
k. Applying it to the inclusion H ′ ⊆ G′, it is enough to show that H0(G′/H ′,OG′/H′) = k.
The morphism G′/H ′ → G/H is �nite étale so that the map k = H0(G/H,OG/H) →
H0(G′/H ′,OG′/H′) makes H0(G′/H ′,OG′/H′) into a �nite étale k-algebra. We conclude
observing that, since G′/H ′ is connected, the étale k-algebra H0(G′/H ′,OG′/H′) has no
idempotent elements.

2. Since H → H/H ′ and G → G/G′ are surjective, for every representation V of G/G′ we
have

V G/G′ = V G = V H = V H/H′ .

3. Let V be representation of G. By assumption we know that V G′ = V H′ . Since the right
vertical arrow is surjective

V H = (V H′)H/H
′
= (V G′)H/H

′
= (V G′)G/G

′
= V G.
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Chapter 7

A note on the behaviour of the Tate
conjecture under �nitely generated �eld
extension

7.1 Introduction

7.1.1 Statement

Let k be a �eld of characteristic p ≥ 0 with algebraic closure k and write π1(k) for the absolute
Galois group of k. For a k-variety Z write Zk := Z ×k k and Pic(Zk) for its geometric Picard
group. If ` 6= p is a prime, consider the `-adic cycle class map

cZk : Pic(Zk)⊗Q` → H2(Zk,Q`(1))

and write NS(Zk)⊗Q` for its image. Recall the `-adic Tate conjecture for divisors [Tat65]:

Conjecture 7.1.1.1 (T (Z, `)). Assume that k is �nitely generated and Z is a smooth and
proper k-variety. Then the map

cZk : NS(Zk)⊗Q` →
⋃

[k′:k]<+∞

H2(Zk,Q`(1))π1(k′)

is an isomorphism.

While Conjecture 7.1.1.1 is widely open in general, by the works of many people it is known
for abelian varieties ([Tat66], [Zar75], [Zar77], [FW84]), K3 surfaces ([NO85], [Tan95], [And96a],
[Char13], [MP15], [KMP15]) and some other special class of k-varieties; see for example [MP15,
Section 5.13] and [Moo17]. For abelian varieties and K3 surfaces, Conjecture 7.1.1.1 is closely
related to the �niteness of rational points on their moduli spaces; see [Tat66, Proposition 2]
and [LMS14]. This may suggest that Conjecture 7.1.1.1 could be easier to prove when k is a
�nite �eld. The main result of this note is that, to prove Conjecture 7.1.1.1 for varieties over
�nitely generated �elds of positive characteristic, it is actually enough to prove it for varieties
over �nite �elds.

Theorem 7.1.1.2. Assume p > 0. Then T (Z, `) for every �nite �eld k of characteristic p
and every smooth projective k-variety Z implies T (Z, `) for every �nitely generated �eld k of
characteristic p and every smooth proper k-variety Z.

See Section 7.3 for a discussion on results for cycles of higher codimension and di�erent
�elds.
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7.1.2 Remarks

By an unpublished result ([dJ]) of De Jong (whose proof has been simpli�ed in [Mor15, Theorem
4.3]), over �nite �elds the `-adic Tate conjecture for divisors for smooth projective varieties
follows from the `-adic Tate conjecture for divisors for smooth projective surfaces. Hence
Theorem 7.1.1.2 implies the following:

Corollary 7.1.2.1. Assume p > 0. Then T (Z, `) for every �nite �eld k of characteristic p
and every smooth projective k-surface Z implies T (Z, `) for every �nitely generated �eld k of
characteristic p and every smooth proper k-variety Z.

Let us mention that if k is in�nite and �nitely generated, one can use the results of [And96]
(see Fact 1.3.2.2.1) if p = 0 or the results of Chapter 4 (see Corollary 4.1.7.1.2) if p > 0, together
with a spreading out argument to deduce that T (Z, `) for all smooth proper k-varieties Z implies
T (Z, `) for all smooth proper varieties Z over all �elds that are �nitely generated over k.

7.2 Proof of Theorem 7.1.1.2

Fix an in�nite �nitely generated �eld k of characteristic p > 0 inside a �xed algebraic closure
k and a smooth proper k-variety Z. Let Fq (resp. F) the algebraic closure of Fp in k (resp. k)

7.2.1 Strategy

The idea is to try and transpose the Hodge theoretic arguments of [And96, Section 5.1] to the
`-adic setting. We spread out Z to a smooth proper morphism Z → K of Fq-varieties such that
Z embeds as a dense open subset into a smooth proper Fq-variety Zcmp. By smooth proper
base change and the global invariant cycles theorem ([Del80]; see [And06, Theoreme 1.1.1]), a
class in H2(Zk,Q`(1))π1(k) arises from a class in H2(ZcmpF ,Q`(1))π1(Fq), hence, by T (Zcmp, `),
from a divisor on Zcmp. Compared to [And96, Section 5.1], the extra di�culties come from
the fact that resolution of singularities and the semisimplicity of the Galois action in `-adic
cohomology are not known. The �rst issue can be overcome using De Jong's alteration theorem
and the second adjusting an argument of Tate ([Tat94, Proposition 2.6.]). Applying De Jong's
alteration theorem, we �nd a generically étale alteration Z̃ → Z such that Z̃ embeds as a dense
open subset into a smooth proper Fq-variety. However, the resulting morphism Z̃ → Z → K is
not, in general, generically smooth, so that we cannot apply directly the global invariant cycles
theorem. To solve this issue, we use the main ingredients of its proof: the Hard Lefschetz
theorem [Del80, Theorem 4.1.1] and the theory of weights for Fq-schemes of �nite type [Del80,
Theorem 1].

7.2.2 Preliminary reductions

To prove T (Z, `), one may freely replace k with a �nite �eld extension. In particular we may
assume that all the connected components of Zk are de�ned over k and so, working with each
component separately, that Z is geometrically connected over k. The following well known
lemma, a slight variant of [Tat94, Theorem 5.2], will be used twice.

Lemma 7.2.2.1. Let W be a smooth proper k-variety and g : W → Z a generically �nite
dominant morphism. Then the following hold:

• The map g∗ : H2(Zk,Q`(1))→ H2(Wk,Q`(1)) is injective.

• For any z ∈ H2(Zk,Q`(1)), if g∗(z) is in the image of cWk
: Pic(Wk)⊗Q` → H2(Wk,Q`(1))

then z is in the image of cZk : Pic(Zk)⊗Q` → H2(Zk,Q`(1)).
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In particular T (W, `) implies T (Z, `).

Proof. Assume �rst that W is geometrically connected. Then, by Poincaré duality, there is a
morphism g∗ : H2(Wk,Q`(1)) → H2(Zk,Q`(1)) which is compatible with the push forward of
cycles g∗ : Pic(Wk)⊗Q` → Pic(Zk)⊗Q` and such that g∗g∗ is equal to the multiplication by
the generic degree of g : W → Z. All the assertions then follow from the commutative diagram:

Pic(Zk)⊗Q` Pic(Wk)⊗Q` Pic(Zk)⊗Q`

H2(Zk,Q`(1)) H2(Wk,Q`(1)) H2(Zk,Q`(1)).

g∗

cZ
k

g∗

cW
k

cZ
k

g∗ g∗

In general, we reduce to the situation where W is geometrically connected. To prove Lemma
7.2.2.1, we can freely replace k with a �nite �eld extension and hence assume that all the
connected components Wi,k of Wk are de�ned over k. Since g : W → Z is dominant and
generically �nite and Z is connected, there is at least one connected component (say W1)
mapping surjectively onto Z. Since Z and W1 are smooth proper k-varieties of the same
dimension, the morphism g1 : W1 → W → Z is still dominant and generically �nite. The
general case follows then from the geometrically connected case and the diagram:

Pic(Zk)⊗Q` Pic(Wk)⊗Q` Pic(W1,k)⊗Q`

H2(Zk,Q`(1)) H2(Wk,Q`(1)) H2(W1,k,Q`(1)).

By De Jong's alteration theorem ([dJ96]) applied to Zk, there exists a smooth projective k-
varietyW ′ and a dominant generically �nite morphism g′ : W ′ → Zk. By descent and replacing
k with a �nite �eld extension, there exist a smooth projective k-variety W and a dominant
generically �nite morphism g : W → Z which, after base change along Spec(k) → Spec(k),
identi�es with g′ : W ′ → Zk. By Lemma 7.2.2.1, we may replace Z with W and hence we may
assume that Z is a smooth projective k-variety. Moreover one may assume that the Zariski
closure G` of the image of π1(k) acting onH2(Zk,Q`(1)) is connected and hence, since the action
of π1(k) on NS(Zk)⊗Q` factors through a �nite quotient, that NS(Zk)⊗Q` = NS(Z)⊗Q`.
The core of the proof is the following proposition.

Proposition 7.2.2.2. Let Z be a geometrically connected smooth projective k-variety such
that NS(Zk) ⊗ Q` = NS(Z) ⊗ Q`. Assume that T (V, `) holds for every �nite �eld extensions
Fq ⊆ Fq′ and every smooth proper Fq′-varieties V . Up to replacing k with a �nite �eld extension,
there exist a projective k-scheme Z̃ and a dominant generically �nite morphism h : Z̃ → Z, such
that for every z ∈ H2(Zk,Q`(1))π1(k) the element h∗(z) is in the image of cZ̃k : Pic(Z̃k)⊗Q` →
H2(Z̃k,Q`(1)).

Before proving Proposition 7.2.2.2, let us show that it implies Theorem 7.1.1.2. Replacing
k with a �nite �eld extension we can take h : Z̃ → Z as in the statement of Proposition
7.2.2.2. Write Z̃k,red for the reduced closed subscheme of Z̃k. Then hred : Z̃k,red → Z̃k →
Zk is still dominant and generically �nite and for every z ∈ H2(Z̃k,Q`(1))π1(k) the element
h∗red(z) ∈ H2(Z̃k,red,Q`(1)) is in the image of cZ̃k,red : Pic(Z̃k,red) ⊗ Q` → H2(Z̃k,red,Q`(1)).

So, by descent and replacing k with a �nite extension we can assume that Z̃ is geometrically
reduced and that all the irreducible components of Z̃k are de�ned over k. Then, by De Jong
alteration's theorem applied to Z̃k and descent, up to replacing k with a �nite �eld extension,
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there exists a generically �nite dominant morphism W → Z̃ with W a smooth projective k-
variety. The morphism g : W → Z̃ → Z is still generically �nite and dominant and for every
z ∈ H2(Zk,Q`(1))π1(k) there exists a cycles w ∈ Pic(Wk) such that cW (w) = g∗(z). So Theorem
7.1.1.2 follows from Lemma 7.2.2.1.

The next subsection is devoted to the proof of Proposition 7.2.2.2.

7.2.3 Proof of Proposition 7.2.2.2

Let Z be a geometrically connected smooth projective k-variety such that NS(Zk) ⊗ Q` =
NS(Z)⊗Q`.

7.2.3.1 Spreading out and alterations

Spreading out to Fq, there exist a geometrically connected, smooth Fq-variety K with generic
point η : k → K and a smooth projective morphism f : Z → K �tting into a cartesian diagram:

Z Z

k K.

iη

� f

η

By De Jong alteration's theorem, there exist an integral smooth Fq-variety Z̃, an open embed-
ding ĩ : Z̃ → Z̃cmp with dense image into a smooth projective Fq-variety Z̃cmp and a generically
étale, proper, dominant morphism h : Z̃ → Z. Then Z̃cmp is geometrically connected over
some �nite �eld extension Fq ⊆ Fq′ . Replacing Fq with Fq′ amounts to replacing k with the
�nite �eld extension k′ := kFq′ , so we can assume that Z̃ and Z̃cmp are geometrically connected
over Fq.

