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Alas! what are you, after all, my
written and painted thoughts!
Not long ago you were so
variegated, young and malicious,
so full of thorns and secret
spices, that you made me sneeze
and laugh- and now? You have
already doffed your novelty, and
some of you, I fear, are ready to
become truths, so immortal do
they look, so pathetically honest,
so tedious!

Beyond Good and Evil
Friedrich Nietzsche



Introduction

This thesis is divided in two parts.

Part T is devoted to give a broad picture of the works presented in this thesis. It is divided
in two chapters. Chapter 1 is of preliminary nature: we recall the tools that we will use in the
rest of the thesis and some previously known results. There are two copy of Chapter 1: one
in French and one in English. Chapter 2 is devoted to summarize in a uniform way the new
results obtained in this thesis, trying to explain how they relate to each others.

Part II consists of 6 chapters, each of them corresponding to one of my papers, and of an
appendix.

Chapter 3: A uniform open image theorem for /-adic representations in positive charac-
teristic (| s

Chapter 4: Specialization of Néron-Severi groups in positive characteristic (| 1)

Chapter 5: Maximal tori in monodromy groups of F-isocrystals and applications (| |,
joint with Marco D’Addezio);

Chapter 6: Specialization of p-adic monodromy groups (| 1);

Chapter 7: A note on the behaviour of the Tate conjecture under finitely generated field
extension (| D;

Chapter 8: Uniform boundedness of Brauer groups of forms (| s
Appendix A: Results on gonality.

We kept the introductory sections of each paper, so that the reader could read it without
referring back to the previous chapters.

Specialization of /-adic representations and Néron-Severi groups in positive char-
acteristic

Chapters 3 and 4 are devoted to extend to positive characteristic the results of Cadoret-
Tamagawa | | and of André in | |- Let k be a finitely generated field of characteristic
p > 0and ¢ # p a prime. Let X be a smooth, geometrically connected k-variety.

In Chapter 3, we consider the following problem: given a continuous representation p :
m(X) = GL.(Zy) of the étale fundamental group of X with image II, study how the image I,
of the local representation p, : m (Spec(k)) — m(X) — GL,.(Z) induced by a k-rational point
x varies with « € X (k). The main result is that if X is a curve and every open subgroup of
p(m1(X%)) has finite abelianization, then the set X7 (k) of z € X (k) such that II, is not open in
IT is finite and there exists an integer N > 0, depending only on p, such that [IT : TI,] < N for all



x € X(k)— X;%(k). This result can be applied to representations arising from geometry, to ob-
tain uniform bounds for the /-primary torsion of groups theoretic invariants in one dimensional
families of smooth proper varieties. For example, torsion of abelian varieties and the Galois
invariant part of the geometric Brauer group. This extends to positive characteristic previous
results of Cadoret-Tamagawa (| |) and Cadoret-Charles (| |) in characteristic 0.

In Chapter 4, we move to the specialization of Néron-Severi groups. The ¢-adic Tate con-
jecture for divisors predicts that if Y — X is a smooth proper morphism, then the variation of
the Picard rank of the fibres is controlled by group theoretic invariants. We show that this is
indeed the case, without assuming the /-adic Tate conjecture. Combining this with an (-adic
variant of the Hilbert irreducibility theorem and the result of Chapter 3, we deduce that if
f Y — X is a smooth proper morphism, then there are “lots” of closed points x € X such
that the fibre of f at x has the same geometric Picard rank as the generic fibre and that, if
X is a curve, this is true for all but finitely many k-rational points. In characteristic zero,
these results have been proved by André (existence) and Cadoret-Tamagawa (finiteness) using
Hodge theoretic methods. The starting point is to try and exploit the variational form of the
crystalline variational Tate conjecture (| ). To do this, the main difficulty to overcome
- and this is the main contribution of this chapter- is to compare crystalline local systems (F-
isocrystals) with (-adic lisse sheaves. Since the F-isocrystal R2fcry57*0y/K(1) has a behaviour
which is quite different from R?f,Q,(1), this comparison cannot be done directly. The idea is
to show that R? ferys»Oy/k (1) is coming from a smaller and better behaved category of p-adic
local systems: the category of overconvergent F-isocrystals. As it has been understood that
overconvergent F-isocrystals share many properties with lisse sheaves, the idea is to compare
first R? furys Oy ic(1) with its overconvergent incarnation R? f,O7, /5 (1) via various p-adic com-

parison theorems and then Rgf*O;/K(l) with R?f,Q,(1) relating their monodromy groups via
the theory of weights.

p-adic monodromy groups

Chapters 5 and 6 are devoted to study the monodromy groups of convergent and overconvergent
F-isocrystals and their specialization theory.

Chapters 5 is a joint work with Marco D’Addezio. The arguments in Chapter 4 show that
the category of F-isocrystals contains interesting p-adic information and that, sometimes, its
pathological behaviour can be overcome relating it with the better behaved category of overcon-
vergent F-isocrystals. This is the central topic of Chapter 5. Let X be a smooth geometrically
connected variety defined over a finite field I, and let M be an overconvergent F-isocrystal on
X. To M we can associate a convergent F-isocrystal M“™ a overconvergent isocrystal AM9°
and a convergent isocrystal M«""9¢°. Each of these objects defines a monodromy group G(—)
and the main technical result of Chapter 5 is that G(M®@""9°°) and G(M?9°°) have maximal
tori of the same dimension. As an application we prove a special case of a conjecture of Kedlaya
on homomorphisms of F-isocrystals. Using this special case, we prove that if A is an abelian
variety without isotrivial geometric isogeny factors over a function field F over F,, then the
group A(Fperf)tom is finite, where FP'! is the perfect closure of F. This may be regarded as an
extension of the Lang—Néron theorem and answer positively to a question of Esnault.

In Chapter 6, we define a @p—linear category of overconvergent F-isocrystals and a @p—linear
category of convergent F-isocrystals for varieties defined over an infinite finitely generated field
k and the monodromy groups of their objects. Using the theory of companions, we relate
the specialization theory of p-adic monodromy groups of overconvergent F-isocrystals to the



specialization theory of /-adic monodromy groups. This allows us to transfer the results of
Chapter 3 to this new p-adic setting. In particular, if X is a curve, we prove that for all but
finitely many x € X (k), the neutral component of the monodromy group of a geometrically
semisimple overconvergent F-isocrystal M over X is the same as the neutral component of the
monodromy group of the fibre of M at z. Under stronger assumptions, similar some result is
given for convergent F-isocrystals.

Further results

The last two chapters are devoted to complements and variations on the topic of Chapters 3
and 4.

In Chapter 7, we study the behaviour of the Tate conjecture under finitely generated field
extension. The results in Chapter 4 can be used to show that the /l-adic Tate conjecture
for divisors on smooth proper varieties over finitely generated fields of characteristic p > 0
follows from the /f-adic Tate conjecture for divisors on smooth proper varieties over fields of
transcendence degree 1 over [F,,. In Chapter 7, we show that one can further reduce the (-adic
Tate conjecture for divisors to finite fields: the ¢-adic Tate conjecture for divisors on smooth
proper varieties over finitely generated fields of positive characteristic follows directly from the
(-adic Tate conjecture for divisors on smooth projective surfaces over finite fields.

Chapter 8 is devoted to the study of Brauer groups of forms. If X is a smooth proper variety
over a finitely generated field k of characteristic p > 0 satisfying the ¢-adic Tate conjecture for
divisors, it is well known that the Galois invariants Br(X7)[£>°]™®) part of the ¢-primary torsion
of the geometric Brauer group of X is finite. The results in Chapters 3 and 4, give uniform
boundedness results for |Br(Xz)[¢>°]™®| in one dimensional families of varieties. However,
recent works of Cadoret, Hui and Tamagawa show that, if X satisfies the ¢-adic Tate conjecture
for divisors for every ¢ # p, the Galois invariant Br(Xz)[p']™*) part of the prime-to-p torsion
of the geometric Brauer group of X is finite. The results in Chapter 3 are not sufficient to give
uniform boundedness results for |Br(Xz)[p/]™®)|. In Chapter 8, we give a few evidences that
such boundedness results could hold: we prove that, for every integer d > 1, there exists an
integer N > 1, depending only on X and d, such that for every finite extension of fields k C &’
with [k’ : k] < d and every (k/k')-form Y of X one has |(Br(Y x k)[p']™*)| < N. The theorem
is a consequence of general results for forms of compatible systems of 7 (k)-representations and
it extends to positive characteristic a recent result of Orr and Skorobogatov in characteristic
7€ero.

Appendix: results on gonality

For sake of completeness, in the appendix we generalize the main technical result of Chapter 3
from genus to gonality, following arguments of Cadoret and Tamagawa. This has some appli-
cation to the study of p-adic representations and of not necessarely GLP (-adic representations
and it could be helpful for further developments.
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Chapitre 1

Préliminaires (en Frangais)

1.1 Cadre absolu

Soit k£ un corps de caractéristique p > 0 et soit X une variété propre et lisse sur k.

L’objet principal de la géométrie arithmétique est I’étude des liens entre les propriétés arith-
métiques et géométriques de X. Ces liens étant extrémement riches et complexes, la stratégie
générale développée au vingtiéme siécle est d’associé a X des groupes abéliens ou des espaces
vectoriels munis de structures supplémentaires encodant en partie les propriétés de X. Par
exemple :

e Le groupe de Chow CH'(X) des cycles de codimension i de X & équivalence rationelle
pres ([Fulog]);

e Si k= C, la cohomologie de Betti (X", Q) muni d’une structure de Hodge (| ;

e Si k est un corps quelconque, pour tout £ # p la cohomologie étale ¢-adique H*(Xz, Q)
munie d’une action continue de (k) (| );

e Si k est parfait et p > 0, la cohomologie cristalline H;,, (X, K) munie d’une action du
Frobenius absolu de & (| D).

La théorie des motifs (| , Section 4]) et les conjectures de plénitude (| , Section
7]) (comme par exemple la conjecture de Hodge (| |) et la conjecture de Tate (]| )
donnent un cadre conjectural dans lequel comparer ces invariants. Dans cette section nous
faisons quelques rappels sur ce sujet.

1.1.1 Cycles algébriques et motifs
1.1.1.1 Cycles algébriques

Soit L un anneau intégre de caractéristique zéro et soit Z'(X) le groupe abélien libre engendré
par les sous-variétés intégres de codimension 7 de X. Soit ~ une relation d’équivalence adéquate
sur Z(X) (et | , Section 3.1]). On définit CH}, (X ). comme étant le quotient de Z*(X)®L
par cette relation d’équivalence.

Si ~= rat est la relation d’équivalence rationnelle, alors CH'(X) := CH%(X),q est appelé
le groupe de Chow des cycles de codimension i modulo équivalence rationnelle. Si L C L' est
une inclusion d’anneaux alors CHY (X ),.q; @ L' ~ CHY (X)par (| , 3.2.2]). En général, les
groupes CH'(X) sont compliqués et de rang infini. Quand i = 1, le groupe CH'(X) s’identifie
au groupe de Picard Pic(X) de X, qui classifie les fibrés en droites sur X a isomorphisme prés.

Si ~= alg est la relation d’équivalence algébrique, alors CHzlg(X) := CH%(X)ay, est appelé
le groupe de Chow des cycles de codimension i modulo équivalence algébrique. Si L C L' est
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une inclusion d’anneaux, alors CH% (X )., ®1 L' =~ CHY, (X )y (| , 3.7.2.1]). Etant donné
que la relation d’équivalence rationnelle est plus fine que la relation d’équivalence algébrique, il
y a un morphisme quotient naturel ¢ : CH% (X),,; — CH% (X)), que quand i = 1, idenfie a le
quotient naturelle Pic(X) ® L — NS(X) ® L, ou NS(X) := Picx(k)/Pic% (k) est le quotient
des k-points du schéma de Picard Picx de X modulo les k-points de sa composante neutre
Pic%.

Si ~= num est la relation d’é¢quivalence numérique, alors CH’, (X) := CH%(X)um est
appelé le groupe de Chow des cycles de codimension ¢ modulo équivalence numérique. En général
CH’ (X)pum est un L-module libre de type fini et si L C L’ est une inclusion d’anneaux, alors
CH® (X)) pum @1 L' =~ CHY /(X ) pum (] , 3.7.2.1]). Etant donné que la relation d’équivalence
algebrique est plus fine que la relation d’équivalence numérique, il y a un morphisme quotient
naturel ¢ : CHY (X)atg = CH%(X)pum, que quand L est un corps, identifie (| |, | :
Section 3.2.7]) NS(X) ® L avec CH% (X)um.

Soit maintenant H* une théorie cohomologique de Weil & coefficients dans un corps de
caractéristique nulle F' O L (cf. | , Appendices| et | , Section 3.3]). Soit ¢%; : CH(X)®
L — H*(X)(i) I'application classe de cycle associée & H*. On définit le groupe des cycles de
codimension i modulo H-équivalence homologique, CH} (X ), comme étant l'image de cx :
CHY(X)®L — H*(X)(i). Si L = F, puisque H?(X)(i) est de dimension finie sur ', CH}(X)py
est un F-espace vectoriel de dimension finie. Il n’est pas vrai en général que la fléche naturelle
CH! (X)g ® F — CH%(X)y est injective et on ne sait pas si CH% (X ) est finiment engendré
sur L.

La relation d’équivalence algebrique étant plus fine que la relation d’équivalence homologique
qui est elle méme plus fine que la relation d’équivalence numérique, 'application quotient
q : CHL(X)ay — CHY(X)pum se factorise en la composition de q; : CHY (X)q, — CHY (X )y
et g : CHY (X)) — CHL(X)pum- Via qo, CHR(X)y sidentifie (| , Proposition 3.4.6.1|)
a NS(X)® F. En général, une des conjectures standard de Grothendieck (] , Conjecture
D]), prédit que CH% (X )y = CHL(X) pum.-

1.1.1.2 Motifs

On suppose maintenant que L = F. Pour ~& {num, H}, on note Mot” (k) la catégorie F-
linéaire pseudoabélienne tensorielle rigide des motifs purs a ~-équivalence preés(| , Sec-
tion 4.1.3]), SPV (k) la catégorie des variétés propres et lisses et H* : SPV (k) — Mot’ (k) le
foncteur canonique. Il existe un foncteur de réalisation Ry : Mot} (k) — GrVecty dans la ca-

tégorie des F-espaces vectoriels gradués. Par ailleurs Jannsen a prouvé (| |) que Mot? (k)
est une catégorie abélienne semi-simple.

En supposant les conjectures standard de Grothendieck (] |), on devrait pouvoir mo-
difier la contrainte de commutativité dans Motk (k) (cf. | , Section 5.1.3|) afin d’obte-
nir un foncteur fibre Ry : Motk (k) — Vecty. En combinant | |, les conjectures stan-
dard de Grothendieck et la conjecture CH%(X)y = CH%(X)num, la catégorie Mot?; (k) de-
vrait étre une catégorie Tannakienne F-linéaire semisimple (| |) munie d’un foncteur fibre

Ry : Motk (k) — Vectp. Ainsi, pour tout M in Mot} (k) on devrait pouvoir considérer
la sous-catégorie Tannakienne (M) C Motk (k) engendrée par M et son groupe Tannakien

réductif G(M) (| , Section 6]).

On suppose maintenant que I'image essentielle de Ry : Mot (k) — Vecty se factorise a
travers une catégorie F-linéaire Tannakienne enrichie (| , Section 7.1.1]) C (par exemple
la catégorie de structures de Hodge polarisées ou la catégorie des représentations continus Q-
linéaires de 7 (k)). Alors les conjectures de plénitudes (| I, [ I, [ , Section 7.1])

prédisent que I'image essentielle de Ry : Motk (k) — C est une sous-catégorie Tannakienne
semi-simple de C. Les groupes réductifs étant déterminés par leurs invariants tensoriels (| ,
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Proposition 3.1]), cela impliquerait que G(M) s’identifie au groupe de Tannaka de la sous-
catégorie Tannakienne (Ry(M)) C C engendrée par Ry (M).

Soit H' une autre théorie de cohomologie a coefficients dans I C F” telle que H' @p F' ~ H
en tant que cohomologies de Weil. Alors il existe un foncteur naturel — ® F’' : Mot} (k) —
Mot (k). Les conjectures de plénitudes et de semi-simplicité pour H et H’ en addition a
I’équivalence des relations d’équivalences homologiques et numériques impliquent que, pour
tout M € Mot} (k), on a

G(Ry MR F)~G(H)YM®F))~GH M) F)~GRg(M))® F.

1.1.2 Cohomologie /-adique

Dans cette section ¢ est un nombre premier différent de p.

1.1.2.1 Cohomologie étale et la conjecture de Tate

Pour tous les entiers ¢ > 0,5 € Z, Grothendieck a défini (| |) un groupe de cohomologie
étale H'(X7,Qu(5)). C'est un Qg-espace vectoriel de dimension finie (| , XIV, Corollaire
1.2]) muni d’une action continue de 7 (k) et I'image CH} de I'application classe de cycle ¢, :
CH'(X) — H%(X7, Qu(i)) vit dans le sous-espace

U B (X Qi)™

[k":k]<+o0

Dans ce cadre, la conjecture de plénitude est la conjecture de Tate (| |) qui prédit la
relation suivante entre cycles algébriques et cohomologie.

Conjecture 1.1.2.1.1 (T(X,4,/¢)). Si k est finiment engendré, alors 1'application classe de
cycle

L CH (X)) @Q — | HY (X Qi)™ ®

[k':k]<+oo

est surjective

La conjecture 1.1.2.1.1 est largement ouverte en général mais lorsque 7 = 1 elle est connue

pour les variétés abéliennes (| |, | |, | |, | ]), les surfaces K3 (| |, [ |,
| I, | |, | |, | |) et quelques autres classe de variétés; on pourra par
exemple consulter | , Section 5.13] et | |-

1.1.2.2 Groupes de monodromie

L’action de (k) sur H'(X3, Q,(j)) induit un morphisme continu

o7 s (k) = GL(H'(Xg, Qu()))

et on pose 11,7 := pi’(m;(k)). Comme tout sous-groupe fermé de GL(H*(Xz, Q(5))), 17 est
un groupe de Lie (-adique compact (| , Lie Groups, Chapter V, Section 9|) et donc un
presque pro-f-groupe topologiquement ﬁmment engendré (| ). Soit G}’ 'adhérence
de Zariski de TT;7 dans GL(H(X%, Q¢(j))). Du point de vue Tannakien, si on écrit (p,”) pour
la sous- Categorle Tannakienne de Repg,(m1(k)) engendrée par pé’j , le groupe algébrique GZ’j
est caractérisé (| , Section 7.1.3]) par le fait que Repg,(GY’) ~ (pi’). Si pi’ est semi-
simple alors G% peut aussi étre décrit comme étant le sous-groupe de GL(H* (X7, Q¢(3))) fixant
(H (X7, Qu(4))®™ @ (H (X, Qe(5))Y)®)™®) pour tous les entiers n, m > 0.
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1.1.3 Caractéristique nulle : cohomologie de Betti et théorie de Hodge

On suppose maintenant que p = 0 et, pour simplifier, qu’il existe une inclusion k£ C C.

1.1.3.1 Cohomologie de Betti et conjecture de Hodge

On peut associer a X¢ (| , Section 2|, | , Exposé XII|) un espace analytique complexe
X" et donc considérer la cohomologie de Betti H5(X, Q) := H/(X&", Q) de X. La décompo-
sition de Hodge (] |, [ , Chapter 0]) donne un isomorphisme canonique

HI(XE Q)@ C~ P H(XE", Qan).

ptq=i

On en déduit que H/ (X, Q) est une Q-structure de Hodge polarisée (| , Section 1])
que l'on peut tordre par Q(j), pour tout j € Z, afin d’obtenir H*(X&",Q(j)). En compo-
sant I'application classe de cycle CH (X&) ® Q — H*(X&, Q(i)) € H'(X&,Q(i)) ® C, avec
Iisomorphisme CH'(X¢) ~ CH'(X&") induit par le foncteur d’analytification, on obtient une
application classe de cycle ¢ : CH'(X¢) ® Q — H¥(X&, Qi) € HR(X,Q(i)) ® C dont
I'image est contenue dans H*(X¢", Qyen) N HE (X, Q(i)) = HE(X,Q(i))"°. Dans ce cadre, la
conjecture de plénitude est la conjecture de Hodge (| B

Conjecture 1.1.3.1.1 (H(X,1i)). L’application classe de cycle
cy CHY (X¢) @ Q — HE (X, Q(i))°
est surjective.

Contrairement & T(X, 1, ¢) qui est largement ouverte en général, on déduit de la suite exacte
exponentielle (| , Pag. 163]) et de la décomposition de Hodge le théoréme de Lefschetz (1,1).

Fait 1.1.3.1.2 (| I , Pag. 163-164]). La conjecture H(X, 1) est vraie.

Remarque 1.1.3.1.3. Bien que la cohomologie /-adique et la cohomologie de Betti soient
conjecturalement des incarnations du méme motif on voit déja qu’elles ont des propriétés bien
spécifiques : la cohomologie (-adique nous permet d’utiliser la théorie des groupes de Lie (-
adiques et 'action de m (k) alors que la cohomologie de Betti nous permet d’utiliser des tech-
niques de théorie de Hodge analytique complexe. Des résultats de comparaisons entre elles
devraient étre utile pour combiner ces différentes informations.

1.1.3.2 Groupes de monodromie

La structure de Hodge sur H'(X&",Q(j)) est décrite (| , Section 3|) par un morphisme
de groupes algébriques

hy : Resc/zGm — GL(H'(XE", Q(5)) ® R),

et le groupe de Mumford Tate GjéjA est (| , Section 4]) le plus petit sous-groupe connexe
de GL(H(X&,Q(j))) tel que G ® R contient Im(hY ). Comme dans le cadre (-adique, le
groupe ng est caractérisé comme étant I'unique groupe algébrique (& isomorphisme prés) tel
que Repg(G%) est équivalente a la sous-catégorie Tannakienne (H'(X&", Q)) engendrée par
H'(X&" Q) dans la catégorie des structures de Hodge polarisées. La catégorie des Q-structures
de Hodge polarisées étant semi-simple (| , Proposition 4.9]), Gj_f;j est réductif. Il peut donc
étre décrit comme étant le sous-groupe de GL(H'(X&", Q(7))) fixant toutes les (0,0)-classes dans
HY(X&, Q(5))%" @ (H(X&, Q(4))")®™ pour tous les entiers m,n > 0.
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1.1.3.3 Comparaison entre le site singulier et le site étale

En conséquence de I'invariance de la cohomologie étale par extensions de corps algébriquement
clos de caractéristique nulle (| , Corollaire 5.3.3]) et du théoréme de comparaison d’Artin
(| , XI, Theorem 4.4]), il existe un isomorphisme canonique

H' (X3, Q) ~ H' (X, Q) ~ H'(XE", Q) ® Qy
qui s’inscrit dans le diagramme commutatif suivant

(CH(X¢) ® Q) @ Q —— CH'(X3) @ Q,

lcg Qe lcz

HP (X, Q(i) @ Qp —— H (X5, Qu(i)).

Le groupe de Mumford-Tate G%j C GL(H'(X&,Q(j))) est envoyé, par le théoréme de com-
paraison d’Artin, vers un Q,-groupe algébrique G ® Q, C GL(H* (X%, Q,(j))). En associant
la philosophie des motifs (Section 1.1.1.2) aux conjectures 1.1.2.1.1 and 1.1.3.1.1 on obtient la

conjecture de Mumford-Tate :

Conjecture 1.1.3.3.1. Si k est finiment engendré, G% ® Q, = (G3?)° modulo le théoréme de
comparaison d’Artin.

Bien que les conjectures 1.1.2.1.1 et 1.1.3.1.1 soient complétement ouvertes en général la
conjecture 1.1.3.3.1 est connue dans certains cas (on pourra par exemple consulter | ). Si X
est une variété abélienne Deligne a montré (| |) quiil y a une inclusion (G}”)° € G% @ Q.

La conjecture 1.1.3.3.1 prédit aussi le résultat suivant.

Conjecture 1.1.3.3.2. Si k est finiment engendré, il existe un groupe algébrique connexe G
sur Q et une représentation fidele G C GL(V%) tels que pour tout £ # p il y a un isomorphisme
Vil ® Qp ~ H' (X3, Q(4)) qui identifie G ® Q, € GL(V* ® Q) ~ GL(H" (X3, Qu(j))) avec
(G

1.1.4 Caractéristique positive : cohomologie cristalline

On suppose maintenant p > 0 et que k est parfait. Soit W := W (k) Panneau des vecteurs de
Witt de k et K son corps des fractions K. Dans cette section on rappelle les idées principales
qui rentrent en jeu dans la construction d’une théorie cohomologique de Weil p-adique. Un
exemple classique de Serre (voir par exemple | , Section 1.7]) montre qu’il n’existe pas de
théories cohomologiques a coefficients dans Q,, il faut donc définir une théorie cohomologique
a coefficients dans K.

1.1.4.1 Site infinitésimal

Soient S un schéma et f : Z — S un morphisme, on note H’ (Z/S) la cohomologie de de
Rham relative de Z sur S (| |, | , Section 4.5]). Bien que H.(Z/S) ait une description
relativement concréte en terme de formes différentielles, Grothendieck a montré dans | |
que, au moins en caractéristique nulle, elle peut aussi étre définie via la théorie des topos.
Pour ce faire il a défini (| , Section 4]) un site infinitésimal Inf(Z/S) muni d’un topos de
faisceaux en groupes abéliens (Z/.5)ins et un faisceau structural Oz/s. On note Hj}, ;(Z/S, Ozs)
le ™ groupe de cohomologie de Oy/s. Grothendieck a prouvé le résultat suivant.

Fait 1.1.4.1.1 (] , Theorem 4.1 and Section 5.3]).
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1. Si f:Z — S est lisse et S est de caractéristique nulle, il y a un isomorphisme naturel

2. Si Z' — Z est un épaississement nilpotent de S-schémas, il y a un isomorphisme naturel
int(Z']8,021s) ~ Hj, 1 (Z]S, Ozys).

Le fait 1.1.4.1.1 peut étre utilisé pour montrer que la cohomologie de de Rham de la défor-
mation d’une variété propre et lisse ne dépend que de la variété de départ.

Remarque 1.1.4.1.2 (| , Pag. 1.11]). Notons S := Spec(C[[T]]) et S,, := Spec(C|[[T]]/(T™)).
Soit Z — S un morphisme propre et lisse, on pose Z,, := Z Xg S,. Comme f est propre, on
a Hy(Z/S) ~ lim Hy(Z,/S,). Puisque Z, — S, est lisse et Z; — Z,, est un épaississement
infinitésimal, par le fait 1.1.4.1.1 on a

Hdr<Z/S) = 1.&n]—-rdr(zn/sn) = @ z‘inf(Zn/Sm OZn/Sn) = 1.&n]_Iz‘inf(Zl/Sm OZl/Sn)’
Cela montre que la cohomologie de de Rham relative de Z — S ne dépend que de Z;.

1.1.4.2 Site cristallin

Au vu de la remarque 1.1.4.1.2, pour construire une théorie cohomologique & coefficients dans
K pour les variétés sur k£ on pourrait essayer de relever X en un schéma propre et lisse X
sur W et ensuite prendre la cohomologie de de Rham de Xx := X xy K. Toutefois toutes
les variétés ne sont pas relevable en caractéristique nulle et méme si c’était le cas il ne serait
pas évident de montrer que la cohomologie obtenue serait (canoniquement) indépendante du
choix de relévement. Les arguments de la remarque 1.1.4.1.2 suggérent que, pour montrer cette
indépendance on pourrait utiliser une théorie cohomologique pour laquelle ’analogue du fait
1.1.4.1.1 est vrai. Toutefois dans le fait 1.1.4.1.1(1), 'hypothése de caractéristique nulle est
nécessaire.

Exemple 1.1.4.2.1. Si S = k et Z = A}, alors on veut montrer que d : k[z] — k[z|dz est
sutjectif. Si f =Y awa'dr and p = 0, alors f = d(¥(ai/i + D).

Au vu de 'exemple 1.1.4.2.1, 'idée est de remplacer le site infinitésimal par un site plus fin,
pour lesquels les recouvrement possédent une opération analogue a 1/i + 1 : le site cristallin.
Soit (S, 1,7) un schéma muni d’une structure de puissances divisées (| , Pag. 3.18|) et soit
f:Z — S un S-schéma sur lequel 7 s’étend (| , Definition 3.14]). Dans | , Section 5|,
Berthelot définit le site cristallin Crys(Z/S), le topos de faisceaux en groupes abéliens (Z/.5)crys
et le faisceau structural Oy/s. Il montre ensuite :

Fait 1.1.4.2.2 (| , Corollary 7.4 and Theorem 5.17]). Si p est nilpotent sur S les assertions
suivantes sont vraies.

e Si Z — S est lisse, alors il y a un isomorphisme naturel

thir(Z/S> & Hérys(Z/S7 02/5)7

e Si Z' — Z est un épaississement nilpotent, alors il y un isomorphisme naturel

HéryS(Z//S7 OZ’/S) = Hérys(Z/S7 OZ/S)'
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1.1.4.3 Cohomologie cristalline

Soit W, := W, (k) 'anneau des vecteurs de Witt n-tronqués de k. La structure de puissances
divisées naturelle v sur W,,, definie par v,,(p) = p™/(m!) si m < n et ,,(p) = 0 sinon, s’étend
automatiquement (| , Proposition 3.15]) a tous les W,-schémas T — W,,. Cela permet
permet de définir la cohomologie cristalline d’une k-variété propre et lisse X (| , Summary
7.26]) de la fagon suivante

Hérys(X/K) = (1&1 HZTys(X/WTLa OX/Wn)) ® Q

Alors, si X — Spec(W (k)) est propre et lisse et X,, := X xy W, par le fait 1.1.4.2.2 on a :

Le foncteur Hﬁrys(—/K) donne une théorie cohomologique de Weil a coefficients dans K et le

Frobenius absolu ¢ de & induit une action semi-linéaire sur H;,, (X/K).

1.1.4.4 Conjecture de Tate cristalline
I’image de I'application classe de cycle

¢, CH'(X) — HZ (X/K)

crys

est contenue dans H% (X/K)¥=F. Si k = F, avec ¢ = p*, alors laction de F := ¢* sur

crys

HZ,(X/K) est K-linéaire et, dans ce cadre, la conjecture de plénitude est la suivante.

Conjecture 1.1.4.4.1 (T(X,4,p)). Si k =F,, application classe de cycle

¢ CH'(X)® K — HZ (X/K)"™*

crys

est surjective

1.1.4.5 Comparaison

Alors qu’en caractéristique nulle on peut comparer directement les cohomologies /-adiques et de
Betti via I'isomorphisme de comparaison d’Artin, il n’y pas de tel isomorphisme de comparaison,
en caractéristique positive, entre les cohomologies (-adiques et cristallines. Lorsque k = [F; est
un corps fini avec ¢ = p® éléments, on peut essayer de palier le manque d’isomorphisme de
comparaison en utilisant la théorie des poids de Frobenius. Pour tout ¢ # p le Frobenius
arithmétique F € m;(F,) agit linéairement sur Uespace vectoriel H/(X) := H'(X5, Q) et si
¢ = p la s*™ puissance du Frobenius absolu F' agit linéairement sur H}(X) := HZ,,.(X). Soit
L I'ensemble de tous les nombres premiers.

Fait 1.1.4.5.1 (| N |). Pour 7 € L, le polynome caractéristique ® de F' agissant sur
Hi(X) est dans Q[T] et il est indépendant de ? € L. De plus pour toutes les racines o de ® et
pour tous les plongements ¢ : Q(a) < C, on a |1(a)| = ¢'/%.

Remarque 1.1.4.5.2.

e Par le fait 1.1.4.5.1, Padhérence de Zariski de I'image de m(F,) agissant sur la semi
simplification de Hi(X) est définie sur Q et est indépendante de ¢. En particulier une
version de la conjecture 1.1.3.3.2 est vraie dans ce contexte a semi-simplification prés.

e Si k est un corps finiment engendré de caractéristique positive, pour définir une notion
raisonnable d’indépendance et obtenir un analogue du fait 1.1.4.5.1, on doit se ramener
au cas des corps finis au prix de devoir travailler dans un cadre relatif. On discutera de
ce point plus en détails plus tard, voir le chapitre 6.
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1.2 Cadre relatif

L’objet principal de cette thése est I’étude des notions introduites dans la section 1.1 dans un
cadre relatif et non pas absolu. C’est & dire qu’au lieu de considérer une unique variété X, on
étudie des familles de variétés.

Soit k un corps de caractéristique p > 0 et soit X une variété lisse et géométriquement
connexe sur k avec un point générique 7. Soit f : Y — X un morphisme propre et lisse et pour
tout x € X, T un point géométrique au dessus de z. On note Y, et Yz la fibrede f: Y — X en
x et T respectivement.

On souhaite étudier comment les invariants de Y, et Yz varient avec x € X. Un premier
résultat dans cette direction est le théoréme de changement de base propre et lisse : la dimension
des différents groupes de cohomologie H*(Y,(C),Q), H'(Yz, Q) et H,,,(Y;) sont indépendants
de x € X. Ce ne sont donc pas des invariants trés intéressants de la famille si on les considére
seulement comme des espaces vectoriels. Toutefois il est trés intéressant d’étudier les structures
supplémentaires que possédent ces espaces vectoriels : 1a filtration de Hodge, I'action de Galois et
celle du Frobenius. Les familles { H5(Y,, Q) }oex, {H(Ye, Qr) }zex donnent lieu a des systémes
locaux (une variation de structures de Hodge et une représentation de 71(X)) mais, dans
le cadre p-adique, {H},,.(Y2)}zex donne lieu a deux systémes locaux trés differents : un F-
isocristal convergent et un F-isocristal surconvergent. Dans cette section on rappelle ce que
sont ces objets et différents outils qui permettent de les étudier.

1.2.1 Motifs et cycles algébriques
1.2.1.1 Cycles algébriques

Par | , X, App 7| (voir aussi | , Sections 3.2 and 9.1]), pour tout x € X il existe un
morphisme de spécialisation

Spi],x CHalg( ) — CHalg( )
qui s’inscrit dans un diagramme commutatif

CHalg( )

I ¥

7
sPh &

CHalg( ) CHalg( )

ol 4y : CHY,(Yy) — CHL,(Y5) et i : CHL, (Yy) — CHalg( Yz) sont induits par les inclusions
iy Yﬁ — Y7 et 1, 1 Yz — Yz. Pour tout nombre premier ¢ # p la construction est compatible
a 1’équivalence homologique E—adique. On en déduit qu’aprés avoir tensorisé avec QQ, on obtient
une injection

Sp'lr;@ CHZ( ) ® Q — CHE( ) ® Q7
dont on pourrait espérer qu’elle soit un isomorphisme au moins pour certains x € X.

Exemple 1.2.1.1.1 (| , Proof of Proposition 1.13]). Soit ¥ — X une famille non isotri-
viale de courbes elliptiques et soit f : ¥ xx Y — X. Alors sp% est un isomorphisme si et
seulement si Yz n’a pas de multiplication complexe.

1.2.1.2 Variations de groupes de Galois motiviques

On fixe une théorie cohomologique de Weil H* a coefficients dans un corps de caractéristique
nulle F' et on suppose vraies les conjectures standards de la section 1.1.1.2. En particulier, pour
tout © € X, on a un groupe algébrique réductif motivique G(H*(Yz)) sur F.
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Alors, CH3(YZ) g est obtenu (| , Section 6.3|) comme étant 'ensemble des points fixes
de l'action de G(H*(Yz)) sur la représentation canonique H*(Y,) et, réciprogiement, puisque
G(H*(Yz)) est réductif, il existe des entiers m,n > 0 and vy, ...v, € H*(Y,)®*" @ (H*(Y,)")®" C
H*(Y+™) tels G(H*(Yz)) est le sous-groupe de GL(H*(Y,**t™)) fixant vy, ..., v,. Autrement dit
décrire les variations de cycles algébriques sur toutes les puissances Y. revient a décrire les
variations de G(H*(Yz)).

Si le foncteur de réalisation Ry : Motk (k) — Vectr se factorise & travers une catégorie
Tannakienne F-linéaire enrichie C, alors la conjecture de Grothendieck-Serre-Tate prédit que
décrire les variations de G(H*(Yz)) revient a décrire les variations de G(Ry(H*(Yz))). Finale-
ment, la conjecture H = num suggére que la variation des différents groupes de Tannaka ne
devrait pas dépendre de la théorie de cohomologie considérée et donc que 1'on devrait pouvoir
transférer de 'information entre les groupes de monodromie des différentes réalisations.

1.2.2 Faisceaux lisses et représentations

Dans cette section on suppose que ¢ est un nombre premier différent de p.

1.2.2.1 Faisceaux lisses motiviques

Pour tout z € X on note (X, ) le groupe fondamental étale (| , V, 7]) de X pointé en
7. Par le théoréme de changement de base propre et lisse R f,Q,(j) est un faisceau lisse sur X
(| , XVI, Corollaire 2.2|, | , XII, Theorem 2.2|) et induit donc, par équivalence de
catégorie LS(X, Q) ~ Repg,(m1(X,7)) entre la categorie des faisceaux lisses et la categorie
des representations de (X, 7), une action de 71 (X,7) sur R f.Qu(j)7 ~ H' (Y7, Qu(j)). Pour
tout x € X, le choix d’un chemin étale entre T et 7 induit un isomorphisme m; (X, 7) ~ m (X, 7)
et, respectivement a cet isomorphisme, des isomorphismes équivariants

H' (Y, Qu(5))) =~ R f.Qu(j)7 ~ R f.Qi(j)z ~ H' (Y2, Qu(3)))-

L’action de 7 (z, T) induite par restriction via 7 (2, %) — m (X, T) ~ m (X, 7) sur H* (Y5, Qu(j)) ~
H'(Yz,Qu(5))) s’identifie avec Paction naturelle de 7 (z,T) sur H'(Yz, Q4(j))). Cette construc-
tion rends le diagramme suivant commutatif

CH(Y;) © Q 2% CHi(¥;) © @
(Y Qu0) = H¥(Qu0)

L’application spf;ﬁ est m(z, T)-équivariante respectivement a I’action naturelle de m(x,Z) sur
CHJ(Y7) et celle de 7, (x, T) sur CH}(Y;) par restriction via le morphisme (2, %) — m1(X,7) =~
m(X,7) (| , X, App 7]). En particulier sp% se restreint en une injection

spya + CH(Y;) ® Q = (CH(Yy) ® @m0 — (CH(Yz) © @™ **) = CHy(Y,) ® Q

1.2.2.2 Lieu strictement exceptionnel

Plus généralement, pour tout p dans Repy,(71(X)) et tout x € X le choix d’un chemin étale
entre T et 77 donne lieu a une représentation

pr (2, T) = m(X,T) ~m (X, 7)) = GL,(Zy),

et donc a une inclusion
1, :=Im(p,) C Im(p) =: IL.

Suivant | |, on donne la définition suivante.
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Définition 1.2.2.2.1. On dit que x € | X| est strictement Galois générique pour p, si I, = II.
Si x n’est pas strictement Galois générique, on dit que x est strictement Galois exceptionnel

pour p.

On note X' (resp. X39°") I'ensemble des points strictement Galois exceptionnel (resp.
strictement Galois générique) pour p. On pose

X;tew(g d) — X;teac N X(S d)’ ngen(g d) = X;gen N X(S d)

Au vu de la section 1.2.2.1, I'étude de X;’tel’ est un probléme important puisqu’il pourrait
controler des invariants fins de la famille Y,, x € X. Mentionnons que si k est suffisamment
riche arithmétiquement X 79" est non vide. Ce fait a été observé indépendamment par Serre
(| , Section 10.6]) et Terasoma (| |). Plus précisément on a :

Fait 1.2.2.2.2. Si k est Hilbertien, il existe d > 1 tel que X;9"(< d) est infini.

Cela découle du lemme 1.2.2.3.1 ci-dessous et du fait que le sous-groupe de Frattini d’un
groupe de Lie (-adique est ouvert (| , 148]). D’apreés le théoréme d’irréductibilité de Hilbert
(| , Chapter 13]) le fait 1.2.2.2.2 est en particulier vrai si k est infini et finiment engendré.

1.2.2.3 Dictionnaire anabélien

Pour tout sous-groupe ouvert U C II, on note Xy — X le recouvrement étale induit par le sous-
groupe ouvert p~(U) C m(X). D’aprés le formalisme des catégories Galoisiennes (| , 'V,
3-5]), on obtient le dictionnaire anabélien suivant entre points rationnels de X et sous-groupes
de IT :

Lemme 1.2.2.3.1 (| , Section 3.2 (2)]). Pour tout x € | X], les assertions suivantes sont
équivalentes

e Il y a une inclusion II, C U.

e 1z : Spec(k(x)) — X se reléve en un point k(z) rationnel de Xy, .

Xu

Spec(kz(xj) — X

Le lemme 1.2.2.3.1 traduit le probléme de théorie des groupes de la variation de II, en
fonction de x € | X| en le probléme Diophantien de la description de 'image de points rationnels
de Xy dans X.
1.2.2.4 Argument de Frattini

On note ®(II) C II le sous-groupe de Frattini de II, c’est a dire I'intersection de tous les
sous-groupes ouverts maximaux de II. On note C ’ensemble des sous-groupes U C II tels que
O(II) C U. Par | , Pag. 148] et la définition du sous-groupe de Frattini, on déduit le résultat
suivant.

Lemme 1.2.2.4.1.
1. C est fini.

2. Si C' C1II est un groupe fermé propre, alors il existe un U € C tel que C' C U.

22



On en déduit que

r € X' & ilexiste U € C tel que I, €U (lemme 1.2.2.4.1(2) )
& ilexiste U € C tel qu z € Im(Xy(k(z)) — X (k(x))) (remarque 1.2.2.3.1 ),

et donc que

xie =) | ImXu®) = X(E))). (1.2.2.4.2)
UeC [K':k]<+oo

1.2.2.5 Propriété Hilbertienne
On rappelle (| , Definition 8.1|) la définition d’un ensemble clairsemé.

Définition 1.2.2.5.1. Soit B une variété irréductible sur k et S C | B| un sous-ensemble. On
dit que S est clairsemé si il existe un morphisme dominant et génériquement fini 7 : 7" — B de
variétés irréductibles sur k tel que pour tout s € S, la fibre T de m : T" — B en s, est soit vide
soit contient plus d’un point fermé.

Puisque Xy — X est un recouvrement étale fini de degré > 1, I’ensemble

U m(Xu(®) = X(*)) € |X]

kCk!

est clairsemé. L'union d’un nombre fini de sous-ensembles clairsemés étant clairsemé (| ,
Proposition 8.5 (b)|) et puisque C est fini (lemme 1.2.2.4.1(1)), on déduit de (1.2.2.4.2) que
X ;t“ est clairsemé. C’est suffisant, grace au lemme suivant, pour prouver le fait 1.2.2.2.2.

Lemme 1.2.2.5.2. Si k est Hilbertien et si S C |X| est un sous-ensemble clairsemé, il existe
d > 1 tel que | X| — S contient une infinité de points de degré < d.

Démonstration. Puisque pour tout sous-ensemble ouvert dense U C X, 'ensemble U N S est
clairsemé dans U (| , Proposition 8.5.(a)]), on peut remplacer X par un sous-ensemble
ouvert dense et donc supposer que X est affine de dimension n > 1. Par le théoréme de nor-
malisation de Noether, il existe un morphisme fini surjectif 7 : X — A} de degré d > 1.
[’image d’un sous-ensemble clairsemé par un morphisme fini surjectif étant clairsemée (| ,
Proposition 8.5 (c)]), I'ensemble m(S) C A} est clairsemé. On en déduit, par (| , Pro-
position 8.5 (d)]), que AZ(k) N 7(S) est mince (voir | , Section 9.1] pour la définition).
Puisque k est Hilbertien, ’ensemble A7 (k) — (AZ(k) N 7(S)) est infini. On en conclut que
7 YA (k) — (AZ(k) N w(S))) € X — S contient une infinité de points de degré < d. O

1.2.3 Caractéristique nulle : Variations de structures de Hodge mo-
tiviques

Soit £ C C un sous-corps finiment engendré de C.

1.2.3.1 Systémes locaux analytiques et image géométrique

Soit x € | X¢|. D’aprés le théoréme de changement de base propre et lisse on obtient, a partir
de fo: Y™ — X" un Q-systéme local R'f*Q sur X&". On note Iz image de 'action de
T (Xe, x) sur Hy(Y,, Q) qui en résulte. Par I'invariance du site étale sous les extensions de
corps algébriquement clos en caractéristique nulle (| , XIII]), il existe un isomorphisme
naturel 7 (X3, z) ~ m(Xc,z). Par le théoréme d’existence de Riemann | , XII, Theo-
reme 5.1], il existe un morphisme naturel d’algébrisation 7|’ (X¢, x) — m (X¢, x) qui identifie

m1(Xc, x) avec la complétion profinie de % (X¢, z) (| , XII, Corollaire 5.2]).
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L’action de 7iP(X¢, x) sur Hy(Y,, Q) ®Qy, se factorise a travers Papplication de complétion
profinie i (X¢, 2) — 71 (Xe, ) ~ 7 (X5, x). L’action de 7 (X, z) sur Hy(Y,, Q) ® Q, s’iden-
tifie, via 'isomorphisme de comparaison H5(Y,,Q) ® Q, ~ H'(Y,,Q), a Paction de m (X, z)
sur HZ(Yx, Q) obtenue par restriction via le morphisme (X7, r) — 71 (X, z).