Since Z̃ → Z → Fq is quasi-projective, the morphism h : Z̃ → Z is quasi-projective as well
([SP, Tag 0C4N]). Since f : Z → K is projective, this implies that Z̃ → K is quasi-projective.
Since h : Z̃ → Z and f : Z → K are proper, the morphism Z̃ → K is proper as well. So Z̃ → K
is proper and quasi-projective hence projective. The generic �bre Z̃ → k of Z̃ → K is then
a projective k-scheme endowed with a generically �nite dominant morphism h : Z̃ → Z. The
situation is summarized in the following diagram of Fq-schemes:

Z̃ Z̃ Z̃cmp

Z Z

k K.

h

ĩη

�

ĩ

h

iη

� f

η

The Leray spectral sequence for the morphism f : Z → K induces a map

Ler : H2(ZF,Q`(1))→ H0(KF, R
2f∗Q`(1)),

�tting into a commutative diagram:
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Pic(Z̃k)⊗Q` Pic(Zk)⊗Q`

Pic(Z̃F
cmp

)⊗Q` Pic(Z̃F)⊗Q` Pic(ZF)⊗Q` H2(Z̃k,Q`(1)) H2(Zk,Q`(1))

H2(Z̃cmpF ,Q`(1)) H2(Z̃F,Q`(1)) H2(ZF,Q`(1)) H0(KF, R
2f∗Q`(1)).

c
Z̃

h∗

cZ

ĩ∗

cZ̃cmp cZ̃

ĩ∗η

h∗

cZ

i∗η

h∗

ĩ∗

ĩ∗η i∗η

h∗
Ler

7.2.3.2 Hard Lefschetz Theorem

Write ϕ ∈ π1(Fq) for the arithmetic Frobenius of Fq and, for every π1(Fq)-module V , write V ϕ
gen

for the generalized eigenspace on which ϕ acts with generalized eigenvalue 1.
Let z be inH2(Zk,Q`(1))π1(k). In this section we lift h∗(z) ∈ H2(Z̃F,Q`(1)) toH2(Z̃F,Q`(1))ϕgen.

By smooth proper base change, the action of π1(k) on H2(Zk,Q`(1)) factors trough the canon-
ical surjection π1(K)→ π1(k), hence H2(Zk,Q`(1))π1(k) ' H2(Zk,Q`(1))π1(K). Since f : Z → K
is smooth and projective, by the Hard Lefschetz Theorem [Del80, Theorem 4.1.1] and [Del68,
Proposition 2.1], the map Ler : H2(ZF,Q`(1))→ H0(KF, R

2f∗Q`(1)) is surjective. Consider the
diagram:

H2(Z̃cmpF ,Q`(1)) H2(Z̃F,Q`(1)) H2(ZF,Q`(1)) H0(KF, R
2f∗Q`(1)).ĩ∗ Lerh∗

Since
z ∈ H2(Zk,Q`(1))π1(k) ' H0(KF, R

2f∗Q`(1))π1(Fq) ⊆ H0(KF, R
2f∗Q`(1)),

the element z is inH0(KF, R
2f∗Q`(1))ϕgen. In particular, since Ler : H2(ZF,Q`(1))→ H0(KF, R

2f∗Q`(1))

is surjective, z is the image of some z′ ∈ H2(ZF,Q`(1))ϕgen, so that h∗(z′) ∈ H2(Z̃F,Q`(1))ϕgen.

7.2.3.3 Theory of weights

We now prove that h∗(z′) is the image of some z̃ ∈ H2(Z̃cmpF ,Q`(1))ϕgen. Write d for the common

dimension of Z, Z̃ and Z̃cmp . The localization exact sequence for the dense open immersion
Z̃ → Z̃cmp with complement D := Z̃cmp − Z̃, gives an exact sequence

H2d−3
c (DF,Q`(−1))(d)→ H2d−2

c (Z̃F,Q`(−1))(d)→ H2d−2
c (Z̃cmpF ,Q`(−1))(d).

Combining this sequence with Poincaré duality for the smooth varieties Z̃ and Z̃cmp, one sees
that the cokernel of ĩ∗ : H2(Z̃cmpF ,Q`(1))→ H2(ZF,Q`(1)) injects into (H2d−3

c (DF,Q`(−1))(d))∨.
By [Del80, Corollaire 3.3.9], the group H2(Z̃cmpF ,Q`(1)) is pure of weight 0, while by [Del80,
Theorem 3.3.1] the group (H2d−3

c (DF,Q`(−1))(d))∨ is mixed of weights ≥ 1. Hence, the image
of ĩ∗ : H2(Z̃cmpF ,Q`(1))→ H2(ZF,Q`(1)) consists exactly of the generalized eigenspace on which
ϕ acts with generalized eigenvalues of weight 0. So h∗(z′) ∈ H2(Z̃F,Q`(1))ϕgen is the image of

some z̃ ∈ H2(Z̃cmpF ,Q`(1))ϕgen by ĩ∗ : H2(Z̃cmpF ,Q`(1))→ H2(ZF,Q`(1)).

7.2.3.4 Using the Tate conjecture

Since T (Z̃cmp, `) holds by assumption, it follows from [Tat94, Proposition 2.6.] that the injection

H2(Z̃cmpF ,Q`(1))π1(Fq) ↪→ H2(Z̃cmpF ,Q`(1))

has a π1(Fq)-equivariant splitting, so that H2(Z̃cmpF ,Q`(1))ϕgen = H2(Z̃cmpF ,Q`(1))ϕ. Hence, by

T (Z̃cmp, `), there exists a w̃ ∈ Pic(Z̃F
cmp

)⊗Q` such that cZ̃cmp(w̃) = z̃. We conclude the proof
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observing that, thanks to the commutative diagram at the end of 7.2.3.1, h∗(z) is the image of
ĩ∗η̃i
∗(w̃) via cZ̃ : Pic(Z̃k)⊗Q` → H2(Z̃k,Q`(1)).

7.3 Higher codimensional cycles

In this section we discuss generalizations of Theorem 7.1.1.2 to cycles of higher codimension.
Compared with the case of divisors, the main issue is that [Tat94, Proposition 2.6] is no longer
available, so that we have to consider also conjectures about the semisimplicity of the Galois
action on étale cohomology.

7.3.1 Conjectures

Fix an i ≥ 1, a k-variety Z and write CH i(Zk) for the group of algebraic cycles of codimension
i modulo rational equivalence. Recall the following conjectures ([Tat65]):

Conjecture 7.3.1.1. If k is �nitely generated and Z is a smooth proper k-variety, then:

• T (Z, i, `) : The map cZk : CH i(Zk)⊗Q` →
⋃

[k′:k]<+∞H
2i(Zk,Q`(i))

π1(k′) is surjective;

• S(Z, i, `) : The action of π1(k) on H2i(Zk,Q`(i)) is semisimple;

• WS(Z, i, `) : The inclusionH2i(Zk,Q`(i))
π1(k) ⊆ H2i(Zk,Q`(i)) admits a π1(k)-equivariant

splitting.

For a �eld K, one says that T (K, i, `, r, d) holds if for every �nitely generated �eld extension
K ⊆ k of transcendence degree ≤ r and for every smooth proper k-variety Z of dimension d,
T (Z, i, `) holds. One de�nes similarly the conditions S(K, i, `, r, d) and WS(K, i, `, r, d).

7.3.2 Known results and an extension of Theorem 7.1.1.2

Clearly, for each smooth proper variety Z the condition S(Z, i, `) implies WS(Z, i, `). A recent
result [Moo18, Theorem 1] of Moonen shows that T (Q, i, `, 0, d) for all integers i, d ≥ 1 implies
S(Q, i, `, r, d) for all integers r ≥ 0 and it is classically known that T (Fp, i, `, 0, d) together
with the equivalence of the homological and numerical equivalence relations for codimensional
i cycles implies S(Fp, i, `, r, d) for all integer r ≥ 0; see [Moo18, Theorem 2]. If K is �nite
(resp. K is in�nite �nitely generated), it follows from [Fu99, Theorem] and its proof (resp. a
classical argument of Serre ([Ser89, Section 10.6])) that S(K, i, `, 0, d) implies S(K, i, `, r, d) for
all integers r ≥ 1.

The arguments in [And96, Section 5.1], sketched at the beginning of Section 7.2, shows that
if K is of characteristic zero, then S(K, i, `, 0, d+ r) and T (K, i, `, 0, d+ r) imply T (K, i, `, r, d).
Similarly, Theorem 7.1.1.2 and its proof show that T (Fp, 1, `, 0, d+ r) imply T (Fp, 1, `, r, d). To
conclude, let us point out that, in the proof of Theorem 7.1.1.2, the only place where we used
the hypothesis that i = 1 is in Section 7.2.3.4, to show that T (Z̃cmp, 1, `) impliesWS(Z̃cmp, 1, `)
(which is the content of [Tat94, Proposition 2.6]). So, the proof of Theorem 7.1.1.2 shows the
following more general proposition.

Proposition 7.3.2.1. If p > 0, then T (Fp, i, `, 0, d+r) andWS(Fp, i, `, 0, d+r) imply T (Fp, i, `, r, d).
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Chapter 8

Uniform boundedness for Brauer group of
forms in positive characteristic

8.1 Introduction

Let k be a �eld of characteristic p ≥ 0 with algebraic closure k and write π1(k) for the absolute
Galois group of k. The letter ` will always denote a prime 6= p.

8.1.1 Brauer groups

8.1.1.1 Finiteness of Brauer groups

Let X be a k-variety. Write Br(Xk)[p
′] for the prime-to-p torsion of the (cohomological) Brauer

group Br(Xk) := H2(Xk,Gm) of Xk and recall that if X is smooth over k then Br(Xk) is
a torsion group. If k is �nitely generated and X is smooth and proper over k, one expects
Br(Xk)[p

′]π1(k) to be small. This is predicted by (variants of) the `-adic Tate conjecture for
divisors ([Tat65]):

Conjecture 8.1.1.1.1 (T (X, `)). Assume that k is �nitely generated and X is a smooth and
proper k-variety. Then the `-adic cycle class map

cXk : Pic(Xk)⊗Q` →
⋃

[k′:k]<+∞

H2(Xk,Q`(1))π1(k′)

is surjective.

As it is well known (see e.g. [CC18, Proposition 2.1.1]), Conjecture T (X, `) holds if and only
if, for any �nite �eld extension k ⊆ k′, the `-primary torsion Br(Xk)[`

∞]π1(k′) of Br(Xk)
π1(k′) is

�nite. But one can expect stronger �niteness results.

Fact 8.1.1.1.2. Assume that k is �nitely generated and X is a smooth and proper k-variety.
Then:

1. ([OS18, Theorem 5.5]): If p = 0 and the integral Mumford Tate conjecture for X holds
([Ser77, Conjecture C.3]), then Br(Xk)

π1(k) is �nite;

2. ([CHT17, Corollary 1.5]): If p > 0 and T (X, `) holds for every prime ` 6= p (or equivalently
for one prime ` 6= p), then Br(Xk)[p

′]π1(k) is �nite.
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8.1.1.2 Uniform boundedness in forms

Let X be a smooth proper variety over a �nitely generated �eld k. Recall that for a �eld
extension k ⊆ k′ ⊆ k, a (k/k′)-form of X is a k′-variety Y such that Yk := Y ×k′ k ' Xk. Let
k ⊆ k′ be a �nite �eld extension and let Y be a (k/k′)-form of X. If p = 0 and X satis�es
the integral Mumford Tate conjecture (resp. if p > 0 and T (X, `) holds for every prime ` 6= p),
then the same is true for Y , hence Br(Yk)

π1(k) (resp. Br(Yk)[p
′]π1(k′)) is a �nite group. But,

for an integer d ≥ 1, it is not clear whether one can �nd a uniform bound (depending only on
X and d) for |Br(Yk)

π1(k′)| (resp. |Br(Yk)[p
′]π1(k′)|), while k′ is varying among the �nite �eld

extensions k ⊆ k′ with [k′ : k] ≤ d and Y among the (k/k′)-forms of X. If p = 0, this is proved
by Orr-Skorobogatov in [OS18, Theorem 5.1]. If p > 0, this is the �rst main result of this note.

Theorem 8.1.1.2.1. Assume that k is �nitely generated, X is a smooth proper k-variety and
p > 0. If T (X, `) holds for every prime ` 6= p (or equivalently for one prime ` 6= p), then for
every integer d ≥ 1, there exists an integer N ≥ 1, depending only on X and d, such that for
every �nite �eld extension k ⊆ k′ of degree ≤ d and every (k/k′)-form Y of X one has

|Br(Yk)[p
′]|π1(k′) ≤ N.

8.1.2 Forms of representations

Theorem 8.1.1.2.1 is a consequence of two general results (Propositions 8.1.2.2.1 and 8.1.2.2.2)
on compatible system of π1(k)-representations. Before stating them, we introduce some de�ni-
tions and notation. In the following, k is a �nitely generated �eld of characteristic p > 0, Fq
(resp. F) is the algebraic closure of Fp in k (resp. in k) and we write kF := k ⊗Fq F ' kF ⊆ k.
Set `0 = 3 (resp. `0 = 2) if p 6= 3 (resp. p = 3) and s` = ` (resp. s` = 4) if ` 6= 2 (resp.
` = 2). Fix a collection T := {T`}` 6=p of rank r �nitely generated Z`-modules endowed with a
continuous action of π1(k).

8.1.2.1 De�nitions

We say that T is a compatible system of π1(k)-modules if there exists a smooth geometrically
connected Fq-variety K with generic point Spec(k) → K such that, for every prime ` 6= p, the
action of π1(k) on T` factors trough the canonical surjective morphism π1(k) � π1(K) and the
collection {V` := T` ⊗Q`} 6̀=p give rise to a Q-rational compatible system on K in the sense of
Serre: for each closed point t ∈ K, the characteristic polynomial of the arithmetic Frobenius at
t acting on V` is in Q[T ] and independent of `.

Remark 8.1.2.1.1. The notion of compatible system is stable under subquotients and the
usual operations ⊕, ⊗, ∨.

De�nition 8.1.2.1.2. Let k ⊆ k′ be a �nite �eld extension. A (k/k′)-form of T is a compatible
system of π1(k′)-representations U such that, for each ` 6= p, there exists a �nite �eld extension
k′ ⊆ k` and an isomorphism of π1(k`)-modules T` ' U`.

8.1.2.2 Results

In De�nition 8.1.2.1.2, the extension k ⊆ k` is allowed to depend on `. Our �rst main result
in this setting produces an extension of (explicitly) bounded degree that works for every prime
` 6= p. Let ? ∈ {∅,F}.

Proposition 8.1.2.2.1. Let U be a (k/k)-form of T . Then, there exists a �nite �eld exten-
sion k? ⊆ kU of degree ≤ |GLr(Z/s`0)|2 and a π1(kU)-equivariant isomorphism T`/(T`)tors '
U`/(U`)tors for every prime ` 6= p.
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Proposition 8.1.2.2.1 reduces the problem of bounding uniformly the invariants of forms of
T to studying the action of π1(k′) on T , when k ⊆ k′ is varying among the �nite �eld extensions
of bounded degree. In this setting we prove:

Proposition 8.1.2.2.2. Suppose that T` is torsion free for ` � 0. Then there exists a �nite
�eld extension k? ⊆ k′ of degree ≤ |GLr(Z/s`0)| with the following property: For every integer
d ≥ 1 there exists an integer N ≥ 1, depending only on T and d, such that, for every �nite
�eld extension k′ ⊆ k′′ of degree ≤ d, one has∏

6̀=p

[(T` ⊗Q`/Z`)π1(k′′) : (T` ⊗Q`/Z`)π1(k′)] ≤ N.

Remark 8.1.2.2.3. In the proof of Theorem 8.1.1.2.1 we only use the version of Propositions
8.1.2.2.1 and 8.1.2.2.2 where ? = ∅. On the other hand, the proofs of the two versions are very
similar and we believe that both versions are of independent interest.

8.1.3 Motivic representation

The main motivation to state Theorems 8.1.2.2.1 and 8.1.2.2.2 in this generality is that they
apply directly to representations associated to `-adic étale cohomology of smooth proper k-
varieties; see Subsections 8.3.1.2 and 8.3.2.1. Since Theorems 8.1.2.2.1 and 8.1.2.2.2 require
only the compatibility of the compatible system and not further assumptions as purity, one
could apply them also to representations arising from the cohomology of some not necessarily
smooth and proper k-varieties (e.g. semi-abelian schemes).

8.1.4 Strategy

To prove Proposition 8.1.2.2.1, �rst we prove a group theoretic proposition (Proposition 8.2.1.1.1)
that bounds the number of connected components of the Zariski closure of the image of an `-adic
representation of a pro�nite group, only in terms of ` and of the rank of the representation. To
get Proposition 8.1.2.2.1, one has to get rid of the dependency on `. This follows formally from
the fact that the connectedness of the `-adic monodromy group can be read on the L-function
of the various compatible systems {T⊗n` ⊗ (T∨` )⊗m}`6=p.

For the proof of Proposition 8.1.2.2.2, the key point is to show that, if the Zariski closure of
the image of π1(k) acting on V` is connected, then for every integer d ≥ 0 there exists an integer
D ≥ 1, depending only on d and T , such that, for every �nite �eld extension k ⊆ k′ of degree
≤ d, one has (T`/`)

π1(k) = (T`/`)
π1(k′) for every prime ` ≥ D. To prove this, one exploits again

independence results, not in the `-adic setting but in the ultra�lter setting, recently obtained
by Cadoret-Hui-Tamagawa in [CHT17] and by Cadoret in [Cad19a, Section 15].

Smooth proper base change theorem, the Weil conjectures ([Del80]) and the independence
of ` of homological equivalence for divisors show that {T`(Br(Yk)) := lim←−n Br(Yk)[`

n]}`6=p is a
compatible system. In this setting, Propositions 8.1.2.2.1 and 8.1.2.2.2 are the positive char-
acteristic analogues of [OS18, Propositions 5.4 and 5.5], hence we can conclude the proof of
Theorem 8.1.1.2.1 adjusting the arguments in [OS18, Section 5.4].

8.1.5 Organization of the chapter

In Section 8.2 we prove Theorems 8.1.2.2.1 and 8.1.2.2.2. In Section 8.3 we apply Theorems
8.1.2.2.1 and 8.1.2.2.2 to representations coming from geometry and we prove Theorem 8.1.1.2.1.
We end the chapter in Section 8.3.2 discussing applications to abelian varieties.
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8.1.6 Conventions and notation

For the rest of the chapter k is a �nitely generated �eld of characteristic p > 0 with algebraic
closure k ⊆ k. We write Fq (resp. F) for the algebraic closure of Fp in k (resp. k) and
kF := k⊗Fq F ' kF ⊆ k. If R is a commutative ring, A an R-module and n,m integers ≥ 0, set

T n,m(A) := A⊗R . . .⊗R A︸ ︷︷ ︸
n times

⊗RA∨ ⊗R . . .⊗R A∨︸ ︷︷ ︸
m times

.

If G is an algebraic group over a �eld, write G0 for its neutral component and π0(G) for the
group of connected components. Write `0 = 3 (resp. `0 = 2) if p 6= 3 (resp. p = 3) and s` = `
(resp. s` = 4) if ` 6= 2 (resp. ` = 2).

8.2 Forms of representations

8.2.1 Proof of Proposition 8.1.2.2.1

Before proving Proposition 8.1.2.2.1, we collect a couple of preliminary propositions.

8.2.1.1 A group theoretical proposition

Let T be a free Z`-module of rank r and let Π ⊆ GL(T ) be a closed subgroup. Write V := T⊗Q`

and let G ⊆ GL(V ) be the Zariski closure of Π. Then:

Proposition 8.2.1.1.1. |π0(G)| ≤ |GLr(Z/s`)|

Proof. Write Gred for the Zariski closure of the image of Π acting on the Π-semisimpli�cation
of V . Since the kernel of the natural surjection G → Gred is unipotent hence connected, it
induces an isomorphism π0(G) ' π0(Gred). So, one may assume that G is reductive. Write
H := Ker(Π → GL(T/s`)). Since [Π : H] ≤ |GLr(Z/s`)| and H acts trivially on GL(T/s`),
Lemma 8.2.1.1.2 below concludes the proof.

Lemma 8.2.1.1.2. If G is reductive and the action of Π on T/s` is trivial, then G is connected.

Proof. By [LP95, Lemma 2.3], it is enough to show that, for every irreducible representation
W of GL(V ) one has WG = WG0

. Since GL(V ) is reductive, by [DM82, Proposition 3.1] every
irreducible representation of GL(V ) is a sub module of T n,m(V ) and hence it is enough to show
that for every integers n,m ≥ 0

T n,m(V )G = T n,m(V )G
0

.

The Z`-module T n,m(T ) is a Π-invariant Z`-lattice in T n,m(V ) and Π acts trivially on T n,m(T )/s` =
T n,m(T/s`), so that, by [CT18, Lemma 2.1], for every open subgroup U ⊆ Π one has

HomΠ(Q`, T
n,m(V )) = HomU(Q`, T

n,m(V )).

Applying this to U := Ker(Π � π0(G)), one gets

T n,m(V )G = HomΠ(Q`, T
n,m(V )) = HomU(Q`, T

n,m(V )) = T n,m(V )G
0

.
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8.2.1.2 Independence

Let ? ∈ {∅,F}. Let T be a π1(k)-compatible system of �nitely generated Z`-modules of rank r
and write G`,? for the Zariski closure of the image of π1(k?) acting on V` := T` ⊗Q`.

Corollary 8.2.1.2.1. For every prime ` 6= p one has |π0(G`,?)| ≤ |GLr(Z/`0)|.

Proof. By Lemma 8.2.1.1.1, it is enough to show that if G`0,? is connected then G`,? is connected
for every prime ` 6= `0. By de�nition of a compatible system, there exists a smooth geometrically
connected Fq-variety K with generic point Spec(k) → K such that, for every prime ` 6= p, the
action of π1(k) on T` factors trough the surjection π1(k) � π1(K). So it is enough to show
the corresponding statement for the actions of π1(K) and π1(KF) on V`. This follows from Fact
8.2.1.2.2 below.

Fact 8.2.1.2.2. G`0,? is connected if and only if G`,? is connected.

Proof. To prove Fact 8.2.1.2.2 one can replace V` with its π1(K)-semisimpli�cation. So we may
and do assume that V` is semisimple as π1(K)-module, hence as π1(KF)-module. Then, arguing
as in Lemma 8.2.1.1.2, it is enough to show that for every integers n,m ≥ 0 one has

T n,m(V`)
G`,? = T n,m(V`0)G`0,? .

By [Laf02] and [Dri12] every semisimple π1(K)-modules is direct sum of its pure components
(see [D'Ad17, Theorem 3.5.5] for more details) so that one reduces to the situation in which V`0
and V`0 are pure. Then, by the theory of weights ([Del80]), the dimensions of T n,m(V`)

G`,? and
T n,m(V`0)G`0,? , can be read on the L-functions of T n,m(V`) and T n,m(V`0) (see [D'Ad17, Proposi-
tion 3.4.11] for more details). Since T n,m(V`) and T n,m(V`0) are compatible, this concludes the
proof.