On note G739 Padhérence de Zariski de I'image IT,°° de I'action de 7 (X, x) sur H'(Y,, Q).
Puisque }° (X(c, x) — m(Xc,z) a une image dense la discussion précédente implique le ré-

sultat d’indépendance suivant pour G}?°, qui est un analogue géométrique de la conjecture
1.1.3.3.2.
Proposition 1.2.3.1.1. Il existe un Q-groupe algébrique G%9°°, une représentation fidéle

Gh9eo c GL(V?) et un isomorphisme Vi ® Q ~ H (Yz, Q) pour tout ¢, tel que la compo-
sition G"9°° @ Qp C GL(V") ® Q; ~ GL(H"(Yz, Q¢)) identifie G"9°° ® Q, avec G7.
1.2.3.2 La conjecture de Hodge variationnelle
La suite spectrale de Leray associée a f*" : Y& — X&" induit un morphisme
Hp(Ye, Q(1)) — H(XE", R £1"Q(1))
qui s’inscrit dans le diagramme commutatif suivant

H(Ye, Q1) +———— Pic(Ye) ® Q
HY(X& R forQ(1)) ® Q —— H3 (Y., Q(1)) o Pic(Y,) ® Q.

La conjecture de Hodge pour les diviseurs (Fact 1.1.3.1.2) et la théorie développée dans | |
permettent de prouver une version variationnelle de la conjecture de Hodge pour les diviseurs
(voir aussi [ , Section 3.1]).

Fait 1.2.3.2.1. Pour tout = € |X¢| et tout z, € Pic(Y,) ® Q les assertions suivantes sont
équivalentes

1. Il existe un z € Pic(Ye) ® Q tel que i%(cy.(2)) = ¢y, (22) ;
2. Tl existe un 2z € H3(Xc,Q(1)) tel que i%(2) = ¢y, (2);
3. ¢y, (2) est dans I'image de H°(X&", R?f*"Q(1)) — Hz(Y,™™, Q(1)).

Démonstration. On a clairement (1) = (2) = (3). On montre (3) = (1). Soit ¢ : Y C Y™
une compactification lisse. Le diagramme commutatif cartésien de C-variétés suivant

g N i yemp
}/‘;’ 7 Y(c 7 YC

Lo

Spec(C) —— X,

induit un diagramme commutatif

Cy-cmp

HE(YE™ Q(1)) +——— Pic(YE™) @ Q

|+ Js

H3(Ye, Q1)) +——5—— Pic(Ye) ©Q

HO(Xgm, R foQ(1) © Q «—— H3(Ya, Q(1)) ¢ Pic(Y;) ® Q.
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Par le théoréme global des cycles invariants (| , 4.1.1]), Papplication
Hp(YE™, Q1) = Hp(Ye, Q1)) — H'(Xg", B*f"Q(1))

est surjective. On en déduit, par (3), que cy,(z,) € H3(Y:, Q(1)) est dans I'image de i o
i HE(YE™, Q1)) — HE(Y,,Q(1)). Puisque HZ(YE™,Q(1)) est une Q-structure de Hodge
semi-simple, application HZ (Y™, Q(1)) — Im(::) se scinde en tant que un morphisme de
Q-structures de Hodge. Puisque cy, (z,) est dans HE(Y:"", Q(1))™°, ¢y, (z,) est Pimage d'un
2 e Hp(YE™, Q1)) via HE(YE™,Q(1))*° — HZ(Y,,Q(1)). Par la conjecture de Hodge
pour les diviseurs (Fact 1.1.3.1. 2) = cyemr(27"P) pour un 2" € Pic(Y™) ® Q. Alors
2z =1*(2") € Pic(Yc) ® Q est tel que i (cy(2)) = ey, (22). O

1.2.4 Caractéristique positive : F-isocristaux

En caractéristique positive, il y a deux catégories différentes de systémes locaux p-adiques :
les F-isocristaux et les F-isocristaux surconvergents. Dans cette section on rappelle rapidement
leurs définitions et les relations entre les deux. Soit k& un corps parfait de caractéristique p > 0
et soit X une variété lisse et géométriquement connexe sur k.

1.2.4.1 F-isocristaux

En adaptant légérement les arguments de 1.1.4.2, on définit un topos cristallin (X/W)gys, un
site cristallin Crys(X/W) sur X au dessus de W et un faisceau structural Ox,w, cf. | :
Section 7.17] et | , Section 2|. Pour tout (U — T,~v)' dans (X/W)..,s et tout faisceau
en Ox w-modules cohérents £, on a un Op-module cohérent £ et pour tout morphisme g :
U, 1",v') = (U,T,v) dans (X/W)erys on a un morphisme naturel ¢g*&p — & de Op-modules
cohérents. Un cristal sur X est alors un faisceau £ de Ox/w-modules cohérents tel que pour
tout morphisme g : (U, T",+") — (U, T,~) dans Crys(X/W), le morphisme naturel g*Er» — Er
est un isogénie.

On note Crys(X|W) la catégorie des cristaux, Crys(X|W)g = Crys(X|W) @ Q et
Ox/k = Oxyw ® Q. Pour tout entier s > 1, la s*me_puissance F du Frobenius absolu ¢ de X
agit sur Crys(X|W)g et la catégorie F-Crys(X|W)g des F-isocristaux est définie comme étant
la catégorie des couples (£, ®), ou £ est dans Crys(X|W)g et © : F*E — £ est une isogénie.
Pour tout & dans F-Crys(X|WW)g il y a un groupe de cohomologie H (X, €) (un K-espace
vectoriel) muni d’une action semi-linéaire de F. On pose H., (X ) := H.. (X, Ox/k).

crys crys

1.2.4.2 La conjecture de Tate variationnelle cristalline

Par | |, il existe un F-isocristal image directe supérieure R Jerys Oy i et la suite spectrale
de Leray pour f :Y — X induit, pour tout x € ]X|, un diagramme commutatif

H? ¥ Pic(Y

crys

lmay \

H° (X R fcrys*OY/K — H? ( (— PZC )®Q

crys

Bien que le conjecture de Tate cristalline ne soit pas connue, Morrow en a démontré une version
variationnelle, qui est un analogue du fait 1.2.3.2.1.

Fait 1.2.4.2.1 (| , Theorem 1.4]). Si f : Y — X est projectif, pour tout z, € Pic(Y,)®Q
les assertions suivantes sont équivalentes :

U est un ouvert de X, U < T est une immersion fermée nilpotente de WW-schémas et 7 est une structure
de puissances divisées sur Ker(Op — Op).
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1. Hexiste z € Pic(Y) ® Q tel que ¢y, (z,) = ik(cy(2));
2. Nexiste z € H2, (V) tel que ¢y, (2,) = i3(2);

3. cy,(2:) est dans 'image de H*(X, R? forys «Oyyc) = HZ., ().

1.2.4.3 Pentes
Une des propriétés spécifiques de F-Crys(X |W)g, qui n’a pas d’analogue (-adique, est la théorie

des pentes (cf. | |, [ , Sections 3 and 4]). Soit £ un élément de F-Crys(X|W)qg de rang
r. Pour tout € |X|, on considére I’ensemble de nombres rationnels {af(€)}1<;<, des pentes
(| , Definition 3.3]) de £ en x. On dit que £ est isocline (de pente a}(&)) si a}(€) = a*(E)

pour tout x € |X| et unité si il est isocline de pente nulle. On note F-Crys""(X|W)q C
F-Crys(X|W)g la catégorie des F-isocristaux unité. Finalement, on dit que £ a polygone de

Newton constant si la fonction
Ng : ‘X’ — @T

x> (ai (E)h<izr
est constante.

Fait 1.2.4.3.1. Soit £ un élément de F-Crys(X|W)g.

L (] , Theorem 2.3.1], | , Theorem 3.12]) : 1l existe une immersion ouverte dense
i:U — X telle que i*€ a polygone de Newton constant.

2. (| , Theorem 2.6.2|, | , Corollary 4.2]) : Si £ a polygone de Newton constant,
alors il existe une unique filtration

0= 50 Q 51 Q Q 5n—1 Q gn =& in F—CI‘YS(X|W)Q
telle que &;/&; 1 est isocline de pente s; avec 51 < sg < ... < Sp.

3. (1 I

| , Theorem 3.9]) : Il y a une équivalence de catégorie naturelle F-Crys"" (X |W)q ~
Rep (1 (X)).

La filtration du fait 1.2.4.3.1(2) est appelé la filtration par les pentes de &.

1.2.4.4 Comparaison I : F-isocristaux vs représentations /-adiques

Il serait naturel de penser que le F-isocristal R Jerys«Oy/ i est Ianalogue p-adique de R 1.Qy,.
Toutefois, le comportement de F-Crys(X|W)q est trés différent de celui de LS(X, Qy).

Exemple 1.2.4.4.1 (| , Section 2.1]). En général le K-espace vectoriel H'(X,E) n’est
pas de dimension finie. Considérons X = A} et posons

+0o0
K(T) = {Z a;T" telles que Zlgnoo la;] = 0}.
i=0

Il y a un isomorphisme naturel

H! . (X)~ Coker(d: K(T) — K(T)dT).

crys
Puisque

1—+00
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n’implique pas en général que
lim |a;/i+ 1| =0,
1—+00

on voit que H}.  (X) est un K-espace vectoriel de dimension infinie. Toutefois, suivant | |,

on peut remplacer K (T') par le sous-anneau

+o0o
K(T)" := {Z a;T" tel qu'il existe un ¢ > 1 avec nl_l)r_{loo c'la;| = 0},
i=0

et montrer que d : Coker(K(T)" — K(T)'dT) = 0. L’anneau K (T') est 'anneau des fonctions
rigides analytiques sur le disque unité ouvert alors que K(T)" C K(T) est le sous-anneau des
fonctions qui convergent sur un voisinage ouvert analytique plus large.

Exemple 1.2.4.4.2 (| , Example 4.6]). Soit f : Y — X une famille non isotriviale de
courbes elliptiques dont 'une des fibres est supersinguliére et soit £ := Rif*(/)y/}(. Alors il
existe un sous-schéma ouvert et dense i : U <— X tel que pour tout x € U, la courbe elliptique
Y, est ordinaire. On a les résultats suivants :

1. &€ est irréductible;

2. "€ ~ RifU7*OyU/K a une filtration a deux crans non scindée (la filtration par les pentes
de la section 1.2.4.3) qui refléte la filtration du groupe p-divisible de la fibre générique,
donnée par la suite exacte connexe-étale

0= Y, [p™]" = Y, [p™] = Y [p]*" — 0.

On en déduit les observations suivantes :

1. Bien que dans le cadre /-adique la restriction & un ouvert d’un faisceau lisse irréductible
reste irréductible, dans le cas cristallin ce n’est pas le cas;

2. Bien que R'fi;,Qy soit semi-simple, ce n’est pas le cas de i*E.

En conclusion on voit que d’un coté la catégorie F-Crys(X|W)g a un comportement patho-
logique respectivement & LS(X, Q,) mais que de I’autre elle contient des informations p-adiques
fines.

1.2.4.5 F-isocristaux surconvergents

Les exemples 1.2.4.4.1 et 1.2.4.4.2 suggérent que pour obtenir une catégorie de systémes lo-
caux p-adiques ayant un comportement similaire & LS(X,Qy) il faut rigidifier la catégorie
F-Crys(X|W)g. Cela méne 4 'introduction des catégories d’isocristaux surconvergents Isoc! (X | K)
et de F-iscocristaux surconvergents F—ISOCT(X |K) ainsi qu’a celle de la cohomologie rigide
HY (X, &) pour £ dans Isoc!(X|K). Les définitions de ces objets sont techniques et on renvoie

le lecteur a | | pour les définitions précises. On se contente de donner un exemple.

Exemple 1.2.4.5.1. Soit X = A}. On garde les notations de 'exemple 1.2.4.4.1. Un isocristal
surconvergent sur X est un K (T)T-module cohérent £, muni d’une connexion intégrable

d: & — & @iyt K(T)dT.
La cohomologie rigide de £ est alors définie par

H(X,€E) =Ker(d: & = € @y K(T)1dT);
H'(X,&) = Coker(d : € = € @yt K(T)1dT);
H'(X,E)=0 si i>2

27



Le morphisme naturel F' : K(T) — K(T) qui envoie > a;/T% sur > F(a;)T", induit un mor-
phisme F : K(T)' — K(T)T, et on peut donc considérer l'isocristal surconvergent F*E. Un
F-iscocristal surconvergent sur X est alors un isocristal surconvergent € sur K(7T')T, muni d’un
isomorphisme F*& — £.

Pour comparer les F-isocristaux et les F-isocristaux surconvergents, on introduit les ca-
tégories Isoc(X|K) et F-Isoc(X|K) des isocristaux convergents et F-isocristaux convergents
(| | [ , 2.3.2]). Les catégories de cristaux que nous avons introduites jusqu’a présent
vivent dans un diagramme commutatif (| , Section 2.4]) de foncteurs fidéles :

F-Isoct (X [K) — 5 Isoc (X|K)

l(_)conv l(_)conv

F-Isoc(X|K) — 2 Isoc(X|K) (1.24.5.2)

[ |

F-Crys(X|W)g % Crys(X|W)q.

De plus
Fait 1.2.4.5.3.

e (| , Theoreme 2.4.2|) : Le foncteur ® : F-Isoc(X|K) — F-Crys(X|W)g est une
équivalence de catégorie.

o (| ]) : Le foncteur (=)™ : F-Isoc'(X|K) — F-Isoc(X|K) est pleinement fidéle.

Un des résultats non triviaux de cette thése dans le chapitre 4 assure que R’ Jerys« Oy est
dans I'image essentielle de (—)°™ : F-Isoc' (X|K) — F-Isoc(X|K) ~ F-Crys(X|W)g.

1.2.4.6 Groupes de monodromie

Si £ est un Qp-faisceau lisse sur X, on a vu que 'on pouvait définir, de maniére équivalente,
le groupe de monodromie G(&) of £ comme étant soit I'adhérence de Zariski de I'image de
m (X, T) agissant sur & soit le groupe des automorphismes du foncteur d’oubli (£) — Vectyg,.
Pour les isocristaux seule cette derniére construction est disponible. Ce fut fait en premier par
Crew dans | |]. A partir de maintenant, on suppose que k = F,, avec ¢ = p° et, pour
simplifier, que X a un point F,-rationnel = : Spec(F,) — X. Puisqu’il y a une équivalence de
catégories naturelle Isoc(F,|K) ~ Vect, le foncteur

z" : Isoc(X|K) — Isoc(F,|K) ~ Vectg
induit une neutralisation des quatre catégories dans le diagramme (1.2.4.5.2). Ainsi, pour tout

& dans F-Isoc'(X|K), on obtient un diagramme commutatif de catégories Tannakiennes :

(&) s (goe0)

l(i)conv l(i)conv

<gconv> (_)gw; <ggeo,conv>‘

Par la dualité Tannakienne, ce diagramme correspond a un diagramme commutatif exact d’im-
mersions fermées de groupes algébriques
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G(ggea,conv) c s G((C/’conv)

[ [

G(E9°) ——— G(E),

dans lequel (| , Appendix]) les sous-groupes G(E9°¢™) C G(E°™) et G(E9°) C G(€)
sont normaux.

Exemple 1.2.4.6.1. On garde les notations de 'exemple 1.2.4.4.2. On a
G(E™)=G(E) =GLy and G(E99°™) = G(E9%°) = SLy
alors que
B = G(i*E™) C G(i*E) = GLy and B’ = G(i*E9°°™) C G(i*E9%°) = SLy

ot B C GLy et B’ C SLy sont les sous-groupes de Borel des matrices triangulaires supérieures.
Cela refléte le fait que ¢*€ admet une filtration par des F-isocristaux qui ne viennent pas de

F-isocristaux surconvergents, qui correspond au drapeau stabilisé par B et B’ mais par GL, et
SLs.

1.2.4.7 Comparaison II : F-isocristaux surconvergents vs représentations /-adiques

Alors qu’en caractéristique nulle on peut essayer de comparer les différents groupes de mono-
dromie via le théoréme de comparaison entre le site singulier et le site étale, en caractéristique
positive on a besoin d’outils différents. On rappelle quelques résultats dans ce cadre. Pour des
raisons techniques il est plus facile de travailler avec des coefficients dans des corps algébri-
quement clos. Soit ¢ un nombre premier. Suivant | |, on note Coef (X, ¢) la catégorie des
Q,-faisceaux lisses (]| , 1.1.1]) et Coef(X,p) la catégorie des Q,-F-isocristaux surconver-
gents (| , Sections 2.4.14-2.4.18]). Soit & un élément de Coef (X, ¢). Pour tout x € | X]| il
existe un polynéome caractéristique ¢,(E) € Q,[T] de £ en = (cf. par exemple | , 2.1.4
and 2.2.10.]). On fixe une collection ¢ := {1;}se, d’isomorphismes ¢, : Q, ~ C. On dit que & est
L-pure (de poids w), si toutes les racines de (¢, (&)) ont valeur absolue complexe glfa(®)Falw/2,
Soit {&}rer une collection de & dans Coef(X, /). On dit que {&}ser est un t-systéme com-
patible si to(¢:(&)) = to(Px(Er)), pour tout £ # ' et tout x € |X|. Via la théorie des poids
(| |, | |, | |), les conditions de pureté et de compatibilité sont suffisamment
fortes pour garantir que les différents &, partagent plusieurs propriétés.

Exemple 1.2.4.7.1. Soit deux nombres premiers ¢ # ¢', on suppose pour simplifier que ¢ #
p# . S & dans Coef (X, /) et & dans Coef (X, ') sont pures et compatibles, alors les faits
suivants découlent de la théorie des poids (| ]) et de la formule des traces de Grothendieck-
Lefschetz (| , Theorem 10.5.1, page 603]) :

e & estirréductible si et seulement si &y est irréductible (cf. par exemple | , Corollary
3.5.6)) ;

e Dim(H*(Xy,&)) = Dim(H®(X, Er)) (cf. par exemple | , Corollary 3.4.11]).

On fixe = € |X]| et on note &5 la fibre de & en Z. En utilisant le foncteur z*, pour tout
&y dans Coef (X, () on définit un groupe de monodromie G(&;) C GL(&yz). De plus, on peut
construire un groupe de monodromie géométrique G(E/°°) C G(&) : si € # p, G(E]) est
défini comme étant le groupe de monodromie du changement de base de & a XFQ et si { = p,
G(E9°°) est défini comme étant le groupe de monodromie de I'image de £ dans la catégorie

des Q,-isocristaux linéaires surconvergents sur X. Un résultat frappant récent, se basant sur la
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correspondance de Langlands et la théorie des compagnons pour les faisceaux f-adiques et les

isocristaux surconvergents (| |, [ |, [ |, [ |), est un analogue de la conjecture
1.1.3.3.2 et de la proposition 1.2.3.1.1.
Fait 1.2.4.7.2 (| |, [ ]). Soit {&r}eer systéme compatible pure. Alors :

e Il existe un groupe algébrique connexe G9°° sur Q, une représentation fidele p @ G9 C
GL(V) et un isomorphisme (non canonique) V' ® Q, ~ &z pour tout ¢, tels que la
composition G9° @ Q, C GL(V) ® Q, ~ GL(&z) identifie GY° ® Q, avec G(&z)°.

e Supposons de plus que &, est semi-simple pour tout ¢ € L. Alors, il existe un groupe
algébrique connexe G sur @, une représentation fidéle p : G € GL(V) et un isomorphisme
(non canonique) V®Q, ~ &5 pour tout ¢, tel que la composition GRQ, € GL(V)®Q, ~
GL(&rz) identifie G ® Q, avec G(Erz)°.

1.3 Spécialisations de représentations /-adiques et groupes
de Néron-Severi en caractéristique nulle

Soit k un corps de caractéristique nulle. Soit X une variété lisse et géométriquement connexe
sur k et soit n le point générique de X. Dans cette section on rappelle certains résultats de
Cadoret-Tamagawa (| |, [ |) et de André (| -

1.3.1 Un théoréme d’image uniforme pour les représentations /-adiques
Dans cette section on discute d’un résultat de finitude de Cadoret et Tamagawa qui améliore
le fait 1.2.2.2.2 quand X est une courbe.

1.3.1.1 Lieu exceptionnel

Soit X une courbe et p: m(X,7) — GL,.(Z) une représentation continue d’image II. Dans la
section 1.2.2.2, on a rappelé que, pour tout x € |X]|, le choix d’un chemin étale entre 7 et z
induit une représentation Galoisienne locale

pe (2, 7) = m(X,7) ~ m(X,7) & GL,(Z))

d’image II, et une inclusion II, C II. Suivant | ], on donne la définition suivante.

Définition 1.3.1.1.1. On dit que =z € |X| est Galois générique pour p si II, C II est un
sous-groupe ouvert. Si x n’est pas Galois générique on dit que = est Galois exceptionnel pour

p.
On note X et X9 le lieu des points fermés Galois exceptionnels et Galois génériques
pour p et on pose

X< d) = X"NX(<d); X§(<d):=XJ"NX(<d).

1.3.1.2 Enoncé

La variété X étant géométriquement connexe, on peut considérer la représentation
P70 (X7, 1) — m(X,7) = GL.(Z)

et son image I19°°. Rappelons la définition suivante de | , Section 1]
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Définition 1.3.1.2.1. On dit que p est géométriquement Lie parfaite (ou GLP) si ? abélianisé
de tout sous-groupe ouvert de I19¢° est fini.

Cadoret et Tamagawa montrent le résultat suivant

Fait 1.3.1.2.2 (| ]). Supposons que k est finiment engendré et que X est une courbe. Si
p est GLP, pour tout entier d > 1, I'ensemble X¢*(< d) est fini et il existe un entier N > 1,
qui ne dépend que de d et p, tel que, pour tout = € Xge"(g d), on a [IT: II,] < N.

Dans les sous-sections suivantes on rappelle les idées principales de la preuve du fait 1.3.1.2.2.

1.3.1.3 Théorie des groupes : un systéme projectif de sous-groupes

On rappelle que ®(II) est le sous-groupe de Frattini de II, c’est a dire l'intersection de tous
les sous-groupes ouverts maximaux de II. Dans la preuve du fait 1.2.2.2.2, un des ingrédients
principaux était de considérer 'ensemble fini C des sous-groupes U C II tels que ®(II) C U.
Pour prouver le fait 1.3.1.2.2, Cadoret et Tamagawa construisent dans | , Section 3| un
systéeme projectif qui raffine C. Pour chaque sous-groupe C' de II, on note

C(n) := Ker(C C1I C GL,(Z¢) — GL,.(Zs/l").
On définit Co(IT) := {II} et pour tout entier n > 1
Co(IT) :={U C 1I tels que ®(II(n — 1)) CU et [I(n — 1) L U}.

Par | , Lemma 3.1], les applications v, : Cpy1(I1) — C,(I1) qui envoient U sur UP(I1(n —
1)) sont bien définies et munissent donc la collection {C,(II)},en d’une structure de systéme
projectif. L’analogue du lemme 1.2.2.4.1 est alors le suivant.

Lemme 1.3.1.3.1 (| , Lemma 3.3]).
1. Pour tout entier n > 0, 'ensemble C,, (II) est fini;

2. Pour n > 0, si C' C II est un sous-groupe fermé tel que II(n — 1) € C, alors il existe
U € C,(II) tel que C C U.

1.3.1.4 Dictionnaire anabélien I

Pour chaque entier n > 0 on note

X, = ]_[ Xy — X.

UeC, (1)

Alors, puisque la famille {II(n)},en forme un systéme fondamental de voisinages ouverts de 1
dans II, on a

r€ X" < pour n>01l(n—1) Z1II,

< pour n > 0 il existe U € C, avec I, C U (lemme 1.3.1.3.1(2) )
< pour n > 0z € Im(X,(k(z)) = X (k(x)) (remarque 1.2.2.3.1 )
Cela montre que
X< d) = () Im(X,(< d) — X(< d))
n>1

2La terminologie vient du fait que cette condition est équivalente & ce que (Lie(I19¢°))e = 0.

31



et que, pour n > 0, on a
{z € X(<d) with [IT: TI,] < [IT: II(n)]} € X(< d) — Im(X, (< d) —» X(<d)). (1.3.1.4.1)

Par (1.3.1.4.1), comme IT a un nombre fini de sous-groupes ouverts d’indices bornés et C, (II) est
fini, pour montrer le fait 1.3.1.2.2 il suffit de montrer que, pour n > 0 et pour tout U € C,(II),
I'ensemble X (< d) est fini.

1.3.1.5 Enoncé Diophantien : genre et gonalité

La finitude du nombre de points rationnels d’une courbe lisse Y est controlée par le genre gy
et la gonalité® vy de la compactification lisse de Yz. Plus précisément, on a le résultat suivant :

Fait 1.3.1.5.1. Soit k£ un corps finiment engendré de caractéristique nulle et soit Y une courbe
propre et lisse sur k.

L (] ]) : Si gy > 2 alors Y(k) est fini.

2. (| |, | ) : Siyy >2d+ 1 alors Y(< d) est fini.

Revenons aux revétements Xy — X, on veut maintenant montrer que leurs genre et leur
gonalité sont grands. Pour chaque sous-groupe ouvert U C II, on note k£ C ky la plus petite
extension finie de k sur laquelle Xy est géométriquement connexe et on note gy et vy le genre et
la gonalité d'une compactification lisse de Xy Xy, k. Alors, pour prouver le théoréme 1.3.1.2.2,
il est suffisant de montrer le fait suivant.

Fait 1.3.1.5.2. Supposons que p est GLP et fixons des entiers d; > 0, dy > 1. Alors :

L (| , Corollary 3.8]) : Il existe un entier N, > 1, dépendant uniquement de p, dy, do,
tel que pour tout entier n > N, et tout U € C,(II) on a gy > d; ou [ky : k| > da.

2. (| , Corollary 3.11]) : Il existe un entier N, > 1, dépendant uniquement de p, dy, da,
tel que pour tout entier n > N, et tout U € C,(I) on a v > d;y ou [ky : k] > ds.

Remarque 1.3.1.5.3. A posteriori, via la formule de Riemann-Hurwitz 1.3.1.5.2(2) implique
1.3.1.5.2(1) mais 1.3.1.5.2(1) est en fait utilisé dans la preuve de 1.3.1.5.2(2).

1.3.1.6 Dictionnaire anabélien II : ’hypothése GLP

Pour illustrer I'idée de la preuve du fait 1.3.1.5.2(1), on montre dans cette section, suivant
| , Section 4.1.3], que si k = k, alors la représentation p est GLP et si II est infini, alors
gri(n) tend vers I'infini. Soit ng > 1 un entier. Pour tout n > ny, la formule de Riemann Hurwitz
pour le recouvrement X,y — Xyy(n,) implique que

lim 2gr@y —2 > lim (|IL(n)/TL(n)])(2911(n) — 2) (1.3.1.6.1)

n—-+4o0o n—-+4o00

Puisque II est infini, on a

lim |TI(no)/II(n)| = |(ng)| = +oo.

n—-+0o

On en déduit que si sup,(gnm)) > 2 il existe un ng tel que grp,) > 2 et 'équation (1.3.1.6.1)
impliquent que gry(,,) tendent vers I'infini. On doit donc éliminer les deux possibilités suivantes :

3Rappelons que la gonalité d’une courbe propre et lisse Y sur k est le degré minimum d’un morphisme non
constant Y — PL.
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1. sup(gn@m)) = 1. Alors il existe ng tel que pour tout n > ng la compactification lisse de
XTi(n) est une courbe elliptique. Puisque tous les morphismes finis entre courbes elliptiques
sont non ramifiés, le groupe de Galois II(ng)/II(n) de Xim) — Ximy) est un quotient
du groupe fondamental étale de la compactification lisse de Xiy(,,). En particulier il est
abélien et donc Il(ng) = lim 1II(ng)/II(n) est abélien et infini. Mais cela contredit le fait
que p est GLP, puisque II(ng) serait un sous-groupe ouvert abélien infini de II.

2. sup(gn(m)) = 0. Alors pour tout n > 0, la compactification lisse de Xy, est isomorphe
a P. Le groupe de Galois II(1)/II(n) du recouvrement Xy, — X est donc un sous-
groupe de PGLy(k). En utilisant la classification des sous-groupes finis de PGLy(k) (cf.
par exemple | , Corollary 10]) on obtient une contradiction grace a I’hypothése
GLP comme dans le cas 1.

La preuve du fait 1.3.1.5.2(1) est significativement plus difficile, car les recouvrements Xy — X
ne sont pas Galoisiens en général. L’idée est de prendre un recouvrement Galoisien X7 — X
au dessus de Xy — X et proche de la cloture Galoisienne de Xy — X et alors :

e On applique d’abord I'argument précédent a Xz (| , Section 3.3.1]) ;

e On compare ensuite le genre de X et Xy via la formule de Riemann-Hurwitz (| ,
Section 3.3.2]).

On discutera plus en détails de cette stratégie dans la section 2.1.1.3.

1.3.2 Spécialisations du groupe de Néron-Severi

Soit Y — X un morphisme propre et lisse. Dans cette section on discute d’un résultat de André,
qui lie les faits 1.2.2.2.2 et 1.3.1.2.2 4 la spécialisation du groupe de Néron-Severi.

1.3.2.1 Points NS-génériques

On spécialise la discussion de la section 1.2.1 au cas des diviseurs. Soit Z une variété propre
et lisse sur k. Dans ce cadre, puisque les équivalences algébriques et numériques coincident
rationnellement pour les diviseurs, pour tout couple de nombres premiers ¢, /' on a les égalités

CHy (Zy) ® Q = NS(Z;) ® Q = CH,(Zp) ® Q.
De plus, puisque H(m(k), Pic’(Z)) est de torsion, la suite exacte de k-schémas en groupes
0 — Pic) — Picy — NSz — 0

montre que NS(Z) ® Q = (NS(Zz) ® Q)™®). Donc, pour tout z € X, les morphismes de
spécialisation de la section 1.2.1 pour le morphismef : Y — X donnent

$Pna - NS(Yg) @ Q — NS(Yz) ® Q et spy’, : NS(Y;) ® Q — NS(Y,) ® Q.

Définition 1.3.2.1.1. On dit que = € |X| est NS-générique (resp. arithmétiquement NS-
générique) pour f:Y — X si sp,, (resp. spj’,) est un isomorphisme.

33



1.3.2.2 NS-générique vs Galois générique

Pour tout x € X, le choix d’'un chemin étale entre T et 77 induit des isomorphismes
m(X,7) =2 m(X,7), H*(Yy Q1)) = R*£.Qi(1)7 = R*£.Qu(1)7 =~ H*(Yz, Qi(1))),

qui identifient I'action de 7 (x,Z) induite par restriction via m(z,7) — m(X,T) ~ m(X,7)
sur H2(Y;, Q,(1)) ~ H?*(Yz, Qu(1))) avec laction naturelle de 7 (x, %) sur H?(Yz, Q,(1))). Rap-
pelons que le morphisme de spécialisation fait commuter le diagramme suivant

Pic(Y,)) ®Q e Pic(Y)®2Q N Pic(Y,) ® Q

e e

NS(Yy) 9 Q -  NS(Y2) £ Q
H*(Y7, Q1)) o~ H?(Yz, Qu(1)).

et que z € |X| est dit Galois générique (resp. strictement Galois générique) pour p;" : 71 (X) —
GL(H?*(Yz, Qu(1))) si 'image de 7 (z,T) agissant sur H%(Yz, Q,(1)) est ouverte (resp. coincide)
dans (resp. avec) I'image de m(X,7) agissant sur H*(Yz, Q(1)). La conjecture 1.1.2.1.1 prédit
que tout point (strictement) Galois générique est (arithmétiquement) NS-générique. André a
montré que c’est vrai sans supposer la conjecture 1.1.2.1.1.

Fait 1.3.2.2.1 (| ]). Tout point (strictement) Galois générique pour p;' est (arithmeéti-
quement) Néron-Severi générique.

En combinant le fait 1.3.2.2.1 avec les faits 1.2.2.2.2 et 1.3.1.2.2, on obtient 'existence
et I'abondance des points (arithmétiquement) NS-génériques. La preuve du fait 1.3.2.2.1 se
décompose en deux étapes :

e On relie les cycles algébriques a la cohomologie via la conjecture de Hodge variationnelle
pour les diviseurs (fait 1.2.3.2.1);

e On relie la théorie de Hodge a la cohomologie f-adique via la comparaison entre le site
étale et le site singulier.

Dans la sous-section suivante, on rappelle plus en détails la preuve du fait 1.3.2.2.1 (cf. aussi
[ , Proposition 3.2.1]).

1.3.2.3 Preuve du fait 1.3.2.2.1

Soit z € |X| un point Galois générique pour p*!. En remplagant X par un recouvrement fini
étale on peut supposer que NS(Y;) ® Q = NS(Y;) ® Q, NS(Yz) ® Q = NS(Y,) ® Q et que
Padhérence de Zariski G de I'image de m (X, 7) agissant sur H?(Yy, Q,(1)) est connexe. Le
diagramme commutatif cartésien de variétés sur k£ suivant

Y, > Y > Y,

| o] = |

k(z) —— X « k(n).

~

induit un diagramme commutatif
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Pic(Yy) @ Q «—— Pic(Yy) ® Q —— Pic(Yz) ® Q

l l

NS(Y;) @ Q P » NS(Yz) ® Q.

Il est suffisant de montrer que tout z, € NS(Yz) ® Q se reléve en un élément de Pic(Yy) ® Q.
Puisque I'image de Pic(Yz) ® Q — H?(Y%, Q1)) s’identifie’ a 'image de Pic(Ye) ® Q —
H?*(Ye,Qg(1)) via l'isomorphisme de changement de base H?(Yy, Qu(1)) ~ H?*(Yc, Qu(1)) et
puisque le groupe de Néron-Severi est invariant par extension de corps algébriquement clos, il
est suffisant de montrer que tout z, € NS(Yz¢) ® Q se reléve en un élément de Pic(Ye) ® Q.
Considérons le diagramme commutatif

Pic(Ye) ® Q ——— Pic(Yzc) @ Q

}

NS(YE,(C) ®Q

[

HO(Xg, R*f.Q) —— Hz(Yac, Q).

Soit z, € NS(Yzc) ® Q. Par la conjecture de Hodge variationnelle pour les diviseurs (fait
1.2.3.2.1) il est suffisant de montrer que 2, est dans 'image de H*(X, R?f*Q) — H%(Yzc, Q).
Puisque z, est fixé par m (z,T), le groupe G?’l est connexe et x est Galois générique, z, est
fixé par m(X,T), donc par 7 (Xc,T). Grace a la comparaison entre le site étale et le site
singulier, z, est alors fixé par W'iOp(X“”,T), il est donc dans l'image de H°(X, R?f"Q) ~
H%(Yse, Q)" (Xe® <y H2 (Y e, Q). Cela termine la preuve du fait 1.3.2.2.1.

4Cela découle de l'invariance de la cohomologie étale sous les extensions de corps algébriquement clos en
caractéristique nulle, la suite exacte de Kummer et le fait que la flecche H*(Y7, G,,) — H?(Yc, G,y,) est injective.
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Chapter 1

Preliminaries (in English)

1.1 Absolute setting

Let k£ be a field of characteristic p > 0 and let X be a smooth proper k-variety.

The main topic of arithmetic geometry is to study the interplay between the arithmetic and
the geometric properties of X. Since these are extremely rich and complicated, the general
strategy developed in the 20" century is to associate to X abelian groups or vector spaces
endowed with some additional structure, encoding part of the properties of X. For example:

e the Chow group CH'(X) of co-dimensional i cycles modulo rational equivalence (| D;
e if k = C, the Betti cohomology H*(X" Q) endowed with an Hodge structure (| s

e if k is any field, for every ¢ # p the étale (-adic cohomology H*(X%, Q) endowed with a
continuous action of (k) (| D;

e if k is perfect and p > 0, the crystalline cohomology HY,,.(X, K) endowed with an action
of the absolute Frobenius of & (| 1)

The theory of motives (| , Section 4]) and the fullness conjectures (| , Section 7|)
(as the Hodge conjecture (| | and Tate conjecture (| |)) give a conjectural framework
to compare these invariants. In this section we quickly review them.

1.1.1 Algebraic cycles and motives
1.1.1.1 Algebraic cycles

Let L be an integral ring of characteristic zero and let Z%(X) be the free abelian group generated
by codimension ¢ integral subvarieties of X. Let ~ be an adequate equivalence relation on Z “(X)
(see | , Section 3.1]) and write CHY, (X).. for the quotient of Z*(X)® L by this equivalence.

If ~= rat is the rational equivalence, then CH'(X) := CHY%(X),4 is called the Chow group
of co-dimensional i cycles modulo rational equivalence and if L C L’ is an inclusion of rings
then CH% (X)), ®1 L' ~ CHL/(X)pat (| , 3.2.2]). In general, the groups CH'(X) are
complicated and of infinite rank. When ¢ = 1, the group CH'(X) identifies with the Picard
group Pic(X) of X classifying line bundles up to isomorphism.

If ~= alg is the algebraic equivalence, then CHfllg(X) := CHY(X),, is called the Chow
group of co-dimensional ¢ cycles modulo algebraic equivalence. If L C L' is an inclusion of rings,
then CHY (X)ay ®1 L' ~ CHY/(X)ay (| , 3.7.3|). Since rational equivalence is finer than

algebraic equivalence, one has a canonical quotient morphism ¢ : CHY (X),ar — CHY(X)ay,
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which, when ¢ = 1, identifies with the natural morphism Pic(X) ® L — NS(X) ® L, where
NS(X) := Picx(k)/Pic% (k) is the quotient of the k-points of the Picard scheme Picy of X
modulo the k-points of its neutral component PicY.

If ~= num is the numerical equivalence, then CH’  (X) := CH%(X),um is called the Chow
group of co-dimensional i cycles modulo numerical equivalence. Tn general CHY (X),um is a free
and finitely generated L-module and if L C L’ is an inclusion of rings, then CH% (X),um @1 L' =~
CHY (X)) pum (] , 3.7.2.1]). Since algebraic equivalence is finer than numerical equivalence,
one has a canonical quotient morphism q : CHY (X )4y = CHY (X)um which, when i = 1 and L
is a field, identifies (| |, | , Section 3.2.7]) the group CH.,, (X)®L with NS(X)®L.

Let now H* be a Weil-cohomology theory with coefficients in a characteristic zero field F' O L
(see | , Appendices| and | , Section 3.3]). Set ¢, : CH(X) ® L — H*(X) for the
cycle class map for H* and define the group of cycles of codimension ¢ modulo (the appropriate)
H-homological equivalence CH’, (X )y as the image of cx : CH(X)® L — H*(X)(i). If L = F,
since H?'(X)(i) has finite F-dimension, CH%(X)y is a finite dimensional F-vector space. It is
not true in general that the natural map CH} (X)y ®; F — CH%L(X)y is injective and it is still
unknown whether CH} (X)) is finitely generated over L.

Since algebraic equivalence is finer than homological equivalence and homological equiva-
lence is finer than numerical equivalence, the quotient q : CHY, (X) a1y — CHY (X )y factorizes
as the composition of ¢ : CHY (X)a, — CHY (X) g and ¢ : CHY(X) g — CHY (X )pum. Under
@2, CHL(X) g identifies (| , Proposition 3.4.6.1|) with NS(X)® F. In general, one of the
standard conjecture of Grothendieck (| , Conjecture D|, | , Section 5.4.1]), predicts
that CH% (X )y = CH%(X) num-

1.1.1.2 Motives

Assume now that L = F. For ~& {num, H}, write Mot’ (k) for the F-linear pseudoabelian
rigid tensor category of pure motives up to ~-equivalence (| , Section 4.1.3]), SPV(k)
for the category of smooth proper varieties and H* : SPV (k) — Mot’ (k) for the canonical
functor. On the one hand, there is a realization functor Ry : Mot} (k) — GrVectr into
the category of graded F-vector spaces. On the other hand, Jannsen proved (| |) that
Mot?Z (k) is a semisimple abelian category.

Under the standard conjectures of Grothendieck (| |), one should be able to modify
the commutativity constraint in Motk (k) (see | , Section 5.1.3]) to obtain a fibre functor
Ry : Motk (k) — Vecty. Combining | |, the standard conjectures of Grothendieck and
the conjecture CH%(X)y = CH%(X)pum, the category Mot!; (k) should be a semisimple F-
linear Tannakian category (| |) endowed with a fibre functor Ry : Mot} (k) — Vecty.
So for every M in Mot% (k) one would then be able to consider the Tannakian subcategory
(M) C Motk (k) generated by M and its reductive Tannakian group G(M) (| , Section
6]).

Assume now that the essential image of R : Motk (k) — Vectr factors trough an en-
riched F-linear Tannakian category (| , Section 7.1.1]) C (for example the category of
polarized Hodge structure, the category of continuous Q-linear 7 (k)-representations or the
category of K-vector spaces endowed with an automorphism). Then the fullness conjectures

(| |, | |, | , Section 7.1]) predict that Ry : Motk (k) — C is fully faithful
and the Grothendieck-Serre semisimplicity conjecture (| , Section 7.3|) predicts that the
essential image of Ry : Motk (k) — C is a semisimple subcategory of C. Since reductive al-
gebraic groups are determined by their tensor invariants (| , Proposition 3.1]), this would

imply that G(M) identifies with the Tannakian group G(Ry(M)) of the Tannakian category
(Rp(M)) generated by M in C.
Let H' be another cohomology theory with coefficients in F' C F’ such that H' ®p F' ~ H
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as Weil-cohomology theories. Then there is a natural functor — ® F' : Mot (k) — Mot (k)
and the fullness and the semisimplicity conjectures for H and H’, together with the equivalence
of homological and numerical equivalence, imply that, for every M & Motg(k), one should
have

GRyM@F))~G(H)YMeF))~GH(M)®F')~GRg(M))® F.

1.1.2 /-adic cohomology

In this section ¢ is a prime # p.

1.1.2.1 Etale cohomology and the Tate conjecture

For every integers ¢ > 0,j € 7Z, Grothendieck defined (| |) an étale cohomology group
H' (X7, Qq(7)). It is a finite dimensional Q,-vector space (| , XIV, Corollaire 1.2]) endowed
with a continuous action of 7 (k) and the image CH) of the cycles class map ¢, : CH(X) —
H?*(X%,Qq(7)) lies in the subspace

U H (O, Qui)m .
[k k] <+o0

In this setting, the fullness conjecture is the Tate conjecture (| |) and predicts the following
relation between algebraic cycles and cohomology.

Conjecture 1.1.2.1.1 (T(X,4,¢)). If k is finitely generated, then the cycle class map

diCH(XpoQ — ) H*(XgQi)™®
[k k] < +00

is surjective.

Conjecture 1.1.2.1.1 is widely open in general, but when ¢ = 1 it is known for abelian

varieties ([Tat66], [Zar7o], [Zar77], | ), K3 surfaces ([NOS], | 1 iy I
| |, | |) and some other special class of k-varieties; see for example | , Section
5.13| and | ).

1.1.2.2 Monodromy groups

The action of m (k) on H' (X%, Q(7)) gives rise to a continuous homomorphism
py’ s m(k) = GL(H' (X7, Qu(5)))

and we set TI,7 := p}?(m,(k)). As any closed subgroup of GL(H (X%, Q.(5))), I} is a com-
pact f-adic Lie group (| , Lie Groups, Chapter V, Section 9|), hence a topologically
finitely generated almost pro-¢ group (| |). Write G}’ for the Zariski closure of
IT,7 in GL(H' (X7, Q¢(j))). From the Tannakian point of view, if we write (p;’) for the Tan-
nakian subcategory in Repg, (71 (k)) generated by p,”, the algebraic group G}’ is character-
ized (| , Section 7.1.3]) by the fact that Repg,(G%?) ~ (p,”). If p}” is semisimple, then
G%’ can be also described as the subgroup of GL(H*(Xz, Qu(j))) fixing (H' (X%, Qu(5))%™ ®
(H' (X7, Qu(4))V)®™)™*) for all integers n,m > 0.

1.1.3 Characteristic zero: Betti cohomology and Hodge theory

Assume now that p = 0 and, to simplify, that there is an inclusion k£ C C.
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1.1.3.1 Betti cohomology and the Hodge conjecture

To X¢ one can associated (| , Section 2], | , Exposé XII|) a complex analytic space
X@" and hence consider the Betti cohomology Hi(X,Q) := H(X&",Q) of X. The Hodge
decomposition (| |, | , Chapter 0]) gives a canonical isomorphism

H'(X&, Q) @C~ P HY(XE, Wn).
p+q=i
Hence H'(X&", Q) is a polarized Q-Hodge structure (| , Section 1|), which, for every j € Z,
we can twist with Q(j) to obtain H*(X&",Q(5)). Combining the cycle class map CH' (X&) ®
Q — H*(Xa&, Qi) C HY(X&,Q(i))®C, with the isomorphism (| ]) CH (X¢) ~ CH (X&)
induced by the analytification functor, we get a cycles class map ¢ : CH(X¢) ® Q —
H*(Xg", Qi) € HE(X, Q(i))®C whose image is contained in H*(X&", Q. )NHE (X, Q(4)) =
HZ(X,Q(7))%°. In this setting, the fullness conjecture is the Hodge conjecture (| )):

Conjecture 1.1.3.1.1 (H(X,i)). The cycle class map
cy CH (Xe) @ Q — HE(X,Q(:))*?
is surjective

While T(X,1,¢) is widely open in general, from the exponential exact sequence (| ,
Pag. 163|) and the Hodge decomposition, one deduces the so called Lefschetz (1,1) theorem.

Fact 1.1.3.1.2 (| I , Pag. 163-164]). Conjecture H (X, 1) holds.

Remark 1.1.3.1.3. Even if /-adic cohomology and Betti cohomology should be incarnations
of the same motive, we already see that they have some distinct specific features: ¢-adic coho-
mology enables us to use the theory of ¢-adic Lie groups and the action of m(k), while Betti
cohomology enables us to use complex Hodge theoretic analytic techniques. Comparison results
between them could be then helpful to combine these different information.

1.1.3.2 Monodromy groups

The Hodge structure on H*(X&", Q(5)) is described (| , Section 3|) via a morphism of
algebraic groups N
Ry : Resc/rGn — GL(H (X, Q(j)) ® R),

and the Mumford Tate group G% is (| , Section 4]) the smallest connected subgroup of
CL(H (X&,Q(5))) such that G @R contains Im(h%/) . As in the f-adic setting, the group G
can be characterized as the unique (up to isomorphism) algebraic group, such that Rep@(G%j ) is
equivalent to Tannakian subcategory (H'(X&", Q)) generated by H'(X&", Q) in the category of
polarized Hodge structures. Since the category of polarized Q-Hodge structures is semisimple
(| , Proposition 4.9]), G is reductive, hence it can be described as the subgroup of

GL(H (X&",Q(j))) fixing all the (0,0) classes in H*(X&", Q(5))*" @ (H(X&",Q(j))")®™ for all
integers m,n > 0.
1.1.3.3 Comparison of singular and étale sites

By the invariance of étale cohomology under algebraically closed field extensions in character-
istic zero (| , Corollaire 5.3.3]) and the Artin comparison theorem (| , XI, Theorem
4.4]), there are canonical isomorphisms

(X5 Q) = Hi(Xe, @) = HY(X2,Q) 9 Qs

fitting into following diagram commutative
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(CH (X¢) ® Q) @ Q —— CH'(X3) @ Q,

lCiB ®@Q leg

HA(XE, Q1) ® @ —=— H(X5, Quli)).

The Mumford Tate group G% C GL(H'(X¢",Q(j))) maps, via the Artin comparison iso-
morphism, to a Q-algebraic group G ® Q C GL(H* (X%, Q/(5))). The philosophy of motives
(Section 1.1.1.2), Conjectures 1.1.2.1.1 and 1.1.3.1.1 then predict the Mumford-Tate conjecture:

Conjecture 1.1.3.3.1. If £ is finitely generated, ng ®Q, = (G?j)o modulo the Artin com-
parison isomorphism.

While in general Conjectures 1.1.2.1.1 and 1.1.3.1.1 are widely open, Conjecture 1.1.3.3.1
is known in some cases (see for example | |) and when X is an abelian variety, Deligne
proved (| |) that there is an inclusion (G}7)° C G% ® Q,

Conjecture 1.1.3.3.1 predicts the following, which could be stated over any finitely generated
fields.

Conjecture 1.1.3.3.2. If k is finitely generated, there exists a connected algebraic group G*
over Q and a faithful representation G C GL(V"/) such that for every £ # p there is an isomor-
phism V" @ Qp =~ H'(Xz, Qu(j)) identifying G* @ Q; € GL(V*™ ® Q) ~ GL(H"(Xz, Qc(j)))
with (G7)°.

1.1.4 Positive Characteristic: crystalline cohomology

Assume now that p > 0 and k is perfect. Write W (k) (or just W) for the Witt ring of £ and
K (k) (or just K) for the fraction field of . In this section we recall the main ideas in the
construction of a p-adic Weil cohomology theory. A classical example of Serre (see for example
| , Section 1.7]) shows that there is no cohomology theory with Q,-coefficients, so that we
will define a Weil cohomology theory with K coefficients.

1.1.4.1 Infinitesimal site

Let S be a scheme, f : Z — S a morphism and write HY (Z/S) for relative algebraic de
Rham cohomology of Z over S (| | | , Section 4.5]). While H’ (Z/S) has a somehow
concrete description in terms of differential forms, Grothendieck showed in | | that, at least
in characteristic zero, it could be also defined via topos theory. To do this, he defined (| ,
Section 4|) an infinitesimal site Inf(Z/S), a topos of sheaves of abelian groups (Z/5):,s on it
and a structural sheaf Oz/g. Writing anf(Z/S, Oys) for the it" cohomology group of Oyz/s
Grothendieck proved the following.

Fact 1.1.4.1.1 (| , Theorem 4.1 and Section 5.3]).

1. If f: Z — S is smooth and S has characteristic zero, there is a canonical isomorphism
H3,(Z]S) = Hj, ((Z]S, Ozy5);
2. If Z/ — Z is a nilpotent thickening of S-schemes, there is a canonical isomorphism
H; :(Z']S,0zs) ~ H}, ((Z] S, Ogs).

Fact 1.1.4.1.1 can be used to show that the de Rham cohomology of a deformation of a
smooth proper variety depends only on the variety.
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Remark 1.1.4.1.2 (| , Pag. 1.11]). Write S := Spec(C[[T]) and S,, := Spec(C[[T]]/(T™)).
Let Z — S be a smooth proper morphism and write 7, := Z xXg S,. Since f is proper, we
have Hy.(Z/S) ~ 1&1” Hy(Z,/S,). Since Z, — S, is smooth and Z; — Z, is a nilpotent
thickening, by Fact 1.1.4.1.1 we have

This shows that the relative de Rham cohomology of Z — S depends only on Z;.

1.1.4.2 Crystalline site

In light of Remark 1.1.4.1.2, to construct a cohomology theory with K-coefficients for k-
varieties, one could try to lift X to a smooth proper W-scheme X and then take the De
Rham cohomology of X := X Xy K. Besides the fact that not all varieties are liftable to
characteristic zero, it is not clear that the obtained cohomology is (canonically) independent
of the lifting. The arguments in Remark 1.1.4.1.2 suggest that, to prove this independence
one could use a cohomology theory in which an analogue of Fact 1.1.4.1.1 holds. But in Fact
1.1.4.1.1(1), the characteristic zero assumption is necessary.

Example 1.1.4.2.1. If S = k and Z = A}, then one wants to show that d : k[z] — k[z]dz is
surjective. If f =" a;x'dr and p =0, then f =d(> (a;/i + 1)z'™).

In light of Example 1.1.4.2.1, the idea is then to restrict the infinitesimal site with a finer
site, whose covering have an operation that looks like 1/i 4 1: the crystalline site. Let (S, 1,7)
be a P.D. scheme (| , Pag. 3.18]) and let f : Z — S be an S-scheme on which v extends
(| , Definition 3.14]). In | , Section 5|, Berthelot defined a crystalline site Crys(Z/5),
the topos of sheaves of abelian groups (Z/5)cys on it, a structural sheaf O/ and then proves:

Fact 1.1.4.2.2 (| , Corollary 7.4 and Theorem 5.17]). If p is nilpotent on S the following
hold.

o If 7 — S is smooth, then there is a natural isomorphism

Hcll’r(Z/S) = H(’irys(z/sv OZ/S)?

o If 7/ — Z is a nilpotent thickening, then there is a natural isomorphism

Hirys(Z,/Sa OZ’/S) = H(Z;rys(Z/Sa OZ/S)-

1.1.4.3 Crystalline cohomology

Let W,, := W, (k) be the n-truncated ring of Witt vectors of k. The natural P.D. structure
on W, sending v,,(p) = p™/(m!) if m < n and ~v,,(p) = 0 otherwise, extends automatically
(| , Proposition 3.15|) to every W,,-scheme T" — W,,, so that we can define the crystalline
cohomology of the smooth proper k-variety X (| , Summary 7.26|) as

Hérys(X/K) = (m H;rys(X/WTU OX/Wn)) ® Q

Then, if X — Spec(W(k)) is smooth and proper and X,, := X xy W, by Fact 1.1.4.2.2 we
have:

The functor H' .(—/K) gives a Weil cohomology theory with coefficients in K and the absolute

crys )
Frobenius ¢ of k induces a semi linear action on Hg, (X/K).
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1.1.4.4 Crystalline Tate conjecture

The image of the cycle class map

¢ CHY(X) — HZ (X/K)

crys

is contained in H2 (X/K)?=P. If k = F, with ¢ = p®, the action of F:= ¢* on H% (X/K) is

crys crys
then K-linear and, in this setting, the fullness conjecture is the following.

Conjecture 1.1.4.4.1 (T(X,4,p)). If k =F,, the cycle class map

¢ CH(X)® K — HZ, (X/K)"™=*

crys

is surjective

1.1.4.5 Comparison

While in characteristic zero one can compare directly ¢-adic and Betti cohomology via the Artin
comparison isomorphism, in positive characteristic one there is no such a direct comparison
isomorphism between /f-adic and crystalline cohomology. When k = F, is a finite field with
q = p° elements, one can try and remedy the lack of a comparison isomorphism using the theory
of Frobenius weights. For every ¢ # p the arithmetic Frobenius F' € m(F,) acts linearly on the
finite dimensional vector spaces Hj(X) := H (X7, Q,) and if £ = p the s-power of the absolute
Frobenius F acts linearly on H}(X) := H,, (X). Let £ be the set of all prime numbers.

crys

Fact 1.1.4.5.1 (| |, | ). For 7 € L, the characteristic polynomial ® of F' acting on
Hi(X) is in Q[T] and it is independent of ? € L. Moreover for every roots a of ® and for every
embedding ¢ : Q(a) < C, one has |¢(a)| = ¢'/2.

Remark 1.1.4.5.2.

e By Fact 1.1.4.5.1, the Zariski closure of the image of m(IF,) acting of the semi simplifica-
tion of Hi(X) is defined over Q and independent of £. In particular a version of Conjecture
1.1.3.3.2 is true in this setting up to semisemplification.

e If £k is a finitely generated field of positive characteristic, to construct a reasonable notion
of independence and to get an analogue of Fact 1.1.4.5.1, one has to reduce to the finite
field setting at the expense of working in a relative setting. We will discuss this in more
details later on; see Chapter 6.

1.2 Relative setting

The main topic of this thesis is the study of the various notions introduced in Section 1.1, not
in the absolute but in the relative setting. Instead of considering a single variety X, we will
study families of varieties.

Let k£ be a field of characteristic p > 0 and let X be a smooth geometrically connected
k-variety X with generic point 7. Let f : Y — X be a smooth proper morphism and for every
x € X fix a geometric point T over it and write Y, and Yz for the fibre of f: Y — X at x and
T, respectively.

The general question is then how the invariants of Y, and Yz vary with x € X. A first result
in this direction is the smooth proper base change theorem: the dimensions of the various
cohomology groups H'(Y,(C),Q), H'(Yz, Q) and H!, .(Y,) are independent of z € X. Hence,

crys
regarded only as vector spaces, their are not interesting invariants of the family. On the other
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hand what is rich and worth studying is the extra structure that these vector spaces have:
the Hodge filtration, the Galois action and the Frobenius action. While each of the collection
{HL(Y,, Q) boex, {H (Yz, Qr) rex gives rise to a local system (a variation of Hodge structure,
a representation of 71 (X)), in the p-adic setting {H, . (Y2)}zex give rise to two very different
local systems: a convergent and an overconvergent F-isocrystals. In this section we recall these
objects and various tools to study them.

1.2.1 Algebraic cycles and motives
1.2.1.1 Algebraic cycles

By | , X, App 7] (see also | , Sections 3.2 and 9.1]), for every x € X there is a

specialization morphism
sz%x CHaZg( ) - CHalg( )

fitting into a commutative diagram

CHalg( )

3 *

7
Spn,:c

CHalg( ) CHalg( )

where i? : CHJ, (V) — CH[,,(Y5) and i, : CHalg( ) — CH},,(Yz) are induced by the inclusions
iy 1 Yy —> Y; and i, : Yz — YZ. For every prime ¢ # p the construction pass trough f-adic
homological equivalence and tensoring with Q we get an injection

sty - CHy(Yy) ® Q — CHY(Yz) ® Q,
that one could hope to be an isomorphism at least for some x € X.

Example 1.2.1.1.1 (| , Proof of Proposition 1.13|). Let Y — X a non isotrivial family
of elliptic curves and consider f : Y xx Y — X. Then sp%zf; is an isomorphism if and only if
Y% has not complex multiplication.

1.2.1.2 Variation of motivic Galois groups

Fix a Weil cohomology theory H* with coefficient in a characteristic zero field F' and let us
assume the standard conjectures of Section 1.1.1.2, so that for every x € X we have a motivic
reductive algebraic group G(H*(Yz)) over F.

Then, CH}(YZ)n is described (| , Section 6.3]) as the fixed points of the action of
G(H*(Yz )) on the canonical representation H*(Y,) and, the other way around, since G(H*(Yz))
is reductive, there exist integers m,n > 0 and vy, ...v, € H*(Y;)®™ @ (H*(Y;)Y)®™ C H*(Y,»*™)
such that G(H*( 7)) is the subgroup in GL(H*(Y,**™)) fixing vy, ..., v,. So describing the vari-
ation of algebraic cycles on all the powers Y, amounts to describing the variation of G(H*(Yz))

If the realization functor Ry : Motg — Vectyp factors trough some enriched L-linear
Tannakian category C, the Grothendieck-Serre-Tate conjecture predicts that describing the
variation of G(H*(Yz)) amounts to describing the variation of G(Ry(H*(Yz))). Finally, the
conjecture H = num suggests that the variation of the various Tannakian groups should not
depend on the cohomology theory, hence that one should be able to transfer information between
the monodromy groups of the various realizations.

1.2.2 Lisse sheaves and representations

In this section ¢ is a prime # p.
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1.2.2.1 Motivic lisse sheaves

For every z € X write m (X, ) for the étale fundamental group (| , V, 7]) of X pointed at 7.

By smooth proper base change R’ f,Qy(j) is a lisse sheaves (| , XVI, Corollaire 2.2], | ,
XII, Theorem 2.2]) on X. Via the equivalence of categories LS(X, Q) ~ Repg,(m1(X,7)) be-
tween the category of (-adic lisse sheaves LS(X, Q) and the category Repg, (71(X,7)) of {-adic
representation of m (X), R’ f.Qy(j) induces an action of 71 (X,7) on R' f.Qu(5)7 ~ H'(Yz, Qu(7)).
For every x € X, the choice of an étale path between ¥ and 7 induces an isomorphism
m(X,Z) ~ m1(X,7) and, with respect to this, equivariant isomorphisms

H' (Y, Qu(4))) ~ R f.Qu(j)7 ~ R f.Qu(j)z ~ H' (Yz, Qi(4))),

in the sense that the action of m(z,T) induced by restriction via m(z,7) — m(X,T) ~
m(X,7) on H' (Y, Qu(j)) ~ H'(Yz, Qu(5))) identifies with the natural action of 7 (z,T) on
H(Yz, Q¢(7))). The construction makes the diagram

7,0
SPn,x

CH}(Y;) ® Q — CH}(Yz) ® Q

H%(Yﬁ’ Q1)) = H2i<Yf7 Q(i))

commutative and the map spf;fr is mi(x,T)-equivariant with respect to the natural action of
m1(x,%) on CH)(Y;) and the action of 7 (z,T) on CH(Y;) by restriction trough the morphism
m(z,T) = m(X,T) ~ m(X,7) (] , X, App 7]). In particular sp’’ restricts to an injection

P s CHy(Y,) © Q = (CH{(¥;) © Q™40 o (CH(Yy) © Q™) = CHy(Y) @ Q.

1.2.2.2 Strictly exceptional locus

More generally, for every p in Repy, (7:(X)) and every o € X the choice of an étale path
between = and 7) gives rise to a representation

Pz * 7T1(£7E) - Wl(Xaf) = Wl(Xaﬁ) - GLn(ZE)a
hence to an inclusion
I1, :=Im(p,) C Im(p) =: IL.
Following | |, we give the following definition.

Definition 1.2.2.2.1. We say that x € |X]| is strictly Galois generic for p, if II, = II. If z is
not strictly Galois generic, we say that z is strictly Galois exceptional for p.

Write X5* (resp. X39°") for the set of strictly Galois exceptional (resp. strictly Galois
generic) points for p. For any integer d > 1, let X (< d) be the set of all x € |X]| such that
[k(x) : k] < d and set

X;tew(g d) = X;‘m NX(<d); nge"(g d) = XN X(<d).

In light of Section 1.2.2.1, the study of X;te“"” is an important problem, since it could control fine
invariants of the family Y,, x € X. Let us first point out that - as soon as k is arithmetically

rich enough - X79°" is non empty. This was observed independently by Serre (| , Section
10.6]) and Terasoma (| |). More precisely:
Fact 1.2.2.2.2. If k is Hilbertian, there exists an integer d > 1 such that X;ge"(g d) is infinite.

This follows from Lemma 1.2.2.3.1 below and the fact that the Frattini subgroup of an
¢-adic Lie group is open (| , 148]). By Hilbert irreducibility theorem (| , Chapter 13]),
Fact 1.2.2.2.2 holds in particular if k is infinite finitely generated.
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1.2.2.3 Anabelian dictionary

For every open subgroup U C II, write X;; — X for the connected étale cover induced by the
open subgroup p~}(U) C m(X). From the formalism of Galois categories (| , V, 3-5]), one
gets the following anabelian dictionary between rational points of Xy and subgroups of II:

Lemma 1.2.2.3.1. | , Section 3.2 (2)] For every x € | X|, the following are equivalent:

e There is an inclusion II, C U

e 1z : Spec(k(x)) — X lifts to a k(x)-rational point of Xy.

Xu

x

Spec(k:(xj) — X

Lemma 1.2.2.3.1 translates the group theoretic problem of understanding how II, varies
with 2 € | X| to the diophantine problem of describing the image of rational points of Xy in X.

1.2.2.4 Frattini argument

Write ®(II) C II for the Frattini subgroup of II, i.e. the intersection of all the maximal open
subgroups of II and write C(II) for the set of open subgroups U C II such that ®(II) C U.
From | , Pag. 148] and the definition of the Frattini subgroup, one deduces the following.

Lemma 1.2.2.4.1.
1. C(II) is finite.
2. If C C 1l is a proper closed subgroup, then there exists a U € C(II) such that C' C U.
So
x € X" & there exists U € C(IT) with I, C U (Lemma 1.2.2.4.1(2) )
& there exists U € C(II) such that x € Im(Xy(k(z)) — X(k(z)))  (Remark 1.2.2.3.1 ),

hence
xie= ) (| ImXy)— X(K)) (1.2.2.4.2)

UeC(Il) [k':k]<+oo
1.2.2.5 Hilbertian property
Recall (| , Definition 8.1]) the definition of sparse set.

Definition 1.2.2.5.1. Let B an irreducible k-variety and S C |B]| a subset. We say that S
is sparse if there exists a dominant and generically finite morphism 7 : T" — B of irreducible
k-varieties such that for each s € S, the fibre T, of 7 : T'— B at s, is either empty or contains
more than one closed point.

Since Xy — X is a finite étale cover of degree > 1, the set

U m(Xu(®) = X(*)) € |X]

kCk!

is sparse. Since a finite union of sparse is sparse (| , Proposition 8.5 (b)]) and C(II) is
finite (Lemma 1.2.2.4.1(1)), by (1.2.2.4.2) we see that X' is sparse. This is enough to prove
Fact 1.2.2.2.2, thanks to the following consequence of the definition of Hilbertian field.
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Lemma 1.2.2.5.2. If k is Hilbertian and S C |X]| is a sparse set, there exists a d > 1 such
that | X| — S contains infinitely many points of degree < d.

Proof. Since for every dense open subset U C X the set UNS is sparse in U (| , Proposition
8.5.(a)]), we may replace X with a dense open subset and hence assume that X is affine of
dimension n > 1. By Noether normalization theorem, there exists a surjective finite morphism
m : X — A} of some degree d > 1. Since the image of a sparse set via a surjective finite

morphism is sparse (| , Proposition 8.5 (¢)]), the set 7(S) C A} is sparse. So, by (| ,
Proposition 8.5 (d)]) A7 (k) Nm(S) is thin; see | , Section 9.1] for the definition. Since k is
Hilbertian, the set A7?(k)— (A (k)N (S)) is infinite. Hence 7~ (A7 (k)— (A2 (k)N (S))) C X =S
contains infinitely many points of degree < d. O]

1.2.3 Characteristic zero: Variation of motivic Hodge structure

Let £ C C be a finitely generated sub field of C.

1.2.3.1 Analytic local systems and geometric image

Fix € |X¢|. By smooth proper base change, from f* : Y& — X&" one obtains a Q-local
system R'f®"Q on X& and writes Iz for the image of the resulting action of m;(Xc, )
on H5(Y,,Q). By the invariance of the étale site for algebraically closed field extensions in
characteristic zero (| , XIII]), there is a natural isomorphism 7y (X5, z) ~ m (Xc, z). By
the Riemann existence theorem | , XII, Theoreme 5.1|, there is a natural algebraiza-
tion morphism 7. (X¢, ) — 7 (Xc, z) identifying m (X¢, ) with the profinite completion of
P (Xe, x) (| , XII, Corollaire 5.2]).
The action of 7" (X¢,z) on Hy(Y,, Q) ® Qy, factors trough the profinite completion map
lto1”(X<c, z) = m(Xe,z) ~ m(Xz, x) and, under the comparison isomorphism Hy(Y,, Q) ®
Q¢ ~ H(Y,,Qy), the action of m (X7, z) on Hy(Y,, Q) ® Q, identifies with the restriction via
(X5, z) = 7 (X, z) of the action of 7 (X, z) on H' (Y., Q).
Write G%9 for the Zariski closure of the image IT;9*° of the action of 7, (X, z) on H' (Y, Q).
Since 7 (X@, x) — m(Xc, ) has dense image, the previous discussion implies the following
independence result for Gé’geo, which is a geometric analogue of Conjecture 1.1.3.3.2.

Proposition 1.2.3.1.1. There exist a Q-algebraic group G*9, a faithful representation G C
GL(V") and an isomorphism V' ® Q, ~ H'(Y, Q) for every ¢, such that the composition
Gi,geo (24 @g Q GL(VZ) ® Qg ~ GL(H%Y;, @g)) identifies Gi,geo & @g with Gz,geo.

1.2.3.2 Variational Hodge conjecture

The Leray spectral sequence for f*": Y — X@" induces a morphism
Hp(Ye,Q(1)) — HO(XE", R f"Q(1))

fitting, for every z € | X¢/|, into a commutative diagram

H3(Ye,Q(1)) «———— Pic(Ye) ® Q

HY(X& R forQ(1) ® Q —— Hi (Y., Q(1)) o Pic(Y,) ® Q.

The Hodge conjecture for divisors (Fact 1.1.3.1.2) and the theory developed in | | enable
to prove a variational version of the Hodge conjecture for divisors (see also | , Section
3.1]).
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Fact 1.2.3.2.1. For every = € | X¢| and every z, € Pic(Y,) ® Q the following are equivalent.
1. There exists a z € Pic(Yc) ® Q such that % (cy.(2)) = ey, (22);
2. There exists a z € H5(Xc,Q(1)) such that i (2) = ¢y, (2);
3. ¢y, (2) is in the image of HO(X&", R?fo"Q(1)) — Hz(Y,*™, Q(1)).

Proof. Clearly we have (1) = (2) = (3). We show that (3) = (1). Let ¢ : Yo C Y™ be a
smooth compactification. The commutative cartesian diagram of C-varieties

Y, — s Yo —s YT
| o |
Spec(C) —— X,

induces a commutative diagram:

Cchp

HE(YE™ Q1) +——— Pic(Y™) @ Q

|+ Js

H3(Ye, Q1)) +———— Pic(Ye) © Q

HO(Xgm, B2 fonQ(1)) © Q —— H3(Ya, Q(1)) +5— Pic(Y) ® Q.
By the Global invariant cycles theorem (| |) the map
HE(YE™, Q1)) = Hp(Ye, Q1)) — HO(X", R*£"Q(1))

is surjective, hence, by (3), ¢y, (z.) € H3 (Y, Q(1)) is in the image of i oi* : HE (Y™, Q(1)) —

HZ(Y,,Q(1)). Since Hz(YE™,Q(1)) is a semisimple Q-Hodge structure, the map Hz (Y™, Q(1)) —

Im(i%) splits as a morphism of Q-Hodge structure. Since cy, (z,) is in Hz(Ys"?,Q(1))%°, then
¢y, (z;) is the image of some 2’ € HE(YE™, Q(1))*° via HE(YE™,Q(1))% — HE(Y,, Q(1)). By
the Hodge conjecture for divisors (Fact 1.1.3.1.2) z = cyemp (2™ for some 2z € Pic(YE™) ®
Q. Then z = i*(2“™) € Pic(Yc) ® Q is such that i%(cy(2)) = ¢y, (22). O

1.2.4 Positive Characteristic: F-isocrystals

In positive characteristic, there are two different categories of p-adic local systems: F-isocrystals
and overconvergent F-isocrystals. In this Section we briefly recall their definitions and the
relations between them. Let k be a perfect field of characteristic p > 0, write W := W (k) for
the Witt ring of £ and K := K (k) for the fraction field of W. Let X be a smooth geometrically
connected k-variety.

1.2.4.1 F-isocrystals

Slightly adapting the arguments in 1.1.4.2, one defines a crystalline topos (X/W)c.ys, a crys-
talline site Crys(X/W) of X over W and a structural sheaf Oy, see | , Section 7.17] and
[ , Section 2|. For every (U < T,%)! in (X/W).ys and every sheaf of coherent Ox -
modules &, one has a coherent Op-module 7 and for every morphism g : (U, T',+") — (U, T, ~)

U is a Zariski open subset of X, U < T is a nilpotent closed immersion of W-schemes and v a P.D. structure
on Ker(Or — Oyp)
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in (X/W)¢pys a natural morphism ¢*&r — & of coherent Op-modules. A crystal over X is then
a sheaf £ of coherent Ox y-modules, such that for every morphism g : (U, T",7") — (U, T,~)
in Crys(X/W), the natural morphism ¢*& — &r is an isogeny. Write Crys(X|W) for the
category of crystals, Crys(X|W)q := Crys(X|W) ® Q and Ox/kx = Oxw ® Q. For every
integer s > 1, the s-power F' of the absolute Frobenius ¢ of X acts on Crys(X|WW)g and
the category F-Crys(X|W)g of F-isocrystals is made by the couples (€, ®), where £ is in
Crys(X|W)g and ® : F*€ — &£ is an isogeny. For every & in F-Crys(X|W)g there is a
cohomology group H'(X,E) (a K-vector space) endowed with a semi linear action of F. Set
H! (X):=H. (X, Ox/k).

crys crys

1.2.4.2 Crystalline variational Tate conjecture

By | |, there is an higher direct image F-isocrystal R’ fe Oy x and the Leray spectral
sequence for f:Y — X induces, for every x € ]X|, a commutative diagram
Hfrys —X  Pic(Y

lLeray \

H° (X, R? fcrys*Oy/K — H? (Yz) N Pic(Y,) ® Q.

crys

Even though the crystalline Tate conjecture for divisors is not known, Morrow proved a varia-
tional version of it, giving an analogue of Fact 1.2.3.2.1.

Fact 1.2.4.2.1 (] , Theorem 1.4|). If f : Y — X is projective, for every z, € Pic(Y,) ®Q
the following are equivalent:

1. There exists z € Pic(Y) ® Q such that ¢y, (2,) = i (cy (2));
2. There exists z € H2 (V) such that cy, (z;) = i%(2);

crys T

3. ¢y,(2;) is in the image of H*(X, R? ferys Oy i) — HZ.,  (Yz).

crys

1.2.4.3 Slopes

One of the specific features of F-Crys(X|W)g, which has no ¢-adic analogue, is the theory of
slopes; see | |, | , Sections 3 and 4|. Let £ be in F-Crys(X|W)q of rank r. For every
x € |X|, one considers the multi-set of rational numbers {a?(£)}1<;<, of the slopes (| ,
Definition 3.3]) of € at z. We say that &£ is isoclinic (of slope a}(&)) if a{ (&) = a*(&) for every
z € |X| and unit-root if it is isoclinic of slope 0. Write F-Crys""(X|W)g C F-Crys(X|W)g
for the category of unit-root F-isocrystals. Finally, we say that £ has constant Newton polygon

if the function
]\ﬁg : ‘;XT’ — Q@T

z = (a7 (E)h<izr
1S constant.
Fact 1.2.4.3.1. Let £ be in F-Crys(X|WW)g.

L (] , Theorem 2.3.1], | , Theorem 3.12]): There exists a dense open immersion
i* : U — X such that i*€ has constant Newton polygon;

2. (| , Theorem 2.6.2|, | , Corollary 4.2]): If £ has constant Newton polygon, then
there exists a unique filtration

0= 50 Q 51 Q Q 5n—1 Q gn =& in F—CI‘YS(X|W)Q

such that &;/&;_1 is isoclinic of some slope s; with s; < 55 < ... < s,,.
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3. (] | [ , Theorem 3.9]): There is a natural equivalence of categories F-Crys"" (X |W)q

Rep c(m (X))
The filtration of Fact 1.2.4.3.1(2) is called the slope filtration of &.

1.2.4.4 Comparison I: F-isocrystals versus (-adic representations

The F-isocrystal Rifc,.ys,*(’)y/K could appear as a p-adic analogue of R'f,Q,. However, the
behaviour of F-Crys(X|W)g is quite different from the one of LS(X, Q).

Example 1.2.4.4.1 (| , Section 2.1]). In general the K-vector space H'(X, £) is not finite
dimensional. Consider X = A} and write

+o00
K(T) := {Z a;T" such that l£+moo la;| = 0}.
i=0

There is a natural isomorphism

H!. (X, 0x/k) ~ Coker(d : K(T) — K(T)dT).

crys

Since

4hrn ]aﬂ ::O,
1—+00

does not imply in general that
lim |a;/i+ 1| =0,
1—+00

one sees that HclryS(X/K ) is an infinite dimensional K-vector space. However, following

| |, one can replace K(T') with the sub ring

+o0
K(T)! .= {Z a;T" such that there exists a ¢ > 1 with HEIEOO c'la;| = 0},
i=0

and then check that d : Coker(K(T)' — K(T)1dT) = 0. While K(T) is the ring of function of
the rigid analytic open disc, K(T)" C K(T) is the sub ring of functions that converge on some
larger analytic open neighbourhood.

Example 1.2.4.4.2 (| , Example 4.6]). Let f : ¥ — X be a non isotrivial family of
elliptic curves with a supersingular fibre and set £ := R'f,Oy,x. Then there is a dense open
subscheme ¢ : U — X such that for all x € U, the elliptic curve Y, is ordinary. We have the
following;:

1. & is irreducible;

2. 17 ~ RifU,*OYU/K has a non split two steps filtration (the slope filtration of Section
1.2.4.3) reflecting the filtration of the p-divisible group of the generic fibre, given by the
connected-étale exact sequence

0= Y, [p™]" = Y, [p™] = Y, [p™]* — 0.

Hence:

1. While in the ¢-adic setting the restriction to an open subset of an irreducible lisse sheaf
remains irreducible, in the crystalline setting this is not true;

2. While R’ fi;,.Q, is semisimple, i*E is not.

So, on the one hand, the category F-Crys(X|W)g has a somehow pathological behaviour
with respect to LS(X,Qy), but on the other hand, it contains fine p-adic information.
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1.2.4.5 Overconvergent F-isocrystals

Examples 1.2.4.4.1 and 1.2.4.4.2 suggest that to get a category of p-adic local systems with a
behaviour similar to LS(X, Qy), one needs to rigidify the category F-Crys(X|W)g. This leads
to the introduce the category of overconvergent isocrystals Isoc'(X|K) and overconvergent
F-isocrystals F-Isoc' (X |K) and of rigid cohomology H(X, &) for £ in Isoc' (X |K). The defi-

nitions of these objects are technical, so we refer the reader to | | for the precise definitions
and we recall the description on a specific example.
Example 1.2.4.5.1. Set X = A} and retain the notation of Example 1.2.4.4.1. An overcon-

vergent isocrystal on X is a coherent K(T)T-module &£, endowed with a integrable connection
d: & — €@y K(T)dT.
The rigid cohomology of £ is then defined as

H(X,&) =Ker(d: € = € @yt K(T)1dT);
H'(X,E) = Coker(d : £ = € @iyt K(T)1dT);
H'(X,E)=0 if i>2
The natural morphism F : K(T) — K(T) sending >_ a;T" to >_ F(a;)T", induces a morphism
F: K(T)" — K(T)T, so that one can consider the overconvergent isocrystal F*£. An overcon-

vergent F-isocrystal on X is then a overconvergent isocrystal & on K(T)!, endowed with an
isomorphism F*& — £.

To compare F-isocrystals and overconvergent F-isocrystals, one introduces the categories
Isoc(X|K) and F-Isoc(X|K) of convergent isocrystals and convergent F-isocrystals (| |,
[ , 2.3.2]). The categories of isocrystals introduced so far, fit into a commutative diagram
(| , Section 2.4]) of faithful functors:

F-Isoct (X [K) ~ 5 Isoc (X|K)

l(_)con’v l(_)conv

F-Isoc(X|K) — 2™ Isoc(X|K) (1.2.4.5.2)

L |

F-Crys(X|W)g % Crys(X|W)q.

Furthermore:
Fact 1.2.4.5.3.

o (| , Theoreme 2.4.2|): The functor ® : F-Isoc(X|K) — F-Crys(X|W)g is an equiv-
alence of categories.

o (| ]): The functor (=)™ : F-Isoc' (X |K) — F-Isoc(X|K) is fully faithful.

It is a non trivial result of this thesis in Chapter 4 that R! Jerys«Oy i 1s in the essential
image of (—)®™ : F-Isoc'(X|K) — F-Isoc(X|K) ~ F-Crys(X|WW)q.
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1.2.4.6 Monodromy groups

If £ is a Q-lisse sheaf on X, we could define the monodromy group G(&) of £ equivalently as
the Zariski closure of the image of 71 (X, Z) acting on & or as the automorphism group of the
forgetful tensor functor (£) — Vectg,. For isocrystals, only the latter construction is available.
This was first worked out by Crew in | |. From now on, assume that k& = F,, with ¢ = p*
and, to simplify, that X has a Fj-rational point = : Spec(FF,) — X. Since there is a natural
equivalence of categories Isoc(IF,|K) >~ Vecty, the functor

z* : Isoc(X|K) — Isoc(F,|K) ~ Vecty

induces a neutralization for all the four categories in Diagram (1.2.4.5.2). Hence, for each & in
F-Isoc'(X|K), one obtains a commutative diagram of Tannakian categories:

(E) —— ()

l(_)conv l(_)conv

<gcom;> (7)96(; <5£]eo,com}>'

By Tannakian duality, this diagram corresponds to a commutative exact diagram of closed
immersions of algebraic groups

G(ggeo,conv) ¢ G(Econv)

[ [

G(E9°°) — G(E),
in which (| , Appendix]) the subgroups G(&£9¢>") C G(E°™) and G(£9%°) C G(&) are

normal .

Example 1.2.4.6.1. Retain the notation of Example 1.2.4.4.2. Then one has
G(E“™) =G(€) =GLy and G(E99°™) = G(E9%°) = Sy
while
B = G(i*E™) C G(i*E) = GLy and B’ = G(i*E9°°™) C G(i*E9%°) = SLy

where B C GLy and B’ C SLy are the Borel subgroups of upper triangular matrices. This
reflects the fact that ¢*£ admits a filtration made by convergent F-isocrystals that are not
coming form overconvergent ones, which corresponds to the flag stabilized by B and B’ but not

by GLQ and SL2

1.2.4.7 Comparison II: overconvergent F-isocrystals vs /-adic representation

While in characteristic zero one can try to compare the various monodromy groups via the
comparison between the singular and étale sites, in positive characteristic one needs different
tools. We recall some results in this setting. For technical reason it is easier to work with coeffi-
cients in algebraically closed fields. Let ¢ be a prime. Following | |, let Coef (X, ¥¢) be the
category of Q,-lisse sheaves (| , 1.1.1]) and let Coef (X, p) (denoted also with F-Isoc' (X))
be the category of @p—overconvergent F-isocrystals (| , Sections 2.4.14-2.4.18]). Let & be
in Coef(X,¢). For every x € | X| there is a characteristic polynomial ¢,(&;) € Q,[T] of £ in x
(see e.g. | , 2.1.4 and 2.2.10.]). Fix a collection ¢ := {1;}se, of isomorphisms ¢, : Q, ~ C.
We say that & is ¢-pure (of weight w), if all the roots of ¢(¢,(&;)) have complex absolute
value ¢fa@)Faw/2 Tet {1, be a collection of & in Coef(X, /). We say that {&}e, is a
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t-compatible system if 1,(¢.(Er)) = to(d(Er)), for every £ # (' and every z € |X|. Via the
theory of weights (| I, | |, | |) the conditions of purity and compatibility are
strong enough to guarantee that the different £ share several properties.

Example 1.2.4.7.1. Take two primes ¢ # ¢’ and assume, for simplicity, that £ £ p £ ¢'. If &,
in Coef(X,¢) and &y in Coef (X, (') are pure and compatible, then the following follows from
the theory of weights (| |) and the Grothendieck-Lefschetz trace formula (| , Theorem
10.5.1, page 603]):

o & is irreducible if and only if &y is irreducible (see e.g. | , Corollary 3.5.6]);
o Dim(H°(Xy,&)) = Dim(H®(Xg, Er)) (see e.g. | , Corollary 3.4.11]).

Fix z € |X| and write &z for the fibre of & at Z. Using the functor z*, for every & in
Coef (X, () one defines a monodromy group G(&) C GL(&Eyz). Furthermore, one can construct
a geometric monodromy group G(E/°°) C G(&): if £ # p, G(E]°) is defined as the monodromy
group of the base change of & to Xy, and if £ =p, G (£9¢°) is defined as the monodromy group

of the image of £ in the category of @p—linear overconvergent isocrystal over X. A striking
recent result, building on the Langlands correspondence and the theory of companions for /-

adic sheaves and overconvergent F-isocrystals (| |, | |, | |, | |), is an analogue
of Conjecture 1.1.3.3.2 and Proposition 1.2.3.1.1.
Fact 1.2.4.7.2 (| |, | ). Let {&}eer be a pure compatible system. Then:

e There exist a connected Q-algebraic group G9°°, ~a faithful representation p : G9° C
GL(V) and a (non canonical) isomorphism V ® Q, =~ &z for every £, such that the
composition G9° @ Q, C GL(V) ® Q, ~ GL(&z) identifies G9° @ Q, with G(&E,z)°.

e Assume moreover that & is semisimple for every ¢ € £. There exist a Q-connected alge-
braic group G, a faithful representation p : G C GL(V') and a (non canonical) isomorphism
VeQ,~ Evz for every ¢, such that the composition G ® Q, CGL(V)®Q, ~ GL(&iz)
identifies G ® Q, with G(&7)°.

1.3 Specialization of /-adic representations and Néron-Severi
groups in characteristic 0

Let k£ be a field of characteristic zero. Let X be a smooth geometrically connected k-variety
and write n for the generic point of X. In this section we recall results of Cadoret-Tamagawa

(I [, [CT13]) and André (] D

1.3.1 A uniform open image theorem for /-adic representations

In this section we discuss a finiteness result of Cadoret and Tamagawa, which strengthens Fact
1.2.2.2.2 when X is a curve.

1.3.1.1 Exceptional locus

Let X be a curve and p : m(X,7) — GL,(Zy) be a continuous representation with image II. In
Section 1.2.2.2, we recalled that, for every x € |X|, the choice of an étale path between 7 and
x induces a local Galois representation

Pz - Wl(iﬂ,f) — Wl(X,f) ~ 7Tl<X,ﬁ) i) GLT(ZD

with image II, and an inclusion II, C II. Following | |, we give the following definition.
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Definition 1.3.1.1.1. We say that x € |X| is Galois generic for p if II, C II is an open
subgroup. If x is not Galois generic, we say that x is Galois exceptional for p.

Write X7* and X7 for the set of closed Galois exceptional and Galois generic points for p

and set,
X< d) = X"NX(<d); XJ(<d):=X]"NX(<d).

1.3.1.2 Statement

Since X is geometrically connected, we can consider the representation
P m (X ) = m(X,7) = GLy(Ze)

and its image I19°°. Recall the following definition from | , Section 1]

Definition 1.3.1.2.1. We say that p is geometrically Lie perfect (GLP for short) if? every
open subgroup of [19°° has finite abelianization.

Then Cadoret-Tamagawa prove:

Fact 1.3.1.2.2 (| |). Assume that k is finitely generated and X is a curve. If p is GLP,
for every integer d > 1, the set X7%(< d) is finite and there exists an integer N > 1, depending
only on d and p, such that, for every x € X9°"(< d), one has [IT : II,] < N.

In the following subsections we will recall the main ideas in the proof of Fact 1.3.1.2.2.

1.3.1.3 Group theory: A projective system of subgroups

Recall that ®(IT) denotes the Frattini subgroup of II, i.e. the intersection of the maximal open
subgroups of II. In the proof of Fact 1.2.2.2.2, one of the key input was to consider the finite
set C(II) of subgroup U C II such that ®(II) C U. To prove Fact 1.3.1.2.2, Cadoret-Tamagawa
construct in | , Section 3] a projective system refining C(II). For every subgroup C' of II,
write

C(n) := Ker(C CII C GL,(Z) — GL.(Zy/0").
Set Co(II) := {II} and for every integer n > 1

Cn(IT) :== {U C II such that ®(II(n — 1)) C U and lI(n — 1) € U}.

By | , Lemma 3.1|, the maps ¢, : ;41 (1) — C,,(II) sending U to UP(II(n — 1)) are well
defined, hence they endow the collection {C,(II)},en with the structure of a projective system.
The analogue of Lemma 1.2.2.4.1 is then the following.

Lemma 1.3.1.3.1 (| , Lemma 3.3]).
1. For each integer n > 0, the set C,(II) is finite;

2. For n > 0, if C C II is a closed subgroup such that II(n — 1) € C, then there exists
U € C,(II) such that C C U.

2The terminology comes from the fact that this condition is equivalent to (Lie(I19¢°))% = 0.
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1.3.1.4 Anabelian dictionary I

For each integer n > 0 write
X,o= [ Xv—X
UeC, (1II)

Then, since the collection {II(n)},en is a fundamental system of open neighbourhoods of 1 in
II, one has

re X e forn>01II(n—1) Il
& for n > 0 there exists U € C,(II) with II, CU (Lemma 1.3.1.3.1(2) )
& forn >0z € Im(X,(k(x)) = X(k(z)) (Remark 1.2.2.3.1)

This shows that
X (< d) = () Im(X,(< d) = X(< d))

n>1

and that, for n > 0, one has
{r € X (< d) with [I1: II,] < [IT: (n)]} € X(<d) —Im(X, (< d) = X(<d)).  (1.3.1.4.1)

By (1.3.1.4.1), since IT has a finite number of open subgroups of bounded index and C,(II) is
finite, to prove Fact 1.3.1.2.2 it is enough to show that, for n > 0 and for every U € C, (1),
the set Xy (< d) is finite.

1.3.1.5 Genus and gonality

The finiteness of rational points of a smooth curve Y is controlled by the genus gy and the
gonality® ~y of the smooth compactification of Yz. More precisely, one has the following:

Fact 1.3.1.5.1. Let k a finitely generated fields of characteristic 0 and let ¥ be a smooth
proper k-curve.

L (] |): Assume that gy > 2. Then Y (k) is finite.
2. (| | ]): Assume that 7y > 2d + 1. Then Y (< d) is finite.

Coming back to Xy — X, we now aim to show that they have large genus and gonality.
For every open subgroup U C II, write & C ky for the smallest finite extension of £ on which
Xy is geometrically connected and write g and 7y for the genus and the gonality of the smooth
compactification of Xy Xy, k respectively. Then, to prove Theorem 1.3.1.2.2, it is enough to
show the following.

Fact 1.3.1.5.2. Assume that p is GLP and fix integers d; > 0, do > 1. Then:

L (] . Corollary 3.8]): There exists an integer N, > 1, depending only on p,d;, ds,
such that for every n > N, and every U € C,(II) one has gy > d; or [ky : k| > da.

2. (| , Corollary 3.11]): There exists an integer N, > 1, depending only on p, dy, da,
such that for every n > N, and every U € C,(II) one has v > d; or [ky : k] > ds.

Remark 1.3.1.5.3. A posteriori, via the Riemann-Hurwitz formula Fact 1.3.1.5.2(2) implies
Fact 1.3.1.5.2(1) but, actually, Fact 1.3.1.5.2(1) is used in the proof of Fact 1.3.1.5.2(2).