Remark 8.2.1.2.3. Fact 8.2.1.2.2 is proved in [Ser81] if ? = ∅ and in [LP95, Theorem 2.2] if
? = F and V` is pure.

8.2.1.3 Proof of Theorem 8.1.2.2.1

Keep the notation as in the statement of Proposition 8.1.2.2.1 and �x ? ∈ {∅,F}. We can
replace T` with T`/(T`)tors and U` with U`/(U`)tors, hence assume that T` and U` are torsion
free. Since T and U are compatible systems, {H` := T∨` ⊗U`}`6=p is a compatible system as well.
By Corollary 8.2.1.2.1, there exists a �nite �eld extension k? ⊆ kU of degree ≤ |GLr2(Z/s`0)|
such that the Zariski closure G` of the image of π1(kU) acting on H`⊗Q` is connected for every
prime ` 6= p. We claim that kU satis�es the conclusion of Proposition 8.1.2.2.1. By assumption,
there exists a �nite extension k ⊆ k` and an isomorphism

ψ` ∈ Hπ1(k`)
` ⊆ H

π1(k`kU )

` ,

hence it is enough to show that H
π1(kU )

` = H
π1(k`kU )

` . Since H
π1(k`kU )

` /H
π1(kU )

` is torsion free, it
is enough to show that (H` ⊗Q`)

π1(kU ) = (H` ⊗Q`)
π1(k`kU ) and this follows from the facts that

kU ⊆ k`kU is a �nite �eld extension and G` is connected. This concludes the proof.

8.2.2 Proof of Proposition 8.1.2.2.2

Keep the notation as in the statement of Proposition 8.1.2.2.1 and �x ? ∈ {∅,F}. Write

V` := T` ⊗Q`; M` := T` ⊗Q`/Z`; T ` := T`/`.
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8.2.2.1 Preliminary reduction

Write G`,? for the Zariski closure of the image Π`,? acting on V`. By Corollary 8.2.1.2.1 and
replacing k? with a �nite �eld extension of degree ≤ |GLr(Z/s`0)|, one may assume that G`,? is
connected for every prime ` 6= p. Since by assumption there are at most �nitely many T` with
torsion and these are �nitely generated Z`-modules, we may replace T` with T`/(T`)tors hence
assume that T` is torsion free for every prime ` 6= p. The proof of Proposition 8.1.2.2.2 is the
combination of the following two claims and the arguments in Section 8.2.2.4.
Claim 1: For every integer d ≥ 1 and for every prime ` 6= p, there exists an integer A` ≥ 1,
depending only on d, ` and T , such that, for every �nite �eld extension k ⊆ k′ of degree ≤ d,
one has [M

π1(k′)
` : M

π1(k?)
` ] ≤ A`.

Claim 2: For every integer d ≥ 1, there exists an integer D ≥ 1 such that, for every prime

` ≥ D and for every �nite �eld extension k ⊆ k′ of degree ≤ d, one has T
π1(k′)

` = T
π1(k?)

` .

8.2.2.2 Proof of Claim 1

Since Π`,? is a compact `-adic Lie group, it is topologically �nitely generated and hence it has
�nitely many open subgroups of bounded index. So it is enough to show that if U ⊆ Π`,? is
an open subgroup then [MU

` : M
Π`,?
` ] < +∞. This follows from [CC18, Lemma 3.3.2] and the

connectedness of G`,?. To the reader convenience, we brie�y recall the argument.
Since G`,? is connected, one has V

Π`,?
` = V U

` and T
Π`,?
` = TU` . The exact sequence

0→ T` → V` →M` → 0

induces a commutative diagram with exact rows:

0 V
Π`,?
` /T

Π`,?
` M

Π`,?
` H1(Π`,?, T`)

0 V U
` /T

U
` MU

` H1(U, T`)
∆

So MU
` /M

Π`,?
` is a quotient of the image of ∆. But ∆ has �nite image since MU

` is torsion and
H1(U, T`) is a �nitely generated Z`-module by [Ser64, Proposition 9].

8.2.2.3 Proof of Claim 2

For any �nite �eld extension k? ⊆ k′, consider the images Πk′ ⊆ Π? of π1(k′) ⊆ π1(k?) acting on
T :=

∏
` 6=p T `. By de�nition of a compatible system, there exists a smooth geometrically con-

nected Fq-variety K with generic point Spec(k) � K such that, for every prime ` 6= p, the action
of π1(k) on T` factors trough the canonical surjection π1(k) → π1(K). By the Grothendieck-
Ogg-Shafarevich formula, there exists a connected étale cover K′ → K such that the action of
π1(K′) ⊆ π1(K) on T factors trough the tame fundamental group of K′; see the proof of [Cad19a,
Lemma 12.3.1]. Since the tame fundamental groups of K′ and of every connected component of
K′F are topologically �nitely generated, this implies that Π? is topologically �nitely generated.
Hence the group Π? has �nitely many open subgroups of index ≤ d. So there are only �nitely
many possibilities for the inclusions Πk′ ⊆ Π?, while k? ⊆ k′ is varying among the �nite �eld
extensions of degree ≤ d. So, to prove Claim 2, it is enough to show1 that, for every �nite �eld
extension k? ⊆ k′ of degree ≤ d, there exists an integer D ≥ 1, depending only on T and k′,

such that for ` ≥ D′ one has T
π1(k′)

` = T
π1(k?)

` .

1This is not a formal consequence of [π1(k?) : π1(k′)] being �nite, as the example {1} ⊆ {1,−1} ⊆∏
` 6=p GL(T `) shows.

177



Let L be the set of prime 6= p and write F :=
∏

`∈L F`. We use the formalism of ultra�lters2

on L; see [CHT17, Appendix]. To every ultra�lter u on L one associates a maximal ideal mu

of F and writes Fu := F/mu for the characteristic zero residue �eld. The actions of π1(k?)
and π1(k′) on T induces actions on Tu := T ⊗F Fu. Since Π? and Πk′ are topologically �nitely
generated groups, by [CHT17, Lemma 4.3.3] and [CHT17, Lemma 4.4.2] it is enough to show
that T π1(k?)

u = T
π1(k′)
u for every ultra�lter u. Write Gu,? and Gu,k′ for the Zariski closures of the

images of π1(k?) and π1(k′) acting on Tu. Since T
π1(k?)
u = T

Gu,?
u and T

Gu,k′
u = T

π1(k′)
u , it is enough

to show that the natural inclusion Gu,k′ ⊆ Gu,? is an equality. Since π1(k′) ⊆ π1(k?) has �nite
index, one has G0

u,k′ = G0
u,? hence it is enough to show that Gu,? is connected. This follows from

the fact that G` is connected by preliminary reduction and Fact 8.2.2.3.1 below.

Fact 8.2.2.3.1. The group G`,? is connected if and only if Gu,? is connected.

Proof. If ? = ∅ this is proved in [CHT17, Theorem 1.3.1] and if ? = F this is proved in [Cad19a,
Corollary 15.1.2].

8.2.2.4 End of the proof

To conclude the proof of Proposition 8.1.2.2.2, �x a �nite �eld extension k? ⊆ k′ of degree
≤ d. Up to replacing d with d! we may restrict to �nite Galois extensions k? ⊆ k′, so that
π1(k′) ⊆ π1(k?) is a normal subgroup. By Claim 1, it is enough to show that there exists an
integer A ≥ 1, depending only on T and d, such that for ` ≥ A one has Mπ1(k?)

` = M
π1(k′)
` and,

by Claim 2, there exists an integer D ≥ 1, depending only on T and d, such that for ` ≥ D one

has T
π1(k?)

` = T
π1(k′)

` . We claim that A := max(D, d+ 1) has the desired property.
Since M` = lim−→n

M`[`
n], it is enough to show that for ` ≥ A and every n ≥ 1 one has

M`[`
n]π1(k?) = M`[`

n]π1(k′). For this, one argues by induction on n, the case n = 1 being the
de�nition of D. For n > 1, since T` is torsion free, there is a π1(k?)-invariant identi�cation
M`[`

n] ' T`/`
n and a π1(k?)-equivariant exact sequence

0→ T ` → T`/`
n → T`/`

n−1 → 0.

Combined with the in�ation-restriction exact sequence for the normal inclusion π1(k′) ⊆ π1(k?),
this induces a commutative exact diagram

H1(π1(k?)/π1(k′), T
π1(k′)

` )

0 T
π1(k?)

` (T`/`
n)π1(k?) (T`/`

n−1)π1(k?) H1(π1(k?), T `)

0 T
π1(k′)

` (T`/`
n)π1(k′) (T`/`

n−1)π1(k′) H1(π1(k′), T `).

' '

By the induction hypothesis the �rst and the third vertical arrows are isomorphisms for ` ≥ A.

By elementary diagram chasing it is enough to show that H1(π1(k?)/π1(k′), T
π1(k′)

` ) = 0. But

since T
π1(k?)

` = T
π1(k′)

` one has

H1(π1(k?)/π1(k′), T
π1(k′)

` ) = H1(π1(k?)/π1(k′), T
π1(k?)

` ) = Hom(π1(k?)/π1(k′), (Z/`)r) = 0

where the last equality follows from the fact that ` > d = |π1(k?)/π1(k′)|.
2In this note an ultra�lter will always mean a non-principal ultra�lter.
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8.3 Proof of Theorem 8.1.1.2.1

8.3.1 Proof of Theorem 8.1.1.2.1

Retain the notation and the assumption of Proposition 8.1.1.2.1. For every �nite �eld extension
k ⊆ k′ and every (k/k′)-form Y of X, write Yk := Y ×k′ k and

T`(Y ) := lim←−
n

Br(Yk)[`
n]; M`(Y ) := T`(Y )⊗Q`/Z`; M(Y ) :=

∏
`6=p

M`(Br(Yk));

H2
` (Y ) := H2(Yk,Z`(1)); H i(Y ) := {H2

` (Y )}.

8.3.1.1 Reducing to the Tate module of the Brauer group

Recall (see e.g. the proof of [CC18, Proposition 2.1.1]) that there is a π1(k′)-equivariant exact
sequence

0→M`(Br(Yk))→ Br(Yk)[`
∞]→ H3(Yk,Z`(1))[`∞]→ 0.

Since

• for every prime ` 6= p, the group H3(Yk,Z`(1))[`∞] = H3(Xk,Z`(1))[`∞] is �nite (of
cardinality depending only on X) and

• for ` � 0 (depending only on X) one has H3(Yk,Z`(1))[`∞] = H3(Xk,Z`(1))[`∞] = 0
([Gab83]);

it is enough to prove Theorem 8.1.1.2.1 replacing Br(Yk)[p
′] with M(Y ).