3Recall that the gonality of a smooth proper k-curve Y is the minimum degree of a non constant morphism
Y — PL
k
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1.3.1.6 Anabelian dictionary II: GLP assumption

To illustrate the idea in the proof of Fact 1.3.1.5.2(1), in this section we show, following | ,
Section 4.1.3|, that if k& = k, the representation p is GLP and II is infinite, then gri(n) tends
to infinity. Let ng > 1 be an integer. For each n > ng, the Riemann Hurwitz formula for the
cover Xryn) — Xii(n,) implies that

lim 29y 2> T ([T1(n0)/TH(0) ) (29110 — 2) (1.3.16.1)

n—-+o00

Since II in infinite, one has

lim [II(ng)/I(n)| = |II(ng)| = +oo.
n—-+400
Hence, if sup,(gnm)) > 2 then there exists an ng such that gr,,) > 2 and Equation (1.3.1.6.1)
implies that gri(,) tends to infinity. So we need to rule out the following two possibilities:

1. sup(gn@m)) = 1. Then there exists ny such that for all n > ng the smooth compactifica-
tion of Xy, is an elliptic curve. Since all finite morphisms between elliptic curves are
unramified, the Galois group II(ng)/II(n) of Xy — Xiine) would be a quotient of the
étale fundamental group of the smooth compactification of Xyy(,,). In particular it would
be abelian and hence I1(ng) = Hm [I(ng)/TI(n) would be abelian and infinite. But this
contradicts the fact that p is GLP, since I1(ng) would be an infinite abelian open subgroup
of 1I.

2. sup(gn(n)) = 0. Then for all n > 0, the smooth compactification of Xy, is isomorphic to
P'. So the Galois group II(1)/II(n) of the cover Xty — X is a subgroup of PGLy (k).
Using the classification of subgroups of PGLy(k) (see e.g. | , Corollary 10]) one
gets a contradiction via the GLP assumption as in point 1.

The proof of Fact 1.3.1.5.2(1) is significantly more involved, since the covers X;; — X are not
in general Galois. The idea is then to take a Galois cover X7 — X over Xy — X and close to
the Galois closure of Xy — X and then:

e First apply the previous argument to Xz (| , Section 3.3.1]);

e Then compare the genus of X and Xy via the Riemann-Hurwitz formula (| :
Section 3.3.2]).

We will discuss in more details this strategy in Section 2.1.1.3.

1.3.2 Specialization of Neron-Severi groups

Let Y — X be a smooth proper morphism. In this section we discuss a result of André, which
relates Facts 1.2.2.2.2 and 1.3.1.2.2 to the specialization of the Néron-Severi group.

1.3.2.1 NS-generic points

We specialize the discussion of Section 1.2.1 to the case of divisors. Let Z be a smooth proper
k-variety. In this setting, since algebraic and numerical equivalence coincide rationally for
divisors, for every couples of primes ¢, ¢ we have equalities

CHy (Z) ® Q = NS(Z;) ® Q = CHy(Zp) ® Q.
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Moreover, since H!(m (k), Pic’(Z)) is torsion, the exact sequence of k-group schemes
0 — Pic(Z)? — Pic(Z) — NS(Z) — 0

shows that NS(Z) @ Q = (NS(Zz) ® Q)™ *). So, for every x € X, the specialization morphisms
of Section 1.2.1 for the morphism f :Y — X read:

$Ppa t NS(Y) ® Q = NS(Yz) @ Q and  spj’, : NS(Y;) ® Q — NS(Y2) ® Q.

Definition 1.3.2.1.1. We say that = € | X| is NS-generic (resp. arithmetically NS-generic) for
f:Y — X if sp,, (resp. spj,) is an isomorphism.

1.3.2.2 NS-generic vs Galois generic

For every x € X, the choice of an étale path between T and 7 induces isomorphisms
m(X,7) = m(X,7),  H*(Yy, Q1)) ~ R f.Qu(L)g =~ R £.Qu(1)7 = H*(Yz, Qu(1))),

identifying the action of 7 (z,T) induced by restriction via m(z,7) — m(X,Z) ~ m(X,7) on
H*(Y5,Qu(1)) ~ H?*(Yz,Qu(1))) with the natural action of m(2,7) on H?(Yz, Qu(1))). Recall
that the specialization morphism makes the following diagram commutative:

Pic(Y,)) ® Q P Pic(Y)®Q SN Pic(Y,) ® Q

lCYn lc Yz
[d

NS(Y;) © Q e y NS(Yz) @ Q
H?(Ys,Qy(1)) ~ H?(Yz,Qq(1)).

and that = € |X| is said to be Galois generic (resp. strictly Galois generic) for po' : 7 (X) —
GL(H?*(Yz, Q¢(1))) if the image of m (z,7) acting on H?*(Y;, Q,(1)) is open (resp. coincide)
with the image of 71 (X,7) acting on H?*(Yz, Q.(1)). Conjecture 1.1.2.1.1 predicts that every
(strictly) Galois generic point is (arithmetically) NS-generic. André proved that this holds
without assuming Conjecture 1.1.2.1.1.

Fact 1.3.2.2.1 (| |). Every (strictly) Galois generic point for p,' is (arithmetically)
Néron-Severi generic.

Combining Fact 1.3.2.2.1 with Facts 1.2.2.2.2 and 1.3.1.2.2, one gets the existence and the
abundance of (arithmetically) NS-generic points. The proof of Fact 1.3.2.2.1 decomposes into
two steps:

e One relates algebraic cycles to cohomology via the Variational Hodge conjecture for di-
visors (Fact 1.2.3.2.1);

e One relates Hodge theory to ¢-adic cohomology via the comparison between the étale and
the singular sites;

In the next subsection, we recall in more details the argument for Fact 1.3.2.2.1 (See also | ,
Proposition 3.2.1]).
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1.3.2.3 Proof of Fact 1.3.2.2.1

Let z € | X| be a Galois generic point for p>!. Replacing X with a finite étale cover we can
assume that NS(Y;) ® Q = NS(Y;,) ® Q, NS(Yz) ® Q = NS(Y;) ® Q and that the Zariski closure
G7" of the image of (X, 7) acting on H?(Yy, Qy(1)) is connected. The commutative cartesian
diagram of k-varieties

Y, 3

8

k(x) ——
induces a commutative diagram:

Pic(Yy) ® Q «—— Pic(Yy) ® Q —— Pic(Yz) @ Q
®

l

NS(Y;) @ Q e > NS(Y%)

Q.

Then, it is enough to show that every z, € NS(Yz) ® Q lifts to an element of Pic(Y;) ® Q.
Since the image of Pic(Yz) ® Q — H?(Y%, Q(1)) identifies* with the image of Pic(Yc) @ Q —
H?*(Ye, Qg(1)) via the base change isomorphism H?(Y7, Qu(1)) ~ H*(Yc, Q,(1)) and the Néron-
Severi group is invariant under algebraically closed fields extension, it is enough to show that
every z, € NS(Yzc)®Q lifts to an element of Pic(Ye)®Q. Consider the commutative diagram:

Pic(Ye) ® Q —— Pic(Yzc) @ Q

}

NSO%,(C) ®Q

/

H(X¢" R?f.Q) —— Hp(Yzc, Q).

Take any z, € NS(Yzc) ® Q. By the Variational Hodge conjecture for divisors (Fact 1.2.3.2.1)
it is enough to show that z, is in the image of H*(X, R?f*Q) — H%(Yzc, Q). Since z, is fixed
by m(x,T), the group G?’l is connected and z is Galois-generic, z, is fixed by m(X,T), hence
by m1(Xc,T). Via the comparison between the étale and the singular sites, z, is then fixed by
7P(Xa" T), hence it is in the image of H(X, R2fQ) ~ H% (Y, Q)" Ke®) s HZ(Y,, Q).
This concludes the proof of Fact 1.3.2.2.1.

4This follows from the invariance of étale cohomology under algebraically closed field extension in character-
istic zero, the Kummer exact sequence and the fact that the map H? (Y, G,,) — H?(Yc, Gyy,) is injective.
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Chapter 2

Presentation of the work

This Chapter is devoted to summarize in a uniform way the new results obtained in this thesis,
trying to explain how they relate to each others.

2.1 Specialization of /-adic representations and Néron-Severi
groups in positive characteristic

Chapters 3 and 4 are devoted to extend to positive characteristic of the results of Cadoret-
Tamagawa (Fact 1.3.1.2.2) and André (Fact 1.3.2.2.1). Let k be a field of characteristic p > 0
and let X be a smooth geometrically connected k-variety. Write n for the generic point of X.
Fix a prime ¢ # p.

2.1.1 A uniform open image theorem in positive characteristic
2.1.1.1 Statement
We briefly recall the setting. Let

p: (X, 7) = GL,(Zy)

be a continuous representation. For every z € X the choice of an étale path between T and i
give rise to a representation

pe (2, T) = m(X,T) ~ m(X,7) = GL,(Z,),
hence to an inclusion II, := Im(p,) C Im(p) =: II. Set 119 for the image of
p? (X5 M) = m(X, 1) — GL,(Z).

Recall that x € |X] is Galois generic if I, C II is an open subgroup and that p is said to
be GLP if every open subgroup of 119 has finite abelianization. Write X9°"(k) for the set of
k-rational Galois generic points and X (k) := X (k) — XJ*(k). The first main result is the
extension of the d = 1 case of Fact 1.3.1.2.2 to positive characteristic.

Theorem 2.1.1.1.1. Assume that k is finitely generated, X is a curve and p is GLP. Then
X5*(k) is finite and exists an integer N > 1, depending only on p, such that for every x €
X9 (k), one has [IT:1I,] < C

Remark 2.1.1.1.2. Fact 1.3.1.2.2 holds not only for k-rational points but also for points of
bounded degree. The reason why we get only the statement for k-rational points is that the
analogue of Fact 1.3.1.5.1(2) does not hold in positive characteristic. See Sections 2.1.1.4 and
3.3.3 for more details.
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2.1.1.2 General Strategy

To prove Theorem 2.1.1.1.1 we follow the strategy of Cadoret-Tamagawa for Fact 1.3.1.2.2.
First recall (Section 1.3.1.4) that, for each integer n > 0, there is a finite set C, of subgroups
of IT and a (possibly disconnected) étale cover

X, = HXU—>X.

UEC7L

such that, for n > 0,

X (k) = () Im(Xa (k) = X (k).

{o € X(k) | [1: L] < [I1: TI(n)]} € X (k) — Im(X, (k) = X (k).

Since the set C, is finite, to prove Theorem 2.1.1.1.1, it is enough to show that for n > 0 and
each U € C, the scheme Xy has only finitely many k-rational points. Then by | | and
an argument of Voloch (see | , Theorem 3| for more details), we have the following
analogue of Fact 1.3.1.5.1.

Fact 2.1.1.2.1. There exists an integer g > 2, depending only on k, such that every smooth
proper curve over k£ with genus > ¢ has only finitely many k-rational points.

By Fact 2.1.1.2.1, Theorem 2.1.1.1.1 boils down to prove an analogue of Fact 1.3.1.5.2(1),
which, by group theoretic arguments, one reduces to the following:

Theorem 2.1.1.2.2. If p is GLP then for every closed but not open subgroup C' C I19°°, one
has

nIHl)I-iI-loo gemseon) = o0

The proof of Theorem 2.1.1.2.2 follows the strategy of the proof of Fact 1.3.1.5.2. However,
in positive characteristic, the Riemann-Huruwitz formula, used to study the growth of genus,
involves wild inertia terms. Even assuming ¢ # p, which is crucial here, controlling this wild
inertia terms is rather delicate. This is our main technical contribution.

2.1.1.3 Controlling the wild inertia

To simplify the notation, assume from now that k = k. For a group I' and subgroups I,C C T
write

Ko(T) :=NyergCg™' and Ic:=1/(INKa(T))

for the largest normal subgroup of I' contained in C' and the largest quotient of I acting faithfully
on I'/C. Define II(n) C II and IIo(n) C Il by the following commutative exact diagram:

1 —— II(n) > 11 > (I1,)e, — 1
1 —— Ile(n) > 1o > (I1,)e, — 1
1

The diagram induces a commutative diagram of covers
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Xy — Xenwm)

L~

where Xﬁ(n) — X and Xﬁ(n) — Xenm) are Galois. After a preliminary reduction where we

show that we can assume that II(1)/TI(n) is an (-group, the proof decomposes into two steps:
1. We show that Iii(n) tends to infinity. Since ﬁ(n) C II is a normal open subgroup and p

is GLP, this will follow from the fact that Galois covers of curves of genus > 1 contains
large abelian subgroups, as in Section 1.3.1.6;

2. We show that (1) implies that gonn) tends to infinity. To do this one has to relate Yii(n)
and gcm(n) via the Riemann Huruwitz formula for the cover Xﬁ(n) — Xcmm)- This, in
turn, boils down to study the ramification of the cover Xﬁ(n) — Xcmmn) and we do this
in two steps:

(a) We first consider the commutative diagram:
Xy — Xcnm)
The behaviour of the ramification under intermediate cover allows us to understand
the ramification of Xﬁ(n) — Xemny via the ramification of Xﬁ(n) — X.

(b) We then study the wild ramification of Xij(n) = X via the commutative diagram:
Xy — X

X.
By the preliminary reduction the Galois group of Xﬁ(n) — Xﬁ(1) is an (-group and
hence the morphism between the wild inertia subgroups of the covers Xg fig) — X

and X )~ X is an isomorphism. This implies that the wild inertia of X )~ X
grows 1n an explicit linear way and this is enough to control it.

II(1)

2.1.1.4 Gonality

We keep the notation of Section 2.1.1.1, but in this subsection we allow the prime ¢ to be equal
to p.

As already mentioned in Section 2.1.1.2, Theorem 2.1.1.2.2 implies the natural extension
to positive characteristic of Fact 1.3.1.5.2(1)). Moving from genus to gonality, in Appendix A,
we show how to adapt the arguments of Fact 1.3.1.5.2(2) to prove its positive characteristic
version. More precisely, we show the following, which can be used to extend Fact 1.3.1.5.2(2)
to positive characteristic.

Theorem 2.1.1.4.1. Let C' C II; be a closed subgroup of of codimension j. The following
hold:

1. If £ # p, the representation p is GLP and j > 1, then

nl_ljfoo Vet (n) = +00.
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2. If £ #pand j > 3, then

nl—lgls-loo CNig(n) = +00,

3. If £ =pand j > 2, then
nl—lgls-loo Clg(n) = +00,

As mentioned in Remark 2.1.1.1.2, Fact 1.3.1.5.1(2) is not true in positive characteristic.
Hence one cannot use directly Theorem 2.1.1.4.1 to obtain the version of Theorem 2.1.1.1.1 for
points of bounded degree (see Section 3.3.3 in Chapter 3 for a discussion around this issue).
However, Theorem 2.1.1.4.1(2) and (3) can be used to obtain results on not necessarely GLP or
(-adic representations. We obtain the following, which extends | , Theorem 1.3] to positive
characteristic.

Corollary 2.1.1.4.2. Assume that X is a curve and k is finitely generated. The following
hold:

1. If £ = p, then for all but at most finitely many = € X (k), II, C II has codimension < 1;

2. If £ # p, then for all but at most finitely many x € X (k), I, C IT has codimension < 2.

2.1.2 Specialization of Néron-Severi groups in positive characteristic

Let f:Y — X be a smooth proper morphism and set

p (X, M) — GL(H?(Yy, Qe(1)))

2.1.2.1 Statement

Let us recall (Section 1.3.2.1) that, for every x € X there are specialization morphisms
Py NS(Yy) ® Q = NS(Yz) ® Q and  sp;”, : NS(Y;) ® Q — NS(Y;) ® Q

and that x is said to be NS-generic (resp. arithmetically NS-generic) if sp, . (resp. sp{’,) is
an isomorphism. The main result of this section is the analogue of Fact 1.3.2.2.1 in positive
characteristic.

Theorem 2.1.2.1.1. Assume that £ is finitely generated. If f : Y — X is projective, every
(strictly) Galois generic point for p is (arithmetically) Neron-Severi generic. If f : Y — X is
proper, the same is true replacing X with a dense open subset.

Remark 2.1.2.1.2. The reason why, contrary to the characteristic zero case, we are not able
to prove Theorem 2.1.2.1.1 for a general smooth proper morphism f : Y — X is that in Fact
1.2.4.2.1 the morphism is assumed to be projective. On the other hand, using De Jong alter-
ation’s theorem (| |) one can prove Theorem 2.1.2.1.1 for not necessary proper morphism
up to replacing X with a dense open subset. For most of the applications Theorem 2.1.2.1.1 is
enough.

From now on assume, for simplicity, that f : Y — X is projective.
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2.1.2.2 General strategy

The starting point of our proof is to replace the use of Hodge theory used in Fact 1.3.2.2.1
with crystalline cohomology, since a variational form of the Tate conjecture (Fact 1.2.4.2.1) is
known in this setting. The main difficulty to overcome is to transfer the information about
the Galois invariants of the f-adic lisse sheaf R?f,Q,(1) to the crystalline local system (F-
isocrystal) R?feys «Oy i (1). This is the main new contribution of Chapter 4. More precisely,
since the F-isocrystal R? fo.s «Oy/ k(1) has a behaviour which is quite different from R* f,Q,(1)
(see Section 1.2.4.4), this comparison cannot be done directly. The idea is then to show that
R? fc,,ysy*(’)y/K(l) is coming from a smaller and better behaved category of p-adic local systems:
the category of overconvergent F-isocrystals. As it has been understood that overconvergent
F-isocrystals share many properties with lisse sheaves (see Section 1.2.4.7), the idea is to com-
pare first R? fos . Oy, (1) with its overconvergent incarnation R f, O; y (1) via various p-adic

comparison theorems and then R?f, O;/K(l) with R?f,Qy(1) via the theory of weights (| l,

[RAT7A]).

In the next to subsections we explain the strategy in more details.

2.1.2.3 Spreading out

One additional difficulty in our setting is that crystalline cohomology has a good behaviour only
over a perfect field, while our base field £ is, in general, not perfect. To overcome this problem
one uses a spreading out argument, so that our morphism f : Y — X will appear as the generic
fibre of a smooth projective morphism § : ) — X, where & is a smooth geometrically connected
[F,-variety. The idea is then to lift an element €, € NS(Yz) ® Q to NS(Y5) ® Q by specializing
it first to an element ¢ € NS(J%) ® Q of a closed fibre of J) — X and then to try and lift € to
an element ¢ € Pic()) ® Q, via the crystalline variational Tate conjecture (Fact 1.2.4.2.1) over
F

q-

2.1.2.4 From / to p

In order to show that ¢, € NS(Y]) ® Q satisfies the assumption of Fact 1.2.4.2.1, one has to
transfer the (-adic information that x is Galois generic to crystalline cohomology. Assume that
Z is a smooth geometrically connected [F -variety admitting an F,-rational point t and that
there is a map g : £ — X (in our application g : Z — X is a model for x : k(x) — X). The
cartesian square

induces representations
71'1(27{) — 7‘—1(‘)(7{) — GL(HZ(yE Q@(]))

Theorem 2.1.2.4.1. Assume that the image of m(Z,t) — 7 (X,t) — GL(H (Y, Qu(j)) is
open in the image of 71 (X, t) — GL(H"()}, Q¢(j)) and that the Zariski closures of the images
of m (X, 1) and (A5 ,t) acting on H'(YV;, Qe(j)) are connected. Then the base change map

HO(Xa Rifcrys,*oy/W)F:qj X Q — HO(Za RifZ,crys,*OyZ/W)F:qj X @

is an isomorphism.
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In light of the general strategy explained in Section 2.1.2.2; the proof of Theorem 2.1.2.4.1
decomposes then as follows:

1. We prove that Rifcry&*(/)y /w®Q and Rifz7cry37*0yz /w®Q are overconvergent F-isocrystals
(building on the work of Shiho on relative log convergent cohomology and relative rigid
cohomology | I );

2. We use that one doesn’t loose information passing from crystalline cohomology to over-
convergent F-isocrystals (Fact 1.2.4.5.3);

3. Let G, and Gz, be the Tannakian groups of R'fys «Oy/w ® Q and Rz crys Oy jw @ Q
as overconvergent F-isocrystals. Theorem 2.1.2.4.1 amounts to showing that G, = Gz .

4. The assumption implies that the Zariski closures G, and Gz, of the image of m (X, ¢)
and 7, (Z,1) acting on H* (), Q,(j)) are equal.

5. We show that (4) implies (3), using the theory of Frobenius weights and the fact that
reductive algebraic groups are essentially determined by their tensor invariants.

2.1.3 Applications
The first applications of Theorems 2.1.1.1.1 and 2.1.2.1.1 are to uniform boundedness problems.

2.1.3.1 Uniform boundedness for abelian varieties

If Z is a k-abelian variety write Z(k)ors and Z[¢*°](k) for its k-rational torsion and its (-primary
torsion respectively. By the arithmetic Lang-Néron theorem (| |), the group Z(k) is finitely
generated, hence Z(k);,.s and Z[¢>°](k) are finite. A folklore conjecture is the following:

Conjecture 2.1.3.1.1. Let g be an integer > 1. If k is finitely generated, then there exists an
integer N > 1, depending only on k and g, such that |Z(k),.s| < N for all k-abelian varieties
of dimension g.

Conjecture 2.1.3.1.1 is known when g = 1 (| ]), but it is widely open in general. As
a consequence of Theorem 2.1.1.1.1 we prove the weaker form of Conjecture 2.1.3.1.1 for the
(-primary torsion of abelian varieties of arbitrary dimension in one-dimensional families.

Corollary 2.1.3.1.2. Assume that k is finitely generated, f : Y — X is an abelian scheme,
X is a curve and /¢ # p. Then there exists an integer N > 1, depending only on Y — X and /,
such that |Y,[¢*](k)| < N for every x € X (k).

2.1.3.2 Uniform boundedness for Brauer groups

Let Z be a smooth proper k-variety. As it is well known (see e.g. | , Proposition 2.1.1)),
Conjecture T(Z, 1,¢) holds if and only if the (-primary torsion Br(Zz)[¢>]™*) of the Galois
invariants of the geometric Brauer group Br(Z;) := H*(Z;, G,,) of Zz is finite. In | ],
Varilly-Alvarado proposed an analogue of Conjecture 2.1.3.1.1 for the Brauer group of K3
surfaces in characteristic zero. Combining Theorem 2.1.2.1.1 with Theorem 2.1.1.1.1 and the

arguments of | |, one gets the following version for the ¢-primary part in one dimensional
families:
Corollary 2.1.3.2.1. Assume that k is finitely generated, X is a curve and ¢ # p. If T(Yz, 1,¢)

holds for all z € | X|, then there exists an integer N > 1, depending only on ¥ — X and ¢,
such that | Br(Yz)[(®]"@®)| < N for every x € X (k).
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2.1.3.3 Geometric applications

Assume now that k has transcendence degree > 1 over F,. Then Theorem 2.1.2.1.1, together
with a spreading out argument, implies the following:

Corollary 2.1.3.3.1. For every smooth proper morphism Y — X there exists a NS generic
point. If £ if finitely generated, then there exists a arithmetically NS-generic point.

Corollary 2.1.3.3.1 implies in particular (see the proof of | , Theorem 7.1|):

Corollary 2.1.3.3.2. Assume furthermore that Y, is projective for every x € | X|. Then there
exists a dense open subscheme U C X such that the base change f; : UxxY - Uof f: Y — X
is projective.

The second application of Corollary 2.1.3.3.1 is to hyperplane sections in smooth projective

varieties. Assume that Z is a smooth projective k-variety of dimension > 3 and let Z C P} be
a projective embedding. Every smooth hyperplane section D C Z induces an injection

NS(Zz) ® Q — NS(D;) ® Q.

To reduce problems on the Néron-Severi groups to the case of surface, it could helpful to know
whether there exists a smooth hyperplane section D C Z, such that NS(Z;) ® Q — NS(D;)®@Q
is an isomorphism. This is not true in general (see Example 4.4.1.1 in Chapter 4), but one can
apply Corollary 2.1.3.3.1 to an appropriate pencil of hyperplane sections to obtain the following
arithmetic variant.

Corollary 2.1.3.3.3. If k is finitely generated and dim(Z) > 3, then there are infinitely many
smooth k-rational hyperplane sections D C Z such that the canonical map

NS(Z)® Q — NS(D)® Q

is an isomorphism.

2.1.3.4 Applications to the Tate conjecture

As already mentioned in Section 2.1.2.1, Conjecture 1.1.2.1.1 implies Theorem 2.1.2.1.1. Using
the corollaries in Section 2.1.3.3, one can enlarge the class of varieties for which the ¢-adic Tate
conjecture holds.

Corollary 2.1.3.4.1. Assume that k is infinite finitely generated. Then:

e Let Z be a smooth projective k-variety of dimension > 3 and choose a projective em-
bedding Z C Py, If T(D, 1,¢) holds for every smooth hyperplane sections D C Z, then
T(Z,1,¢) holds.

e Let Y — X be a smooth proper morphism. If T(Y,,1,¢) holds for every x € |X|, then
T(Y,, 1,¢) holds.

7+

2.2 p-adic monodromy groups

The proof of Theorem 2.1.2.1.1 suggests that studying the interplay between the categories of
F-isocrystals and overconvergent F-isocrystals could lead to fine p-adic information on families
of varieties. The next Chapters 5 and 6 are devoted to the investigation of this problem in
more details.
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2.2.1 Maximal tori in monodromy groups of F-isocrystals and appli-
cations (joint with Marco D’Addezio)

In this section & = [, is the finite field with ¢ = p® elements. For simplicity we assume that X
has an F,-rational point x.

2.2.1.1 Maximal tori in monodromy groups of F-isocrystals

Let £ be a pure and p-plain® overconvergent F-isocrystal on X. As recalled in Section 1.2.4.6,
once x is fixed, to & we can associate four algebraic groups, fitting into a commutative diagram:

G((c:geo,com)) ¢ G(gconv)

[ [

G(E9°) —— G(E).

If £ has constant Newton polygon, Crew asks whether G(£9¢°°"") is a parabolic subgroup of
G(&9°°), hence whether G(£°™) is a parabolic subgroup of G(£). If G(£“™) C G(&) and
G(&9eocomv) C (G(E9°) are parabolic subgroups then, in particular, G(£°™) and G(E9°*)
contain a maximal torus of G(€) and G(E9°°) respectively. From the results in | | or in
[ |, one deduces that G(E°"") contains a maximal torus of G(&); see Corollary 5.2.3.2.1 in
Chapter 5. We prove that this is also true for the inclusion G(E€9¢«") C G(E9%°).

Theorem 2.2.1.1.1. If £ is pure and p-plain, then G(£9¢*°"") contains a maximal torus of

G(E9).

Our main motivations to prove Theorem 2.2.1.1.1 were the applications that we explain in
the following two sections.

2.2.1.2 A special case of a conjecture of Kedlaya

The following corollary of Theorem 2.2.1.1.1 proves the particular case of the optimistic con-
jecture? in | , Remark 5.14] where, with the notation of | , Remark 5.14|, F; C &
has minimal slope and &, is the convergent isocrystal Ox.

Corollary 2.2.1.2.1. Let £ be an (absolutely) irreducible overconvergent F-isocrystal. If £
admits a subobject of minimal slope F C £ with a non-zero morphism F¢""9¢° — O%°
then £9%° ~ O%°.

To deduce Corollary 2.2.1.2.1 from Theorem 2.2.1.1.1, one first reduces to the situation
where the determinant of £ has finite order. To simplify, let us assume that F = £ and
that G(€°") is connected. Then Theorem 2.2.1.1.1, together with the Global monodromy
theorem for overconvergent F-isocrystals (| , Corollary 3.5.5]), implies that G(E«"9¢°) =
G(E°™), hence that the morphism &°""9 — O%° induces a surjection £ — Ox. In
particular, £{°" has slope zero, so that the minimal slope of £ is zero. Since the determinant
of € has finite order, this implies that £ = £ and hence that £“" admits a quotient
£ — Ox in F-Isoc(X). As (=)™ : F-Isoc!(X) — F-Isoc(X) is fully faithful, £ admits a
quotient £ — Oy in F-Isoc'(X). Since & is irreducible, this implies £ ~ Oy.

'Recall that an algebraic number is p-plain if it is an f-adic unit for every prime £ # p and that an F-isocrystal
is said to be p-plain if the eigenvalues of the Frobenii at closed points are p-plain algebraic numbers.
2Note that the optimistic conjecture in | , Remark 5.14] turned out to be false in general
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2.2.1.3 Perfect torsion points of abelian varieties

Let F C F be a finitely generated field extension and A a F-abelian variety without isotrivial
geometric isogeny factors. Write A™ for the Frobenius twist of A by the p"-power absolute
Frobenius. Since A(F)ios is finite by the Lang-Néron Theorem (| |) there is a tower of
finite groups A(F)iors € AN (F)iors € AP (F)iors C ... In June 2011, in a correspondence with
Langer and Rdssler, Esnault asked whether this chain is eventually stationary. An equivalent
way to formulate the question is to ask whether the group of FP*f-rational torsion points
A(FPet) s is a finite group, where FP! is a perfect closure of F. Using Corollary 2.2.1.2.1,
we can give a positive answer to her question.

Corollary 2.2.1.3.1. Let A be an abelian variety over F' without isotrivial geometric isogeny
factors. Then the group A(FPe),. is finite.

To relate Corollaries 2.2.1.3.1 and 2.2.1.2.1 we use crystalline Dieudonné theory, as developed
in | |. The proof of Theorem 2.2.1.3.1 is by contradiction. If |A[p*](FP!)| = oo, there
exists an injective map Q,/Z, — A[p>]* from the trivial p-divisible group Q,/Z, over F and
the étale part of the p-divisible group of A. Spreading out to a “nice” model A/F of A/F
and applying the contravariant crystalline Dieudonné functor I, one gets a surjection of F-
isocrystals D(A[p™®]*) — D((Q,/Z,)7) ~ Ok over F. By a descent argument and a careful
use of Corollary 2.2.1.2.1, the quotient extends to a quotient D(A[p>]) = Oz over F. Going
back to p-divisible groups, this gives an injective map Q,/Z, — A[p>] over F. Therefore
A[p>®](F) would be an infinite group, contradicting Lang-Néron Theorem.

2.2.2 Specialization of p-adic monodromy groups over finitely gener-
ated fields

The main topic of Chapter 6 is the definition and the study of a category of (over)convergent
F-isocrystals for varieties defined over infinite finitely generated fields.

2.2.2.1 (Over)convergent F-isocrystals over finitely generated fields

As already mentioned in Section 2.1.2.3, crystalline cohomology and in general the various
category of p-adic local systems work well when k£ is perfect. On the other hand Fact 1.2.2.2.2
and Theorem 2.1.1.1.1 require that k is arithmetically rich enough, i.e. that k is finitely gener-
ated. So to obtain (variants of) Fact 1.2.2.2.2 and Theorem 2.1.1.1.1 in the p-adic setting, one
would like to have good categories of (over)convergent F-isocrystals for varieties defined over
infinite finitely generated fields. Let k be an infinite finitely generated field of characteristic
p > 0 and X a smooth geometrically connected k-variety. To define and study a category of
(over)convergent F-isocrystals we follow the main ideas in Sections 2.1.2.3 and 2.1.2.4, spread-
ing out X over a finite field. We define (roughly) an (over)convergent F-isocrystal over X as
an equivalence class [€] of couples (X, &), where X' is an appropriate model of X over F, and

—_—

£ is in F-Isoc'V(X). Write F-Isoc'(X) and Pﬁggc(X ) for the categories of overconvergent
F-isocrystals and convergent F-isocrystals over X respectively.

2.2.2.2 Monodromy groups of (Over)convergent F-isocrystals

To every couple (X, £) representing the equivalence class [€] of an (over)convergent F-isocrystal
over X, we can associate an algebraic group G(€) as in Section 1.2.4.6. Showing that G(&) does
not depend on the choice of a representative (X, &) of the equivalence class of [£], amounts
to showing that every dense open immersion i : Y — X of smooth [ -varieties induces an
isomorphism G(i*€) ~ G(E). While this is true for overconvergent F-isocrystals, it does not
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hold in general for every convergent F-isocrystal; see Example 1.2.4.6.1. Indeed if the Newton
polygon (see Section 1.2.4.3) of £ is not constant on X, there exists an open immersion i : U —
X and a canonical filtration

& C& C ... Ci*€ in F-Isoc(U)

encoding the slopes of i*£. In general the sub-objects &; are not in the essential image of
i* : F-Isoc(X) — F-Isoc(U) and this is an obstruction to have G(i*€) = G(£). However,
we prove that this is the only obstruction, hence we get well defined monodromy groups for
convergent F-isocrystals with constant Newton polygon.

2.2.2.3 Specialization of overconvergent F-isocrystals

After having settled the general formalism, one attaches to every overconvergent F-isocrystals
(resp. convergent I-isocrystals with constant Newton polygon) [€] an exceptional locus X

and a strictly exceptional locus X[ngx In the overconvergent setting our main result is an
analogue of Fact 1.2.2.2.2 and Theorem 2.1.1.1.1.

Theorem 2.2.2.3.1. Let [£] be a geometrically semisimple overconvergent F-isocrystal over
X (see Section 6.3.2 for the definitions). Then:

e The set X[eg] is sparse. In particular there exists a d > 1 such that X[’f]”(g d) is infinite.

o If [£] is algebraic, then the set X[ngx is sparse. In particular there exists a d > 1 such

that X ™ (< d) is infinite.

o If X is a curve, the set X{j(< 1) is finite.

The proof of Fact 1.2.2.2.2 and Theorem 2.1.1.1.1 relies heavily on the fact that Iz, is
an (-adic Lie group, hence, implicitly, on the Galois-theoretic structure of LS(X, /). These
features are not available in this p-adic setting. Instead, the idea is to use companions theory
(| |, | Iy [ |, | |) for both overconvergent F-isocrystals and lisse sheaves, which
associates to an overconvergent F-isocrystal [£] with representative (X, £) an f-adic companion
[F¢] with representative (X, &) for some ¢ # p. Then we show that the exceptional loci of [£]

and [F] coincide, so that we can deduce Theorem 2.2.2.3.1 from Fact 1.2.2.2.2 and Theorem
2.1.1.1.1.

2.2.2.4 Specialization of convergent F-isocrystals

In the convergent setting, we get somehow weaker results. The fully faithful functor (—)®"" :
F-Isoc'(X) — F-Isoc(X) induces a fully faithful functor

—~——

(=)™ : F-Isoc!(X) — @gc(X)-

Let [£] be in F-Tsoc'(X) represented by (X, &) and assume that £ has constant Newton
polygon over X. Then there the slope filtration of £ over A induces a canonical filtration

I:(C/’:IEOH’U g [5]507’1’[} g m g I:g:ICOn’U
and morphisms of algebraic groups
G([E™) « G(E1 ™) < G((€)).

For every algebraic group G write rk(G) for its reductive rank and recall that for any subgroup
H C G one has tk(G) > rk(H).
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Theorem 2.2.2.4.1. Let [£] be a pure and p-plain overconvergent F-isocrystal over X with
constant Newton polygon (see Section 6.5.2 for the definitions).

e The set of x € |X| such that rk(G([€]°™")) > rk(G(z*[E]®™")) is sparse. In particular,
if k is infinite there exists an integer d > 1 and infinitely many = € X (< d) such
rk(G(z7[€]°)) = k(G (2" [E]™)).

e If X is a curve for all but at most finitely many k-rational points = one has rk(G([£]°™)) =
rk(G(z*[€]°™)) and rk(G([E]7™)) = k(G (z*[E]§7™)).

o If X is a curve and G([E];"""9*)" is abelian, then X{f...(< 1) is finite.

Remark 2.2.2.4.2. If [£]{°" has slope zero, the fact that X["’gtfi”g’.m is sparse follows directly
from Fact 1.2.2.2.2 and 1.2.4.3.1.

Via Theorem 2.2.2.3.1, Theorem 2.2.2.4.1 amounts to compare ngﬁ%m, X["’g]i”fm and X[sgtf’f
To do this, one uses that for every x € | X| there is a canonical diagram of algebraic groups

G(a*[€]) —— G((€])

J J

G [E]™) — G([El™)

l l
G (el — G(IEl™),

so that one can try and obtain information on X f;{{om and X7, from X [’f]n, via the results

[g}con'u
in Chapter 5.

2.3 Further results

Chapter 7 and 8 give complements the results of the previous Chapters.

2.3.1 Reduction to the Tate conjecture for divisors to finite fields
2.3.1.1 Statements

Corollary 2.1.3.3.1 and a spreading out argument show that T(Z,1,/) for all smooth proper
varieties over finitely generated fields of transcendence degree 1 over F, implies T(Z,1,¢) for
all smooth proper varieties over finitely generated fields of characteristic p. While Corollary
2.1.3.3.1 is false when £k is finite, mimicking the arguments in the proof of Fact 1.2.3.2.1, we
can further reduce T(Z, 1, /) to the case of finite field.

Theorem 2.3.1.1.1. Assume p > 0. Then T(Z, 1, /) for every finite field k of characteristic p
and every smooth projective k-variety Z implies T(Z,1,¢) for every finitely generated field k
of characteristic p and every smooth proper k-variety Z.

By an unpublished result ([d.J]) of De Jong (whose proof has been simplified in | ,
Theorem 4.3]), over finite fields the ¢-adic Tate conjecture for divisors for smooth projective
varieties follows from the /-adic Tate conjecture for divisors for smooth projective surfaces and
hence Theorem 2.3.1.1.1 implies the following:

Corollary 2.3.1.1.2. Assume p > 0. Then T(Z, 1,¢) for every finite field k of characteristic p
and every smooth projective k-surface Z implies T(Z, 1,/) for every finitely generated field k
of characteristic p and every smooth proper k-variety Z.
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2.3.1.2 Sketch of the proof

The idea is to try and transpose the Hodge theoretic arguments in the proof of Fact 1.2.3.2.1 to
the (-adic setting. We spread out Z to a smooth proper morphism Z — K of F -varieties such
that Z embeds as a dense open subset into a smooth proper I -variety Z“"?. By smooth proper

base change and the global invariant cycles theorem (| |; see | , Theorem 1.1.1]), a
class in H?(Zz, Qq(1))™*) arises from a class in H2(Z5™", Q,(1))™F) hence, by T(Z°™, 1, (),
from a divisor on Z". Compared to | , Section 5.1], the extra difficulties come from

the fact that resolution of singularities in positive characteristic and the semisimplicity of the
(Galois action in f-adic cohomology are not known. The first issue can be overcome using De
Jong’s alteration theorem and the second adjusting an argument of Tate (| , Proposition
2.6.]). Applying De Jong’s alteration theorem, we find a generically étale alteration Z - Z
such that Z embeds as a dense open subset into a smooth proper F,-variety. The problem
is that the resulting morphism Z 5 Z > Kis not, in general, generically smooth, so that
we cannot apply directly the global invariant cycles theorem. To solve this issue, we use the
main ingredients in its proof: Hard Lefschetz theorem | , Theorem 4.1.1] and the theory
of weights for F,-schemes of finite type | , Theorem 1|.

2.3.2 Uniform boundedness of Brauer groups of forms in positive
characteristic

Let k be a field of characteristic p > 0 and let X be a smooth proper k-variety .

2.3.2.1 Finiteness of Brauer groups

As already mentioned in Section 2.1.3.2, it is classically known that Conjecture T(X, 1, ¢) holds
if and only if Br(X7)[¢>]™® is a finite group. The results in Chapters 3 and 4 (Corollary
2.1.3.2.1) give uniform boundedness results for |Br(Xz)[¢>°]™*)| in one dimensional families
of varieties. However, recent results show that one can expect stronger finiteness statements.
Write Br(X7)[p/]™® for the prime-to-p torsion of Br(Xz)™®).

Fact 2.3.2.1.1. Assume that k is finitely generated and X is a smooth, proper k-variety. Then:

L (] , Theorem 5.1]): If p = 0 and the integral Mumford Tate conjecture for X holds
(| , Conjecture C.3]), then Br(X7)™®) is finite.

2. (| , Corollary 1.2]): Ifp > 0 and T(X, 1, ¢) holds for every £ # p, then Br(Xz)[p/]"*)
is finite.

The results in Chapter 3 are not sufficient to give uniform boundedness results for | Br(Xz)[p/]™*)|.
In Chapter 8, we give a few evidences that such boundedness results could hold.

2.3.2.2 Uniform boundedness in forms

Recall that for a field extension k C k' C k, a (k/k')-form of X is a k'-variety Y such that
Yz =Y Xp k ~ Xz. Let k C k' be a finite field extension and Y a (k/k')-form of X. If p =0
and X satisfies the integral Mumford Tate conjecture (resp. if p > 0 and X satisfies the Tate
conjecture for divisors for every ¢ # p), then the same is true for Y, hence Br(Y;)™®) (resp.
Br(Y;)[p']™**") is a finite group. But, for an integer d > 1, it is not clear whether one can
find a uniform bound (depending only on X and d) for | Br(Y;)™®*)| (resp. |Br(Yz)[p/]™*))),
while %" is varying on the finite field extensions k C &’ with [k’ : k] < d and Y among all the
(k/K")-forms of X. If p = 0, this is proven by Orr-Skorobogatov in | , Theorem 5.1]. If
p > 0, this is the main result of this chapter.
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Theorem 2.3.2.2.1. Assume that k is finitely generated, X is a smooth proper k-variety and
p > 0. If T(X,1,¢) holds for every ¢ # p, then for every integer d > 1, there exists an integer
N > 1, depending only on X and d, such that for every finite field extension k C k' of degree
< d and every (k/k')-form Y of X one has

| Br(Y xp B)[p)*) < N.

2.3.2.3 Strategy

The proof of Theorem 2.3.2.2.1 is a combination of Tannakian, ¢-adic and ultrafilter techniques
and it is a consequence of a general theorem on forms of compatible systems of representations
over finitely generated fields of positive characteristic. First one reduces to prove Theorem
2.3.2.2.1 replacing Br(Y%)[p/] with

M(Br(Yy)) := [[ Tu(Br(Y3) © Qu/Ze.
L#£p

Then the Kummer exact sequence and the theory of weights (| |) imply that the collection
{T)(Br(Y%)) }ep is a compatible system of 7y (k)-representations. The key point are the following
to steps:

1. for every (k/k)-forms Y of X, there exists a finite field extension k C ky of degree depend-
ing only on the Rank(1;(Br(Xj3)) and an isomorphism of 7 (ky)-modules M (Br(Y7)) ~
M(Br(X));

2. Up to replacing k with a finite extension, for every integer d > 1 there exists an integer
N > 1, depending only on X and d, such that, for every field extension k' C k” with
[£" : k'] <d, one has

[T (Br(x)™ &) My(Br(X7))™*)] < N.
l#p

Statements (1) and (2) hold more generally for every compatible system of Z,-representations
{T)}zp and, with Statements (1) and (2) in hands one can adjust the arguments in | :
Section 5| to obtain Theorem 2.3.2.2.1.

To prove (1), first we bound the number of connected components of the Zariski closure
of the image of an f(-adic representation of a profinite group, only in terms of ¢ and of the
rank of the representation. To get (1), one has to get rid of the dependency on ¢. This
follows formally from the compatibility assumption and the fact that the connectedness of the
(-adic monodromy group can be read off the L-function of the various compatible systems
{T7?" @ (T))®™}ozp. For (2), the key point is to show that, if the Zariski closure of the image
of m (k) acting on V; is connected, then for each integer d > 0 there exists an integer D,
depending only on d and {7;}sz,, such that, for every finite field extension k& C k' of degree
< d, one has (T,;/0)"*) = (T,/)™*) for every ¢ > D. To prove this, one exploits again
independence results, not in the f-adic setting but in the ultrafilter setting, recently obtained
by Cadoret-Hui-Tamagawa in | | and by Cadoret in | -
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Chapter 3

A uniform open image for /-adic
representations in positive characteristic

3.1 Introduction

3.1.1 Notation

In this Chapter k is a field of characteristic p > 0 with algebraic closure k C k. For a k-variety
X, write | X| for the set of closed points and for every integer d > 1, X (< d) for the set of all
x € | X| with residue field k(x) of degree < d over k. If d = 1 we often write X (< 1) = X (k).

Let ¢ be a prime always # p.

3.1.2 Exceptional Locus

From now on, let X be a smooth geometrically connected k-variety. Let p : m(X) — GL,(Z) be
a continuous representation of the étale fundamental group' of X. By functoriality of the étale
fundamental group, every x € |X| induces a continuous group homomorphism m(x) — m(X),
hence a “local" Galois? representation p, : 71 (z) — 7 (X) — GL,(Z). Set

= p(m (X)) g =pm(Xz)) = pa(m(z)).
Write X7 for the set of all z € |X| such that II, C Il is an open subgroup of II and set
XpP =X = X9 X9(<d) == XJ"NX(<d); X)'(<d):=X"NX(<d).

We call X7* the exceptional locus of p. The study of Xg@”(g d) is an important problem
especially when the representation comes from a smooth proper morphism f : Y — X (see
Subsection 3.1.5), so that II, controls fine arithmetic and geometric invariants of the family Y,
x € | X|. Since the Frattini subgroup of II is open (| , Pag. 148]), a classical argument (see
Fact 1.2.2.2.2) shows that if £ is Hilbertian (in particular if & is finitely generated) there exists
a d > 1 such that X9°"(< d) is infinite.

3.1.3 Uniform open image theorem

When X is a curve and k is finitely generated, one can go further, under a mild assumption on
p:m(X) — GL.(Zy).

! As the choice of fibre functors will play no part in the following we will omit them for the notation for étale
fundamental group.
2Recall that 7 (z) ~ m1(Spec(k(x)) identifies with the absolute Galois group of k(x).

72



Definition 3.1.3.1. A topological group II is Lie perfect® (or LP for short) if every open
subgroup of II has finite abelianization. We say that p : m(X) — GL,(Z,) is Lie perfect (or
LP for short) if IT is LP and that p is geometrically Lie perfect (or GLP for short) if II; is LP.

With this terminology, we can state our main result, which is an extension of | ,
Theorem 1.1] to positive characteristic.

Theorem 3.1.3.2. Assume that X is a curve and k is finitely generated. If p is GLP, then
X57(< 1) is finite and there exists an integer N > 1, depending only on p, such that [IT : TI,] <
N for all » € X9"(< 1).

When X (k) is infinite, Theorem 3.1.3.2 gives us uniform boundedness results that are im-
possible to achieve using Fact 1.2.2.2.2; see for example Corollaries 3.1.5.1.1 and 3.1.5.2.1.

3.1.4 Strategy

While the general strategy of the proof of Theorem 3.1.4.2.2 is similar to the one of | ,
Theorem 1.1, the technical details are more complicated in positive characteristic. Indeed,
the proof of Theorem 3.1.3.2 is based on the genus computations, via the Riemann-Hurwitz
formula, of careful chosen abstract modular curves. In positive characteristic, the Riemann-
Hurwitz formula involves wild inertia terms and - even assuming ¢ # p - controlling those wild
inertia terms is rather delicate. To deal with them, we generalize the computations made in

[ |

3.1.4.1 Abstract modular scheme

For every open subgroup U C II write f; : Xy — X for the connected étale cover corresponding
to the open subgroup p~'(U) C m(X) and ky for the smallest separable field extension of k
over which Xy is geometrically connected. Write Uz, = UNII; and recall the following anabelian
dictionary.

Fact 3.1.4.1.1. For every open subgroup U C II the following hold:
1. For every x € | X|, we have that II, C U if and only if z lifts to a k(z)-rational point on
Xu;
2. The cover Xy — Xy corresponding to the open subgroup Uy C Il is X Xy, k— Xz

In view of Fact 3.1.4.1.1, we call Xy the connected abstract modular scheme associated to
U. Fact 3.1.4.1.1 enabled Cadoret-Tamagawa in | | to construct a projective system of
abstract modular schemes (whose definition is recalled in Section 3.3.1.2):

fo:Xo= ] Xv—X
UeC,(1I)

This system has the property that if x € |X| does not lift to a k(z)-rational point of A, for
some n > 1, then II, C II is not an open subgroup; see Lemma 3.3.1.2.1. The finiteness of
X,(< d) can be then formulated in diophantine terms as follows:

(1): The image of Hm X, (< d) — X (< d) is finite.
To prove (1) it is enough to show

(2): The set &,,(< d) is finite for n > 0.

3The terminology comes from the fact that if IT is an ¢ adic Lie group this condition is equivalent to
Lie(I1)? = 0.
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3.1.4.2 Growth of Genus

If X is a curve, k is finitely generated and d = 1, by | | and an argument of Voloch (see
| , Theorem 3| for more details), the finiteness of &, (k) is controlled by the genus
gu of the smooth compactification of Xy for U € C,(II).

Fact 3.1.4.2.1. If k is finitely generated of positive characteristic, there exists an integer g > 2,
depending only on k, such that for every smooth proper k-curve Y with genus > g, the set
Y (k) is finite.

Fact 3.1.4.2.1 reduces (2) to the geometric Theorem 3.1.4.2.2 below, which extends | :
Theorem 3.4| to positive characteristic. Write Iz(n) := Ker(Ily — GL,(Z,/(")).

Theorem 3.1.4.2.2. Assume that X is a curve, p is GLP and ¢ # p. Then for every closed
but not open subgroup C C II; we have
im_gemgqn = +oc.

To prove Theorem 3.1.4.2.2, one may assume k = k, hence that IT = IT;. We first replace
Xeminy — X with a Galois cover Xﬁc(n) — X, closely related to the Galois closure of Xcrg,) —
X, and we use the GLP hypothesis to show that the genus of Xﬁc(n) goes to infinity. Then we
translate into group theoretical terms the Riemann-Hurwitz formula for X5 fiom) — Xcmm) to
show that the genus of X5, tends to infinity (if and) only if the genus of X,y does. Here,
we use crucially that ¢ # p to control the wild inertia terms appearing in the Rlemann Hurwitz
formula for Xﬁc(n) — Xenin)- This part of the argument is significantly more difficult than in
the proof of | , Theorem 3.4].

3.1.5 Applications to motivic representations

Let f: Y — X be a smooth proper morphism and let £ # p be a prime. For x € X, choose
a geometric point T over z and set Y, (resp. Yz) for the fibre of f at x (resp. ). By smooth
proper base change R'f,Z,(j) is a lisse sheaf hence, for every x € | X|, gives rise to a continuous
representation

pe: m(X) = GL(H (Yz, Z(5)))

such that pg, : 71 (z) = GL(H' (Y, Ze(7))) identifies with the natural Galois action of 7 (z) on
H (Y, Z4(j5)). By | , Theorem 5.8], the representation py is GLP, so that we can apply
Theorem 3.1.3.2 to it.

3.1.5.1 Uniform boundedness /-primary torsion of abelian schemes

Let f:Y — X be a g-dimensional abelian scheme. For x € X and any integer n > 1, write
Y4[0"] := Yz[0"](k(x)) for the ¢"-torsion of Yz and set

'UYW Ty(Yz) := L[]

Since k is finitely generated, Y,[(>°](k(z))(= Yz[(>°]™®)) is finite by the Mordell-Weil theorem.
From the m (z)-equivariant isomorphisms

Ty(Ys) =~ H¥ 7 (Ye, Zig));  To(Yz) ® Qo) Ze = Y, [0°](k(2))

and Theorem 3.1.3.2, we obtain the following uniform bound for Y, [¢*°](k), x € X (k).
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Corollary 3.1.5.1.1. Assume that k is finitely generated, X is a curve and f : Y — X is an
abelian scheme. There exists an integer N > 1, depending only on f : Y — X and /¢, such that
[Y.[¢>°](k)| < N for every z € X(k).

Proof. Since I, := p,(m (X)) is a compact f-adic Lie group, it is topologically finitely generated
hence it has only finitely many open subgroups of bounded index. So, by Theorem 3.1.3.2, the
set of subgroups Il, , C I, appearing as py (71 (x)) for x € X (k) is finite. In particular, the set
of abelian groups {Yz[(>®]™® ~ Y, [(*](k) | z € X (k)} is finite. O

3.1.5.2 Further applications

In Chapter 4, Theorem 3.1.3.2 is used to prove the following results. For x € |X]|, let
Br(Yz)™®[(>] denote the Galois invariants of the (-primary torsion of the geometric Brauer
group Br(Yz) := H*(Yz, G,,) of Y.

Corollary 3.1.5.2.1. Assume that k is finitely generated and that X is a curve with generic
point 1. Then

e Corollary 4.1.7.3.1: Assume that all the closed fibres of f : ¥ — X satisfy? the (-adic
Tate conjecture for divisors (| ). Then there exists an integer N > 1, depending
only on f:Y — X and /, such that | Br(Yz)™®[¢®]| < N for every x € X (k).

e Corollary 4.1.7.1.2: For all but at most finitely many = € X (k), the rank of the Néron-
Severi group of Yz is the same as the one of the Néron-Severi group of Y5

Corollaries 3.1.5.1.1 and 3.1.5.2.1 are extensions to positive characteristic of previous results
obtained in | |, [ , Thm. 1.6, Cor. 1.7] and | |-

3.1.6 Organization of the chapter

In Section 3.2 we prove Theorem 3.1.4.2.2. In Section 3.3 we recall the construction of a
projective system of abstract modular schemes X, — X, parametrizing points with small
image and some facts about them. After this, we prove Theorem 3.1.3.2. In Subsection 3.3.3,
we discuss possible extensions of Theorem 3.1.3.2 to points of bounded degree. All the results
and the proofs in this Chapter work in the characteristic zero setting but, since this situation
is already treated in | |, we will assume that p > 0 to simplify the exposition.

3.2 Proof of Theorem 3.1.4.2.2

3.2.1 Notation
3.2.1.1

For a group I' and subgroups I, H C I" write
Ky(T) :=NgergHg™' and Iy :=1/(INKyx(T))

for the largest normal subgroup of I' contained in H and the largest quotient of I that acts faith-
fully on I'/H. For every closed subgroup I' C GL,(Z,), write I'(n) := Ker(I' — GL,(Z,/("))
and I'), ;= Im(I" — GL,(Z,/¢")). We use — and < to denote surjective and injective maps
respectively.

4This holds, for example, if f : Y — X is a family of abelian varieties or of K3 surfaces.
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3.2.1.2

From now on we retain the notation of Theorem 3.1.4.2.2. By Fact 3.1.4.1.1(2), we may assume
k =k, hence that II = Il is LP. Set

Ilc(n) := Ker(Ile — (IL,)¢,) and  Ie(n) := Ker(Il — (IL,)c, ).

The following exact diagram summarizes the situation:

After some preliminary reduction (Section 3.2.2), the proof of Theorem 3.1.3.2 decomposes as
follows:

1. We first show that g ) — 400 using that II is LP (Section 3.2.3)

2. Then, we use that ¢ # p to show that i (ny — T00 implies gerin) — 400 (Section 3.2.4).

3.2.2 Preliminary reductions

In this section we show that we can assume that for every integer n > 1:
1. Ko(l) = Kc(CT(n));
2. Tle(1)/Te(n) is an (-group.

Since we are interested in the asymptotic behaviour of gcmp) we can freely replace II with
Cl1I(ng) for some integer ny > 1. So:

1. Follows from the fact the increasing sequence K¢ (II) C Ko (CII(1)) C ... € K¢(CII(n)) C
... of closed subgroups of II stabilizes (| , Theorem 6.1]);

2. Follows if we prove that II¢(ng)/Ilc(n) is an (-group for some integer ng > 1 and any
n > ng. Write A4,, := I[I¢(n)/II(n). Using the commutative exact diagram

1 — O(n) —> He(n) — A, —> 1

[ |

1 — I(1) — IIe(1) — A — 1
we find an exact sequence
1 — By — He(1)/Te(n) — Ay /A, — 1,

where By, is a quotient of II(1)/II(n), hence an f-group. Since A, is finite, for some
no > 0 and any n > ng the surjection A;/A, - A;/A,_1 is an isomorphism. The (non
abelian) snake lemma applied to the commutative diagram
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1 —— By, — e(1)/e(n) — A /A, — 1

| | >

1 — By — He(1)/Te(n—1) — Ay/A, — 1,

shows that
He(n —1)/He(n) = Ker(He(1) /e (n) — Oe(1)/Te(n — 1)) € By,

hence that I (n — 1)/Ilc(n) is an ¢-group. We conclude by induction on n > ng using
the exact sequence

1 — Ie(n—1)/Te(n) — He(ne)/Me(n) — He(ng) /Me(n — 1) — 1.

So, from now on we may and do assume that (1) and (2) hold.

3.2.3 8fic(n) +00

We use that II is Lie perfect and Xﬁc(n) — X is Galois. Since C'is closed but not open in II,
|(IL,)c, | = 400 hence g5 () — o0 as soon as sup gg () > 1. Indeed, assume that gg_(, ) > 1
for some ng > 1. Then, for every n > ng, the Riemann Hurwitz formula for Xﬁc(n) — Xﬁc(no)
yields

I,
lim 2g5 oy — 2> lim M(Q

n——+o0 (n) n——+00 ’(Hn0>cn0|

ﬁc(no) — 2) = +00.

So it remains to show that sup Jiiem) = 1 and sup i (ny = 0 are not possible.

3.2.3.1 SUD Gfi () = 1

Assume sup Iiicmn) = 1. Then there exists ng such that for all n > ny the smooth compactifica-
tion of X, () is an elliptic curve. Since finite morphisms between elliptic curves are unramified,

the Galois group II(ng)/II(n) ~ I¢(ne)/Me(n) of Xiipmy = Xfip(ny) Would be a quotient of

the étale fundamental group of the smooth compactification of X (ng)- 11t particular it would
be abelian, hence
Ic(no) = lim Ie(ng) /Me(n)

would be abelian and infinite. But this contradicts the fact that IT is Lie perfect, since I1¢(ng)
would be an infinite abelian quotient of the open subgroup 1o (ng) of II.

3.2.3.2  supg, () = 0

Assume sup Yiio(n) = 0. This means that for all n > 0, the smooth compactification of Xﬁc(n)
is isomorphic to P!. So the Galois group (1) /I (n) ~ (1) /Te(n) of Xiipmy = Xiip) 1
a subgroup of PGLy (k). We use the following:

Fact 3.2.3.2.1 (| , Corollary 10]). Suppose that k is an algebraically closed field of
characteristic p > 0. A finite subgroup of PGLy (k) is isomorphic to one of the following groups:

e A cyclic group;
e A dihedral group D, of order 2m, for some m > 0;

o Ay, A5, Sy;
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e An extension 1 - A — Il — @ — 1, with A an elementary abelian p-group and @) a
cyclic group of prime-to-p order;

e PSLy(F,-), for some 7 > 0;
e PGLy(F,), for some r > 0;

where IF,,» denotes the finite field with p" elements.

From Fact 3.2.3.2.1 and the fact that IIo(1)/II¢(n) is an f-groups by Section 3.2.2(2), the
only possibility is that IIo(1)/Tlz(n) is a cyclic group or ¢ = 2 and I (1)/Ilg(n) >~ Dom. If
the groups Ilo(1) /Il (n) are abelian for n >> 0 we can conclude as in 3.2.3.1. So assume { = 2
and I1o(1)/Ilg(n) >~ Dom. Since Dom fits into an exact sequence

0—Z/2™ ' — Dom — ZJ/2 X Z/2 — 0,
the exactness of lgn on finite groups yields an infinite abelian open subgroup Z, C 1&1 e (1)/Ie(n) ~
IIo(1), and we conclude as in 3.2.3.1.

3.2.4 gcti(n) — T00
3.2.4.1 Definition of )\

If f:Y — X is a cover we define
YT deg(f)

The following directly follows from the Riemann-Hurwitz formula.

Lemma 3.2.4.1.1. Let ... —» X,,,; — X,, =& ... =& ... — X be a sequence of finite covers of

smooth proper connected curves over an algebraically closed field k. Then Ax, . /x > Ax,/x.

Assume furthermore that Deg(X,, — X) — +oo. Then gx, — +oc if and only if lirjra Ax, /x>
n——+0oo

0

For an open subgroup U C II write Ay := Ay, ,x. With this notation, applying Lemma
3.2.4.1.1 to

o) T Xiigmy — - T Xfigq) — )H(

l l l

o XCH(TH-l) — XCH(n) —_— ... — XCH(I) — X

..—)Xﬁ

one gets inequalities

ACTi(n+1) = ACTI(n)
A\ A\

Mg (nt1) = i)

hence A5 = lim ﬁc(n) and A\¢ := lim Agp) exist with Ay > A¢. Also, since C' C Il is
c n—s-+00 n—s+o00 c
closed but not open
L. |(Iy)e, | — 400, hence g5 () — +oc if and only if Af > 0;

2. |IL,/Cy| = +00, hence gemnp) — 400 if and only if Ac > 0.

By 3.2.3, Az, > 0 hence it is enough to show that Ay = Ac. The remaining part of this section
is devoted to the proof of this fact.
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3.2.4.2 Inertia subgroups

Consider the commutative diagram:

C"/Kcn (Hn)
ea,dg

Xt () > Xenm)

(H”)Cn

Suppose that X" — X = { Py, ..., P,} and denote with I; C II the image via 7 (X) — II of the
inertia group of the point P;. The situation is then the following.

o X-

By |

figm) — X is a Galois cover with Galois group (II,)¢,. The inertia group and the

ramification index of any point of Xy ) over F; are given® by (I;,)c, C (I1,)¢, and
in = |Lin)c,|- Write ((I;)c,); € (IL,)¢, for the j-ramification group in lower num-
bering (see | , Section 1, IV]) over the point P; and (em) for its cardinality. Finally

set d; ,, for the exponent of the different of any point of X ) over b;.

Xcmn) — X is the cover corresponding to the open subgroup CH(n) CIL If Q € Xcnn)
is over P; we denote with eg ,,, dg,, the ramification index and the exponent of the different
of Q) over P,.

Xﬁc(n) — Xenm) is a Galois cover with Galois group C,, /K¢, (I1,,) C (I,)¢, and there is

a natural bijection of sets

{Q € Xen | QIP} = (Lin)o, \n/Cn.

If @ correspond to the element (I;,,)c,x € (I;n)c, \IL,/C,, then the inertia group and the
ramification index at @ are given by Staby, )., ((lin)c,®) and |Stabg, .. ((Lin)c, )| =
egy. The j"-ramification group is given by ()¢, ); NStab, ), (%) erte |(Lin)c, )N

Stab(L n Cn( )’ = (e”é)]

, Section 4, ITI, Pag. 51| we have the following relations:

Cin = €peQmi  in=dy+ehdon; Y eqm = |TL/Chl.
QIP;

3.2.4.3 Comparison

Using the Riemann-Hurwitz formula we get

hence

Acti(n) = 29x —

|Hn/0‘ Z ZdQn and )\H (n) =29y — 2+ Z zn

1<isr Q|P; 1<i<r Cim

1 dz,n|Hn/Cn| dQ,nei,n
et = A = 7| ( 2 o

6. .
1<i<r ©,n QP 7,

3Since the cover is Galois the conjugacy class of the ramification group does not depend on the choice of the
point over P;
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_ 1 dim ZQ|Pi €Qmn dQ,nei,n . i neQ n dQ n€in
‘\Hn/on|(Z € L > |Hn/cr(ZZ )

e
1<i<r L Qpr  v" 1<i<r Q|P;

“mal Z S ) ,njon|(22i—?)-

1<i<r Q|P; 1<i<rQ|p;, @

So it is enough to show that for every integer 1 < i < r one has

1 dg
lim — =
n—00 |Hn/c ‘ QP 622
By | , Proposition 4, IV, Pag. 64] we have
|Hn/C P Z o |Hn/C |ZZ
>0 Q|P;

3.2.4.4 Galois formalism

Consider the surjection

¢j : ((Lin)c,)i\n/Cr = (Lin) o, \ILu/Cy,

and recall the following elementary lemma.

Lemma 3.2.4.4.1 (| , Lemma 4.3]). Let G be a finite group and H C G a normal
subgroup. Let X be a finite set on which G acts and consider the natural surjection ¢ :
H\X —» G\X. If Gz € G\ X then

G||Stabs(Gx) N H
‘qil(GSU)|:| || G( ) |

| H||Stabe(Gx)]

If, under the bijection

(Lim)o, \n/Cr >~ {Q € Xeng | QF},

the element (I;,)c,x € (Lin)c, \l1,/C, corresponds to the point @ € Xy above P, by
Lemma 3.2.4.4.1 we have

[in - Ii,n ~ ﬂStab in ]i,n nl’ €in er).
|¢J_1((]z,n)6’nx)| _ ’( , )C’ ’ |(( )C )J (s, )cn<( )C )| o , ( Q)J

|((Zin)en )il |Stab, e, ((Lin)o, o)l ()i €

Summing over all the Q) € X¢r(,) above B, we get

Cin (@i _ (1 AL/l

2= (ei); ()

A similar reasoning gives

> = LG,

Qp 9
hence
1 (e); — 1 1 ¢~ Lein 6@ (€im);Cin
1L,/ Cyl ; QZ“;Z, €9 B 1L,/ Cyl (% €4 el,n) <; ; ez,n)jei,n
The first term is
Z 1 Cim _ |(Lin)e, \IL,/Cy| B 1 ‘
’Hn/c ‘ ‘Hn/c | eln P, eH 1L,/ Cyl |(Lin)c, |

Recall the following:
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Fact 3.2.4.4.2 (| , Theorem 2.1]). Let IT C GL,(Z;) be a closed subgroup and C' C1I a
closed but not open subgroup. If K¢(IT) = K¢(CTI(n)) for every integer n > 0, then for every
closed subgroup I C II one has

. LNIL/CR 1

lim = .
n—+oo |Hn/0n| |IC|

Since @([zn)cn = (I;)¢, Fact 3.2.4.4.2 and Section 3.2.2(1) show that

lim |(Ii,n)Cn\Hn/Cn| i 1

=0.
n—+4o00 |Hn/Cn’ |([i,n)Cn|

The second term is

1 (€in); (€g)i ein \ 1 €in) _ x (Ein)i (L)) \Hn/Cul 1
|H"/C”|<j21 € 2 ) )_ €in 1L,/ Chl [(Lin)cn|

; er (ejn)q €; e
,n QlPZ Q ( ’L,TL)j N Q‘Pz Q ]21

3.2.4.5 Stabilization of the wild inertia
Assume from now on that j > 1. We compute (e;,); using the diagram

e (1)/Ie(n)

Xﬁc (n)

(Hnm\ X %ﬁl

Write ((1;)c, )+ for the wild inertia subgroup of (1;,)c, and

(Lin)c, (1) == Ker((lin)c, = (in)ey),  €in(1) = [(Lin)c, (1)]-
Consider the commutative diagram with exact rows

0 —— ([l,n)cn(l) —_— (Ii,n)Cn — (Ii,l)c — 0

! [ [

0 — Ie(1)/He(n) — (IL)e, — ()¢, — O.

1

Since (I;)c, (1) € Te(1)/Te(n) are f-groups by Section 3.2.2(1) and ((Iin)e,); € ((Iin)e, )+
are p-groups by definition, we see that

1. the map (1;,,)c, — (1;1)c, induces an isomorphism
Gim t (Lin)en)+ = ((Lin)ey )+
2. (Iin)e,); NTe(1)/Te(n) = 1, so that Fact 3.2.4.5.1 below yields
Gin((Lin)cn)y) = ((Lin)ey) /e ny-

Write j; o for smallest integer > 0 such that (e;1);,, = 0 and

((Lin)en)s == din((Lin);) € Lin)ens,  ((L)e); = hm((fin)c,); € e
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Combining (1) and (2), we get

((Lin)en)i = ((Lin)en ) ijen)) =
(L))o )k = (L)) if 31 <k < jigsuch that e;,,(1)(k—1) < j < e;n(1)k
1 lfj > 61‘7”(1)].@0. '

Fact 3.2.4.5.1 (| , Lemma 5, IV, Pag. 75]). Let K C L a finite Galois extension of local
fields with group G. For —1 < u € R, write G, for the [u}th ramification group in lower
numbering and consider the function:

If N C G if a normal subgroup corresponding to a Galois extension K C K’, then

GUN/N - (G/N)qu/K,(u)

3.2.4.6 End of proof
We can continue the computation

[((in)en )il (Uin)e)i\In/Col 1
Z ’([zn)Cn’ ’Hn/cn‘ |([i,n)0n‘

Jj=1

‘ (L) )il | (L) )i \IT / Cl 1
cinll) D (Ton)e T/ Ch Tonor]

) 5Ty (o) ML/Gl Ly

(Gl 2z [T,/ C (Tl
1 = (Tin)e )i\ /Cal 1
a2 (W 00 @il

Setting (I;)x for the preimage of ((I;)¢)x under the map IT — Il and observing that ((1;)x)c =
((1;)c)k, we conclude the proof since

(Tin)e )\ /Gl 1 (i) )i\ /Cal 1

lim — =0

oo T1,/C.] (L)) mo+ee Jinyien (Tl

by Fact 3.2.4.4.2 and Section 3.2.2(1).

3.3 Proof of Theorem 3.1.3.2

3.3.1 Projective systems of abstract modular scheme
3.3.1.1 Group theory

Fix a closed subgroup II of GL,(Z,), write ®(II) for the Frattini subgroup of II, i.e. the
intersection of the maximal open subgroups of II. Set Cy(II) := {II} and for every integer n > 1
define C, (II) as the set of open subgroups U C II such that ®(II(n—1)) CU but [I(n—1) £ U.
By | , Lemma 3.1], the maps 1, : C,i1(II) — C,(I1) ¢y, : U +— UP(II(n — 1)) are well
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defined and they endow to the collection {C, (II)},en with a structure of a projective system.
For any C := (C[n])n>0 € Jm C, (IT) write

Cloo] := anC[n] =NC[n] C I

By | , Lemma 3.3|, one has the following.
Lemma 3.3.1.1.1.

1. C,(II) is finite and, for n > 0 (depending only on II), it coincide with set of open
subgroups U C II such that II(n) C U but lI(n — 1) € U

2. For any C := (Cn])n>0 € Jm Cn(IT), the subgroup C[oo] is a closed but not open
subgroup of II.

3. For any closed subgroup C' C II such that II(n — 1) € C there exists U € C,(II) such that
CCU.

3.3.1.2 Anabelian dictionary

Let X be a smooth geometrically connected k-variety and assume now that II is the image of a
continuous representation p : m (X) — GL,(Z,). Consider the following (possibly disconnected)
étale covers:

fn i Xy = H Xy — X.
UeC,(1I)

Proposition 3.3.1.2.1. Let n be an integer > 0 (depending only on II). If z € X(k) —
fn(X,(k)), then II(n — 1) C II,, hence [IT : 1] < [IT: II(n — 1)].
Proof. This follows from Fact 3.1.4.1.1 and Lemma 3.3.1.1.1(3). O

Assume from now on that X is a curve. From Theorem 3.1.4.2.2 we deduce:

Corollary 3.3.1.2.2. Assume that p is GLP, ¢ # p and fix two integers dy,dy > 1. Then there
exists an integer N > 1, depending only on p,d;,ds, such that for every n > N and every
U € C,(IT) we have [ky : k] > dy or gy > ds.

Proof. This follows from Theorem 3.1.4.2.2 arguing as in | , Corollaries 3.7 and 3.8]. O

3.3.2 Proof of Theorem 3.1.3.2 and a corollary
3.3.2.1 Proof of Theorem 3.1.3.2

Assume that X is a curve and p is GLP. Consider the projective system of covers constructed
in 3.3.1.2

forXo= ] Xv—X

UECy (IT)

By Corollary 3.3.1.2.2 we can choose an ng such that each connected component of X, has
genus lager then the constant g of Fact 3.1.4.2.1 or is defined over a non trivial extension of k.
By the choice of ng, the image X,,, of f,, : X,,(k) = X (k) has a finite number of points. Up
to replace ny with some integer n{, > ng, by Lemma 3.3.1.2.1 for all z € X (k)—X,, we have
II(ng) C II,. Hence X**(k) C X, is finite and one can take

N :=  max " {[H : I(no)], [IT : Hz]}

TE€EXn 7X§5”

This concludes the proof of Theorem 3.1.3.2.
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3.3.2.2 Uniform boundedness of /-primary torsion

For further use, we state a generalization of Corollary 3.1.5.1.1 for arbitrary GLP represen-
tations. We recall the notation and the terminology of | , Section 4]. Given a finitely
generated free Z, module T' ~ Zj with a continuous action of m;(X) write V := T ® Q and
M := V/T. For a character x : m(X) — Zj, a field extension & C L and a morphism
€ : Spec(L) — X, let x¢ (resp. pe) denote the composition of x (resp. p) with the morphism
m (L) = m(X). Consider the following 7 (L)-sets

Me={veM|p(lowe<v>}, Te:={veT]|plo)e<v >},
and 71 (L)-modules

Me(x) :={v € M | pe(o)v = xe(o)v},  Te(x) :={v e T | pe(o)v = xe(o)v}.

Recall that y is said to be non-sub-p if x, is not isomorphic to a sub representation of p, for any
r € X(k). Finally denote with T{gy the maximal isotrivial submodule of 7', i.e. the maximal
submodule of T on which 7 (X3) acts via a finite quotient.

Corollary 3.3.2.2.1. Assume that k is finitely generated, X is a curve, { # p and that
p:m(X)— GL(T) is GLP. Then

1. For every non-sub-p character x : m(X) — Zj, there exists an integer N > 1, depending
only on p and y, such that, for any z € X (k) the m(z)-module M,(x) is contained in
MI[eN].

2. Assume furthermore that 7o) = 0. Then there exists an integer NV > 1, depending only
on p, such that for every z € X (k) — X5*(k), the my(k)-set M, is contained in M[(Y].

Proof. This follows from Theorem 3.1.3.2 as in the proof of | , Corollary 4.3]. O

3.3.3 Further remarks

Let k£ be a finitely generated field of characteristic p > 0, let X be a smooth geometrically
connected k-curve. Let p : m(X) — GL.(Z,) be a continuous representation and retain the
notation of Section 3.1.2.

3.3.3.1 Points of bounded degree

As already mentioned in Section 3.1.3, Theorem 3.1.3.2 is the natural extension to positive char-
acteristic of the main result of | |- In the subsequent paper | |, Cadoret-Tamagawa
show (| , Theorem 1.1]) that if p = 0 and p is GLP, then for every d > 1, the set X *(< d)
is finite and there exists an integer N(p,d) := N > 1, depending only on p and d, such that
[ : 1L} < N for all z € X9°(< d). To prove this they study the gonality of the connected
components of the abstract modular curves A,.

3.3.3.2 Gonality

For a smooth proper k-curve Y, the (geometric) gonality vy of Y is the minimum degree of a
non constant map Y; — IP%. While the genus gy controls the finiteness of k-rational points, the
gonality, in characteristic zero, controls the finiteness of points of bounded degree.

Fact 3.3.3.2.1 (| |, | |). If k is a finitely generated field of characteristic zeros and
d > 1 is an integer, for every smooth proper k-curve Y such that vy > 2d 4 1, the set Y(< d)
is finite.
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In light of Fact 3.3.3.2.1 and of the strategy described in Section 3.1.4.1, to prove | ,
Theorem 1.1] when p = 0, Cadoret-Tamagawa show (| , Theorem 3.3|) that, for every
C' C II closed but not open subgroup, the gonality yen_(n) of the smooth compactification
of Xcm_(n) tends to infinity with n. While one can adapt (see Appendix A) the arguments
of | , Theorem 3.3| to prove that Yer(n) tends to infinity also when p > 0, the positive
characteristic variant® of Fact 3.3.3.2.1 is not true, so that one cannot deduces directly from
the growth of the gonality the positive characteristic analogue of | , Theorem 1.1].

3.3.3.3 Isogonality

However, in | , Appendix| Cadoret-Tamagawa have introduced a new invariant, the isog-
onality, that could be used to study points of bounded degree is positive characteristic.
Definition 3.3.3.3.1. Let £ a field of characteristic p > 0 and Y a smooth proper geometrically
connected k-curve. The k-isogonality 7 of Y is defined as d+ 1, where d is the smallest integer
which satisfies the following condition:

e There is no diagram Yy « Y’ — B of non constant morphisms of smooth proper curves
over k, with B an isotrivial” curve and deg(Y’" — B) < d.

Their result is the following:

Fact 3.3.3.3.2 (| , Corollary A.7]). If k is a finitely generated field of positive charac-
teristic and d > 1 is an integer, and d > 1 is an integer, then for every smooth proper k-curve
Y such that 7y > 2d + 1 and ~i° > d + 1, the set Y (< d) is finite.

Since, by the results in Appendix A, we know that ycm_(n) tends to infinity, to extend
Theorem 3.1.3.2 to points of bounded degree it would be enough to show the following.

Conjecture 3.3.3.3.3. Assume that p is a GLP, p > 0 and ¢ # p. Then for every closed but
not open subgroup C' C Il one has

6This is due to isotriviality issues in the positive characteristic variant of the Mordell-Lang conjecture; see
[ , Appendix].

"If k is a field of characteristic p > 0, a k-scheme S is said to be isotrivial, if there exists a finite field F, C k
and a Fg-scheme Sy such that So xw, k ~ S.
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Chapter 4

Specialization of Néron-Severi groups in
positive characteristic

4.1 Introduction

4.1.1 Conventions

For a field k and a k-variety X, write | X| for the set of closed points. If x € X, write k(x) for
its residue field and 7 for a geometric point over z. If Y — X is a morphism and z € X write
iz : Y, — Y for the natural inclusion of the fibre Y, at x in Y. We use — and < to denote
surjective and injective maps respectively. If F, is a finite field, write [ for its algebraic closure.
If C is an abelian category write C ® Q for its isogeny category and ®Q : C — C ® Q for the
canonical functor.

4.1.2 Summary

Let k be a finitely generated field of characteristic p > 0, £ # p a prime and f : V¥ — X a
smooth proper morphism. In first approximation, the main result of this chapter is a version of
the variational Tate conjecture for divisors in the generic case: for z € | X/, if H*(Yz, Q(1)) has
no more Galois invariants than the generic fibre, then Yz has no more divisors than the generic
fibre. When £ is a field of characteristic zero, this has been proved by André as a consequence
of Lefschetz (1,1)-theorem and the Hodge theory in | |; see Section 4.1.5 for more details.

The starting point of our proof is to replace Hodge theory with crystalline cohomology,
since a variational form of the Tate conjecture (Fact 4.1.6.1.1) is known in this setting. The
main difficulty to overcome is to transfer the information about the Galois invariants of the
(-adic lisse sheaf R?f,Q(1) to the crystalline local system (F-isocrystal) R?feys.Oy/k(1).
This is the main new contribution of this chapter (Theorem 4.1.6.3.1). More precisely, since
the F-isocrystal R? o5 Oy, (1) has a behaviour which is quite different from R?f,Q,(1) (for
example, in general its cohomology is not finite dimensional), this comparison cannot be done
directly. The idea is then to show (Theorem 4.6.5.4.1) that R2f67-ys’*(/)y/[((1) is coming from a
smaller and better behaved category of p-adic local systems: the category of overconvergent F-
isocrystals. As it has been understood that overconvergent F-isocrystals share many properties
with lisse sheaves (| |, | |, | ]), the idea is to compare first R?f,,ys Oy k(1)

with its overconvergent incarnation R? f*O;r/ / (1) via various p-adic comparison theorems and
then R2f,0} (1) with R?f,Q,(1) via the theory of weights (| N ).

However, the theory of weights allows us to transfer only information readable on char-
acteristic polynomials of the Frobenii, that is to compare R? f*OI,/K(l) and R%f,Q(1) only
up to semi-simplification. The way to grasp the missing information is Tannakian: instead of
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considering only R? f*(’);/ (1) and R?f,Qy(1), we consider all the possible tensor constructions
and sub quotients arising from them, obtaining, via the Tannakian formalism, two algebraic
groups G, and Gy. Since Gy identifies with the Zariski closure of the image of m;(X,7) acting
on (R%2f.Qu(1))z ~ H*(Yz, Q(1)), instead of asking that H?(Yz, Q(1)) has no more Galois
invariants than the generic fibre, we ask that the Zariski closure Gy, of the image of m(z,7)
acting on H?(Yz, Q(1)) identifies with G,. Then, the theory of weights, combined now with
some algebraic groups theory, allows us to relate the inclusion of the local p-adic monodromy
group G, , C G at « with the inclusion G,, C G,.

Behind this is the idea that, while RQf*(’);/K(l) and R?f,Q,(1) should be different incar-
nations of the same motives, each of them contains some specific feature: R?f,Q,(1) can be
studied via f-adic Lie groups theory, while R? f*OI,/K(l) is an overconvergent incarnation of
R? Jerys»Oy/x (1), which, in turn, contains information on the deformations of cycles.

4.1.3 Galois generic points

Let k be a field of characteristic p > 0 with algebraic closure k, X a smooth and geometrically
connected k-variety with generic point 7 and f : Y — X a smooth proper morphism of k-
varieties. For x € X, fix an étale path from ¥ to 7. For every ¢ # p, by smooth proper
base change R?f,Q,(1) is a lisse sheaf on X and the choice of the étale path gives equivariant
isomorphisms

H (Y5, Q1) ~ RULQ(1); =~ RAQ(): =~ H* (Y Q1))
N U

7T1(X7ﬁ> = 7T1(X7f> < 7T1([L‘,T).

Definition 4.1.3.1. A point x € X is (-Galois generic (resp. strictly ¢-Galois generic) for
f Y — X if the image of m(x,T) — m(X,7) — GL(H?*(Y3,Q(1))) is open (resp. coincides
with) in the image of 7 (X,7) — GL(H?(Yz, Qu(1))).

By | , Theorem 1.1], z is (-Galois generic for one ¢ # p if and only if x is ¢-Galois generic
for every ¢ # p. So one simply says that = is Galois generic for f. This is not true for strictly
Galois generic points, and one says that x is strictly Galois generic if there exists an ¢ # p such
that x is strictly ¢-Galois generic.

4.1.4 Neron-severi generic points
4.1.4.1 Tate conjecture for divisors

The geometric Néron-Severi group NS(Zy,) of a smooth proper k-variety Z is a finitely generated
abelian group such that NS(Z;) ® Q identifies with the image of the cycle class map for f-adic
cohomology

Czp PIC(ZE) X @ — H2(ZE, Qg(l))

Since NS(Z5) is a finitely generated abelian group, 7 (k) acts on it trough a finite quotient and
hence NS(Zz) C H?*(Zz, Qu(1)) is fixed under the action of the connected component GY of the
Zariski closure of the image G, of (k) acting on H?(Zz, Q,(1)). Recall that the ¢-adic Tate
conjecture for divisors (| |) predicts the following:

Conjecture 4.1.4.1.1 (T(Z,()). Let k be a finitely generated field and Z a smooth proper
k-variety. Then the map c,_: NS(Z;) @ Q, — H?(Z, Q¢(1))%? is an isomorphism
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4.1.4.2 Specialization morphisms

Retain the notation and the assumptions of Section 4.1.3. For every z € X, there is an injective
specialization homomorphism (see e.g. | , Proposition 3.6.])

compatible with the cycle class map, in the sense that the following diagram commutes:

Pic(Y,) ® Q +—— Pic(Y) ® Q — s Pie(Y;) ® Q

lcyn lcyw

NS(Y;) @ Q e » NS(Vz) @ Q

H?(Yz, Qu(1)) = H2 (Y5, Qe(1))
Since the Néron -Severi group is invariant under extensions of algebraically closed fields (see
e.g. | , Proposition 3.1|), the map sp, , is well defined, independently of the choice of the

geometric points 77 over n and T over .

The abelian group NS(Yy) ® Q is a m(X,7)-module and hence the group m(x, @) acts on
NS(Y5) ® Q by restriction trough the morphism m (z,7) — m (X, T) ~ 71 (X, 7). Since the map
Spp« is ™ (x, T)-equivariant with respect to the natural action of m(x,Z) on NS(Yz) ® Q, one
constructs an injective specialization map

spe : NS(Y;) @ Q C (NS(Y;) ® Q@™ 225 NS(Y,) ® Q,

where for a smooth proper k-variety Z one writes NS(Z) ® Q := (NS(Zz) @ Q)™ ®).

Definition 4.1.4.2.1. One says that x is NS-generic (resp. arithmetically NS-generic) for
f:Y — X if sp, . (resp. spj,) is an isomorphism.

Conjecture 4.1.4.1.1 predicts that every (strictly) Galois generic point is (arithmetically)
NS-generic. Our main result is that this holds (without assuming Conjecture 4.1.4.1.1), at
least when f : Y — X is projective.

Theorem 4.1.4.2.2. Let k be a finitely generated field and f : Y — X a smooth projective
morphism. If x € X is Galois-generic (resp. strictly Galois generic) for f: Y — X then it is
N S-generic (resp. arithmetically NS-generic) for f : Y — X. If f : Y — X is smooth and
proper, the same is true for all z in a dense open subset of X.

4.1.5 Proof in characteristic zero

When £ is a field of characteristic zero Theorem 4.1.4.2.2 is due to André (| |; see also
[ , Corollary 5.4] and | , Proposition 3.2.1]) and it holds for f : Y — X proper.
Since it is the starting point for our proof we briefly recall the argument when £ C C and x
is a closed point. Fix a smooth compactification Y C Y of Y. The commutative diagram of
k-varieties

Y, Y «— 5 Y
=
k(r) —— X

induces a commutative diagram:
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H(Xc, R?£.Q(1)) 4 H*(Ye, Q(1)) NiS(
H (Y5, Q)X e H2(Yc, Q1) +—— NS(Yo) @ Q |7

[

H*(Yz, Q(1)) < o NS(Yz) @ Q

T

<_ —>3

where Ler is the edge map in the Leray spectral sequence attached to f : Y — X. Take any
z; € NS(Yz) ® Q. Since z is fixed by an open subgroup of 7;(x) and z is Galois-generic, up
to replacing X with a finite étale cover one can assume that z, is fixed by m(X¢). By the
comparison between the étale and the singular sites, z, is fixed by 7/ (X¢). By Deligne’s fixed
part theorem (| , Theoreme 4.1.1|) the map

Hz(?@, @(1)) — HQ(Y@ Q(D)ﬂop(XC)

is surjective. By semisemplicity, the map H?(Y¢, Q(1)) — H?(Yz Q(1 )) "(Xc) gplits in the
category of polarized Q-Hodge structures, so that z, is the image of a z € H*9(Y¢,Q(1)). By
the Lefschetz (1,1) theorem, z lies in NS(Y¢) ® Q. One concludes the proof observing that, by
construction, the restriction z, of z to NS(Y;) ® Q is such that sp,.(2,) = 2.

4.1.6 Strategy in positive characteristic

In characteristic zero the main ingredients are the combination of Deligne’s fixed part theorem
and the Lefschetz-(1,1) theorem (what is called the variational Hodge conjecture for divisors;
see e.g. | , Conjecture 9.6, Remark 9.7]) and the comparison between the étale and the
singular sites. To try and make the argument of Section 4.1.5 works in positive characteristic
the idea is to replace Betti cohomology with crystalline cohomology. The main reason for this
is that the variational Tate conjecture for projective morphisms (Fact 4.1.6.1.1), that we now
recall, is known in this setting.

4.1.6.1 Crystalline variational Tate conjecture

Let IF, be the finite field with ¢ = p® elements, X" a connected smooth Fy-variety and f : ) — &
a smooth proper morphism of F,-varieties (in our application f : Y — X is a model for
f Y — X). Write respectively Mod(X|W), Mod(Y|W) for the categories of Oxw, Oyw
modules in the crystalline site of X, Y over W := W([F,) (| , Section 2]). Then there is a
higher direct image functor

R erysn : Mod(Y|W) — Mod(X|W)

and, for every t € X(F,), a commutative diagram
y) < 3
Hc%"ys(y> N Plc(y) & @

i i
Ler

HO<X7 Rchrys,*Oy/W> ® Q — c'rys(yf) T Plc(yf) ® Q

where H2, (V) and H?2. ()) are the (rational) crystalline cohomology of ) and ) respectively,

crys crys
Leray is tﬁe edge map 11y1 the Leray spectral sequence attached to f: Y — X and cy, cy, are the
crystalline cycle class maps. Write F' for the s-power of the absolute Frobenius of X and recall
that the images of ¢y and cy, lie in HZ,,(¥)"=% and HZ,  (V)"=9, respectively. Then we have
the variational Tate conjecture in crystalline cohomology:
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Fact 4.1.6.1.1 (] , Theorem 1.4|). If f : Y — X is projective, for every z € Pic()y) ® Q
the following are equivalent:

1. There exists z € Pic(Y) ® Q such that cy, (z) = if(cy(2));

2. ¢y, (%) lies in HO(X, R*pys . Oyyw) @ Q;

3. ey (z) lies in HO(X, R*ferys « Oy ) =1 @ Q.

However, to apply Fact 4.1.6.1.1 in our setting, there are two difficulties to overcome:

1. Crystalline cohomology works well only over a perfect field, while our base field k& is not
perfect;

2. There is no direct way to compare the /-adic and the crystalline sites, so that one has to
find a different way to transfer the Galois generic assumption to the crystalline setting.

4.1.6.2 Spreading out

To overcome (1) one uses a spreading out argument, so that our morphism f : Y — X will
appear as the generic fibre of a smooth projective morphism §: Y — X, where X is a smooth
geometrically connected F,-variety. The idea is then to lift an element ¢, € NS(Yz) ® Q to
NS(Y57) ® Q by specializing it first to an element ¢, € NS(Yy) ® Q of a closed fibre of Y — X
and then to try and lift ¢ to an element € € Pic()) ® Q, via the crystalline variational Tate
conjecture over [IF,.

4.1.6.3 From / to p

In order to show that ¢, € NS(Y]) ® Q satisfies the assumption of Fact 4.1.6.1.1, one has to
transfer the (-adic information that z is Galois generic to crystalline cohomology. For this
the key ingredient is Theorem 4.1.6.3.1 below. Assume that Z is a smooth geometrically
connected F,-variety admitting an F -rational point t and that there is a map g : 2 — X (in
our application g : Z — X is a model for x : k(z) — X). The cartesian square

induces representations
m(Z,1) = m (X, 1) = GLH (Y, Qu(4)).

Theorem 4.1.6.3.1. Assume that the image of m(Z,t) — m(X,t) — GL(H ()5, Q¢(j)) is
open in the image of 7 (X,t) — GL(H*();, Q¢(j)) and that the Zariski closures of the images
of m1(X,t) and m (X, ) acting on H*(Y;, Q,(j)) are connected. Then the base change map

HO(X’ Rifcrys’*oy/W>F:qj ®Q — HO(Z; RifZ,crys,*Oyz/W>F:qj ®Q

is an isomorphism.