8.3.1.2 Compatibility

We now prove that T (Y ) is a compatible system of π1(k′)-modules. Write NS(Yk) for the
Néron-Severi group of Yk. By the Kummer exact sequence

0→ NS(Yk)⊗ Z` → H2
` (Y )→ T`(Y )→ 0,

it is enough to show that H2 and NS(Y ) := {NS(Yk)⊗Z`}`6=p are compatible systems of π1(k′)-
modules. Write Fq′ for the algebraic closure of Fq in k′. By spreading out, there exists a
geometrically connected smooth Fq′-variety K′, with generic point η′ : Spec(k′) → K′, and a
smooth proper morphism f : Y → K′ �tting into a commutative cartesian diagram:

Y Y

Spec(k′) K′.
� f

η′

By smooth proper base change, the action of π1(k′) on H2
` (Y ) factors trough the surjection

π1(k′) � π1(K′) and by [Del80] the collection H2(Y ) is a Q-rational compatible system. Since
homological and algebraic equivalences coincide rationally for divisors, NS(Yk) ⊗ Q identi�es
with the image of the cycle class map cYk : Pic(Yk) ⊗ Q → H2

` (Y ) ⊗ Q`. So NS(Y ) is a
compatible system of π1(k′)-modules, hence T (Y ) is a compatible system of π1(k′)-modules as
well.
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8.3.1.3 End of the proof

So we can apply Propositions 8.1.2.2.1 and 8.1.2.2.2 to T (Y ). Hence, to conclude the proof,
we have just to adjust the arguments in [OS18, Section 5.4], replacing [OS18, Propositions
5.4 and 5.5] with Propositions 8.1.2.2.1 and 8.1.2.2.2. Write r := RankZ`(T`(X))2 and set
BX := |GLr(Z/`0)|. By Proposition 8.1.2.2.1 for Xk′ there exists a �nite �eld extension k′ ⊆ kY
of degree ≤ BX such that there is an π1(kY )-equivariant isomorphism M(Y ) ' M(X). Then
one has:

M(X)π1(k) ⊆M(X)π1(kY ) 'M(Y )π1(kY ) ⊇M(Y )π1(k′).

Since T (X, `) holds for every prime ` 6= p, by Fact 8.1.1.1.2 the group M(X)π1(kY ) is �nite.
Hence it is enough to show that, for every integer d ≥ 1, there exists an integer C ≥ 1,
depending only on X and d, such that for every �nite �eld extension k ⊆ k′′ of degree ≤ d one
has M(X)π1(k′′) ≤ C. To prove this, one may replace k with a �nite extension and then apply
Proposition 8.1.2.2.2 to conclude.

8.3.2 Further remarks

Let k be an in�nite �nitely generated �eld of characteristic p ≥ 0.

8.3.2.1 Torsion of abelian varieties

Let X be a k-abelian variety of dimension g. By the Lang-Néron theorem [LN59], the group
X(k′)tors is �nite for every �nite �eld extension k ⊆ k′ and, if X has no isotrivial geometric
isogeny factors, then the same is true for every �eld extension of kF. One can use Theorems
8.1.2.2.1 and 8.1.2.2.2 with the techniques in Section 8.3.1 to prove uniform boundedness results
for the torsion of the forms of abelian varieties. More precisely, one can prove that for every
integer d ≥ 1, (resp. if X has no isotrivial geometric isogeny factors) there exists an integer
C := C(X, d) such that |Y (k′)| ≤ C for every �nite extension of �elds k ⊆ k′ (resp. kF ⊆ k′)
of degree ≤ d and every k′-abelian variety Y that is a (k/k′) form of X. We conclude pointing
out that the statement for abelian varieties over k follows also from the Lang-Weil bound and
the specialization theory for torsion of abelian varieties.

8.3.2.2 Abelian varieties with CM

Recall that a k-abelian variety X has complex multiplication (or CM for short) if the image
of the representation π1(k)→ GL(T`(X)) contains an abelian open subgroup. In characteristic
zero, Orr-Skorobogatov ([OS18, Corollary C.2]) prove that there is an integer C ≥ 1, depending
only on d and g, such that |Br(Xk)

π1(k)| ≤ C for every g-dimensional abelian variety with CM
de�ned over a number �eld k of degree ≤ d. This result is a consequence of the characteristic
zero analogue [OS18, Theorem 5.1] of Theorem 8.1.1.2.1 and of the fact ([OS18, Theorem A])
that there are only �nitely many Q-isomorphism classes of g-dimensional abelian varieties with
CM de�ned over a number �eld of degree ≤ d. Unfortunately, as Akio Tamagawa pointed out
to us, the positive characteristic analogue of [OS18, Theorem A] is false: if X is the product of
g > 1 supersingular elliptic curves, the k-isogeny class of X contains in�nitely many3 k-abelian
varieties that are not isomorphic over k. So there is no hope to deduce directly from Theorem

3Indeed, there is an inclusion α2
p ⊆ X. Since k is in�nite, the set I := Homk(αp, αp×αp)/Autk(αp) ' P1(k)

is in�nite. For each i ∈ I de�ne fi : X → Xi := X/i(αp). Assume by contradiction that the Xi,k fall into
�nitely isomorphism many classes. Then there exist i0 and an in�nite subset J ⊆ I such that, for every j ∈ J ,
there is an isomorphism gj : Xj,k → Xi0,k

. Then, gj ◦fj : Xk → Xi0,k
is a map of degree p. Since there are only

�nitely many maps Xk → Xi0,k
of degree p , there exists an in�nite subset J ′ ⊆ J such that gj ◦ fj = gj′ ◦ fj′

for every j, j′ ∈ J ′. But this implies j(αp) = j′(αp) and this is a contradiction.
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8.1.1.2.1 the analogue of [OS18, Corollary C.2] in positive characteristic. However, a positive
characteristic version of [OS18, Corollary C.2], via di�erent techniques, has been announced by
Marco D'Addezio.
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Appendix A

Results on gonality

A.1 Introduction

In this chapter k is a �eld of characteristic p > 0 with algebraic closure k ⊆ k. For a k-variety
X, write |X| and X(k) for the set of closed and k-rational points, respectively.

A.1.1 Abstract modular schemes

Let ρ : π1(X) → GLr(Z`) be a continuous representation of the étale fundamental group1 of
X. By functoriality of the étale fundamental group, every x ∈ |X| induces a continuous group
homomorphism π1(x) → π1(X), hence a �local" Galois2 representation ρx : π1(x) → π1(X) →
GLr(Z`). Set

Π = ρ(π1(X)) Πk = ρ(π1(Xk)) Πx = ρx(π1(x)).

For every open subgroup U ⊆ Π write fU : XU → X for the connected étale cover corresponding
to the open subgroup ρ−1(U) ⊆ π1(X) and kU for the smallest separable �eld extension of k
over which XU is geometrically connected. Set Uk = U ∩ Πk.

Fact A.1.1.1. For every open subgroup U ⊆ Π the following hold:

1. For every x ∈ |X|, we have that Πx ⊆ U if and only if x lifts to a k(x)-rational point on
XU ;

2. The cover XUk
→ Xk corresponding to the open subgroup Uk ⊆ Πk is X ×kU k → Xk.

In view of Fact A.1.1.1, we call XU the connected abstract modular scheme associated to
U .

A.1.2 Genus and gonality

Assume from now on that X is a curve. Write gU and γU for the genus and the gonality3 of
the smooth compacti�cation of XUk

. The representation ρ : π1(X) → GLr(Z`) is said to be
GLP (geometrically Lie perfect) if every open subgroup of Πk has �nite abelianization. Write
Πk(n) = Ker(Πk → GLr(Z`/`n)). From Theorem 3.1.4.2.2 in Chapter 3 one has the following.

1As the choice of �bre functors will play no part in the following we will omit them for the notation for the
étale fundamental group.

2Recall that π1(x) ' π(Spec(k(x)) identi�es with the absolute Galois group of k(x).
3Recall that the gonality of smooth proper k-curve Y is de�ned as the minimum of the degrees of a non

constant morphism Y → P1
k
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Fact A.1.2.1. Assume that ρ is GLP and ` 6= p. Then for every closed subgroup C ⊆ Πk of
codimension ≥ 1 we have

lim
n→+∞

gCΠk(n) = +∞.

By the Riemann-Hurwitz formula one has (see [Poo06, Proposition 1.1(iv)])

gU ≥ γU − 1, (A.1.2.2)

hence it is natural to wonder whether not only the genus but also the gonality of XCΠk(n) tends
to in�nity. The answer not only is yes, but one can use gonality to obtain �ne results on the
image of non necessarily GLP representations. The main result of this chapter is the following
extension of [CT13, Theorem 3.3] to positive characteristic.

Theorem A.1.2.3. Let C ⊆ Πk be a closed subgroup of of codimension j. The following hold:

1. If ` 6= p, the representation ρ is GLP and j ≥ 1, then

lim
n→+∞

γCΠk(n) = +∞;

2. If ` 6= p and j ≥ 3, then
lim

n→+∞
γCΠk(n) = +∞;

3. If ` = p and j ≥ 2, then
lim

n→+∞
γCΠk(n) = +∞.

Remark A.1.2.4. By (A.1.2.2), Theorem A.1.2.3 (2)-(3) implies that gCΠk(n) tends to in�nity.
It is not clear to us if it is possible to prove this directly. Note that, a posteriori, Theorem
A.1.2.3 (1) implies Fact A.1.2.1, but, actually, Fact A.1.2.1 is used in the proof of Theorem
A.1.2.3(1) (see right after Fact A.2.2.3.1).

A.1.3 Exceptional loci

Assume from now on that k is �nitely generated and X is a curve. The main motivation for
proving Fact A.1.2.1 was to show (Theorem 3.1.3.2) that if ` 6= p and ρ is GLP, then for all
but at most �nitely many x ∈ X(k), the closed subgroup Πx ⊆ Π is open and there exists an
integer N ≥ 1, depending only on ρ, such that for all such x one has [Π : Πx] ≤ N . This was
a consequence of Fact A.1.2.1 and the following result of Samuel ([Sam66]) completed by an
argument of Voloch (see [EElsHKo09, Theorem 3] for more details).

Fact A.1.3.1. Assume that k is �nitely generated of positive characteristic. There exists an
integer g ≥ 2, depending only on k, such that for every smooth proper k-curve Y with genus
≥ g, the set Y (k) is �nite.

Using Remark A.1.2.4, from Theorem A.1.2.3 we get the following, which extends [CT13,
Theorem 1.3] to positive characteristic.

Corollary A.1.3.2. Assume that X is a curve and k is �nitely generated. The following hold:

1. If ` = p, then for all but at most �nitely many x ∈ X(k), Πx ⊆ Π has codimension ≤ 1;

2. If ` 6= p, then for all but at most �nitely many x ∈ X(k), Πx ⊆ Π has codimension ≤ 2.
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A.1.4 Strategy

The general strategy is similar to the one of [CT13], but the technical details are more involved,
due to pathological phenomena arising from speci�c features of the geometry of curves in
positive characteristic. In particular, the major problems to overcome are the following:

1. Morphisms between smooth proper curves are not necessarely separable (see for example
Section A.2.2.3(3) and Lemma A.2.3.2.3);

2. The kernel of a morphism between abelian varieties is not necessarely reduced (see Lemma
A.2.3.2.5).

A.1.5 Organization of the chapter

In Section A.2 we construct auxiliary systems of curves of genus ≤ 1 and we use this prove
Theorem A.1.2.3. In Section A.3 recall the construction of a projective system of abstract
modular schemes Xn → X, parametrizing points with small image and some facts about them.
After this, we prove Corollary A.1.3.2. All the results and the proofs in this paper work in the
characteristic zero setting but, since this situation is already treated in [CT13], we will assume
that p > 0 to simplify the exposition.

A.2 Proof of Theorem A.1.2.3

This section is devoted to the proof of Theorem A.1.2.3, following the strategy of [CT13] which
we �rst recall.

A.2.1 Strategy

Assume k algebraically closed. We start with a projective system of smooth proper curves:

.... YN YN−1 .... Y1 Y0
πN πN−1 π1

such that Yn → Yn−1 is a (possibly rami�ed) Galois cover with group Gn cyclic of prime-to-p
order (to simplify). Assume that γYn is bounded when n goes to in�nity. Then we construct
(Proposition A.2.1.4) a commutative and cartesian diagram of smooth proper curves

... Yn Yn−1 ... YN YN−1 ...