As mentioned in Section 4.1.2, the subtle point in the proof of Theorem 4.1.6.3.1 is to
compare the category of F-isocrystals, where the crystalline variational Tate conjecture holds,
with the category of /-adic lisse sheaves. These categories behaves differently. For example, if
f: Y — X is a non-isotrivial family of ordinary elliptic curves, lecry&*(’)y yw @ Q carries a two
steps filtrations, reflecting the decomposition of the p-divisible groups of the generic fibre of
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f:) — X into étale and connected parts, while R'§,Q, is irreducible. This leads to consider
the smaller category of overconvergent F-isocrystals, whose behaviour is closer to the one of
(-adic lisse sheaves. Then the proof of Theorem 4.1.6.3.1 decomposes as follows:

1. We prove that R'feys . Oyw®Q and Rz ¢rys + Oy, yw ®Q are overconvergent F-isocrystals
(Theorem 4.2.1.1.2, which uses a technical result proved in the Part 3, building on the work
of Shiho on relative log convergent cohomology and relative rigid cohomology | ],

[ 1);

2. We use that one doesn’t loose information passing from crystalline cohomology to over-
convergent F-isocrystals (Fact 4.2.1.1.1);

3. Let G, and Gz, be the Tannakian groups of R'fys «Oy/w ® Q and Rz crys Oy, jw @ Q
as overconvergent F-isocrystals. Theorem 4.1.6.3.1 amounts to showing that G, = Gz,,.

4. The assumption implies that the Zariski closures G, and Gz, of the image of m(X,t)
and 7 (Z,t) acting on H' (Y, Qu(7)) are equal.

5. To show that (4) implies (3), one uses the theory of Frobenius weights and that to compare
reductive algebraic groups it is enough to compare their tensor invariants.

Remark 4.1.6.3.2. In Theorem 4.1.6.3.1, the assumptions that Z has a [F, rational point
and that the Zariski closure of the image of 7 (Xf,t) is connected are not necessary, but the
proof without these assumptions requires the more elaborated formalism of @p—overconvergent
isocrystals. In our application to Theorem 4.1.4.2.2 one can reduce to the case where these

assumptions are satisfied, so that we did not include the proof of the general form of Theorem
4.1.6.3.1.

Remark 4.1.6.3.3. In characteristic 0, the proof sketched in 4.1.5 shows that the variational
Hodge conjecture implies the ¢-adic variational Tate conjecture over fields of characteristic
zero. In positive characteristic, our method does not show that the crystalline variational Tate
conjecture implies the /-adic one. The issue comes from the fact that one does not know how
to compare the (-adic and the crystalline cycle class maps.

4.1.7 Applications
4.1.7.1 Existence of NS-generic points

Let k be a field of transcendence degree > 1 over F,, and X a smooth geometrically connected
k-variety with generic point . Let f : Y — X be a smooth proper morphism of k-varieties.
Recall the following:

Fact 4.1.7.1.1. Assume that k is finitely generated. Then:

o (| , Section 10.6], Fact 1.2.2.2.2): The subset of non strictly ¢-Galois-generic points
for f 1 Y — X is sparse. In particular there exists an integer d > 1 such that there
are infinitely many x € |X| with [k(z) : k] < d that are strictly ¢-Galois-generic for
f:Yy—X.

e (Theorem 3.1.3.2): If X is a curve, all but finitely many = € X (k) are Galois-generic for
f:Yy—X.

Theorem 4.1.4.2.2, together with Fact 4.1.7.1.1 and the fact that if S C |X| is a subset and
U C X is a dense open subscheme such that U NS C U is sparse then S C | X]| is again sparse
(| , Proposition 8.5 (a)]), implies:
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Corollary 4.1.7.1.2. Assume that £ is finitely generated. Then:

e The subset of closed non arithmetically NS-generic points for f : Y — X is sparse. In
particular there exists an integer d > 1 such that there are infinitely many = € | X| with
[k(x) : k] < d that are arithmetically NS-generic for f: Y — X.

e If X is a curve, all but finitely many = € X (k) are NS-generic for f: Y — X.

Via a spreading out argument one has the following extension of the main result of | |
to positive characteristic:

Corollary 4.1.7.1.3. If k is a field of transcendence degree > 1 over F,, then X has a closed
NS-generic point.

Remark 4.1.7.1.4. Atticus Christensen (| , Theorem 1.0.1]) has independently proved
Corollary 4.1.7.1.3. His proof is very different from ours, since his approach is inspired from
the analytic approach in | |, while ours is inspired from the Hodge theoretic approach
in | |]. On the other hand, it seems that Corollary 4.1.7.1.2 (that will be used to prove
Corollaries 4.1.7.2.1,4.1.7.2.2 and 4.1.7.3.1) can not be obtained via his method, that gives
different information on the set of NS generic points (| , Theorems 1.0.3, 1.0.4.]).

From Corollary 4.1.7.1.3 one easily deduces the following results on the behaviour of the
Tate conjecture in families:

Corollary 4.1.7.1.5. If T(Y,, ¢) holds for all = € | X/, then T'(Y,, ¢) holds.

Remark 4.1.7.1.6. Corollary 4.1.7.1.5 together with a spreading out argument can be used to
reduce the Tate conjecture for smooth proper varieties over arbitrary finitely generated fields of
characteristic p, to fields of transcendence degree one over F,, extending results from | |,
specific to abelian schemes, to arbitrary families of varieties.

The argument in | , Theorem 7.1.] shows that Corollary 4.1.7.1.3 is enough to prove
the following:

Corollary 4.1.7.1.7. Assume furthermore that Y, is projective for every = € | X|. Then there
exists a dense open subscheme U C X such that the base change fy : UxxY — Uof f:Y — X
trough U C X is projective.

Remark 4.1.7.1.8. Whether the analogue of Corollary 4.1.7.1.7 holds over fields algebraic
over I, is not known. The problem over this kind of fields is that it is not true in general that
there exists a NS-generic closed point (as the example of a family of abelian surfaces such that
the generic fibre has not complex multiplication shows).

4.1.7.2 Hyperplane sections

From now on, assume that k is finitely generated. Assume that Z is a smooth projective k-
variety of dimension > 3 and let Z C P} be a projective embedding. One can ask whether
there exists a smooth hyperplane section D of Z such that the canonical map

is an isomorphism. This is not true in general (see Example 4.4.1.1), but one can apply Theorem
4.1.4.2.2 to obtain the following arithmetic variant:
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Corollary 4.1.7.2.1. If dim(Z) > 3 there are infinitely many smooth k-rational hyperplane
sections D C Z such that the canonical map

NS(Z) ® Q — NS(D) ® Q

is an isomorphism.

As already mentioned in Section 4.1.4, Conjecture 4.1.4.1.1 implies Theorem 4.1.4.2.2. The
(-adic Tate conjecture for divisors conjecture is still widely open except for some special classes
of varieties like Abelian varieties and K3 surfaces. Using Corollary 4.1.7.2.1, one can enlarge
the class of varieties for which it holds:

Corollary 4.1.7.2.2. Let Z be a smooth projective k-variety of dimension > 3 and choose a
projective embedding Z C P}. If T'(D,¥) holds for the smooth hyperplane sections D C Z,
then T'(Z, ¢) holds.

Remark 4.1.7.2.3. Corollary 4.1.7.2.2 can be used to reduce the ¢-adic Tate conjecture for
divisors on smooth proper k-varieties to smooth projective k-surfaces, extending an unpublished
result ([d.J]) of De Jong (whose proof has been simplified in | , Theorem 4.3]) to infinite
finitely generated fields.

4.1.7.3 Uniform boundedness of Brauer groups

Combining Theorem 4.1.4.2.2 with the main result of Chapter 3 (Theorem 3.1.3.2) and the
arguments of | |, one gets the following application to uniform boundedness for the /-
primary torsion of the cohomological Brauer group in smooth proper families of k-varieties.

Corollary 4.1.7.3.1. Let X be a smooth geometrically connected k-curve and let f: Y — X
be a smooth proper morphism of k-varieties. If T'(Yz, £) holds for all x € | X|, then there exists
a constant C':= C(Y — X, () such that

| Br(Yz)[(*]" P < C

for all z € X (k).

Corollary 4.1.7.3.1 extends to positive characteristic the main result of | | and gives some
evidence for a positive charateristic version of the conjectures on the uniform boundedness of
Brauer group in | |. Elaborating the argument in the proof of Corollary 4.1.7.3.1, one
gets also an unconditional variant of Corollary 4.1.7.3.1 (Corollary 4.5.2.2) and a result on the
specialization of the p-adic Tate module of the Brauer group (Corollary 4.5.3.1).

4.1.8 Organization of the chapter

In the first two sections we prove of Theorem 4.1.4.2.2: in Section 4.2 we prove Theorem
4.1.6.3.1 and in Section 4.3 we show Theorem 4.1.4.2.2. Sections 4.4 and 4.5 are devoted to
applications: in Section 4.4 we prove Corollary 4.1.7.2.1, and in Section 4.5 we give the proof
of Corollary 4.1.7.3.1. In Sections 4.6 and 4.7 we prove the overconvergence of the higher direct
image in crystalline cohomology (Theorem 4.6.5.4.1), which is used in the proof of Theorem
4.1.6.3.1.
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4.2 Proof of Theorem 4.1.6.3.1

This section is devoted to the proof of Theorem 4.1.6.3.1. In Section 4.2.1, after recalling the
various categories of isocrystals needed in our argument, we reformulate Theorem 4.1.6.3.1 in
terms of monodromy groups of F-overconvergent isocrystals. In Section 4.2.2, we use indepen-
dence techniques to prove Theorem 4.1.6.3.1.

4.2.1 Tannakian reformulation of Theorem 4.1.6.3.1
4.2.1.1 Overconvergent isocrystals

Let X be a smooth geometrically connected F,-variety with ¢ = p® and write I for s-power of
the absolute Frobenius on X'. Write W := W(F,) for the Witt ring of IF,, K for its fraction
field and Mod(X|W) for the category of Oxpw-modules in the crystalline site of X'. Consider
the following categories:

Notation Name Reference
Crys(X|W)g | Isocrystals [ , Section 2]
Isoc' (X|K) | Overconvergent Isocrystals | | , Definition 2.3.6|
Isoc(X|K) Convergent isocrystals [ , Definition 2.3.2]

and their enriched version with Frobenius structure: F-Crys(X|W)g, F-Isoc!(X|K) and
F-Isoc(X|K). They fit into the following commutative diagram:

3)

/\

F-Crys(X|W)g — 2 F-Isoc(X|K) « 2 F-Isoc! (X|K)

<—>9wl Jee

Crys(X|W)q Isoc!(X|K)

m

Mod(X|W) @ Q

(4)

94



where (—)9¢° are the forgetful functors, (1) is the equivalence of categories constructed in | :
Theoreme 2.4.2] and (2) is the obvious functor. Write

Rifcrys,*oy/K = Rifcrys,*oy/w & Q € MOd(X|W) ® @

and recall the following fact:
Fact 4.2.1.1.1 (| , Theorem 1.1]). The functor (3) is fully faithful.

The following result, which gives us an overconvergent incarnation of Rifcrysv*(’)y/K, is a
consequence of the main result (Theorem 4.6.5.4.1) of Sections 4.6 and 4.7, building on the
work of Shiho on relative rigid cohomology (| |, [ ])-

Theorem 4.2.1.1.2. Let f : JJ — X be a smooth proper morphism. Then Rifcrys,*(’)y/K €
Mod(X|W) ® Q lies in the essential image of (4).

Proof. By | , Proposition 3.2], R'feys«Oy/x is in the essential image of (5) o (—)9.
Under the equivalence (1), Rifcry&*(?y/K is sent to the Ogus higher direct image Rifogus7*(9y/K,
see | , Section 3, Theorem 3.1| and | , Corollary 6.2]. One concludes by Theorem

4.6.5.4.1, which says that R’ fogus«Oy/r is in the image of an F-overconvergent isocrystal. [

Write R'f, O;IK for the (unique up to isomorphism) object of F-Isoc! (X | K) lifting R'ferys Oy

4.2.1.2 Tannakian formalism

Since X is a geometrically connected F, variety, F-Isoc' (X|K) and Isoc' (X |K) are K-linear
Tannakian categories over K, see | , Section 3.2| for more details. If one furthermore
assumes that X' has a F,-rational point t, the categories F-Isoc'(X|K), Isoc' (X |K) are neu-
tralized by the fibre functors

(_ geo

F-Isoc'(X|K) o, Isoc' (X|K)

\ lt*

Isoc'(F,) ~ Vectg.

Write 7{(X,t) and 7]9°(X,t) for the Tannakian groups of F-Isoc'(X|K) and Isoc’(X|K)
respectively. For F € F-Isoc' (X |K), let G(F,t), G9°(F,t) denote the Tannakian groups of
(F)® C F-Tsoc!(X|K) and (F9°)® C Isoc'(X|K) respectively. By the general Tannakian
formalism the forgetful functor (—)%¢° : (F)® — (F9°)® corresponds to a closed immersion

GI°(F,t) C G(F,1).
Alternatively G9°°(F,t), G(F,t) can be described as the images of
(X, t) = 7] (X, t) = GL(F)

where Fy := t'F. If g : Z — X is a morphism of geometrically connected [ -varieties and
t € Z(F,) the canonical functors

(F)® —— (g F)°

(| |

<JT,'geo>® g_> <g*f'geo>

"Recall that F' is the s-power Frobenius, so that its action on Isoc!(X|K) is K-linear.
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correspond to a commutative diagram of closed immersions

GIeo(g F 1) —— G°°(F, 1)

[ [

G(g*F,t) —— G(F,1).
Let §: Y — X be a smooth proper morphism of [F-varieties and write F, := Rif*C’);}‘K(j) for
the j-twist of the F-overconvergent isocrystals provided by Theorem 4.2.1.1.2.

Proposition 4.2.1.2.1. There is a natural isomorphism

HO(X, Ry s Oyyic) =7 = FOTY.

Dyt

Proof. Write Ox/x and OL/K for the structural sheaves in F-Crys(X|WW)g and F-Isoc'(X|K)
respectively. One has

HO(X7 Rifcrys,*oy/K) = HomCI‘yS(X|W)@(OX/K’ Rifcrysv*oy/K)
and so an isomorphism
H(X, Rifcrys,*Oy/K)F:qj ~ Homp-crys(x\w)q(Ox/k (=), Rferys «Oy/K)-
By Fact 4.2.1.1.1
Homg.crys(xiw)q (Ox/x (—J), Rifcry&*(’)y/;() = HomF—IsocT(é’dK)(OL/K(_j)7 Rif*O;/K) =
= HomF—Isoch(X\K)(Ol’L‘(/K’ Rif*O;/K(j» = HomF—IsocT(X\K)(O:’r’(/K’ Fp)-

Since F-Isoc'(X|K) is a Tannakian category with fibre functor t* and t*(’); /i corresponds to

the trivial one dimensional representation K of 7l (X, t), one deduces

;
* * 1 (X,8)
Homg yaoct (i) (O e Fp) = Homp, i (t Ol s € Fp) ~ Homy, (et e (B Fp) = i
Since the image of the action of 7} (X, t) on F, is G,(F,t), one sees that
i
(2,8 Gp(Ft
Foi o~ ]-"m( )
and this concludes the proof. O

4.2.1.3 Tannakian reinterpretation of Theorem 4.1.6.3.1

We now retain the notation and assumption of Theorem 4.1.6.3.1. With the notation of Theo-
rem 4.2.1.1.2, write
Fp = Rif*O;/K(j)
Fzp = R§2.05 () ~ o' F,
where the isomorphism comes from smooth proper base change in crystalline cohomology (e.g.
[ , Proposition 3.2]) and Fact 4.2.1.1.1. By Proposition 4.2.1.2.1 one has a commutative
diagram

HO(‘/Y) Rifm"y&*Oy/K)F:q ;) Fg{(}—pvt)

| I

. _ ~ G(Fz p,
H0<Z7RZfZ,CT’yS,*Oyz/K)F_q = ‘Fp,t( Z,pot)

Hence it is enough to show that the natural inclusion G(Fz,,t) C G(F,,t) is an isomorphism.
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4.2.2 End of the proof
4.2.2.1 Compatibility
For ¢ # p write ' ‘
Foi= R7.Qu(j) Fzu= RTz.Quj)

and let G(Fzy,t) (resp. G(Fi,t)) denotes the Zariski closure of the image of m(Z,t) (resp.
7 (X, 1)) acting on H* (Y7, Qu(7)). Since m1(Z,t) — m (X, t) — GL(H (Y, Q¢(j)) is open in the
image of m (X, t) — GL(H' ()%, Qu(4)) and G(Fy, t) is connected, one has G(Fy, t) = G(Fzy, t).
To prove that the natural inclusion G(Fz,,t) € G(F,,t) is an isomorphism, the idea is to
compare G(Fz,,t) and G(F,,t) with G(Fzy,t) and G(F,t). To do this, the main ingredient
is the following.

Fact 4.2.2.1 (| I, [ ). Fp,Fe (resp. Fz,,Fzy) is a Q-rational compatible system on
X (resp. Z) pure of weight i + 2j.

4.2.2.2 Geometric monodromy

Write F/* (resp. FZ7)) for the restriction of F; (resp. Fzy) to A (resp. Zy) and G9°(Fy, 1)
(resp. G9°°(Fzy,t)) for the Zariski closure of the image of m;(AXF, t) (resp. m1 (2, t)) acting on
H(V;,Q¢(j)). Recall the following:

Fact 4.2.2.2.1. For ? € {{, p} one has:
1. The groups G9°(F,t) and G9°(Fz»,t) are reductive algebraic groups.
2. G(Fr,t)° = G(Fzo,t)" if and only if G9°(F,,t)° = G9°(Fz 7, t)°

Proof.
1. Since F¥* and FZ’; are pure, this follows from | , Theorem 3.4.1] if ? = ¢ and from
[ , Remark 10.6] if 7 = p.

2. One implication follows from the fact that G9°(F»,t)? and G9°(Fz,t)? are the derived
subgroup of G(F7,t)° and G(Fz2,t)° (a consequence of the global monodromy theorem,
see e.g. | , Corollary 3.4.10]). The other one follows from | , Corollary 3.2.7]|.

[

By assumption G(Fy,t) = G(Fzy,t) and G9°(Fy, t) are connected, so by Fact 4.2.2.2.1
for ¢ # p, one gets that G9°(Fy,t) = G9°(Fzy,t) is connected. By | , Theorem
4.1.1.], being connected is independent from ? € {¢,p}, so that G(F,,t), G(Fzp,t), GI(Fp, 1)
and G9°°(Fzp,t) are connected. So, by Fact 4.2.2.2.1 for ¢ = p, it is enough to show that
G9°(Fz p, t) = GI°°(Fp, t).

4.2.2.3 Purity
For every integers n,m > 0, write
T Foy) = ]:{iim ® (.7:%{)‘8” and T™"(Fp) == FFm @ (F))™

Since G9°(F,, t) and G9°°(Fz,,t) are reductive (4.2.2.2.1), by Chevalley theorem it is enough
to show that
T (Fp )& e = o (F, ) Pz,
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Since G9°(Fy,t) = G9°°(Fz 4, t), it is enough to show that

D2m<Tm,n (fg7{)Ggeo(‘7:@’t)) — Dzm(Tm’” (Fp7t)Ggeo(fp’t)) and
Dzm(Tm’" (J—_'&t)Ggeo(}—zyz,t)) _ Dzm(Tm""‘ (.FpJ)GgEO(‘FZaP’t))‘

We prove the first equality, the proof of second being analogue. As in Proposition 4.2.1.2.1,
one has
T (F )@ = O, T (FE7) and T(F, )0 = HO(X, T (FA))

p

So it is enough to show that
Dim(H® (X, T™"(F)9°°)) = Dim(H (X, T™"(F,)?)).

Since F; and F, are pure, the same is true for 7""(F;)"(d) and T™"(F,)"(d), where d is
the dimension of X. Hence, by Grothendieck-Lefschetz fixed point formula (] , Theorem
10.5.1, page 603| if 7 = £ and | , Theorem 6.3| if 7 = p) the left and the right hand sides are
the number of poles, counted with multiplicity, with absolute value ¢“/? in the L-function of
T (Fp)¥(d) and T™™(F,)Y(d) (see e.g. | , Proposition 3.4.11| for more details). Since
Fi and F, are compatible, the same is true for 7" (F;)"(d) and T""(F,)"(d), hence the L-
function of T™"(F;)¥(d) does not depend on 7 € {¢,p}. This concludes the proof of Theorem
4.1.6.3.1

4.3 Proof of Theorem 4.1.4.2.2

In Section 4.3.1, we collect some preliminary remarks. The proof when f : Y — X is proper
is a technical elaboration (involving alteration and the trace formalism) of the proof when
f Y — X is projective. To clarify the exposition we carry out the proof when f:Y — X is
projective in Section 4.3.2 and turn to the general case in Section 4.3.3.

4.3.1 Preliminary remarks
4.3.1.1 Strictly generic vs generic

Observe that the assertion for Galois generic points implies the assertion for strictly Galois
generic points. Indeed, strictly Galois generic implies Galois generic, hence for a strictly Galois
generic point x € X the specialization morphism

Sppa t NS(Yn) ® Q = NS(Yz) ® Q

is an isomorphism. Recall that, as explained in 4.1.4, the map sp,, is m (z,T)-equivariant.
Since 7 (z,T) and 71 (X,7) ~ m (X, T) acting on H?*(Yz, Qu(1)) ~ H?*(Yz, Qq(1)) have the same
image II, (since x is strictly Galois generic), taking Il,-invariants in sp, ., one deduces the
statement for strictly Galois generic points. So, from on, we focus on the assertion for Galois
generic points. To simplify, in this section, we omit base points in our notation for the étale
fundamental group.

4.3.1.2 Finite cover

If X’ — X is a surjective finite morphism of smooth connected k-varieties, the map m (X’) —
m(X) has open image. So z € X is Galois generic (resp. NS generic) for f : Y — X if
and only if any lifting 2/ € X’ of x if Galois generic (resp. NS generic) for the base change
fx Y xx X' = X" of f:Y — X along X’ — X. As a consequence we can freely replace X
with X’ during the proof.
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4.3.2 Proof when f is projective
Let f: Y — X be smooth projective. For the general strategy of the proof see Section 4.1.6.2.

4.3.2.1 Step 1: Spreading out

Replacing & with a finite field extension (4.3.1.2), one can assume that there exists a finite
field F,, smooth and geometrically connected F,-varieties K, Z with generic points ¢ : & — K,
p: k() - Z and a commutative cartesian diagram

/\

N > Y « Y,
l D lfz 0 lf 0 lf O lfl.
X « k(x)

\lw

F, < IC<C k

where §: Y — X is a smooth projective morphism and the base change of fz : Vz — Z along
B : k(x) — Z identifies with f, : Y, — k(z). Replacing X with a finite étale cover (4.3.1.2) one
can also assume that

1. NS(Y7) ® Q = NS(Y,) ® Q and NS(Yp) ® Q = NS(Q) ® Q;

2. the Zariski closures of the images of m1 (X') — GL(H?(Y5, Q¢(1))) and m (Xr) — GL(H? (Y7, Qe(1)))
are connected.

Note that, by smooth proper base change, one has the following factorization

m(z) —— m(X) —— GL(H*(Y5, Qu(1))) ~ GL(H?*(V, Qu(1)))

| l /

7'('1(2) — 7T1

In particular, since z is Galois generic with respect to f : Y — X, the image of m(Z) —
71 (X) — GL(H?*(Y7, Qq(1))) is open in the image of m(X) — GL(H?*()%, Q(1))). Hence by
4.3.2.1(2) and Theorem 4.1.6.3.1 the base change map

HO(Xa Rchrys,*Oy/W>F:q ® Q — HO(Za szZ,crys,*Oyz/W>F:q ® Q

is an isomorphism.

4.3.2.2 Step 2: Using the variational Tate conjecture

Since t is a specialization of x (in Z) and x is a specialization of 7 (in &), there is a canonical
commutative diagram

99



» Pic(Vz) @ Q 3 z,

! —L i 460

Pic(Y,) ® Q Pic(Y) @ Q 3 z Pic(Y,) ® Q
‘L Py, (41)
| € € NS(Yﬁ) Q i\sp Yz
NS(YV) ®Q=NSQpH) Q3¢
grys(y) x
Ler / ngys(yf>
HO(Xa R2fcrys,*oy/W) ® Q € ’ HO<Z7 RZfZ,crys,*OyZ/W) ® @
T T

(i41)

HO(Xa R2fcrys,*oy/W)F:q & Q ? HO(Za R2f2,crys,*OyZ/W)F:q & @

where the arrow (7) is surjective, since an open immersion of smooth varieties induces a surjec-
tion on the Picard groups, the arrows (i) are surjective by 4.3.2.1(1) and the arrow (iii) is an
isomorphism by Theorem 4.1.6.3.1.

The images of

PlC(y) ® Q — HO(X7 R2fcrys,*oy/W> X @ and PIC(yZ) ® Q — H0<Za R2fZ,crys,*O)JZ/W) & @

lie in HO(X, R%ys «Oyyw ) =1 @ Q and HO(Z, R*fz crys « Oy i) =7 @ Q respectively. Take an
e in NS(Y,) ® Q with lifting z, € Pic(Yz) ® Q and write

Zy = Zj: (Zx) < PlC(yt) X @ and € — pr,t(ex) = Cytij:<zfl?) S NS(“yt) ® Q
By construction ¢ is in the image of
(ZZZ> : HO(Xa Rchrys,*Oy/W)F:q & Q l> HO(Z> szZ,crys,*Oyz/W)F:q ® Q

Moreover € = cyif(z;) and so, by Fact 4.1.6.1.1 applied to f : Y — Z and t, there exists
z € Pic(Y) ® Q such that i{cy(z) = €. Let €, be the image of z in NS(Y;) ® Q. By construction
and the commutativity of the diagram one has:

pr,t(SPWJ(En)) = Spnvt(en) = €= 5pyu(€z)

Since sp, is injective, this concludes the proof of Theorem 4.1.4.2.2 when f is projective.

4.3.3 Proof when f is proper

Assume now that f : Y — X is only proper. Since Fact 4.1.6.1.1 is only available when f is
projective, we cannot longer apply it directly to f : J — X. To overcome this difficulty we
proceed as follows. Using De Jong’s alteration theorem and replacing X with a dense open
subset, one first constructs a commutative diagram

37 g s Y
S S
X

100




with f smooth projective and g dominant and generally finite. While every z € X which
is NS-generic for f is NS-generic for f (as the argument in 4.3.3.4 shows), the hypothesis of

being Galois generic for f does not transfer to f in general, so that one cannot reduce directly
the assertion for the (proper) morphism f : Y — X to the assertion for the (projective)

morphism f : Y — X. However, the trace formalism is functorial enough to allow us to
transfer information from f:Y — X to f: Y — X for cohomology classes coming from Y.

4.3.3.1 Step 1: De Jong’s alterations theorem

First one reduces to the situation where f has geometrically connected fibres (this hypothesis is
used in 4.3.3.4 to apply Poincare duality). By | , X, Proposition 1.2] and replacing X with
a finite étale cover (4.3.1.2), one can assume that f : Y — X decomposes in a disjoint union
of morphisms f; : Y; — X with geometrically connected fibres. Since for every (not necessarily
closed) point x € X there are natural decompositions

NS(Yz) ® Q —— H*(Yz, Qu(i)
@i NS(Yiz) ® Q — @;H(Yiz, Quli))
one may work with each f; : Y; — X separately and hence assume that f : ¥ — X has
geometrically connected fibres.
By De Jong’s alterations theorem (| |) for Yz over k(n), there exists a proper, surjective

and generically finite morphism Yz — Y5, where Y5 is a connected, smooth and projective
k(n)-variety. By descent and spreading out, there exists a commutative diagram of connected

smooth k-varieties:
a R
N l 0of / lg
a Y,y Yy

j / ;
LD l D,\fwg fo O lf

Y;
(n) — k() 4= U LU > X

3

3
N

where 7' : k(n/) — U’ is the generic point of U’, i : U — X is a open immersion with dense
image, j : U'" — U is a finite surjective morphism, f: Y — U’ is smooth, projective with
geometrically connected fibres and ¢g : Y — Yy is proper, surjective and generically finite. In
conclusion, replacing X with U’ (4.3.1.2), one can assume that there exists a diagram

}N/ g s Y
N T
X

where ]7: Y — X is smooth projective with geometrically connected fibres, f : Y — X is
smooth proper with geometrically connected fibres and g : Y — Y is generically finite and
dominant.
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4.3.3.2 Step 2: Spreading out

Now one spreads out to finite fields. Up to replacing k with a finite field extension (4.3.1.2),
there exists a finite field IF;, smooth and geometrically connected [Fy-varieties K,Z with generic
points ( : k — K, f: k(x) — Z and a commutative cartesian diagram:

32 > Vz s Y < Y « Y.

T/ e [Fz/vgz D¥/Vg Df/vg O lgm
N Yz

| o\l o

i {

y Z > X < X+ k(x)

Nl o

F, < K < k

¥
— <
]
ol
Y
]
<_
>

~

where f: Y — X is smooth proper with geometrically connected fibres, }7: Y — X is smooth
projective with geometrically connected fibres, g : JV — ) is a dominant generically finite
morphism and the base change of Vz — Yz — Z along k(x) — Z identifies with Y, — Y, —
k(x). Replacing X with a finite étale cover (4.3.1.2) one can also assume that

1. NS(Y;) ® Q = NS(¥;) ® Q, NS(V)) ® Q = NS(V) ® Q, NS(J)) ® Q = NS(}) ® Q;

2. the Zariski closures of the images of 71 (X) — GL(H?*(Yz, Q¢(1))) and 1 (Xr) — GL(H? (Y5, Qu(1)))
are connected.

Note that, by smooth proper base change, one has the following factorization

m(z) —— m(X) —— GL(H*(Yy, Qu(1))) ~ GL(H*(V5, Qi(1)))

! |

m(2) —— m(X)

In particular, since = is Galois generic for f : ¥ — X, the image of m(2) — m(X) —
GL(H?(Y;,Q(1))) is open in the image of m(X) — GL(H?*()%, Q¢(1))). Hence by (2) and
Theorem 4.1.6.3.1 the base change map

HO(X7 Rchrys,*Oy/W)F:q ® Q — HO(Za R2f2,crys,*oyZ/W)F:q ® Q

is an isomorphism.

4.3.3.3 Step 3: Using the Variational Tate conjecture
Take an €, in NS(Y,) ® Q. The goal of this subsection is to prove that there exists a €, €

NS(Y;) ® Q such that sp, (&) = g*(e.), where
Py NS(Yy) ©Q = NS(V) @ Q

is the specialization map for f: Y — X. Consider the commutative diagram in 4.3.2.2. Let
2y € Pic(YVz) ® Q be a lift of €, and write

2 =1;(2y) € Pic(Q) ® Q and € = spy(€x) = cpif(22) € NS(Qh) ® Q.

102



By construction ¢ is in the image of
(i11) : H(X, R?ferys s Oyyw) =10 Q = H(Z, R*f 2 0rys xOvyw) =1 @ Q.

Moreover € = cy,i{(z;). Since § : Y — X is only assumed to be proper, one cannot apply
directly Fact 4.1.6.1.1 to it. However the previous reasoning shows that

HO(Xv Rﬁ*,cwso)?/w)@@ 2 9*(H0(X7 R2fcrys,*oy/W)®Q) 3 gi(e) = g; (eyif(22)) = Cytgfg*z(zz)»

where the notation is as in the canonical commutative diagram:

Z € Pic()) ®Q —— Pic(Vz) @ Q 3 g5(2)
L — L o)
Pic(Y, 0 ®Q Pic(V) @ Q 3 z Pic(Y,) ® Q
! e .
ST ~ Yz
5| & eNS(Yy)® T _ » NS(Yz) ® Q 3 g*(es)
\SPnt}
NS(V) ® Q > gi(er)
H02ry3<y) \ crys(yz)
Ler / crys (yt) Ler
g*(Et) € HO(X7 RQ}/crys,*Oy/W) ® Q € ? HO(Za ijz,crys,*oyz/w) & Q =] g}(ﬂ)
o T oz T
€ € HO(X’ Rchrys,*Oy/W) ® @ > HO(Z’ R2f2,crys,*OyZ/W) & Q D €

So, by Fact 4.1.6.1.1 applied toﬁfy7 Y — X and t, there exists z € Pic(Y ) ® Q such that
g; (e0) = 17c5(2). Write €, := iyc5(2). From the commutative diagram

Pic(Y )®Q—> Pic(Y,) ® Q — NS(V;) @ Q

| -
SPn;t S(Yf)
AN

~ C

Pic()) . » NS(J) @ Q

one deduces
‘%x,t(@n,z(gn>) = g]/?:):,t(g*edf)'

Since sp,  is injective this implies

Py (€n) = 9" (€).
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4.3.3.4 Step 4: Trace argument

To conclude the proof one has to descend from Y to Y. For this we use the trace formal-
ism. Since f:Y — X and f: Y — X are smooth proper morphisms with geometrically
connected fibres, by the relative Poincaré duality (| , Exposé XVIII]), there are canonical
isomorphisms

R*f.Qq ~ (R*2£,Qu(d))" and R*f.Q ~ (R**£.Qu(d))",

where d = Dim(Y,) = Dim(Y,). Dualizing and twisting the base change map
R*2£,Qu(d) — B F.Qu(d),

one gets a morphism

g B2 LQu(1) = (B2 .Qe(d))Y (1) = (R £.Qu(d)" (1) = B £.Qu(1).
By the compatibility of Poincaré duality with base change, for every (not necessarily closed)

z € X, the fibre of g, at T is the usual push forward map g, : H2(Ys, Qu(1)) = H2(Ys, Qi(1))
in étale cohomology. In particular it is compatible with the push forward of algebraic cycles

gz« - Pic(Yz) ® Q — Pic(Yz) ® Q. Since ¢g* and g, are maps of sheaves, they are compatible
with the specialization isomorphisms and hence the following canonical diagram commutes:

Pic(Y;) ® Q —L— Pic(Ys) ® Q —%— Pic(V;) ® Q

Cco
Cy— T Cy—
Yo Y5 Yo

~ g ~

H(Yy, Qu(1) —L— H?(Yy, Qu(1)) —2 H2(Yy, Qu(1)

/
SPn,x Spn,z S5Pn,x

~ g ~

H2(Yz, Qu(1) =L H2(Vz, Qu(1) —2 H2(Vz, Qu(1))

AN AN AN

CYz C}fo Cyg

Pic(Yz) © Q —%— Pic(Vs) © Q —%— Pic(Ys) © Q

Since the the horizontal arrows are the multiplication by n := deg(g), one concludes observing
that g*c%('evn) € NS(Y5) ® Q is such that spnvx(%g*cf,ﬁ('evn)) = €.

4.4 Hyperplane sections

Let k be an infinite finitely generated field of characteristic p > 0. In this section we apply
Theorem 4.1.4.2.2 to Lefschetz pencils of hyperplane sections. The main result is Corollary
4.1.7.2.1.

4.4.1 Geometric versus arithmetic hyperplane sections

Let Z be a smooth projective k-variety and fix a closed embedding Z C P}. One can ask
whether there exists a smooth hyperplane section D of Z such that the canonical map

is an isomorphism. If Dim(Z) = 2, then D is a curve so that NS(D) ® Q = Q hence ip_
is not injective as soon as NS(Z;) ® Q has rank > 2. Weak Lefschetz (| , Thm. 7.1, p.
318]) and Grothendieck—Lefschetz (| , Exp. XI]) theorems ensure that ip_ is injective if
Dim(Z) > 3, and an isomorphism if Dim(Z) > 4. There are smooth projective varieties of
dimension 3 such that the surjectivity of ip_ fails for all smooth hyperplane sections.
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Example 4.4.1.1. Take Z = P} embedded in P} via the Veronese embedding:

P} — P}
[:y:z:w] = [22y? 2w oy wz o ow s yz s yw 2w,
Then a smooth hyperplane section D C Z in P} is a smooth quadric surface in ¥, so that
Dy ~ P> x PL. Hence NS(Dy) ~ Z x Z, while NS(Z;) = Z.

But things change if one replaces the geometric Néron-Severi groups with their arithmetic
counterparts.

Example 4.4.1.2. Assume p > 17 and consider the pencil of hyperplane sections of Z in P)
given by the hyperplanes a(zy +zo+x3+24) +b(x1 +422+ 923+ 1624), where [a : b] € P'(k) and
1, ..., T10 are the coordinates in P). This corresponds in P? to the pencil of quadric surfaces

Quup : a(x® + > + 22 + w®) + b(z” + 4y® + 92° + 16w*) = 0.

When Q4. is smooth, it a is quadric surface and, for a [a : b] in an open subset of P;

NS(D) RQ ~ (NS(DE) ® @)Wl(k) _ (QZ)m(k) —Q

is generated by the sum of the two families of L. So there are “lots" of [a : 0] € P'(k) such
that the canonical map

NS(P}) ® Q = NS(Qpus)) ® Q
is an isomorphism.

The main result is of this subsection is Corollary 4.1.7.2.1 that we now recall:

Corollary. If dim(Z) > 2 there are infinitely many k-rational hyperplane sections D such that
the canonical map

NS(Z)®Q — NS(D)® Q

18 an 1somorphism.

4.4.2 Proof of Corollary 4.1.7.2.1

By (| , Exp. XVII]) there exists a pencil of hyperplanes L := {Hy},cp: such that:
e For all x in an dense open subscheme U C EV”}C, the intersection H, N Z is smooth;
e The base locus B := Nyer,Z N H, C Z is smooth.

Then one gets a diagram

Z« 7 1, pl

where 7 : Z — Z is the blow up of Z along B, f: 7 — IP’l is a projective flat morphlsm smooth
over U and for each 2 € P! the fibre Z, of f : Z — PL at  identifies via 7 : Z — Z with the

hyperplane section Z N H, C Z. Write £ := 7 1(B) for the exceptional divisor. Explicitly 7
is the closed subscheme of Z x P}, defined by

7 :={(z,2) € Z x PL with z € ZN H,} — Z x P}
m:7Z — Z, f: Z — P! identify with the canonical projections onto Z, P! respectively and E

with B x PL. Write n for the generic point of PL. Combing Lemma 4.4.2.1 below with Corollary
4.1.7.1.2 one gets Corollary 4.1.7.2.1.
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Lemma 4.4.2.1. If Dim(Z) > 2, the canonical map
i}n :NS(Z)®Q — NS(Z,)) ®Q
is an isomorphism.

Proof. This is inspired from | , Corollary 1.5|. Fix x € U. The natural commutative
diagram

induces a commutative diagram:

Pic(Z )®@—>P1C( )®@—»P10(ZU)®Q—>P1C:( :) ®Q Plc( 0 ®Q

[P [

NS(Z) ® Q —— NS(Z)® Q NS(Z. )®Q<—JNS( ) ©Q

~

Since Dim(Z) > 2, the map
% :NS(Z)®Q— NS(Z,) ®Q

Zn "

is injective. To prove the surjectivity, let e € NS(Z, ) @ Q with lift z € Pic(Z, ) ® Q. Since sp,
is injective, it is enough to show that €, := sp{",(¢) is in the image of i% . Since the maps ZU
and 4; are surjective, z € PlC(Z ) lifts to a Z € Pic(Z) ® Q and, by the commutativity of the

dlagram Z maps to €, in NS(Z,) ® Q. Now, since  is the blow up of Z along B, cz(Z) can be
written as 7*cz(2') + beyz(E), where 2’ € Plc( ) ® Q and b € Q. The conclusion follows from
the following claim, since it implies that €, is the image of ¢z (2') + bez(Z N H,) € NS(Z) ® Q.
Claim: The restrictions of cz(E) and n*cz(Z N Hy,) to Z, coincide.

Proof of the claim. By direct computations, one sees that £ = B x IP’l intersects transversally
Z, and that ENZ, = B, so that the restriction of cz(E) to Z, is given by cz (B) € Pic(Z,)®Q.
To compute the restriction 7*cz(Z N H,) to Z, observe that it is equal to i (cz(Z N Hy)).
Then take any y # = € L and compute z'*ZI(cZ(Z NH,)) as cz (ZNH, N Hy,) = c; (B), since
B=ZNH,NHy,forany v #y € L. ]

Remark 4.4.2.2. The key fact that Pic(Z 7)@Q — PlC(Z ) ®Q is surjective, does not hold for
Pic(Z;) ® Q — Pic(Z 7) ® Q (see Example 4.4.1.2). This is why it is not true in general that
for a point x € |U|, which is Galois-generic for Zy — U the canonical map

iz, :NS(Z,) ®Q — NS(Z) ® Q
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is an isomorphism and one really needs to restrict to strictly Galois generic points: during
the proof one cannot replace U with a finite étale cover, since any base change destroys the
geometry of the pencil.

4.4.3 Proof of Corollary 4.1.7.2.2

Replacing k with a finite extension, it is enough to show that the map
NS(Z) ® Qp — H*(Zz, Qu(1))™®

is an isomorphism. By Corollary 4.1.7.2.1, there exists k-rational hyperplane section D — Z
such that the canonical map NS(Z) ® Q, — NS(D) ® Qy is an isomorphism. The conclusion
follows from the commutative diagram

NS(Z) @ Qp — H*(Zz, Qu(1))m®
NS(D) ® Qp —— H?*(Ds, Qq(1))m®

since i}, is an isomorphism by the choice of D and (2) is an isomorphism by T'(D, ¢). O

4.5 Brauer groups in families

Let k be a field of transcendence degree > 1 over F,. We assume that k is finitely generated
except in Subsection 4.5.3.

4.5.1 Specialization of Brauer groups
4.5.1.1 Brauer group

For a smooth proper k-variety Z write H?(Zz, G,,) := Br(Zz) for the (cohomological) Brauer
group of Zz, Br(Z;)[n] for its n-torsion subgroup and

Ty(Br(Zg)) = lim Br(Zp)[€"],  Br(Zg)[£>] := lim Br(Zg)[¢"],  Br(Zg)[p] := ling Br(Zg)[n].
n n nip

Recall that Br(Z;) is a torsion group and that Kummer theory induces, for every p{n € N,
an exact sequence:
0 — NS(Zz)/n — H*(Zz, ) — Br(Zg)[n] — 0.

It is classically known that if T(Z,¢) holds, then Br(Z;)[¢>]™®) is finite (see e.g. | ,
Proposition 2.1.1]).
4.5.1.2 Brauer generic points

Let X be a smooth geometrically connected k-variety with generic point n and f : Y — X
a smooth proper morphism of k-varieties. Taking the direct limit over p { n on the Kummer
exact sequence, one gets a commutative specialization exact diagram

0 —— hﬂmp NS(Y5)/n —— hgmp H*(Yz, ) —— Br(Yg)[p'] —— 0

\[Spn T lﬁ lsp'r]i;

0 — iy, NS(¥Va)/n — lim,, H*(¥s, ) — Br(¥)lp] — 0
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Since the group Ker(sp,.) is of p-torsion and Coker(sp, .)iors = Coker(sp,..)[p™] (see | :
Proposition 3.6]), one sees that a € | X| is N S-generic if and only if the map

Spﬁ; : Br(Yy)[p'] — Br(Yz)[p]

is an isomorphism. In particular (Corollary 4.1.7.1.2) the set of 2 € |X| such that sp]”, is not
an isomorphism is sparse and if X is a curve it contains at most finitely many of k-rational
points.

4.5.2 Uniform boundedness

Retain the notation and the assumptions as in the previous Section 4.5.1.2. Taking inverse
limit in the Kummer exact sequence, one gets a commutative exact diagram

0 —— NS(Yy) ® Zy —— H*(Yy, Ze(1)) —— Tu(Br(Yy)) —— 0

\[spn - lz lsp,? -
0 —— NS(Yz) ® Zy —— H*(Yz, Zy(1)) —— Ty(Br(Yz)) —— 0
The group m (x,Z) acts on 1;(Br(Y5)) by restriction trough the map m(z,7) — m(X,7) ~
m(X,7) and sp)7 is m (x,T)-equivariant with respect to the natural action of 7 (z,Z) on
Ty(Br(Yz)). Hence the arguments in Section 4.5.1 combined with Theorem 4.1.4.2.2 show the
following

Lemma 4.5.2.1. Up to replacing X with an open subset, for every Galois generic x € | X| and
every { # p, the m(x, T)-equivariant specialization morphism

spon - Ty(Br(Yy)) — Ty(Br(Yz))

is an isomorphism

Replacing | , Proposition 3.2.1] with Lemma 4.5.2.1 and | , Fact 3.4.1| with the
main result of Chapter 3 (Theorem 3.1.3.2), one can make the arguments in the proof of | :
Theorem 1.2.1] work in positive characteristic and prove Corollary 4.1.7.3.1. In the same way,
using the arguments in the proof of | , Theorem 3.5.1], one gets the following unconditional
variant:

Corollary 4.5.2.2. Let X be a curve and assume that the Zariski closure of the image of
m1(X) acting on H*(Yz, Qu(1)) is connected. Then there exists an integer C' := C(Y — X, ()
such that

[Br(Yz)™ = 2e] : Br(Yy) XD [e>]] < ©

for all but finitely many = € X (k).

4.5.3 p-adic Tate module

Assume that X is a smooth connected k-variety with generic point 7, where k is an algebraically
closed field of characteristic p and that Y — X is a smooth projective morphism.

Corollary 4.5.3.1. There exists an z € | X| such that Rank(T,(Br(Yz))) = Rank(1,(Br(Y5)))

Proof. For every geometric point ¢ € X, one has (| , Proposition 5.12]):

Dim(NS(Y;) ® Q) = Dim(H2,,(Y;)) — 2Dim(H2,,(Y}))) — Rank(T,(Br(¥;)))

crys crys
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where HZ2, (Y7)n is the slope one part of the crystalline cohomology of ¥; (see e.g. | :
Section 3| for the definition). By | , Theorem 3.12, Corollary 4.2| there exists a dense
open subset U of X such that for all z € |U| one has

Dim(H2 (Yj)[l]) = Dim(H2 (Yﬁ)[l])

crys crys

Since Dim(H?. .(Yz)) is independent of x € X (smooth proper base change in crystalline

crys

cohomology), one concludes applying Corollary 4.1.7.1.2 to Yy — U. O

4.6 Preliminaries for Theorem 4.6.5.4.1

In the next two sections, we use the work of Shiho on relative rigid cohomology to prove
Theorem 4.6.5.4.1, which is a key ingredient in the proof of Theorem 4.2.1.1.2. In Section 4.6,
we recall the definitions of various categories of isocrystals, the relations between them and we
state Theorem 4.6.5.4.1. In Section 4.7, we prove Theorem 4.6.5.4.1.

4.6.1 Notation

Let k be a perfect field of characteristic p > 0. Write K for the fraction field of the Witt ring
W = W(k) of k and | — | : K — R for the norm induced by the ideal pW C W. For any
k-variety X, write F'x for a power of the absolute Frobenius on X and, if there is no danger of
confusion, one often drops the lower index and writes just F.

Gothic letters (T, X, 4l...) denote separated, p-adic formal schemes over W. Write X; for the
special fibre of X, X for its rigid analytic generic fibre and sp : X — X; for the specialization
map. There is an equivalence between the isogeny category Coh(X)®Q of the category Coh(X)
of coherent sheaves on X and the category Coh(Xf) of coherent sheaves on Xx (see | :
Remark 1.5]).

If f:X — X is a closed immersion, one can consider the open tube | X[z:= sp~'(X) and
the closed tube of radius |p|, [X]xp of X in X (see | , Definition 1.1.2, Section 1.1.8]).
They are admissible open subsets of X, and there is an inclusion [X]x |, C]X[x.

A couple (X, X) is an open immersion of k-varieties X — X and a frame (X, X,X) is a
couple (X, X) together with a closed immersion of X into a p-adic formal schemes X. Morphisms
of couples and frames are defined in the obvious way. A couple (Y,Y) over a frame (X, X, X)
is a morphism of couples (Y,Y) — (X, X) and a frame (X, X,X) over a couple (Y,Y) is a
morphism of couples (X, X) — (Y,Y). If (X, X, X) is a frame, for any sheaf F over | X[y one
writes

JNT =i v i F
14

where the limit runs over all the strict neighbourhoods V of X in X (see | , Definition

1.2.1]) and jy : V —]X[x in the inclusion map.
If f:Y — X is a morphism of k-varieties, for every morphism Z — X write:

4.6.2 Categories of isocrystals
To a k-variety X one can associate the following categories of isocrystals:

e Isoc”(X|K), the p-adically convergent isocrystals (see | , Definition 2.1|);
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e IsocV(X|K), the convergent isocrystals (see | , Definition 2.1|);

If (X,X) is a couple there is a category Isoc'(X,X|K) of isocrystal on X overconvergent
along X — X see | , Definition 2.3.2]. If X is a compactification of X, one writes
Isoc' (X, X|K) := Isoc' (X|K) and calls the object in there overconvergent isocrystals on X.
It is known that Isoc'(X|K) does not depend on the choice of the compactification, so that
Isoc' (X|K) is well defined (see [ , 2.3.6]).

o Isoc” (X |K) (resp. IsocW(X|K)). Write I)(f) (resp. Iﬁ(})) for the category of p-adic
enlargements (resp. enlargements). This is the category of pairs (%, 2¢) such that ¥ is
a flat p-adic formal W-scheme and zg is a morphism T; — X (resp. (T1)req — X). A
morphism g : (3,23) — (%, 25) between p-adic enlargements (resp. enlargements) is a
morphism ¢ : 3 — ¥ such that z3 0 g1 = zg (resp. 230 (91)rea = 27), Where g1 : 31 — %4
(resp. (91)red : (31)rea — (%1)rea) are the natural morphisms induced by g. A p-adically
convergent isocrystals (resp. a convergent isocrystal) is the following set of data:

— For every (%, 2) € Ob([)(f)) (resp. € Ob(I)((l))), a Mz ,.p) € Coh(Tk);

— For every morphism ¢ : (3,23) — (%, 2¢) in [)(f) (resp. I)((l)) an isomorphism
g1 g Mzr) = Mz

in Coh(3k) such that ¢;q = Id and for every other morphism h : (T, z5) — (4, zy)
one has g*¢n = Ppog-

A morphism of p-adically convergent isocrystals (resp. convergent isocrystals) M — N is

a collection of morphisms { Mz ..) = Nz} resp. compatible

(T,25)€0b(1)) ( (T,Zx)GObU&l)))

with the isomorphism ¢, for all morphisms g.

e Isoc! (X, X|K). Write I x 1) for the category of frames over (X, X). Then an isocrystals
on X overconvergent along X — X is the following set of data:

— For every (T,T,%) € Ob(I x x)) a coherent j;(’)mT module M 77 z);
— For every morphism ¢ : (Z,Z,3) — (T, T,%) in I x x) an isomorphism
bg: g Mara) = Mizz3)
of coherent jTZ(’)m3 modules such that ¢;; = Id and for every other morphism
h: (T, T, %) — (U,U,) one has g*¢n = Ppog-

A morphism M — N in Isoc'(X,X|K) is a collection of morphisms Mazs —
N7} o7 5)c0n I compatible with the isomorphism ¢, for all morphisms g.

There are also enriched versions of the previous categories with Frobenius structure, which
we denote F-Isoc®” (X |K), F-Isoc" (X |K) and F-Isoc!(X, X|K). For example, the absolute
Frobenius F'y induces an endofunctor

F% : Isoc®(X|K) — Isoc®” (X |K)

and F-Isoc” (X|K) is the category of pairs (M, ®), where M € Isoc®”(X|K) and ® is a
Frobenius structure on M, i.e. an isomorphism FM — M. A morphism in F-Isoc®” (X|K)
is a morphism in Isoc®” (X|K) compatible with the Frobenius structures. The constructions
of F-IsocW (X|K) and F-Isoc'(X, X|K) are similar.
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4.6.3 Functors between the categories

For every couple (X, X) there is a canonical commutative diagram of functors:

F-Isoc”) (X|K) o F-Isoc" (X|K) — F-Isoc'(X, X|K), +—— F-Isoc'(X, X|K)

S PIsoc (X,
| ! | !

Isoc” (X|K) ¢——— Isoc(X|K) ¢ Isoc!(X, X|K) ¢ = Isoc'(X, X|K)

and
e F'1— Fp,conv—1, Fconv — F1 are equivalences of categories (| , Proposition 2.18],
[Be196, 2.3.4])
e Fov — Fconwv is fully faithful if X is smooth (| , Theorem 1.1]).

All the functors are easy to construct from the definitions. For example, to construct conv — 1,
to an enlargement (%, zz) one associates the frame ((%1),ed, (T1)red, T) over (X, X) and so, for
every M € F-Isoc'(X, X|K), one defines

conv — ]‘(M)(QVZT) = M((Tl)redz(gl)'retbg)'
The constructions of 1 — p,ov — conv are similar. In view of these functors, if M is in

F-Isoc' (X, X|K) and (%, z) is a p-adic enlargement of X, write

Mz z0) = Mz,3,9)-

4.6.4 Stratification

Assume that X admits a closed immersion into a p-adic formal scheme X formally smooth
over W. Then the categories of isocrystals on X admit a more concrete description in term of
modules with a stratification. We now recall the notion of universal p-adic enlargement and we
use it to define modules with a stratification.

4.6.4.1 Universal p-adic enlargements

By | , Proposition 2.3|, there exists a universal p-adic enlargement (T(X), zg(x)) of X in
X. The p-adic enlargement (T(X), 2z(x)) of X is endowed with a map g : T(X) — X making
the following diagram commutative:

z
y o g

X « > X3 > X

which is universal for all the p-adic enlargements (2),2y) of X in X, i.e for all the p-adic
enlargements (), z9) admitting a map ¢ : Y — X making the previous diagram commutative.

Write T(X)(1) for the universal p-adic enlargements of X in X x X, where one considers
X embedded in X; x X; via the diagonal immersion. The p-adic formal schemes T(X) and
T(X)(1) are such that such that T(X)x = [X]|xp and T(X)(1)x = [X]|xxx,p (see | :
1.1.10]).
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4.6.4.2 Stratifications

Let Strat® (X, X|K) be the category of modules with a p-adically convergent stratifications
(| , Proposition 2.11]). An object (M, €) in Strat® (X, X|K) is a coherent module M over
[ X]xp = T(X)k together with an isomorphism € : pfM — p; M satisfying a natural cocycle
condition, where the pis are the two projections T(X)(1)x = [X]xxzp = T(X)x = [X]xp-
The projections pi, ps : XxX — X give morphisms of enlargements py, ps : (T(X)(1), 2zx)1)) —
(T(X), 23(x)). Hence, if M is in Isoc”) (X|K), there is an isomorphism

Mz pT(M(T(X)vzz(XQ) = M(T(X)(l):z‘z(xm)) = pS(M(Y(X)%I(X)))'
This gives a functor
(= (3(X)z20x)): €—x)  Is0e® (X|K) — Strat® (X, X|K)

that sends M to (M(g(x),zg(x)), €mx)- By the universal property of T(X), this functor is an

equivalence of categories (| , Proposition 2.11]). o
Given a frame (X, X, X), one can define the category Strat(X, X, X|K) of modules with
a stratification on X overconvergent along X — X, see | , P. 50| where it is denoted

by IT((X,X)/W]|X)). An object (M, ¢) in Strat(X, X, X|K) is a coherent j;((’)]y[x module
together with a j;((’)]y[mx—linear isomorphism € : pjM ~ pi;M satisfying a natural cocycle

condition, where the pis are the two projection maps |X|[xxx—|X|[x. As in the p-adically
convergent situation, one constructs a functor

(—(xxx)€-) " Isoc' (X, X|K) — Strat(X, X, X|K)

which is an equivalence of categories (see | , Propositions 7.2.2 and 7.3.11]).

4.6.5 Relative p-adic cohomology theories
4.6.5.1 Relative p-adic cohomology theories

Fix a smooth proper morphism of k-varieties f : Y — X and a closed immersion 7 : X — X,
where X is a flat p-adic formal scheme. Assume that f : Y — X has (log-) smooth parameter
in the sense of | , Definition 3.4].

Remark 4.6.5.1.1. If f : Y — X has (log-) smooth parameter, for every morphism of k-
varieties Z — X, the base change Y; — Z has (log-) smooth parameter (| , Remark
3.5]). Moreover, if X is smooth, every smooth proper morphism f : Y — X of k-varieties has
(log-) smooth proper parameter.

Depending on the nature of i : X — X one defines different p-adic cohomology theories:

o If X =X; and 2 : X — X is the canonical inclusion, then one can define the crystalline
higher direct image R’ fx crysOy/x, that is the higher direct image in the relative crys-
talline site of X in X, well defined since X C X is defined by the ideal (p). It lives in
Coh(Xk), see e.g | , Section 1].

o If ; : X — X is an homeomorphism, then one can define the convergent higher direct
image R’ fx conv,+Oy/x, that is the higher direct image in the relative convergent site of X
in X. It lives in Coh(Xg). See e.g | , Sections 2-3|.

o Ifi: X — X is an arbitrary closed immersion, one can define the analytic higher direct
image R’ fx an+Oy/x. It is defined via descent using De Rham cohomology, and it lives in
Coh(] X [x). For details see | , Section 4].
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We complete the picture discussing higher direct images for couples and frames, in the context

of overconvergent isocrystals. If (Y,Y) is a couple, write Ogy?) € IsocT(Y, Y) for the unique

overconvergent isocrystal such that, for every frame (Z, Z,3) over (Y,Y), the > restriction of
O _ to (Z,7Z,3) is given by j;(’)ﬁ[ If (Y,Y) is a couple over a frame (X, X, X) and the

(YY) 3°
first arrow f : Y — X is smooth and proper, one can define the overconvergent higher direct

image R’ f(yy) /%,rigv*ozy,?)' It is again defined using De Rham cohomology and descent. See

| , Section 5| for the definition, it is a j}O]y[x module. It is still an open question whether

Rif(yy)/x,mg7*(’)&?) is a coherent j}O]y[x— module.

4.6.5.2 Comparison

In some particular situation one can compare the various higher direct images defined in Section
4.6.5.1. Assume that i : X — X is a closed immersion, X is formally smooth over W and
f:Y — X is smooth proper with (log-) smooth parameter. Using f one considers (YY) as a
couple over the frame (X, X, X). The universal p-adic enlargement T(X) of X in X induces a
commutative diagram:

Ve, —22% F(X), » T(X)
[ u %1 u
! s X > X

By remark 4.6.5.1.1, the morphism fz(x), : Yzx), — %(X); has (log-) smooth parameter.

In this situation one has jLO]X[x = Ojx,, S0 that Rif(y7y)/x7rig’*ozry7y) and R’ fx an+«Oy/x
are coherent Ojx[, modules (see | , Theorem 5.13]), while Rifg(x)l’Q(X)’(m’*OYT(X)l/Q(X),
R f(x)1 5(X) conw, *OYT(X) szx) and R fx(x), 5(x),erys, *Oy,<x) /z(x) are coherent modules over [ Xy ) =
T(X) k. Write
w (X p =] X2

for the natural inclusion. By | , Theorem 5.13|, one has a canonical isomorphism of
O)x[,-modules

Rif(Y,Y)/X,rig,*ngy) = Rif}f,an,*OY/%'

Pulling back along u, one finds canonical isomorphisms of coherent [X]x ,-modules

R foviy)jzrigsOyyy 2 U R fransOvyx = R fox), 5(x),an,0 Oy x), /2(x) (4.6.5.2.1)

= RifT(X)l,T(X),com),*OYg(X)l/T(X) = RifT(X)l,T(X),crys,*OYg(X)l/T(X)-

where the second isomorphism comes from | , Remark 4.2|, the third from | , The-
orem 4.6] and the last one from | , Theorem 2.3.6].

These isomorphisms are functorial in the following sense. Assume that there is a k-variety
7, a closed embedding Z — 3 into a p-adic formal scheme 3 formally smooth over W and a
commutative diagram

—>3

=< N\
Q

— X

113



By the universal property of T(X), there is an induced map T(Z) — F(X) that fits into a

commutative diagram

~

Yy
/{Aﬁ
Ya(z), — Yz, z —*
lfW
3(2) = T, /3
-

) —— T(X)

R X <

Then the following diagram is commutative

uw*g* R’ frvy

T * i T
/%,Tigﬁ*o(y,y) ——u'R f(Yz,Yz)/3,rig,*O(YZ,YZ)

~ ~

~ ~

G U R fiyy

T * i T
/vaigv*O(Y,Y) E— R f(YZ7YZ)/37Tigv*O(Yz,Yz)

~ ~

v ~

g*U*Rifx,an,*OY/% > U*RifS,an,*OYZ/B)

~

G R fx(x), 5(x),

~

G R f(x),5(x) 0

~

~

~

~

~

~

- (4.6.5.2.2)

-

anxOve ), /2(x) — RifT(Z)l,T(Z),an,*OYT(Z)l /3(2)

~

-

onv,*OYT(X)l JTX) Rif‘I(Z)l,‘I(Z),conv,*OYﬂZ)l /%(2)

~

~

-

g*RifT(X)l,T(X),crys,*OYg(X)l/T(X) — RifT(Zh,T(Z),crys,*OYg(Z)l /2(Z)

where the vertical arrows are the isomorphisms in (4.6.5.2.1) and the horizontal arrows are the
base change maps.
4.6.5.3 Ogus higher direct image

Fix a smooth proper morphism f : Y — X of k-varieties. Write R’ fogus «Oy/k in F-Isoc® (X)
for the Ogus higher direct image (| , Section 3, Theorem 3.1]) and recall that its formation
is compatible with base change (| , Proposition 3.5]).

As object in Isoc®”) (X)), R’ Jogus«Oy/K is characterized by the property that for every p-adic
enlargement (%, zz) one has

(Ringus,*OY/K)(T,z‘z) - Rile,T,CTyS,*OYle/‘I
and if ¢ : (T, 25) — (3, 23) if a morphism of p-adic enlargements, the map

(i ¢ i
g (R ngus,*OY/K)(B,Z3) _9> (R ngus,*OY/K)(‘I,zg)

4 b .
g*R1f31,3,crys,*OY31/3 < ? le‘Il,T,crys,*OY31 /T
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is the base change morphism induced by g (see the proof of | , Theorem 3.1]). In particular
if X admits a closed immersion into a p-adic formal scheme X formally smooth over W, the
image of R’ fogus«Oy/k in Strat(p)(X, X|K) is given by the couple

%
(R fT(X)lvZ(X)rcrySa*OYT(X)I/T(X)’ ERingus,*OY/Kvx)7

where €pi Oy /5. X 1 induced by the base change morphisms

ngus,*
PIR fr(x)1, 200 erys w O¥i ey /1) 7 R F2(0)(0)1, 500 (1),eryx O 0y 0y /(X)) & PR fx(x)1 3(3),erys s O ), /3()-
The Frobenius structure

F;(Ringus,*OY/K — RifOQUS:*OY/K

is constructed in the following way (see the proof of | , Theorem 3.7]). Consider the
commutative cartesian diagram

Y — Y
lf’ [] lf
x o x
and for every p-adic enlargement (¥, zg) of X, consider the following diagram

FY‘Il

/ \
Yg, > Yq, > Y,

F
lffl lfgl lf‘fl

51:>‘11—>‘Zl

| |

T 7%

where F Yz /T is the relative Frobenius morphism. By the compatibility of R? Jogus«Oy ik with
base change, there is a canonical isomorphism

FY R foqusxOyv/x ~ R [64us.Ov /K
and hence
(FX R fogussOv/i0) x.20) = (R f0gus s Oy i) (5.20) = B fit, 7. 0nysnOvt, 5
Then the Frobenius structure is constructed as the base change map

(FXR fogus,s Oy k) (5,20) — (R’ fogus Oy /K )(z,22)

i £/ 7
R f‘31,‘f,crys,*0y§1/3 — R f317‘37cry87*01’~11 /%

induced by Fry; /s,
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4.6.5.4 Statement of Theorem 4.6.5.4.1

The aim of the following Section 4.7 is to prove the following theorem.

Theorem 4.6.5.4.1. Assume that X is a smooth k-variety and f : Y — X a smooth proper
morphism. Then R’ fogus «Oy/k is in the essential image of F—ISOCT(XlK) — F-Isoc' (X, X|K) ~
F-Isoc” (X |K).

Remark 4.6.5.4.2. Theorem 4.6.5.4.1 already appears in the literature as | , Corollary
6.2], but, as pointed out to us by T.Abe, there might be a gap in the proof. The problem is
in the gluing process in | , Corollary 6.1]. The author uses the theory of arithmetic D-

modules and he tries to compare the higher direct image in that world with R'ferys Oy /i (7).
Locally they coincide, but it is not so clear that the gluing data are compatible, since the
isomorphism is defined not at level of complex but only on the level of the derived category. So,
following a suggestion of T.Abe, we give another proof of Theorem 4.6.5.4.1, using the work of
Shiho on the relative log crystalline cohomology (| D-

Remark 4.6.5.4.3. The proof actually works more generally for every E € F-Isoc®(Y). The
construction of R’ fogus «F does not appear in the literature, so we decided to restrict ourself

to Ringus,*OY/K-

4.7 Proof of Theorem 4.6.5.4.1

4.7.1 Construction of an overconvergent F-isocrystal

Fix compactifications Y C Y and X C X such that the morphism f : Y — X extends to a
map of couples (Y,Y) — (X, X) and X (resp. Y) is dense in X (resp. V). We start recalling
the main result of | ]. This gives a M in F-Isoc'(X, X|K) which, after a base change
and on appropriate frames, looks like R’ fogus«Oy k. To recall the statement, it is helpful to
give the following definition.

Definition 4.7.1.1. If (Z,7,3) — (X',Y/,%’) is a morphism of frames over (X, X) we say

that (Z, Z, 3) has (P(X',Y’,ae/)) if Z=X x% Z and 3 — X' is formally smooth.
By | , Theorem 7.9] (and its proof) there exists a frame (X', X', ¥') over (X, X) such
that

-/

o X=X x¢X

e X' is formally smooth over W;

e the map X 5 Xisa composition of a surjective proper map followed by a surjective
étale map;

and an M in F-Isoc' (X, X|K) with the following properties:

1. Let (Z,Z,3) be a frame over (X’,Y/,%’) that has (P

X x,)), so that there is a commu-
tative diagram

YY) ¢ (Yx,Yy) ¢ (Y2,Y7)

oo o ]

!/

(X, X) +— (X', X, X) «—— (Z,Z,3).
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Then, the image of M in Strat(Z, Z, 3|K) is given by

i _ T
(R f(YZ7Y7)/3,rig,*O(YZ7?7)7 6)

where € is an isomorphism:
* i o t 7 . T * 18 . T
le f(YZ,Yf)/S,m'g,*O(yZ’?f) — R f(YZ,YZ)/3X37TiQ7*O(YZ7??) A pZR f(YZ,YZ)/B,rig,*O(yb??)

and p1, 2 :|Z[3x,y3—>]Z]3 are the projection maps. If moreover Z = Z, then e is induced
by the base change morphisms (| , Last paragraph of page 74| and | , Theorem
5.14]);

.Let h : (Z,Z,3) — (T,T,%) be a morphism of frames over (X',Y/,%’) that have
(P(X/ < x/))7 so that there is a commutative diagram

(Yz,Yz) —— (Y1, Y7)
U
A

(Z,7Z,3) —— (T,T,%).

Then, the isomorphism

. ¢ N
h*M (2,Z,3) . > M (T, T)%)

s L

* D1 _ T s % _ T
h R f(YZ’Yf)/SJWL'gv*O(Yz,??) R f(YT,YT)/T,rig,*O(y%?T)

given by the isocrystals structure is the base change morphism (This is the functoriality
in the statement of | , Theorem 7.9], see | , Proof of Theorem 4.8]);

. Let (Z,Z,3) be a frame over (X, X) that has (P(X’,Y',x’))

lifting o3 of F35,, so that there is a commutative diagram

and assume that 3 admits a

_ (FyszY—) —
(Yz,Yz) —= (Y2,Y73)

= oIz, Fz03) =
—_—

(Z,2,3) (2.2,3).
Then, the isomorphism induced by the Frobenius structure

o5Mzz3 = (FxM)zz3 —— M@zz3

k k

031 fo, 7 3.0 O vy 7 — v 7/30i9: O, 7,

is given by the base change morphism induced by o3 and Fy, (| , Proof of Theorem
7.9]).
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4.7.2 Strategy

To prove Theorem 4.6.5.4.1, it is enough to show that the image of M in F-Isoc” (X |K) is

isomorphic to R Jogus+Oy /K. Since X' does not admit a closed immersion directly in X" and X’

does not admits a lifting of the absolute Frobenius of X/, one can’t use directly the description

of M given in previous Section 4.7.1. But there exists? an étale surjective morphism U — X’

such that U admits a closed immersion into a p-adic formal scheme Ll which is formally smooth

over X' and it is endowed with a lifting oy of Fy,. Write g for the composition U — X' — X.
To prove Theorem 4.6.5.4.1, first one constructs an isomorphism

V1 g*M =~ g R fogus s Oy /i = R’ ftr.0gus s Oviy /i in F- Isoc)(U|K)

where the isomorphism on the right comes from the fact that the formation of R’ Jogus«Oy i
is compatible with base change, see Section 4.6.5.3. Then one uses étale and proper descent for
convergent isocrystals to deduce that ¢ descent to F-Isoc®® (X]K) More precisely the proof
decomposes as follows:

1. One constructs an isomorphism
?ﬂ : Q*M = RifU,Ogus,*OYU/K

in Isoc® (U|K) ~ Strat® (U, {|K). This is done in Section 4.7.3, using that (U, U, 4| K)

has <P(X',Y’,x')) (so that one can apply the property (1) of M) and the comparison
isomorphisms in 4.6.5.2;

2. One verifies that the ¢y commutes with the Frobenius structures i.e. that ) makes the
following diagram commutative

g > g M

e !

FIjRZfU,OguS,*OYU/K — leU,Ogus,*OYU/K

in Isoc” (U|K) ~ Strat® (U, |K). This is done in Section 4.7.4, using that $f has
a lifting of Fy, (so that one can apply the property (3) of M) and the comparison
isomorphisms in 4.6.5.2;

3. By the equivalence F'1 — Fp in Section 4.6.3, the first two steps imply that there is an
isomorphism

w : g*M = RifU,Ogus,*OYU/K
in F-Isoc" (U|K);

4. To apply descent for convergent isocrystals, one has to check that ¢ makes the following
diagram in F-Isoc") (U x x U|K) commutative:

2To construct it, consider a finite covering {Spf(A;)} of X’ by formal affine open sub schemes. Then
{Spec(A; 1)} is a covering of X} by affine open sub schemes and {V; := Spec(A; 1) xx; X'} is a Zariski open
covering of X’. Consider a finite covering {U; ;} of V; by affine open sub schemes. Then the maps U; ; —
Spec(A; 1) are affine and of finite type, so that there are closed immersions U; ; — ASpeC Aiv) Write 44; ; for
the formal affine space of dimension n; ; over Spf(4;). Then U := [, ; U;; admits a closed immersion into
U= ]_I 8, ; and U is formally smooth over X’. To show that &l admits a lifting of Fy, it is enough to show
that each i; ; admits a lifting of Fy, ;. This follows from the fact that ; ; is formally affine and formally
smooth over W. ’
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g M > 459" M

lqi‘ P lqé Y

Qi‘g*Ringus,*OY/K — Q;(Q*Rif()gus,* OY/K

where q1,qs : U X x U — U are the projections. To check this, by the equivalence F'1— F'p,
it is enough to show that it is commutative in F-Isoc p)(U xx U|K) or equivalently
in Isoc®” (U x x U|K) ~ Strat” (U xx U, 4l xy U|K). This is done in Section 4.7.5,
using that q1,q0 : (U xx U, U xx U, xy ) — (U, U, 4) are morphisms of frames that
have (P(X',Y’,ae/)) (so that one can apply the property (2) of M) and the comparison
isomorphisms in 4.6.5.2.

Remark 4. 7 2.1. The reason why one needs to pass back and forth between F-Isoc®) (U|K)
and F-Isoc(U|K) is that proper descent is not known for the category Isoc® (U|K), while
proper descent for the category Isoc")(U|K) (and hence for F-Isoc (U|K)) is proved in
| ]. On the other hand one knows the value of R’ fyogus Oy, /x only on p-adic enlarge-
ments. The equivalences of categories in Section 4.6.3 allow to combine these informations.

4.7.3 Comparison of isocrystals
In this section we construct an isomorphism
Vg M~R ongus Oy, /K in Isoc® (U|K)

Counsider the universal p-adic enlargements T(U) and T(U)(1) of U in U and 4 x 4 and write
u, p1, po for the natural morphisms

(FO) (D)1, TU) (D1, TU)(1)) —— (U, U, x L)

(FU),ZT(U)1, EU)) ——— (U, U, Y)
Since (U, U, ) has (P(X/,Y'JE’)
Mwusy = B vy v srigsOlyy v,y i Cob(JU]y).

Since M is an isocrystal, one gets M sy, s, 3sw)) = W Muuy) in Coh(T(U)k). Then as in
(4.6.5.2.1):

), by the property (1) of M in 4.7.1, one has:

ME W) 250y) = u*R'f, YU,YU)/Ll,rig,*OgYU vy) U R ' forstans Oy ju = R fs)y 50).an <Oy, 12
~ R’ fx(v), 2(0).comvxOva, 15(0) = B fruy s .erys s Oeqry, 5wy i Con(T(U) k).
Since, by construction (4.6.5.3),
R f‘I(U )1,2(U),crys, *OYL(U)I ) — (RifU,Ogus,*OYU/K)(‘I(U),zg(w)
one has an isomorphism
v M) )2z () (R fu,0gus, *OYU/K) (E(U)2xw)) in Coh(Z(U)k).

To promote ¢ to an isomorphism in Strat® (U, {|K) ~ Isoc®” (U|K) one has to check that ) is

compatible with the stratifications €g-yg on g*"Mand €gig, .. .0y, /0D (R fv.09us x Oy K ) (5(U) 20 -
Since (U, U, 4l) has <P(X’,Y/,3€/))’ by the property (1) in 4.7.1, the stratification €« is given

by the base change morphisms:

le f(YU,YU)/u,rig,*OELYU7YU) — R f(YU,YU)/MXU,Tig,*O(yU7YU) < sz .f(YU,YU)/LJ.,Mg,*OELYwYU)-

As in (4.6.5.2.2) pulling back to u*, one has a commutative diagram
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Uu plR’Lf(YvaU)/umiga*O(YU,YU) - u le(YU7YU)/L[><LLVT‘Z‘97*O(YU,YU) <T u pQRZf(YvaU)/uvrig7*O(YU7YU)

~

pTU*Rif(YwYU)

~

~

~

~

T =~ * T T *, 0k DT
/il,rig,*O(YU7yU) —u RZf(YU,YU)/LIXLl,Tig,*O(yU7yU) = Pbu Zf(YU,YU)

~

~

~

~

T
/u,rin(yU,yU)

~

~

Piu R fus,an«Oyy g ——————— W' R fuuxstan»Oyy juixst = P3u™ R fusian«Oyy /s

~

v

~

v

~

v

PIR fxys),eryss OVewy /2wy & B fa@) ), s@)),eryss Ve, /50)(1) € D3R fru)y 3(0) erys wO¥iy, /30

where the horizontal maps are the natural base change maps. So, the stratification €g«gn ¢ on

gM

)

PIMEW) 250y

|=

S

» MEw))zw0)0)

|=

p3Mzw)

|=

2T (U))

PIR ey, sy erys s Oeqn, /50y & B Fx) 1,50 (1),erys s OV 1y, /50y (1) € PR ey s ,erys s OV, /50)

is induced by the base change morphisms. Since ep:

fU,Ogus,*OYU/Kvu 18

morphisms by construction (4.6.5.3), one concludes that

P M(T(U)’Zi(U)) = (RifU,Ogus,*OYU/K)(T(U)»ZE(U)) in Coh(Z(U)k)

is compatible with the stratifications and hence induces an isomorphism

V1 g"M = R f1;0gus Oy, /i in Strat® (U, 4] K) ~ Isoc” (U|K).

4.7.4 Comparison of Frobenius structures

We now check that 1 is compatible with the Frobenius structures, i.e.

diagram in Isoc” (U|K) is commutative:
Fg* M

L

F[?RZfU,Ogus,*OYU/K — leU,Ogus,*OYU/K

Since

> g* M

|#

induced by the base change

that the following

(— @),z E-1) © Isoc®” (U|K) — Strat® (U, {|K)

is an equivalence of categories, it is enough to show that

(FEQ*M)(T(U),ZT(U))

|

|

> I MEW) 25 0)

(FG R fU.0gus x Oy /5) (€0 z20y) — (B fU.0gus « Oy /) (5(0) 2200)

is commutative. Since (U, U,4l) has (

i

P 36,)) and it is endowed with a morphism oy lifting

Fy,, by the property (3) of M in 4.7.1, the Frobenius structure on M,y is given by the base

change map induced by oy and Fy,, :

O—LLR f(YU’YU)/uvTig7*O(YU,YU) - R f(YU’YU)/ﬂvTigf*O(YU,YU)'

120



By the universal property of the universal p-adic enlargement one gets a commutative diagram:

U—— F(U) —— U

lFU lUT(U) l‘m

U—— %F(U) —— U

Pulling back via u, there is a commutative diagram (4.6.5.2.2):

u UuRZf YU7YU)/u,Ti91*OgYU,YU) - U*Rif(YU’YU)/L[’MQ’*OELYUYU)

~ ~

* I T N % T
g U)u R f(YvaU)/u’Tig’*O(YU,YU) u R f(YUqu)/uvTigf*O(YU,YU)

~ ~

o U)Rif‘I(U)l,T(U),an,*OYrI(U)l/‘I(U) — Rif‘I(U)li‘(U),an,*OYﬂU)l/S(U)

~ ~

~ ~

U;(U) RifT(U)l,T(U),crys,* OYT(U)I /E(U) ? RifT(U)l,‘I(U),crys,* OYg(U)l /2(U)
where the horizontal morphisms are the base change morphisms. So the morphism
OTMEW). 2wy = FGI M) ) 2cw) — I ME),z20)
ey B fxy 5 eryss O¥aqu, /x0) —— B fa)y 20 .erys «Ovi gy, /30)

is induced by the base change morphism for Fym>1 and og(.
We check that the same is true for R Jv,0gus»Oyyy /- Consider the commutative diagram

Frewy,

T

/
Yz, F—HY‘I(U)l/T(U)l YT(U) — Yau),

lf‘Z(Uh lff;:(U)l O] lf‘I(U)l
Fz
T(U) ————— () =5 3(U)
and recall (4.6.5.3) that the Frobenius structure is defined by the base change map induced by
Frye ), /5(0)1
(F;Rify,ogus,*OyU/K)(T(U)l,‘z(U)l,s(U)) =~ Rifé(U)l,‘I(U),crys,*OY%(U)l/T(U) - RifT(U)l,T(U)vcrysv*oyiwn/T(U)
Since there is a lifting og(17) of F5(y),, there is a morphism of enlargements
o) - (‘I(U), Z’S(U)) — (‘Z(U),ZT(U) © F‘E(U)1>-
Since Ff}Ri fogus«Oy, /K s a crystal, there is an isomorphism
g U)RZfT(U)l,T(U),CTyS,*OYg<U>1/(I(U) — R’Lfé(U)l,T(U),crys,*OYé(U)l/T(U)'
that, as recalled in section 4.6.5.3, identifies with the base change map induced by oz and

Fzy,. So the Frobenius structure
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O (B f0,09us,« OV 1) (3(U) 2 0y) =2 (FGR f1,09us,s OV /1) (3(0) 22 0ry) — (B f11,0gus,« OV ) (5(0) 5 0)

l: !

xR fxy5),erysis O, /20) r R [y 3w),eryss Vs, /<)

is given by the composition of the base change maps induced by Fry. /=), followed by the
base change map induced by o5y and F5),, hence it is given by the base change map induced
by FYZ(U)l and oz (U)-

In conclusion, v is compatible with the Frobenius structures of M and R’ fy,04us«Oyvy /K,
so that ) is gives an isomorphism

V1 R f.0gus Oy e = "M in F- Isoc” (U|K)
and hence an isomorphism

V1 R fu.0gusxOvyy e = "M in F- Isoc(U|K).

4.7.5 Descent

Now one has to descend from U to X. To do this, consider the closed immersion
UXXU—>U><]€U—>L[1 Xkﬂl —>iJ,><Wil

where the first map is a closed immersion by [SP’, Tag 01KR] since X is separated. Write
T(U xx U) for the universal p-adic enlargement of U xx U in 4 xy U and ¢y, ¢qe for the
projections

UxxU—=U and U xy U — 4.

Finally write uswx ), ¢z xx0),1 and gz 0y,2 for the natural morphisms:

(T(U xx U1, S (U xx U)1, TU xx U)) “LX5NU % U, U xx U, 4 xyy 8)

Q‘I(UXXU),zllQI(UxXU),l %llfh

(F(U)1, T(U)1, F(U)) - > (U, U, )

and ¢ for U xx U —> X. By the equivalence F'1 — F'p in Section 4.6.3, to show that the descent
diagram in F-IsocY(U x x U|K)

g M > 459" M

l l (4.7.5.1)

qu*RifOQUS:*OY/K . q;g*Ringus,*OY/K

is commutative, it is enough to show that it is commutative in F-Isoc® (U x x U|K). Then
one decomposes 4.7.5.1 as follows:

i

G g M > g7 M < %9 M

! | !

qIRingus,*OY/K — gl7*Ringus,*OY/K > q;Ringus,*OY/K

So it is enough to show that, for 7 € {1,2}, the following diagram is commutative
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/

49" M > g M

J l

q;g*RifO.gusv*OY/K B— g/7*Ringus,*OY/K

in F-Isoc® (U x x U|K) or, equivalently, in Isoc” (U x x U|K). Since
(= (€U x0) 50 g0y Etixtt) 2 80P (U x x UK) — Strat™ (U xx U, 8 xw Y[ K)

is an equivalence of categories, it is enough to show that

(q;kg*M)(T(UXXU),ZT(UXXU)) ’ (gl7*M)(T(UX)(U),ZT(UXXU))

l |

(69" R fogus«Ov/K) (S0 xU) s 1)) — (g/’*Ringus,*OY/K)(T(UXXU)7Z.I(UXXU))

commutes. Since ¢; : (U xx U,U xx U, xy Y) — (U,U,4) is a morphism of frame over
(X’,Y/,%’) that have (P(X, < 3€,)), by the property (2) of M in 4.7.1, the morphism given by
the isocrystals structure

q? le(YUyyU)/uvriQV*O(YU,YU) - R,Lf(YUXXvaUXXU)/uxuvriQV*O(YUXXU,YUXXU)

is the natural base change map. Pulling back via ugx v one finds a commutative diagram
(4.6.5.2.2)

,LLS:’(UX)(U)q‘7 RZf(YUqu)/uvTigz*O(YU,YU) UHI(UXXU)le(YUXxU7YU><XU)/uxWuvrig7*O(YUXXU,YUXXU)
Az xv)2U le(YU7YU)/117”'9:*0(YU,YU) » Ug(x xU) le(YUxXU,YUxxu)/ﬂx wﬂ,rig,*O(YUXXU,YUXXU)
G0 2 B S50, 50,0096 Oy /50y — B fxx )y 50 x0),erys OV 1y, /S0 X x 1)

such that the horizontal morphism are the base change morphism. So the morphism

(79" M) s Uxx ) 2ewn 0) » (9 M) W) e )
a0y 2 B S50, 50) 0rys6 Oy /20) — B fxux )1 50 x0),erys O 1), /S0 V)

is induced by the base change morphism. Since the same is true for Rifogus7*(9y/K by construc-
tion (4.6.5.3), this shows that the descent diagram 4.7.5.1 is commutative, hence

1/) : g*M = g*Ringus,*OY/K

gives an isomorphism in the category of descent data for the category F-Isoc")(U|K) of U over
X.

By étale and proper descent for convergent isocrystals (| , Theorems 4.5 and 4.6]), this
implies that ¢) descends to an isomorphism

M = R fo4u5.Oy i in F-Isoc) (X |K)
and concludes the proof of Theorem 4.6.5.4.1.
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Chapter 5

Maximal tori in monodromy groups of

F-isocrystals and applications (joint with
Marco D’Addezio)

5.1 Introduction

Let p be a prime, let IF, be the finite field with ¢ = p* elements and write I, C F for an algebraic
closure. If Xj is a F -variety, set X := X, xp_ [ and write I’ for the s-power of the absolute
Frobenius on Xj.

5.1.1 Convergent vs overconvergent F-isocrystals

From now on let X, be a smooth geometrically connected I -variety.

5.1.1.1 Convergent and overconvergent F-isocrystals

The first Weil cohomology which has been introduced to study X is the f-adic étale cohomology,
where ¢ # p is a prime. Its associated category of local systems Weil( X, Q) is the category
of Weil lisse Q-sheaves. While p-adic étale cohomology is not a Weil cohomology theory,
moving from ¢ to p one encounters two main p-adic cohomology theories: crystalline and rigid
cohomology. These two give rise to different categories of p-adic “local systems™ the category
F-Isoc(X,) of Q,-linear convergent F-isocrystals over X, and the category F-Isoc'(X,) of
@—linear overconvergent F-isocrystals over X,. By | |, the two categories are related
by a natural fully faithful functor (=)™ : F-Isoc'(X,) — F-Isoc(X,). When X, is proper,
(=)™ : F-Isoc'(Xy) — F-Isoc(Xp) is an equivalence, but in general the two categories
have different behaviours. While F-Isoc'(X) shares with Weil(X,, Q;) many properties (see
| | or | |), the category F-Isoc(Xy) has some exceptional p-adic features.

5.1.1.2 Slopes

One of the exceptional p-adic features of F-Isoc(X)) is the theory of slopes; see | , Sections
3 and 4|. For every & in F-Isoc(Xj) of rank r and every zy € X, let {a;°(&) }1<i<r be the
set of slopes of & at zo (with the convention that ai®(&) < -+ < a®(&)). If gy € Xy is the
generic point, we call a)° (&) the generic slopes of &. A subobject Fy C & is said to be of
minimal generic slope if all its slopes are equal to aj°(&).
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5.1.1.3 Main result

Let & be in F-Isoc'(X,). Write Isoc'(X;) and Isoc(X;) for the @,-linear categories of over-
convergent isocrystals and convergent isocrystals respectively and consider the natural commu-

tative diagram of functors
F-Isoc'(X,) i Isoc!(X,)

Ly Lo (5.1.1.3.1)

F-Isoc(X)) il Isoc(X)).
To simplify the notation we set:
ST — (gOT)geo; 50 — (g(;r>conv; £ = (((c/'g)conv)geo.

Our main result highlights a new relationship between 53 and the subobjects Fy C & in
F-Isoc(X,) of minimal generic slope. Write 1§ for the overconvergent F-isocrystals O}O en-
dowed with the trivial Frobenius structure. Our main result is the following.

Theorem 5.1.1.3.2. If & is irreducible in F-Isoc’(X;) and there exists a subobject Fy C &
of minimal generic slope in F-Isoc(X,) such that Homysoe(xy)(F, 1) # 0, then & ~ 1 in
Isoc' (X).

Remark 5.1.1.3.3. Theorem 5.1.1.3.2 proves a particular case of the conjecture in | ,
Remark 5.14|. Even if the conjecture turned out to be false in general, Theorem 5.1.1.3.2
corresponds, with the notation of | , Remark 5.14], to the case when F; C & has minimal
slope and &, is the convergent isocrystal Ox, endowed with some Frobenius structure.

5.1.1.4 Torsion points of abelian varieties

Before explaining the main ingredients in the proof of Theorem 5.1.1.3.2, let us describe an
application to torsion points of abelian varieties. Let F C £ be a finitely generated field
extension. Let A be a k-abelian variety and recall the Lang-Néron Theorem.

Fact 5.1.1.4.1 (| ]). If Try/w(A) = 0, then A(k) is a finitely generated abelian group.
By Fact 5.1.1.4.1, denoting by A™ the Frobenius twist of A by the p"-power of the absolute
Frobenius, we have a tower of finite groups A(k)iors € AM(k)iors € AP (k)iors € .... In

June 2011, in a correspondence with Langer and Rossler, Esnault asked whether this chain is
eventually stationary. An equivalent way to formulate the question is to ask whether the group
of kP*f_rational torsion points A(kP*'f); is a finite group, where kP is a perfect closure of k.
As an application of Theorem 5.1.1.3.2 we give a positive answer to her question.

Theorem 5.1.1.4.2. If Try, 5(A) = 0, then A(kP*");o is a finite abelian group.
Remark 5.1.1.4.3. Theorem 5.1.1.4.2 was already known for elliptic curves (| |) and
ordinary abelian varieties (| , Theorem 1.4]).

When ¢ is a prime # p, one has A[¢(>°](kPT) = A[¢>°](k), hence Theorem 5.1.1.4.2 amounts to
show that A[p>°](kP°?) is finite. To relate Theorem 5.1.1.4.2 with Theorem 5.1.1.3.2 we use then
crystalline Dieudonné theory (| ])- The proof of Theorem 5.1.1.4.2 is by contradiction. If
| A[p*°](kP")| = oo, there exists a monomorphism Q,/Z, — A[p™]®" from the trivial p-divisible
group Q,/Z, to the étale part A[p™®]® of the p-divisible group A[p™] of A. Spreading out to
a “nice” model A/X of A/k and applying the contravariant crystalline Dieudonné functor D,
one gets an epimorphism of F-isocrystals D(A[p™]*) — D((Q,/Z,)x) ~ Ox over X. By a
descent argument and a careful use of Theorem 5.1.1.3.2, the quotient extends to a quotient
D(A[p>]) = Ox over X. Going back to p-divisible groups, this gives an injective map Q,/Z, —
A[p>] over k. Therefore A[p>](k) would be an infinite group, contradicting Fact 5.1.1.4.1.
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5.1.2 Maximal tori of monodromy groups

To prove Theorem 5.1.1.3.2, we study the monodromy groups associated to the objects involved.