... Bn Bn−1 ... BN

πn

fn �̃

πn−1

fn−1

πN−1 πN

fN

πN−1

π′n π′n−1 π′N−1

where each Bn has genus ≤ 1.
We apply this construction to a projective system

.... Yn Yn−1 .... Y1 Y0

closely related to

.... XCΠk(n) XCΠk(n−1) .... XCΠk(1) XCΠk(0) = X

(A.2.1.1)
attached to a (GLP) representation ρ : π1(X) → GLr(Z`) (in fact Y0 is the smooth compact-
i�cation of X). In that case (assuming moreover N = 0 to simplify), the auxiliary projective
system
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.... BN BN−1 .... B1 B0

is closely related to a projective system of the forms (A.2.1.1) but for the induced representation
Ind

π1(B)
π1(X)(ρ), where B is an open curve in B0 and X ⊆ Y0 maps to B. The contradiction then

arises from the constraints imposed on the groups Gn (automorphism groups of genus ≤ 1
curves) or on the curves Bn (gBn ≤ 1) by the Fact that γYn are bounded. For instance if ρ
is GLP, one can always assume that Indπ1(B)

π1(X)(ρ) is also GLP (Fact A.2.2.3.1), hence gBn ≤ 1
contradicts Fact A.1.2.1.

For the construction of the projective system we use the method of E-P decomposition
introduced in [CT13, Section 2]. This method allows us to construct for n � 0 cartesian
diagrams:

Yn Yn−1 ... YN0 YN0−1 .... YN1 YN1−1 ...

CN0 BN0−1 .... BN1

Bn Bn−1 ... BN0

πn

fn �̃

πn−1

fn−1

πN0+1

�̃

πN0

fN0

fN0−1

πN1+1 πN

fN1

πN1−1

π′N0
π′N0−1 π′N1+1

π′n π′n−1
π′N0+1

with the desired properties for some N0, N1 ≥ 0. So for each n � 0 the set Fn of these
diagrams is not empty (Proposition A.2.3.2.2). Furthermore, deleting the last arrow we get
maps Fn → Fn−1, so we endow the collection {Fn}n∈N with the structure of a projective system.
To obtain the result about the existence of a �limit" diagram we have to show (Proposition
A.2.1.4) that, for each n, Fn is �nite. This requires some extra technical conditions and that
Gn is cyclic of prime-to-p order.

To state more precisely the results of Section A.2.3, let us recall the following de�nition.

De�nition A.2.1.2. A �nite group G is said to be k-exceptional if it appears as Galois group
of a Galois cover of smooth proper k-curves X → Y with gX = gY ≤ 1.

Then, in Section A.2.3 we prove:

Proposition A.2.1.3. Assume that

...→ Yn → Yn−1 → ...→ Y1 → Y0

is a projective system of non constant morphisms between smooth proper k-curves such that
Yn → Yn−1 is a (possibly rami�ed) Galois cover with group Gn. Assume that

lim
n→+∞

γYn = γ

is �nite. Then all but �nitely many Gn are k-exceptional.

Proposition A.2.1.4. Assume furthermore that Gn is cyclic of a �xed prime-to-p order ≥ 3,
for all but �nitely many n. Then there exists an N ≥ 0 such that we can construct a diagram

... Yn Yn−1 ... YN YN−1 ...

... Bn Bn−1 ... BN

�̃

πn

fn

πn−1

fn−1

πN−1 πN

fN

πN−1

π′n π′n−1 π′N−1

with the following properties:
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1. π′n : Bn → Bn−1 is a (possibly rami�ed) Galois cover of smooth proper curves with group
Gn;

2. One of the following holds:

(a) gBn = 0 and deg(fn) = γ,

(b) gBn = 1 and deg(fn) = γ
2
;

3. the square

Yn Yn−1

Bn Bn−1

�̃

πn

fn fn−1

π′n

is cartesian up to normalization.

A.2.2 Proof of Theorem A.1.2.3 assuming Propositions A.2.1.3 and
A.2.1.4

Retain the notation and the assumptions of Theorem A.1.2.3. By Fact A.1.1.1(2), to prove
Theorem A.1.2.3 we can assume k is algebraically closed, hence that Π = Πk.

A.2.2.1 Preliminary reduction

By [Poo06, Proposition 1.1(vi-vii)], for every non constant morphism Z → Y of degree d
between smooth proper k-curves one has

γY ≤ γZ ≤ dγY . (A.2.2.1.1)

So, if

... X ′n X ′n−1 ... X ′0

... Xn Xn−1 ... X0

�̃

is a cartesian diagram of smooth proper curves, then γXn tends to in�nity if and only if γX′n
tends to in�nity. Hence to prove to prove Theorem A.1.2.3, we can freely replace replace X
with a �nite étale cover.

Fix an integer n0 ≥ 2. Replacing X with a �nite étale cover, we can assume Π = Π(n0).
By [CT13, Lemma 3.5] and replacing X by XΠ(n) for some n� 0 we can assume CΠ(n + n0)
is normal in CΠ(n) and CΠ(n+ n0)/CΠ(n) ' (Z/`n0)j, where j is the codimension of C in Π.
By (A.2.2.1.1) it is enough to prove that

lim
n→+∞

γCΠ(nn0) = +∞,

so that we have to show that the gonality is not bounded in the tower of covers

...Xn+1 := XCΠ((nn0+n0) Xn := XCΠ(nn0)... X3 := XCΠ(3n0) X2 := XCΠ(2n0) X1 = X

(Z/`n0 )j (Z/`n0 )j (Z/`n0 )j
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where XCΠ(nn0+n0) → XCΠ(nn0) is a Galois cover with group (Z/`n0)j. Assume by contradiction
that

lim
n→+∞

γXn = γ0 < +∞.

Then, upon replacing X with XCΠ(n) for some n � 0, we can assume that γXn = γ0 for
all n � 0. By Proposition A.2.1.3 almost all the Galois groups XCΠ(n0+n) → XCΠ(n) are
k-exceptional.

A.2.2.2 Proof of Theorem A.1.2.3 (2) and (3)

Assume �rst that j ≥ 3 if ` 6= p and j = 2 if ` = p. To obtain a contradiction, we use the
following:

Fact A.2.2.2.1. [Cad12a, Corollary 10] Suppose that k is an algebraically closed �eld of char-
acteristic p > 0. A �nite subgroup of PGL2(k) is isomorphic to one of the following groups:

• A cyclic group;

• A dihedral group D2m of order 2m, for some m > 0;

• A4, A5, S4;

• An extension 1 → A → Π → Q → 1, with A an elementary abelian p-group and Q a
cyclic group of prime-to-p order;

• PSL2(Fpr), for some r > 0;

• PGL2(Fpr), for some r > 0;

where Fpr denotes the �nite �eld with pr elements.

By Fact A.2.2.2.1, (Z/`n0)j does not appear as a Galois group of a cover of genus zero
curves as soon as j > 1. So all the Xn must have genus 1. But then, since all �nite morphisms
between elliptic curves are unrami�ed, (Z/`n0)j must be a quotient of the fundamental group
(
∏

` 6=p Z2
`)× Zp of an elliptic curve and this is not possible by the choice of j.

A.2.2.3 Proof of Theorem A.1.2.3 (1)

Assume now that ` 6= p, j ≥ 1 and that ρ is GLP. The proof is similar to the proof contained
in [CT13, Subsection 3.2.2]. The only di�culties come from inseparability phenomena. So we
just give a sketch to show how to overcome these new problems.

1. Preliminary reduction.
Since k is algebraically closed, Π = Πk , hence every open subgroup of Π has �nite
abelianization. Reasoning as in [CT13, Page 15] we can reduce to a situation in which
Lie(Π) has abelian solvable radical (this is used in the last step to apply Fact A.2.2.3.1).
If j ≥ 3, then Theorem A.1.2.3 (1) follows from Theorem A.1.2.3 (2) just proved. So we
need to deal with j = 2 and j = 1.

2. j = 2.
Assume �rst that j = 2. By Fact A.2.2.2.1, (Z/`n0)2 does not appear as a Galois group
of a cover of genus zero curves, hence XCΠ(n) has genus 1 for n ≥ 1. But then, since
all �nite morphisms between elliptic curves are étale, Galois with abelian Galois group,
CΠ(n) ⊆ Π is normal and Π/CΠ(n) is abelian. By the exactness of inverse limit on
pro�nite group

Π � lim←−Π/CΠ(n)
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is an abelian quotient of Π. Since C ⊆ Π is not an open subgroup, lim←−Π/CΠ(n) is in�nite
and this contradicts the fact that ρ is GLP . So, from now on we can assume that j = 1.

3. Use of Proposition A.2.1.4.
By Proposition A.2.1.4 we can construct a cartesian diagram:

... (Xn)cpt (Xn−1)cpt ... (X2)cpt (X1)cpt = Xcpt

... Bn Bn−1 ... B2 B1 = B

πn

fn �̃

πn−1

fn−1

π3

�̃

π2

f2 f1=f

π′n π′n−1 π′2 π′2

such that

(a) π′n : Bn → Bn−1 is a (possibly rami�ed) Galois cover of smooth proper curves with
group Gn

(b) One of the following holds:

i. gBn = 0 and deg(fn) = γ0

ii. gBn = 1 and deg(fn) = γ0

2

(c) the square

Xn Xn−1

Bn Bn−1

�̃

πn

fn fn−1

π′n

is cartesian up to normalization.

We will show that if ρ is GLP, then the genus of Bn should tend to in�nity, contraddicting
(b) above.

4. Reduction to the separable situation.
There is a factorization Xcpt → (Xcpt)′ → B with the �rst morphism purely inseparable
and the second separable of degree d ≤ γ. Write X ′ for the scheme theoretic image of X
in (Xcpt)′ and denote with X ′n the base change of X

′ along Bn → B. Then we get another
system:

... (X ′n)cpt (X ′n−1)cpt ... (X ′2)cpt (X ′1)cpt = (Xcpt)′ = (X ′)cpt

... Bn Bn−1 ... B2 B1 = B

�̃

πn

fn

πn−1

fn−1

π3

�̃

π2

f2 f1=f

π′n π′n−1 π′2 π′2

such that the maps (X ′n)cpt → Bn are all separable and of degree d. Since the map
X → X ′ is a universal homeomorphism it induces an isomorphism π1(X) → π1(X ′) and
so a Lie perfect representation ρ′ of π1(X ′). So, to prove that gBn is not bounded, we can
assume that the maps (Xn)cpt → Bn are separable after replacing γ0 with some integer
d ≤ γ0

5. Reduction to the étale Galois situation.
Since the maps are separable, the rami�cation locus S of Xcpt → B is �nite, so we get
an open curve Y := B − (S ∪ f(Xcpt −X)). Writing Yn for the base change of Y along
the map Bn → B we get étale maps Xn → Yn and Yn → Yn−1. Then one reduces to the
situation in which the morphisms Xn → Yn are �nite étale Galois after replacing γ0 with
some d ≤ γ0!.
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6. Use of Fact A.1.2.1 and end of proof.
We use the following:

Fact A.2.2.3.1 ([CT13, Proof of Lemma 3.6]). Let X → Y a �nite étale Galois cover
of degree m between smooth curves over an algebraically closed �eld and ρ : π1(X) →
GLr(Z`) a GLP representation such that Lie(Π) has abelian solvable radical. Then the
induced representation Indπ1(X)

π1(Y )(ρ) : π1(Y )→ GLmr(Z`) is GLP.

Since, by the preliminary reduction at the point 1 of Section A.2.2.3, the solvable radical
of Lie(Π) is abelian, by Fact A.2.2.3.1 the representation ρ0 := Ind

π1(X)
π1(Y )(ρ) is still GLP.

De�ning Ui := ρ0(π1(Yi)) we can consider the system of covers YUi → Y . We prove, as in
[CT13, Lemma 3.7], that ∩iUi is closed of codimension ≥ 1. So by Fact A.1.2.1 we get
that the genus of gUi tends to in�nity. But we have inclusions π1(Yi)→ π1(YUi)→ π1(Y )
and hence non constant morphisms Yi → YUi → Y . By assumption gYi ≤ 1 and this is a
contradiction.

Corollary A.2.2.3.2. Let k be an algebraically closed �eld of characteristic p, �x a prime ` 6= p
and K/k a function �eld of transcendence degree 1. Assume that L/K is a Galois extension
rami�ed only at �nitely many places such that Π := Gal(L|K) is an `-adic Lie group with
Lie(Π)ab = 0. Then there exists only �nitely many extensions K ⊆ K ′ ⊆ L with bounded
gonality.

Proof. See (the proof of) [CT12b, Corollary 3.9].

A.2.3 Construction of curves of low genus

The main results of this section are Propositions A.2.1.3 and A.2.1.4. They have been used in
the proof of Theorem A.1.2.3. In this subsection k is an algebraically closed �eld of positive
characteristic p.

A.2.3.1 E-P decomposition

We recall the technique of E-P decomposition from [CT13, Section 2]. Let

Y B

Y ′

f

π

be a diagram of non constant morphisms between smooth proper curves, where π : Y → Y ′ is
a (possibly rami�ed) Galois cover with group G. We say that the diagram is G-equivariant if
for any σ ∈ G there exists σB ∈ Autk(B) such that f ◦ σ = σB ◦ f . We say that the diagram is
G-primitive if for any commutative diagram of smooth proper curves

Y B′ B

Y ′

f

f ′

π

j

with deg(f ′) ≥ 2 the diagram

Y B′

Y ′

f ′

π
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is not G-equivariant.
For any diagram

Y B

Y ′

f

π

we can construct a decomposition

Y C B

Y ′

f

π

with

Y C

Y ′
π

G-equivariant and Y → C of degree maximal with this property. Since, by de�nition, we have
a morphism of group G → Autk(C) with kernel K, we can construct a equivariant-primitive

(E-P for short) decomposition of f , i.e. a diagram

Y Y/K := Z C B

Y ′ C/(G/K) := B′

f

with

Z C G/K-equivariant and C B G/K-primitive.

Y ′ B′

Now, if we have a commutative diagram of non constant morphisms of smooth proper k-curves

YN YN−1 .... Y1 Y0

Bn

πN πN−1 π1

with πn : Yn → Yn−1 a (possibly rami�ed) Galois cover with group Gn, we can apply the
previous construction several times to obtain the following diagram :

YN ZN CN BN

YN1 ZN−1 CN−1 BN−1

YN−2 ... ... BN−2

... ...

Y1 Z1 C1 B1

Y0 B0

fN

fN−1

fN−2

f1

f0
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where

Yk Zk Ck Bk

Yk−1 Bk−1

fk

fk−1

is an E-P decomposition of fk.

A.2.3.2 Construction

We start with a projective system of smooth proper curves of �xed gonality γ = γYn

.... YN YN−1 .... Y1 Y0
πN πN−1 π1

with Yn → Yn−1 a (possibly rami�ed) Galois cover with group Gn. We want to construct a
related system of smooth proper curves with bounded genus. The construction is similar to the
one of [CT13, Section 2], with some complications arising from the existence of non separable
morphisms of curves in positive characteristic. Write

v(γ) =
log(γ

√
2)

log(
√

3
2
)

and for every n > v(γ) de�ne Fn as the set of (isomorphism classes of) diagrams of non constant
morphism of smooth proper curves

Yn Yn−1 ... YN0 YN0−1 .... YN1 YN1−1 ...

CN0 BN0−1 .... BN1

Bn Bn−1 ... BN0

πn

�̃fn

πn−1

fn−1

πN0+1

�̃

πN0

fN0

fN0−1

πN1+1 πN

fN1

πN1−1

π′N0
π′N0−1 π′N1+1

π′n π′n−1
π′N0+1

that satisfy the following properties:

1. 0 ≤ N1 ≤ N0 ≤ n.

2. N1 ≤ v(γ).

3. gBk = 1, deg(fk) = γ
2
for N1 ≤ k < N0.

4. gCN0
= 1 if N1 < n.

5. gBk = 0, deg(fk) = γ for N0 ≤ k ≤ n.

6. the square

Yk Yk−1

Bk Bk−1

�̃

πk

fk fk−1

π′k

is cartesian up to normalization and Gk = Aut(Yk → Yk−1)-equivariant for N1 < k ≤ N0.
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7. the square

YN0 YN0−1

CN0 BN0−1

�̃

πN0

fN0−1

π′N0

is cartesian up to normalization and GN0 = Aut(YN0 → YN0−1)-equivariant if N0 > N1.

We can endow the family of Fn with the structure of a projective system Fn → Fn−1 forgetting
the last arrow on the left. The following lemma will be used several times:

Lemma A.2.3.2.1. Let f : Y → Z a prime degree cover of smooth proper curves over k with
gY 6= gZ . Then Y → Z is separable.

Proof. First observe that f is separable or purely inseparable, since the degree is prime. Assume
by contradiction that f is purely inseparable. Then by [Liu06, Corollary 4.21, Chapter 7] we
get gY = gZ , contradicting the assumption.

We �rst prove:

Proposition A.2.3.2.2. The set Fn is non empty.

Proof. The proof is the same of [CT13, Lemma 2.4] using the E-P decomposition and Lemma
A.2.3.2.3 instead of [CT13, Lemma 2.5].

Lemma A.2.3.2.3. Let

C B

B′

π

be a diagram of smooth proper k-curves with deg(C → B) = 2 and π : C → B′ a (possibly
rami�ed) Galois cover with group G.

1. If gB = 0 and gC ≥ 2 then the diagram is G-equivariant.

2. If gB = 0 and gC = gB′ = 1 then there exists a smooth proper k-curve B′′ with gB′′ = 0
and a cartesian square (up to normalization)

C B

B′ B′′
�̃π

Proof.

1. The morphism C → B is separable by Lemma A.2.3.2.1. Then the generator of the Galois
group of C → B is an hyperelliptic involution and so we can apply [Liu06, Corollary 4.31,
Chapter 7]

2. Again the morphism C → B is separable by Lemma A.2.3.2.1 and so we can write
B = C/ < i > where i an hyperelliptic involution. Then the proof goes exactly as in
[CT13, Lemma 2.5 (2)].
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Proof of Proposition A.2.1.3. For n ≥ v(γ) the group Gn is the Galois group of a Galois cover
of curves of genus ≤ 1 by Proposition A.2.3.2.2.

To get Proposition A.2.1.4 we need the following two �niteness Lemmas:

Lemma A.2.3.2.4. Let c be a prime-to-p integer ≥ 3. Given a (possibly rami�ed) Galois cover
Y → Z of smooth proper k-curves with Galois group G ' Z/c and such that γY = γZ = γ,
there are only �nitely many isomorphism classes of G-equivariant cartesian diagrams:

Y P1

Z P1

Z
cZ

f

�̃
Z
cZ

g

with deg(f) = deg(g) = γ

Proof. See (the proof of) [CT13, Lemma 2.6].

Lemma A.2.3.2.5. Let Y be a smooth proper k-curve and let d be an integer ≥ 1. Denote by
EY,d the set of all pairs (E, f), where E is a smooth proper k-curve of genus 1 and f : Y → E
is a non constant morphism of degree d, up to automorphisms of E. Then EY,d is �nite.

Proof. This is similar to [CT13, Lemma 2.7] but in positive characteristic there is the new
problem that if A → B is a morphism of abelian varieties the kernel is not necessarily an
abelian variety. We can assume that gY ≥ 1. Fix y ∈ Y (k) and consider the closed immersion
i : Y ↪→ JY |k induced by y of Y into its Jacobian. The reasoning in [CT13, Lemma 2.7] shows
that

(a) EY,d is in bijection with the set EJY/k,d of surjective morphisms φ : JY |k → E where E is
an elliptic curve such that the composition of Y ↪→ JY |k → E is of degree d.

(b) It is enough to show that for every d the set E0
JY/k,d

of φ ∈ EJY/k,d such that ker(φ) is
connected is �nite.

(c) The subset Ered,0
JY/k,d

of φ ∈ E0
JY/k,d

such that ker(φ) is reduced is �nite.

To conclude we construct a map

hd : E0
JY/k,d

→ ∪d′≤dEred,0
JY/k,d

′

with �nite �bres. For any f ∈ E0
JY/k,d

consider the following commutative exact diagram, where
for every scheme K we denote with Kred the associated reduced subscheme:

0 Kred JY |k JY |k/Kred := E ′ 0

0 K JY |k E 0.

We have a factorization Y → E ′ → E, so that the degrees of Y → E ′ and of E ′ → E are
bounded by d. So we can de�ne hd as

(JY |k → E) 7→ (JY |k → E ′).

Given any (φ : JY |k → E ′) ∈ ∪d′≤dEred,0
JY/k,d

′ , the preimage h−1
d (JY |k → E ′) in contained in the set

of isogenies E ′ → E of degree ≤ d, which is �nite. So the conclusion follows from (c) above.
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Proof of Proposition A.2.1.4. It is enough to show that lim←−nFn 6= ∅. Since Fn 6= ∅ by Proposi-
tion A.2.3.2.2 and a projective system of non empty �nite sets has not empty projective limit,
it is enough to show that, for each n� 0, the set Fn is �nite. Fix such n, write

En := {fn : Yn → Bn such that fn is contained in some diagram in Fn}

and consider the obvious surjective map

ψn : Fn → En.

From Lemma A.2.3.2.4 if N0 6= n and from Lemma A.2.3.2.5 if N0 = n, En is �nite. So it is
enough to show that ψn has �nite �bres. We have to prove that for any arrow Yn → Bn there
are �nitely many diagrams in Fn that contain that arrow. We �rst remark that a diagram of
smooth proper k-curves

A B

C D

that is cartesian up to normalization is uniquely determined by

A B

C

So any diagram in Fn containing Yn → Bn is uniquely determined by Yn → Bn and (if N0 6= n)
by YN0 → CN0 . Hence it is enough to show that there are only �nitely many possibilities for
YN0 → CN0 once we �x Yn → Bn. By de�nition the map CN0 → BN0 is of degree 2 and so
it is separable by Lemma A.2.3.2.1. The conclusion follows from the fact that there are only
�nitely many intermediate separable covers for the morphism of curves YN0 → BN0 and the
observation that YN0 → BN0 in uniquely determined by Yn → Bn (and Yn → YN0 that is part
of the input datum).

A.3 Proof of Corollary A.1.3.2

A.3.1 Construction of the abstract modular curves

A.3.1.1 Group theory

Let Π ⊆ GLr(Z`) be a closed subgroup, write Φ(Π) for the Frattini subgroup of Π (the inter-
section of all maximal open subgroups of Π) and write

Π(n) := Ker(Π→ GLr(Z`/`n)) and Πn := Im(Π→ GLr(Z`/`n)).

By [Ser89, Pag. 148], Φ(Π) ⊆ Π is an open subgroup. For every integers j, n ≥ 0 consider the
following sets:

• for j ≥ 1, Cj,n(Π) is the set of open subgroups U ⊆ Π of the form U = CΠ(n) for some
closed subgroup C of Π of codimension ≥ j

• C0,n(Π) is the set of open subgroups U ⊆ Π such that Φ(Π(n−1)) ⊆ U but Π(n−1) 6⊆ U .
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The family Cj,n, n ≥ 0, is endowed with a natural structure of projective system given by the
maps ψj,n : Cj,n+1(Π)→ Cj,n(Π):

ψj,n : U 7→ UΠ(n) if j ≥ 1

ψ0,n : U 7→ UΦ(Π(n− 1))

Observe that ψ0,n is well de�ned by [CT12b, Lemma 3.1]. For any C := (C[n])n≥0 ∈ lim←−Cj,n(Π),
write

C[∞] := lim←−C[n] =
⋂
n≥1

C[n] ⊆ Π.

Lemma A.3.1.1.1.

1. Cj,n(Π) is �nite.

2. Let C ⊆ Π be a closed subgroup.

(a) If C ⊆ Π is of codimension ≥ j > 0, for every integer n ≥ 1 there exists a U ∈ Cj,n(Π)
such that C ⊆ U .

(b) For n� 0 (depending only on Π), if Π(n− 1) 6⊆ C there exists a U ∈ C0,n(Π) such
that C ⊆ U .

3. Let C := (C[n])n≥0 ∈ lim←−Cj,n(Π). Then:

(a) If j ≥ 1, the closed subgroup C[∞] ⊆ Π has codimension ≥ j.

(b) If j = 0, the closed subgroup C[∞] ⊆ Π has codimension ≥ 1.

Proof.

1. If j > 0 (resp. j = 0), every U ∈ Cj,n(Π) contains Π(n) (resp. Φ(Π(n+1))), hence Cj,n(Π)
is in bijection with a subset of the set of subgroups of the �nite group Π/Π(n) (resp.
Π/Φ(Π(n+ 1))).

2. (a) De�ne U := CΠ(n).

(b) De�ne U := CΦ(Π(n− 1)) and use [CT12b, Lemma 3.2].

3. By de�nition of the projective system and induction (and [CT12b, Lemma 3.2] if j = 0),
for every n� 0 and N ≥ n:

C[n] = C[n+ 1]Π(n) = C[N ]Π(n).

Hence we get:

C[n] =
⋂
N≥n

(C[N ]Π(n)) =
⋂
N≥n

(C[N ])Π(n) = C[∞]Π(n).

So:

(a) follows from [CT13, Corollary 5.3] since

C[∞]Π(n) = C[n] = C[n]Π(n)

(b) follows from the fact that Π(n) 6⊆ C[∞] for every n and the set of Π(n) is a funda-
mental system of neighbourhoods of 1.
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A.3.1.2 Anabelian dictionary

Let X be a smooth geometrically connected k-variety and assume now that Π is the image of a
continuous representation ρ : π1(X)→ GLr(Z`). Consider the following (possibly disconnected)
étale covers:

fj,n : Xj,n :=
∐

U∈Cj,n(Π)

XU → X

Lemma A.3.1.2.1. Let x ∈ X(k) and assume that there exists an n such that x 6∈ fj,n(Xj,n(k)).
Then:

1. If j ≥ 1, Πx ⊆ Π is of codimension < j.

2. If j = 0 and n� 0, Πx ⊆ Π is open of index ≤ [Π : Π(n)].

Proof. This follows from Fact A.1.1.1 and Lemma A.3.1.1.1 (2).

Assume from now on that X is a curve.

Corollary A.3.1.2.2. Fix 3 integers j, c1, c2 ≥ 0 and consider the following conditions:

1. ρ is GLP, ` 6= p and j ≥ 0;

2. ` 6= p and j ≥ 3.

3. ` = p and j ≥ 2;

If one of the previous conditions holds, then there exists an integer Nρ(c1, c2) such that for
every U ∈ Cj,n(Π) we have [kU : k] > c2 or γU > c1.

Proof. If condition (1) holds, this follows from Theorem A.1.2.3(1) as in the proof of [CT13,
Corollaries 3.9-3.10-3.11]. If one of the conditions (2) or (3) holds, this follows from Theorem
A.1.2.3(2-3), as in [CT13, Subsection 5.1.2].

A.3.2 Proof of Corollary A.1.3.2

Set j = 3 if ` 6= p and j = 2 if ` = p. Consider the projective system of covers constructed in
Section A.3.1.2

fj,n : Xj,n :=
∐

U∈Cj,n

XU → X.

By Corollary A.3.1.2.2 and (A.1.2.2) we can choose an n0 such that all the connected com-
ponents of Xj,n0 have genus larger then the constant g of Fact A.1.3.1 or are de�ned over a
non trivial extension of k. By Lemma A.3.1.2.1, the set of x ∈ X(k) such that Πx ⊆ Π has
codimension ≥ j lies in the image of fj,n : Xj,n0(k)→ X(k), which is �nite by the choice of n0.
Hence it is �nite and this conclude the proof of Corollary A.1.3.2.
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Conventions

We collect here some standard conventions and notation used in this thesis.

• A k-variety is a reduced scheme of �nite type over k. If X is a k-variety, and k ⊆ k′ is
a �eld extension, set Xk′ := X ×k k′. For x ∈ X write k(x) its residue �eld and x for
a geometric point over x. Set |X| for the set of closed points. A curve is a k-variety of
dimension 1.

• If G is an algebraic group over a �eld L of characteristic zero, we write G0 for its neutral
component, π0(G) := G/G0, Ru(G) for its unipotent radical and Gss := G/Ru(G). Set
RepL(G) for the category of �nite dimensional L-linear representations of G and X∗(G)
its group of characters.
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Titre : Invariants `-adiques, p-adiques et géométriques en familles de variétés

Mots clés : Géométrie arithmétique, groupe fondamental étale, caractéristique positive, familles de variétés, F-isocristaux
(sur)convergents, cycles algébriques

Résumé : Cette thèse est divisée en huit chapitres. Dans le cha-
pitre 1 on présente des résultats et des outils déjà connus qu’on
utilisera dans la suite de la thèse. Le chapitre 2 est consacré à
résumer de manière uniforme les nouveaux résultats présentés
dans ce manuscrit.
Les six chapitres restants sont originaux. Dans les chapitres 3 et
4 on démontre le théorème suivant: soit f : Y → X un mor-
phisme lisse et prope sur une base X lisse et géométriquament
connexe sur un corps infini, finiment engendré et de caractéristique
positive. Alors il y a beaucoup de points fermées x ∈ |X| tels
que le rang du groupe de Néron-Severi de la fibre géométrique
de f en x est le même du groupe de Néron-Severi de la fibre
géométrique générique. On preuve ça de la façon suivant: on
étudie la spécialisation du faisceau lisse `-adique R2f∗Q`(1)
(` 6= p); ensuite, on le relie avec la spécialisation du F-isocristal
R2f∗,crisOY/K(1) en passant par la catégorie des F-isocristaux
surconvergents. Au final, la conjecture de Tate varationelle dans la
cohomologie cristalline, nous permet de déduire le résultat sur les
groupes de Néron-Severi depuis le résultat sur R2f∗,crisOY/K(1).
Cela étend en caractéristique positive des résultats de Cadoret-
Tamagawa et André en caractéristique zero.
Les chapitres 5 et 6 sont consacrés à l’étude des groupes de
monodromie des F-isocristaux (sur)convergents. En particulier, les
résultats dans le chapitre 5 sont un travail en commun avec Marco
D’Addezio. On étude les tores maximaux des groupes de mono-

dromie des F-isocristaux (sur)convergents et on utilise ça pour
démontrer un cas particulier d’une conjecture de Kedlaya sur les
homomorphismes de F -isocristeaux convergents. En utilisant ce
cas particulier, on démontre que si A est une variété abélienne
sans facteurs d’isogénie isotriviaux sur un corps de fonctions F
sur Fp, alors le groupe A(Fperf)tors est fini. Cela peut être co-
sidéré comme une extension du théorème de Lang-Néron et donne
une réponse positive à une question d’Esnault. Dans le chapitre 6,
on définit une catégorie Qp-linéaire des F -isocristeaux surconver-
gents et les groupes de monodromie de ces objets. En exploitant
la théorie des companions pour les F -isocristeaux surconvergents
et les faisceaux lisses, on étudie la théorie de spécialisation de ces
groupes de monodromie en transférant les résultats du chapitre 3
dans ce contexte.
Les derniers deux chapitres complètent et affinent les résultats
des chapitres précédents. Dans le chapitre 7, on démontre que
la conjecture de Tate pour les diviseurs sur les corps finiment en-
gendrés et de caractéristique p > 0 est une conséquence de la
conjecture de Tate pour les diviseurs sur les corps finis de ca-
ractéristique p > 0. Dans le chapitre 8, on démontre des résultats
de borne uniforme en caractéristique positive pour le groupes de
Brauer des formes des variétés qui satisfont la conjecture de Tate
`-adique pour les diviseurs. Cela étend en caractéristique positive
un résultat de Orr-Skorobogatov en caractéristique zero.

Title : `-adic, p-adic and geometric invariants in families of varieties

Keywords : Arithmetic geometry, positive characteristic, families of varieties, étale fundamental group, (over)convergent
F-isocrystals, algebraic cycles.

Abstract : This thesis is divided in 8 chapters. Chapter 1 is of pre-
liminary nature: we recall the tools that we will use in the rest of the
thesis and some previously known results. Chapter 2 is devoted to
summarize in a uniform way the new results obtained in this thesis.
The other six chapters are original. In Chapters 3 and 4, we prove
the following: given a smooth proper morphism f : Y → X over a
smooth geometrically connected base X over an infinite finitely ge-
nerated field of characteristic p > 0, there are lots of closed points
x ∈ |X| such that the rank of the Néron-Severi group of the geome-
tric fibre of f at x is the same of the rank of the Néron-Severi group
of the geometric generic fibre. To prove this, we first study the spe-
cialization of the `-adic lisse sheaf R2f∗Q`(1) (` 6= p), then we re-
late it with the specialization of the F-isocrystal R2f∗,crysOY/K(1)
passing trough the category of overconvergent F-isocrystals. Then,
the variational Tate conjecture in crystalline cohomology allows us
to deduce the result on the Néron-Severi groups from the results on
R2f∗,crysOY/K(1). These extend to positive characteristic results
of Cadoret-Tamagawa and André in characteristic zero.
Chapters 5 and 6 are devoted to the study of the monodromy
groups of (over)convergent F-isocrystals. Chapter 5 is a joint work
with Marco D’Addezio. We study the maximal tori in the monodromy

groups of (over)convergent F-isocrystals and using them we prove
a special case of a conjecture of Kedlaya on homomorphism of
convergent F -isocrystals. Using this special case, we prove that
if A is an abelian variety without isotrivial geometric isogeny factors
over a function field F over Fp, then the group A(Fperf)tors is finite.
This may be regarded as an extension of the Lang-Néron theorem
and answer positively to a question of Esnault. In Chapter 6, we de-
fine a Qp-linear category of (over)convergent F-isocrystals and the
monodromy groups of their objects. Using the theory of companion
for overconvergent F-isocrystals and lisse sheaves, we study the
specialization theory of these monodromy groups, transferring the
result of Chapter 3 to this setting via the theory of companions.
The last two chapters are devoted to complements and refinement
of the results in the previous chapters. In Chapter 7, we show that
the Tate conjecture for divisors over finitely generated fields of cha-
racteristic p > 0 follows from the Tate conjecture for divisors over
finite fields of characteristic p > 0. In Chapter 8, we prove uni-
form boundedness results for the Brauer groups of forms of varie-
ties in positive characteristic, satisfying the `-adic Tate conjecture
for divisors. This extends to positive characteristic a result of Orr-
Skorobogatov in characteristic zero.
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