5.1.2.1 Monodromy groups

The categories in (5.1.1.3.1) are neutral Tannakian categories and the choice of an F-point z
of Xy induces fibre functors for all of them. Hence, via the Tannakian formalism, one obtains
an algebraic group G(—) for each of &, £F, & and £ and a commutative diagram of closed
immersions:

G(E) — G(&)

[ [

G(EN) — G(&D).

5.1.2.2 Maximal tori

By the global monodromy theorem for overconvergent F-isocrystals (| , Corollary 3.5.5|),
if &1 is irreducible in F-Isoc’(X,) with finite order determinant, the group G(&))/G(£1) is finite.
Even though & is not irreducible in general in F-Isoc(Xj) and the global monodromy theorem
does not hold in F-Isoc(Xj), we show that G(&)/G(E) is still finite (Proposition 5.3.1.1).

Recall (] , Definition 3.1.11]) that &! is said to be p-plain, if the eigenvalues of the
Frobenii at closed points are algebraic number which are /-adic unit for every prime ¢ # p. To
prove that G(&) is “big enough”, we prove the following.

Theorem 5.1.2.2.1. If & in F-Isoc’(X,) is pure and p-plain, then G(€) contains a maximal
torus of G(ET).

The key input in the proof of Theorem 5.1.2.2.1 is the existence of Frobenius tori (| ,
Theorem 4.2.6]) of overconvergent F-isocrystals realizing a maximal torus of G(é’g ).

Remark 5.1.2.2.2. In | , page 460| Crew asks whether, under the assumptions of Theorem
5.1.2.2.1, G(&) is a parabolic subgroup of G(£T). In the subsequent articles | | and | ],
he gives a positive answer to his question in some particular cases. Since parabolic subgroups of
reductive groups always contain a maximal torus, Theorem 5.1.2.2.1 is an evidence for Crew’s
expectation.

To deduce Theorem 5.1.1.3.2 from Proposition 5.3.1.1, one first reduces to the situation
where & has finite order determinant. To simplify, let us assume that Fy = &7 is the maximal
subobject of minimal generic slope and that G(&) is connected. Then Proposition 5.3.1.1
implies that G(E) = G(&), hence that the quotient ! — 1 in Isoc(X,) promotes to a quotient
&y — 1j in F-Isoc(Xy). In particular, the minimal slope of & is zero. Since the determinant
of & has finite order, this implies that & = & hence that & admits a quotient & — 1 in
F-Isoc(X,). As (—)“™ : F-Isoc'(Xy) — F-Isoc(Xy) is fully faithful, £ admits a quotient
&l — 1} in F-Tsoc'(X,) hence, since & is irreducible, & ~ 17,

5.1.2.3 Weak (weak) semi-simplicity

As an additional outcome of Theorem 5.1.2.2.1, we get a semi-simplicity result for extensions
of constant F-isocrystals. For us, a constant convergent F-isocrystal will be an object & €
F-Isoc(Xy) such that £ ~ 1" for some integer r > 0.

Write F-Isoc,.i(Xo) for the Tannakian subcategory of F-Isoc(X,) generated by the es-
sential image via (—)®" : F-Isoc'(X,) — F-Isoc(Xy) of pure objects in F-Isoc'(X;). The
category F-Isoc,,.t(Xo) is large enough to contain all the convergent F-isocrystals “coming
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from geometry”: for every smooth and proper morphism fy : Yo — X and every i € N, the
subquotients of the higher direct image R’focrys«Oy, are in F-Isoc,,..i(Xo) by | | and
[ | (see Theorem 4.2.1.1.2 and Fact 4.2.2.1 in Chapter 4). Thanks to a group-theoretic
argument (Lemma 5.2.3.2.3), Theorem 5.1.2.2.1 implies the following.

Corollary 5.1.2.3.1. A convergent F-isocrystal in F-Isoc,.t(Xo) which is an extension of
constant convergent F-isocrystals is constant.

Remark 5.1.2.3.2. In | , Conjecture 7.4 and Remark 7.4.1|, Chai conjectures that if 53
is the higher direct image of a family of ordinary abelian varieties, and & C & is the maximal
subobject of minimal generic slope, then the monodromy group G(€') of £! is reductive. Since
G(&Y) is a quotient of G(&£), Corollary 5.1.2.3.1 implies that G(E') has no unipotent quotients,
hence it may be thought as a first step towards his conjecture.

5.1.3 Organization of the chapter

In Section 5.2 we study the monodromy groups of (over)convergent F-isocrystals and we prove
Theorem 5.1.2.2.1. The remain part of the Chapter is devoted to applications: in Section 5.3
we prove Theorem 5.1.1.3.2 and in Section 5.4 we prove Theorem 5.1.1.4.2.

5.1.4 Acknowledgements

We learned about the problem on perfect torsion points on abelian varieties reading a question
of Damian Réssler on the website Mathoverflow | |. We would like to thank him and Héléne
Esnault for their interest and comments on our result. We are grateful to Brian Conrad and
Michel Brion for some enlightening discussions about epimorphic subgroups and maximal rank
subgroups of reductive groups. We thank Simon Pepin Lehalleur for pointing out a simpler
proof of Lemma 5.2.3.2.3 and Raju Krishnamoorthy for some discussions on the crystalline
Dieudonné module functor.

5.2 Proof of Theorem 5.1.2.2.1

Let Xy be a smooth geometrically connected IF -variety. Let &l be in F-Isoc!(Xy).

5.2.1 Monodromy groups of (over)convergent F-isocrystal

For ? € {0, 1}, write (&) (resp. (£7)) for the smallest Tannakian subcategory of F-Isoc’(X;)
(resp. Isoc’(Xy)) containing & (resp. £°). The choice of a geometric closed point z; of X
induces fibre functors x7 for all these categories, hence via Tannakian duality, we get algebraic
groups G(&;) and G(E?). The natural commutative diagram of faithful tensor functors

(E) = (€

l(_)com; l(_)cmw

(—)9ee
(€o) — (&)
induces a commutative diagram of closed immersions of algebraic groups

G(E) — G(&)

[ [

G(EN) — G(&D).
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5.2.2 Constant F-isocrystals and the fundamental exact sequence

Recall (] , Definition A.2.3]) that a F; in F-Isoc’ (X)) is said to be constant if 7’ ~ (17)"
for some integer r > 1. Then a F; in F-Isoc’(Xj) is constant if and only if there exists M in
F-TIsoc'(Spec(F,)) ~ F-Isoc(Spec(F,)) such that g* Mg ~ F{, where g : Xy — Spec(F,) is the
structural morphism.

By | , Appendix], the subgroup G(£*) C G(&?) is normal. The quotient G(&;)/G(E")
is abelian and identifies canonically with the Tannakian group G(&!) of the full Tannakian
subcategory (E5)cst C (£¢) made by the F in (&) which are constant.

The natural functor (SOT Yest = (€0)est 18 fully faithful and its essential image is closed under
subquotients. Hence we have the following natural commutative exact diagram

0 — G(&) — G(&) — G(&)™ — 0

) [ | (5.2.2.1)

0 — G(EN) — G(E&) — G(EH= — 0,

in which the left and the central vertical arrows are injective and the right one is surjective.

Remark 5.2.2.2. Tt is not clear, a priori, whether the surjection ¢ : G(£)" — G(E})*" is an
isomorphism. Via the Tannakian formalism, to prove the injectivity of ¢, one has to show that
the functor (Eg>cst — (Eo)est 1s essentially surjective. While every Fy € (£y)est comes from an
object Fi in F-Isoc'(Xy), it is not clear whether F{ is in (£}). One can use Theorem 5.1.2.2.1
to show that, if £ is pure and p-plain, then ¢ : G(&)™" — G(E})*" is an isogeny.

5.2.3 Maximal tori of (over)convergent F-isocrystals

For every algebraic group G, write rk(G) for the reductive rank of G (i.e. the dimension of
a maximal torus of G) and recall that a subgroup H C G is said to be of maximal rank if
rk(H) = rk(G).

5.2.3.1 Maximal tori of overconvergent F-isocrystals

For every z € | Xy|, the natural functor
F-TIsoc' (Spec(F,(z0))) — F-Isoc(Spec(F,(x0)))
is an equivalence of categories. Hence there is a commutative diagram of closed immersions

1= { (5.2.3.1.1)
G(x3E) — G(&))

where the map G(z£&) — G(z£&]) is an isomorphism. Recall the following result from
[ |

Fact 5.2.3.1.2. If Eg is and pure and p-plain, there exist infinitely many x¢ € |Xo| such that
G(ztEl) C G(E]) is a subgroup of maximal rank.

Proof. In | , Theorem 4.2.6| the result is proven for subquotients of an E-rational, p-plain
and pure overconvergent F-isocrystal which admits an F-compatible lisse sheaf (cf. | D-
Thanks to | , Theorem 3.4.3], this condition is always satisfied by &. O
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5.2.3.2 Maximal tori of convergent F-isocrystals

From Fact 5.2.3.1.2 and (5.2.3.1.1) we get:

Corollary 5.2.3.2.1. If £ is pure and p-plain, then G(&) — G(&) is a subgroup of maximal
rank.

Corollary 5.2.3.2.2. If £ is semi-simple, then G(&)*" and G(£)* are groups of multiplica-
tive type.

Proof. Since the groups G(£1)t and G(&)*" are commutative, it is enough to show that they
are also reductive. The former is a quotient of G(&!), which is reductive because &! is semi-
simple. The latter is a quotient of G(&), which by Corollary 5.2.3.2.1 is a subgroup of G(&)
of maximal rank. Since G(&)™" is commutative, R, (G(E)™") is a quotient of G(&). Thus
R, (G(E)*") is trivial by the (group theoretic) Lemma 5.2.3.2.3 below. O

Lemma 5.2.3.2.3. Let L be an algebraically closed field of characteristic 0, let G be a reductive
group over L and H a subgroup of G of maximal rank. There does not exist any non-trivial
morphism from H to a unipotent group. Equivalently, the group Ext}, (L, L) vanishes.

Proof. Tt is enough to show that there are no non-trivial morphisms from H to G,. Assume by
contradiction that there exists a normal subgroup K C H such that H/K ~ G,. Since every
map from a torus to G, is trivial, K would be a subgroup of G of maximal rank, so that, by
[ , Lemma 18.52|, Ng(K°)° = K°. Since K C H isnormal, H C Ng(K°). Hence H° = K°
so that H/K ~ G, would be finite, a contradiction. 0

5.2.4 Proof of Theorem 5.1.2.2.1

Retain the notation and the assumptions as in Theorem 5.1.2.2.1. Since it is enough to prove
Theorem 5.1.2.2.1 after twist, we may assume that Sg is pure of weight 0. For every algebraic
group G, write X*(G) for its group of characters.

Choose a set of rank 1 convergent F-isocrystals Xi0,...,Xno0 i (Eo)est that generates
X*(G(E)™"). As every constant F-isocrystal comes from an overconvergent F-isocrystal, for
every i, the character x;o is the essential image of a Xj,o in F-Isoc'(X,) via F-Isoc'(X,) —
F-Isoc(Xy). Write

E=ga EBXI,O in F-Isoc' (X)).
i=1

By construction, the groups X*(G(&)*") and X*(G(&)*") are isomorphic. Moreover, since
E~ et @Q,”" and € ~ EBQ,”", we get isomorphisms G(ET) ~ G(EN) and G(€) ~ G(€).
Hence it is enough to show that rk(G(£1)) = rk(G(€)). Consider the commutative exact
diagram (5.2.2.1)

0 — G(€) — G(&) — G(&)™ — 0

[ [ b

0 — G(EN) — GE — GEH= — 0.

As &) is still p-plain and pure of weight 0, by Corollary 5.2.3.2.1, k(G (&) = rk(G(&]})). Since
the reductive rank is additive in exact sequences, it is enough to show that A : G((E,'vo)CSt —
G(E))*" is an isomorphism. Since h : G(&)™ — G(E)™ is surjective and G(&)™" and
G(gg)“t are groups of multiplicative type by Corollary 5.2.3.2.2, it is enough to show that the

map h* : X*(G(ENH™) — X*(G (&)™) is surjective. Recall that X*(G(&)™") = X*(G(&)*)
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is generated by X1, ..., Xno. Since, by construction, the character X;() € X*(G(E})*") is sent
by h* to xio the morphism h* : X*(G(E])™) — X*(G(&)™) is surjective. This concludes the
proof of Theorem 5.1.2.2.1.

5.2.5 Corollaries

From Fact 5.2.3.1.2, Theorem 5.1.2.2.1, diagram (5.2.2.1) and the additivity of the reductive
ranks with respect to exact sequences we deduce:

Corollary 5.2.5.1. The reductive rank of G(£])®" is the same as the one of G(&)%".

Another consequence of Theorem 5.2.2.1 is the following result that we will not use, but
which has its own interest. We have already discussed it in §5.1.2.3.

Corollary 5.2.5.2. If 53 is pure, then every Fy € (&) which is an extension of constant
F-isocrystals is constant.

Proof. The statement is equivalent to the fact that the group Exth(g) (Q,,Q,) vanishes. Since

Sg is pure, by | , Corollary 3.4.9|, £ is semi-simple. Therefore, we may take the semi-
simplification of 53 without changing G(&). Moreover, by | , Proposition 3.4.2|, we may
twist each irreducible summand of 53 in order to get a p-plain overconvergent F-isocrystal.
Even this operation does not change G(&). The result then follows from Theorem 5.1.2.2.1 by
Lemma 5.2.3.2.3. 0

5.3 Proof of Theorem 5.1.1.3.2

Let X, be a smooth geometrically connected F,-variety and let 53 be in F-Isoc'(X).

5.3.1 Proof of Theorem 5.1.1.3.2

Before proving Theorem 5.1.1.3.2, let us show the following consequence of Theorem 5.1.2.2.1
and of the global monodromy theorem for overconvergent F-isocrystals.

Proposition 5.3.1.1. If £ is irreducible with finite order determinant, then G(&)" is finite.
In particular, every constant subquotient of the F-isocrystal & is finite.

Proof. By the Langlands correspondence for lisse sheaves and overconvergent F-isocrystals
(| |, | |) every irreducible overconvergent F-isocrystal with finite order determinant
is pure and p-plain (see for example | , Theorem 3.6.6]). Since G(£1)*" is finite by
the global monodromy theorem for overconvergent F-isocrystals (see e.g. | , Corollary
3.4.5)), it is enough to show that G(£])** and G(&)®" have the same dimension. Since, by
Corollary 5.2.3.2.2, the groups G(&)®" and G(E])** are of multiplicative type, we conclude by
Corollary 5.2.5.1. O

Proof of Theorem 5.1.1.3.2. Retain the notation and the assumptions as in Theorem 5.1.1.3.2.
Since both the hypothesis and the conclusion are invariant under twist, by | , Lemma 6.1],
we can then assume that £ has finite order determinant, so that Det(&}) is unit-root. We first
prove that & is unit-root as well. If r is the rank of &, since

> al(&]) = a}(det(£])) =0 and af(&]) < -+ < al(&]).

i=1

130



it suffices to show that a”(£]) = 0. Let F — T be the maximal trivial quotient of F. By
maximality, it lifts to a quotient Fy — Ty, where 7y is a constant F-isocrystal. Since 53 in
F—IsocT(Xo) satisfies the assumptions of Proposition 5.3.1.1, 7 is finite. As the F-isocrystal
Fo is of minimal generic slope and it admits a non-zero quotient which is finite, it is unit-root.
This implies that a7(£]) = 0, as we wanted.

We now prove that & has rank 1. Since & is unit-root, by | , Theorem 3.9]|, the
functor (1) — (&) is an equivalence of categories. Therefore, if & has a constant subquotient,
the same is true for £. But & is irreducible by assumption, thus & has to be itself a constant
F-isocrystal. Since irreducible constant F-isocrystals have rank 1, this ends the proof. O]

Remark 5.3.1.2. Theorem 5.1.1.3.2 is false in general if we do not assume that Fy C & is of
minimal generic slope. A counterexample is provided in | , Example 5.15].

5.3.2 A corollary

Corollary 5.3.2.1. If £' is semi-simple and F, C & is of minimal generic slope, then the
restriction morphism Homygee(x,)(€, 1) = Homysoe(x,) (F, 1) is surjective.

Proof. As £ is semi-simple, replacing 5& with its semi-simplification we do not change the
isomorphism class of £7. Thus we may assume that 53 is semi-simple. The proof is then an
induction on the number n of summands of some decomposition of 53 in irreducible overconver-
gent F-isocrystals. If n = 1 this follows from Theorem 5.1.1.3.2. Suppose now that the result
is known for every positive integer m < n and take an irreducible subobject Qg of 53. Write
Ho := Go Xg, Fo and consider the following commutative diagram with exact rows and injective
vertical arrows

0 —H —F — F/H—0
[ 1
0 > g > £ » £/G > 0.

As 53 is semi-simple, the quotient SOT —» Sg/gg admits a splitting. So, applying Homysee(x)(—, 1),
we get the following commutative diagram with exact rows

00— HomISOC(XO)(g/Q, :ﬂ_) — HomISOC(X0)<g7 ]].) — HomISOC(XO)(g, :ﬂ.) — 0

l l l

0 — Homisoe(xo)(F/H, 1) — Homigee(x,)(F, 1) — Homigee(x,) (H, 1).

Since Ho and Fo/H,y are subobjects of minimal slope of Gy and & /Gy respectively, by the
induction hypothesis, the left and the right vertical arrows are surjective. By diagram chasing,
this implies that the central vertical arrow is also surjective, as we wanted. O

Remark 5.3.2.2. Corollary 5.3.2.1 is false in general if £ is not semi-simple, as any extension
of two rank 1 constant F-isocrystals with different slopes which does not split in Isoc(X))
shows.

5.4 Proof of Theorem 5.1.1.4.2

Let F C k be a finitely generated extension and A a k-abelian variety. As already mentioned
in Section 5.1.1.4, Theorem 5.1.1.4.2 amounts to show that if Try/x(A) = 0 then |A[p™](kPe)|
is finite.

131



5.4.1 Notation

If C is an additive category write Cg for its isogeny category. For every F,-scheme S, write
p-div(S) for the category of p-divisible groups over S. For every perfect field L of character-
istic p > 0, write W (L) for the ring of Witt vectors of L and K (L) for its fraction field. For
every smooth L-variety X write Isoc(X/K (L)) and (resp. Crys(X/W(L))) for the category of
convergent isocrystal (resp. of crystals of finite Ox ¢ys-modules) and F-Isoc(X/K (L)) (resp.
F-Crys(X/W(L))) for the category of objects in Isoc(X/K (L)) (resp. in Crys(X/W(L)))
endowed with a Frobenius structure. By | , Theoreme 2.4.2|, there exists a natural equiv-

alence of categories
F-Crys(X/W(L))q = F-Isoc(X/K(L)). (5.4.1.1)

5.4.2 p-torsion and p-divisible groups

Consider the exact sequence in p-div(k):
0 — A[p™]® = A[p™] — Ap™]* — 0. (5.4.2.1)

Since (5.4.2.1) splits over kP"/ and A[p™]®" is étale, one has A[p>](kP/) = A[p>=]|¢*(k). Since
Alp>](k) is infinite if and only if Homy giv(k)o(Qp/Zyp, A[p™]) # 0, Fact 5.1.1.4.1 implies that
Try/r(A) = 0if and only if Homyg aiv (k) (Qp/Zy, A[p™]) # 0. So, since A[p™](k*f) = A[p>]* (k)
is infinite if and only if Homy, aiv(k), (Qp/Zp, A[p™]*), Theorem 5.1.1.4.2 amounts to show that

I‘IO].’Ilp_diV(;ﬁ)Q (Qp/Zp, A[pOOD =0 implies Homp_div(k)@ (Qp/Zp, A[poo]ét) =0. (5422)

5.4.3 Spreading out

Let ky C k be a finitely generated field with £k = Fky and such that there exists an abelian
variety Ag/ko with A ~ Ay xy, k. Let F, be the algebraic closure of F, in ky. We choose
a smooth geometrically connected F,-variety A; with generic point 7y : Spec(ko) — A, and
an abelian scheme fy : Ay — A with constant Newton polygon fitting into a commutative
cartesian diagram:

A0—>.AQ

| o |»

Spec(ko) —= X,
Since fo : A9 — A has constant Newton polygon, the exact sequence
0= Ao[p™]’ = Ao[p™] = Ao[p™]* = 0
in p-div(kg)g, extends to an exact sequence
0 — Ao[p™]® — Ao[p™] — Ao[p™]* — 0
in p-div(Xp)g. By | , Corollary 1.2], the horizontal arrows in the diagram

Homp, giv(x)o ((Qp/Zp) x, A[p™]) —— Homyp div (k) (Qp/Zy, A[p™])

l l

Homp aiv(x)o ((Qp/Zp) x, A[p™]*) — Homp.giv(k)y (Qp/Zp, Ap™]*)

are isomorphism. So, by (5.4.2.2), Theorem 5.1.1.4.2 amounts to show that
Homp_div(x)Q((Qp/Zp)X, A[poo]) =0 1mphes Homp_div(x)(@«(@p/zp)x, A[poo]ét) = 0. (5431)
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5.4.4 Reformulation in terms of convergent F-isocrystals

Let
Dy : p-div(X)g — F-Crys(X/W(F))g =" F-Isoc(X /K (F))
be the crystalline Dieudonné module (contravariant) functor, cf. | |- In | |, it is

proven that this functor is fully faithful and that D(A[p™]) ~ R forys«O4. Since Ay — X, has
constant Newton polygon, R' fy crys«O 4, has a maximal subobject Fy of slope zero. Write

(—)x : F-Isoc(Xy/K(F,)) — F-Isoc(X /K (F))
for the natural functor.
Lemma 5.4.4.1. Dy (A[p=]®) = (Fo)x.

Proof. For every t € X, Dgpec(r(r)) induces an anti-equivalence

Dspec(r(y) : P-div(Spec(F(t)))q — F-Isoc)o1)(Spec(F(t))/ K (F)),

where F-Isocjy1;(Spec(IF(t)) /K (IF)) is the category of F-isocrystals with slopes between 0 and
1. Since Dy is compatible with base change, this implies that Dy sends epimorphism to
monomorphism, it preserves the heights/ranks and it sends étale p-divisible groups to unit-root
F-isocrystals. In particular, the quotient A[p>] — A[p™=]¢" is sent to the maximal unit-root

subobject ,
]D)X(A[poo]et) — DX(-A[POO]) = leCrys*OA'

Since Fy C R fo erys+ O 4, 18 the maximal unit-root subobject, (Fo)x is also the maximal unit-
root subobject of (R fo.eryss Oap)x =~ R feryse O . O

Since Dy is fully faithful, by Lemma 5.4.4.1 and (5.4.3.1), Theorem 5.1.1.4.2 amounts to
show that

Homp 1soc(v /i (7)) (R feryscO.a, Ox) = 0 implies Homp gsoc(x/x ) ((Fo)a, Ox) = 0. (5.4.4.2)

5.4.5 Using Corollary 5.3.2.1

Now we show that

Homysoe(x/x(F)) (R ferys:Oa, Ox) — Homisoe(x/x(m)) ((Fo)xs Ox)

is surjective using Corollary 5.3.2.1. By a descent argument (see the proof of | , Proposition
1.3.2]), the natural functor

(—)x : Isoc(Xy/K(F,)) — Isoc(X /K (F))

satisfies
Homysoc(xy/(F,)) (A, B) ® K(F) = Homysoe(x/x(#) (Ax, Bx).

Hence it is enough to show that

Homlsoc(Xo/K(IFq))(leO,crys*OAoa Ox,) — Homlsoc(Xo/K(]Fq))(fm Ox,)
is surjective. Since the extension of scalar functor

—~®Q, : Isoc(Xy/K(F,)) — Isoc(Xp)
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satisfies (| , Proposition 5.3.1])
Homysoc(xy/x(v,)) (A, B) ® Q, = Homysoe(x) (A ® Q,, B® Q,),
it is enough to show that
Homysoe (1) (R fo,crysx Oty @ Q,, 1) = Homysoe( ) (Fo @ Q,, 1) (5.4.5.1)

is surjective. By | , Théoréme 7], R'focryssOa, ® Q, in F-Isoc(Xp) is the image via
F-Isoc'(X,) — F-Isoc(&X)) of a &l in F-Isoc'(X,). Let £ be the maximal unit-root subobject

of &, so that & ~ Fy ® Q,. Since &l is pure by | | and | |, £ is semisimple by
| , Remark 10.6.]. So the surjectivity of (5.4.5.1) follows from Corollary 5.3.2.1.

5.4.6 End of the proof

Now we conclude the proof proving (5.4.4.2). Consider the diagram

Homp.1soc(x/k (1) (R foryss On, Ox) — Homp.rsoc(x/x ) ((Fo) s Ox)

[

(1)
Homysoc(x/ k(1)) (R feryss Oa, Ox) — Homisoe(x /i) ((Fo) s Ox)

in which (1) is surjective by Section 5.4.5. Assume now that Homg 1soc(x/x #) (R forys«Oa, Ox) =
0 and suppose by contradiction that Homp.1soc(x/x (7)) ((Fo)x, Ox) # 0. Then, by the surjectiv-
ity of (1), there exists a morphism g : R' fey5.O 4 — Oy in Isoc(X /K (F)) which, once restricted
to (Fo)x is not trivial and compatible with the Frobenius structure. Let R feys.O4 — T be the
maximal trivial quotient in Isoc(X /K (F)). By maximality, R forys«O4 — T descend to a quo-
tient R' ferys«Oa — To in F-Isoc(X /K (F)), where Ty is an F-isocrystals coming from Spec(F).
Since F is algebraically closed, by | , Theorem 3.5| the category F-Isoc(Spec(F)/K(F)) is
semisimple and every unit-root object in F-Isoc(Spec(F)/K (F)) is trivial as F-isocrystal. So,
To decomposes in F-Isoc(X /K (F)) as

To = (Tg)x © OF"

where O%" is the maximal unit-root subobject of 7y and n is an integer > 0. Since (Fp)y is unit-
root and the restriction of g : R ferysOu — To 10 (Fo)x € R ferys«O.4 18 non trivial and compat-
ible with the Frobenius structure, we see that n > 0. Thus there exists a quotient R' fo,y.O4 —
To — Oy in F-Isoc(X /K (F)) in contradiction with Homp tsoc(x /i (m)) (R feryss Oa, Ox) = 0.

Remark 5.4.6.1. In Fact 5.2.3.1.2, quoting | |, we are using the Langlands correspon-
dence for lisse sheaves and overconvergent F-isocrystals (| |, [ |).- However, the proof
of Theorem 5.1.1.4.2 can be obtained without using it. Indeed the overconvergent F-isocrystal
53 provided by | , Théoréme 7| it admits an explicit f-adic companion: R!f,.Q, (see also
| , Remark 4.2.7|).

134



Chapter 6

Specialization of p-adic monodromy
groups

6.1 Introduction

6.1.1 Notation

In this chapter k is a finitely generated field of characteristic p > 0 with algebraic closure k C k.
Set IF, for the algebraic closure of ), in %, so that [F, a finite field with ¢ = p°® elements and
write [F for the algebraic closure of I, in k. For a k-variety X and for every integer d > 1, let
X (< d) denote the set of all x € |X| with residue field k(x) of degree < d over k. If d =1 we
often write X (< 1) = X (k). Write ¢x for the absolute Frobenius of X (or just ¢ if there is no
danger of confusion) and Fx (or just F') for its s-power.

6.1.2 /(—adic exceptional locus

From now on, let X be a smooth geometrically connected k-variety. For every prime ¢, consider
the category LS(X, /) of étale lisse Q;-sheaves over X. For a geometric point T € X and a
Fi in LS(X,¢), write F;z for the fibre of F, at T. Then F,; is endowed with a continuous
action pr, : m(X) = GL(Fuz) oft m(X) and the functor Fy — F;z induces an equivalence of

categories o
LS(X,T)) = Repg, (m (X))

onto the category Repg, (m1(X)) of Qy-linear continuous representations of 7 (X) factorizing
trough a finite extension of Q,

By functoriality of the étale fundamental group, every x € | X| induces a continuous group
homomorphism 7 (z) — 71 (X), hence a “local" Galois? representation pg, , : m(z) — m(X) —
GL(.F[@) Write

pra(m(@) =z C g = pr,(m(X)), Iz 5= pr(m(Xp).
Write
Xz" = {r € |X]| with [, : lIf,.] < +oo}; XZF™ :={z € |X| with lIF, =I5, .}
and define the following sets:

Xz = | X| — X%n; X}j(g d) == Xz NX (< d); inj”(g d) = X%n NX(<L d);

! As the choice of fibre functors will play no part in the following we will omit them for the notation for étale
fundamental group.
2Recall that 7 (z) ~ 1 (Spec(k(x))) identifies with the absolute Galois group of k(z).
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XEr = X[ = XFE" XFo(<d) = X" NX(<d); XEM<d):=XF"NX(< d).
Following | |, we call X5 the exceptional locus of pr, and X#¢* the strict exceptional locus
of PF,- o

An important problem in arithmetic geometry, especially when F, ~ R'f.Q, for some
smooth proper morphism f :Y — X, is to understand how Ilx, , varies with x € | X]|; see for
example | | [ | [ | [ |, Chapters 3 and 4. When k is arithmetically rich
enough one expects that there are lots of x € | X| such that I, , is open in IIx,. More precisely
we have:

Fact 6.1.2.1.

L. (] , Section 10.6], Fact 1.2.2.2.2): The set X% is sparse. In particular, if & is infinite
there exists a d > 1 such that X3™(< d) is infinite.

2. (Theorem 3.1.3.2): Assume that £ # p. If X is a curve and (Lie(Ilz, 7))® = 0, the set
X5(< 1) is finite.

In | |, Cadoret extends Fact 6.1.2.1 to adelic representations. The goal of this paper
is the extension of Fact 6.1.2.1 to various p-adic settings.

6.1.3 (Over)convergent F-Isocrystals over X

Even though Fact 6.1.2.1(1) holds for LS(X, p), the category of p-adic representations presents
some pathologies which makes it very different from LS(X, ¢) for ¢ # p. A first problem is then
to find an analogue of the category LS(X, ¢) when ¢ = p.

If E = IF, is a finite field, there are at least two possible Tannakian categories of p-adic “local
systems™ the category F-Isoc(X) of Q,-convergent F-isocrystals and the category F-Isoc'(X)
of @p—overconvergent F-isocrystals. One has a fully faithful functor

(=)™ . F-Isoc!(X) — F-Isoc(X)

which is an equivalence only if X is proper. The category F—IsocT(X ) behaves very much
like LS(X, ¢). For example, we have the finiteness of cohomology | |, a theory of weights
| | and a trace formula | |. On the other hand, the category F-Isoc(X) has a somehow
pathological p-adic behaviour but it contains fine p-adic information; see for example | |
and Chapter 5.

However, to have results on the existence of (strictly) generic points, like Fact 6.1.2.1, one
needs that £ is arithmetically rich enough. So, to study the specialization theory of p-adic
invariants, one would like to have categories of p-adic “local systems” for varieties defined over
infinite finitely generated fields. The construction of @p—linear categories of (over)convergent
F-isocrystals for variety over infinite finitely generated fields of positive characteristic is then
the first topic of this chapter. Roughly, an (over)convergent F-isocrystals [£] over X is defined
as an equivalence class [€] of couples (X, &), where X' is an appropriate model of X over F,
and & is an (over)convergent F-isocrystal over X'; see Section (6.3.2.1) 6.5.2.1 for the precise

definitions. Write F-Isoc (X)) for the category of (over)convergent F-isocrystals over X.

6.1.4 Monodromy groups of (over)convergent F-Isocrystals over X

Since (over)convergent F-isocrystals do not correspond directly to representations, to define
their exceptional loci, one has to use the Tannakian formalism.

If € is a Qg-lisse sheaf on X, we could define the monodromy group G(F;) of F; equivalently
as the Zariski closure of the image of m1(X) acting on F,z or as the automorphism group of
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the forgetful tensor functor (F;) — Vecty,. For F-isocrystals, only the latter construction is
available. If [£] is an (over)convergent F-isocrystals over X represented by (X, &), the choice
of a point geometric point t of X defines a fibre functor () — Vect@p, hence a monodromy
group G(&) of £ over X. Showing that G(&) does not depend on the choice of a representative
(X, &) of the equivalence class of [£], amounts to showing that every dense open immersion
j: U — X of smooth F -varieties induces an isomorphism G(j*€) ~ G(&). While this is true for
overconvergent F-isocrystals (Fact 6.3.1.5.1), it does not hold in general for every convergent
F-isocrystals; see Example 6.5.1.4.2. Indeed if the Newton polygon (see Section 6.5.1.2.2) of £
is not constant on X, there exists an open immersion j : Y — X and a canonical filtration

E1C & C ... Cj*€ in F-Isoc(U) (6.1.4.1)

encoding the slopes of j*£. In general the sub-objects & are not in the essential image of
i* : F-Isoc(X) — F-Isoc(U) and this is an obstruction to have G(3*€) = G(£). However,
we prove (Proposition 6.5.1.4.3) that this is the only obstruction, hence we get well defined
monodromy groups for convergent F-isocrystals with constant Newton polygon.

6.1.5 Exceptional loci

After having settled the general formalism, one attaches to every overconvergent F-isocrystals
(resp. convergent F-isocrystals with constant Newton polygon) [€] an exceptional locus X

and a strictly exceptional locus X fg]e“‘

6.1.5.1 Overconvergent F-isocrystals

In the overconvergent setting our main result is an analogue of Fact 6.1.2.1.

Theorem 6.1.5.1.1. Let [£] be a geometrically semisimple overconvergent F-isocrystal over
X (see Section 6.3.2 for the definitions). Then:

o The set X7 is sparse. In particular, if & is infinite there exists a d > 1 such that ijf]"(g d)
is infinite.

e If [£] is algebraic, then the set X[ngx is sparse. In particular, if £ is infinite there exists a

d > 1 such that ngﬂe”(g d) is infinite.

o If X is a curve, the set Xz(< 1) is finite.

The proof of Fact 6.1.2.1 relies heavily on the fact that Iz, is an (-adic Lie group, hence,
implicitly, on the Galois-theoretic structure of LS(X,¢). These features are not available in
this p-adic setting. Instead, the idea is to use companions theory (Fact 6.4.2.3.1) for both over-
convergent F-isocrystals and lisse sheaves, which associates to an overconvergent F-isocrystal
[€] with representative (X, &) an f-adic companion [F;] with representative (X, F;) for some
¢ # p. Then we show that the exceptional loci of [£] and [Fy| coincide, so that we can deduce
Theorem 6.1.5.1.1 from Fact 6.1.2.1.

6.1.5.2 Convergent F-isocrystals

In the convergent setting, we get somehow weaker results. The fully faithful functor (—)«" :
F-Isoc'(X) — F-Isoc(X) induces a fully faithful functor

—~——

(=)™ : F-Isoc'(X) — F-Isoc(X).
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Let [€] be in F-Isoc' (X)) with representative (X, £) and assume that £ has constant Newton
polygon over X. Then the filtration (6.1.4.1) induces a canonical filtration

I:gjlionl} g [5]50’!’1’[} g C I:g]COn’U

and morphisms of algebraic groups

G([E)™) « G(E1 ™) < G((€)).
For every algebraic group G write rk(G) for its reductive rank and recall that for any subgroup
H C G one has tk(G) > rk(H).

Theorem 6.1.5.2.1. Let [£] be a pure and p-plain overconvergent F-isocrystal over X with
constant Newton polygon (see Section 6.5.2 for the definitions).

e The set of x € |X| such that rk(G([€]°")) > rk(G(z*[E]®"")) is sparse. In particular,
if k£ is infinite there exists an integer d > 1 and infinitely many x € X(< d) such
rk(G(z*[€])) = rk(G (2" [E]™)).

e If X is a curve for all but at most finitely many k-rational points z one has rk(G([£]“™")) =
rk(G(z*[€]")) and rk(G([E]s™)) = tk(G(z[£]")).
o If X is a curve and G([€]7""°)° is abelian, then X{fc.n. (< 1) is finite.
Remark 6.1.5.2.2. If [£]{°" has slope zero, the fact that ngﬁ% is sparse follows directly
from Facts 6.1.2.1(1) and 6.5.1.2.1.

Via Theorem 6.1.5.1.1, Theorem 6.1.5.2.1(3) amounts to compare X[Sg]?fm, Xigonn and Xigre.
To do this, one uses that for every = € | X| there is a canonical diagram of algebraic groups

G(z*[€]) —— G([€])

J J

Gla[E]m) — G(E]™)
Gla[E)) — G(ER™),

so that one can try and obtain information on X [g;}?om and X [g;}l‘om from X ff;]”, via the results
1
in Chapter 5.

6.1.6 An application to motivic p-adic representations

Let f:Y — X be a smooth proper morphism of k-varieties. Up to replacing X with a dense
open subset, the constructible sheaf F, := R’ f*@p is a p-adic lisse sheaf. Hence, for every
x € | X|, it corresponds to a representation pr, such that pz, , identifies with the natural action
of mi(z) on GL(H'(Yz,Q,)). Write G(F,) and G(z*F,) for the Zariski closure of Iz, and I ,
respectively and G(F,)? and G(z*F,)° for their neutral components. By Fact 6.1.2.1, we know
that Xﬁf;x is thin. As a consequence of Theorem 6.1.5.2.1 we obtain some finiteness results
when X is a curve.

Corollary 6.1.6.1. Assume that X is a curve.
e For all but at most finitely many k-rational points one has rk(G(F,)) = rk(G(z*F,)).

o If G(F,)" is abelian, for all but finitely many = € X (k) we have G(F,)° = G(z*F,)°.
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To prove Corollary 6.1.6.1 one observes that there is is a pure and p-plain [£] in F-Isoc'(X)
such that G(F,) identifies naturally with G([£]{”""), so that one can deduce Corollary 6.1.6.1
from Theorem 6.1.5.2.1.

6.1.7 A conjecture

While the results in Theorem 6.1.5.2.1 are limited to a small class of overconvergent F-isocrystals,
we conjecture (Conjecture 6.6.2.2.1) that for every pure p-plain overconvergent F-isocrystals
one should have

gen . gen gen
X[g}con’u - X[g} g X[E](l;on’u .

We end the chapter discussing this conjecture and giving some evidences for it.

6.1.8 Organization of the chapter

In Section 6.2 we introduce some notation for algebraic groups and models. Sections 6.3 and
6.4 are devoted to the study of coefficient objects over finitely generated fields. In Section 6.3
we first recall various properties of overconvergent F-isocrystals and lisse sheaves over finite
fields and then we use them to extend the definitions to finitely generated fields. In Section
6.4 we define their exceptional loci and we prove Theorem 6.1.5.1.1. Sections 6.5 and 6.6 are
devoted to the study of convergent F-isocrystals over finitely generated fields. In Section 6.5 we
first recall various properties of convergent F-isocrystals over finite fields and then we use them
to extend the definitions to finitely generated fields. In Section 6.6 we define their exceptional
loci, we prove Theorem 6.1.5.2.1 and its Corollary 6.1.6.1. We end Section 6.6 proposing a
conjecture relating the various exceptional loci associated to an overconvergent F-isocrystal. In
Appendix 6.A, we prove some easy lemma on epimorphic subgroups used in the paper.

6.2 Preliminaries

6.2.1 Notation for groups and representations

If G is an algebraic group over a field L of characteristic zero, we write G for its neutral com-
ponent, mo(G) := G/G° for the group of connected components, R, (G) for its unipotent radical
and X*(G) for its group of characters. Set Rep;(G) for the category of finite dimensional
L-representations of G. Write rk(G) for the reductive rank of G and recall that a subgroup
of H C G is of maximal rank if tk(H) = 1k(G). If V is in Rep,(G) we write V*° for its
semisemplification and V'V for its dual. Let f : H — G be a morphism of algebraic groups over
L. We say that f : H — G is epimorphic if the induced functor f* : Rep,(G) — Rep.(H)
is fully faithful. If f : H — G is an epimorphic closed immersion, we say that H is an epi-
morphic subgroup of G. See Appendix 6.A for more details and basic properties of epimorphic
morphism.

If ' is a profinite group and ¢ is a prime, we write Rep@e(F) for the category of finite

dimensional, continuous Q,-linear representations of I" that factors trough a finite extension of

Qe

6.2.2 Models

To define (over)convergent F-isocrystals and their monodromy groups, we need to work with
models of k-varieties and morphisms over [F,. We collect here some notation and preliminaries
on these models.
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6.2.2.1 Models of varieties

An F,model K of k is a smooth geometrically connected [ -variety with generic point 7 :
Spec(k) — K. If K1 and Ky are two models of k, there are two dense open subsets U; — K4
and Uy — Ko and an isomorphism of F -varieties Uy ~ Us.

If X — k is a smooth connected k-variety, an F,-model X of X is a smooth morphism
X — K of smooth connected F, varieties, where K is an F,-model of £, such that the base
change of X — K along n : Spec(k) — K identifies with X — k. If X is geometrically connected
over k, then every F,-model of X is geometrically connected over F,.

If X1 - K; and Xy — K5 are two models of X — k, we write Xy > A if there exists a
commutative cartesian diagram of [F -varieties

XQ—j>X1

L o]

K2—1>IC1

in which i (hence j) is an open immersion. If we want to specify the map j : Xy, — A} in the
diagram we write X5 >; X;. For every model X write jy for the morphism jy : X — X. Every
X admits a model and given two models X} and X, of X, there exists always a model &3 such
that X5 = A;, i = 1,2. We write Model(X) for the set of model of X.

6.2.2.2 Models of morphisms

If f:Y — X is a morphism of smooth connected k-varieties, an F,-model § : J — & of
f:Y — X is a commutative diagram

Y * y X
K
where X — K and YV — K are F,-models of X — kand Y — k and §: Y — X identifies with
f Y — X after base change along 7 : Spec(k) — K. If f:Y — X is smooth (resp. proper,
resp. an open immersion, resp. a closed immersion) we require that f : ) — X’ is smooth (resp.
proper, resp. an open immersion, resp. a closed immersion).

If f1: V1 = A and fo : Vo — Xy are two models of f: Y — X, we write (fo : Vo — Xy) =
(f1 : Y1 — Ay) if A7 = A, and there exists a commutative cartesian diagram

Any f:Y — X admits a model and if §; : Yy — &} and fy : Vo — X, are two models there
exists a model f3: V3 — X3 of f:Y — X such that (f3: V3 = X3) = (f;: Yy = &), i = 1,2.

6.3 Coefficient objects over finitely generated fields

For every prime /, fix an isomorphism ¢, : Q, ~ C and write ¢ := {4/}
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6.3.1 Coefficient objects over finite fields

Let X be a connected smooth F -variety. We quickly review the theory of overconvergent I-
isocrystals and lisse sheaves over X'. For more details see e.g. | , Section 2|, | |,

[ |

6.3.1.1 Coefficient objects

Write Coef(X,p) for the category of @p—linear overconvergent F-isocrystals F-Isoc!(X ,@p)
and Coef?*(X,p) for the category of @p—linear overconvergent isocrystals IsocT(X,@p). See
[ , 1.4.11, 2.2.14] for the definitions and | , Section 2| for a careful discussion.

If ¢ # pis a prime, write Coef(X, ¢) for the category LS(X, ) of étale lisse Q,-sheaves over
X and Coef?°(X, () for the category of étale lisse Q,-sheaves over Xf; see | , Section 1.1].
The category Coef(X, () is equivalent to Repg, (71 (X)) and if X is geometrically connected
Coef?’(X, () is equivalent to Repg, (m1(XF)).

For every prime /¢, including ¢ = p, write (—)9° : Coef(X,¢) — Coef?*(X, () for the
canonical functor. We say that £ is geometrically semisimple if £9°° is semisimple. Write £°°
and £9°%* for the semisimplification of £ and £9°° in Coef (X, ¢) and Coef?*’(X, {) respectively.

For every j € @p and every & in Coef(X,p) write £U) for the j™* twist of &€ (see | ,
Section 3.18]).

If ¢ # p, for every algebraic number j such that j is an A-adic unit? for every place A of Q
over £ and every & in Coef (X, ) write £Y) for the 5% twist of £.

If ¢ # p, for every F in Coef(X, () write pz, praseo for the associated representations and
[T£, I Fgeo for their images.

6.3.1.2 Monodromy groups

For every prime /¢, including ¢ = p, Coef(X,¢) is a neutral Tannakian category and the choice
of an F-point of X induces a fibre functor

Coef (X, () — Vectg,.

Since Q, is algebraically closed, any two fibre functors are, non canonically, isomorphic. So, to
simplify the notation, we omit the base points.

(Resp. if X is geometrically connected) For every € in Coef (X, ¢) (resp. £9°° in Coef?*’(X, 1)),
write G(E) (resp. G(&9%°)) for the Tannaka group of the Tannakian subcategory () C
Coef (X, /) (resp. (£9¢°) C Coef?’(X,()) generated by & (resp. £9).

The faithful functor (—)9¢° : Coef(X,¢) — Coef?* (X, () induces a faithful functor (—)9¢ :
(E) — (&9%°), hence, if X' is geometrically connected, a closed immersion G(£9°) C G(£).
Furthermore, by | , Appendix]| the subgroup G(£9¢°) C G(&) is normal. The algebraic
group G(£)*" := G(E)/G(E9°) is then abelian and identifies with the Tannakian group of the
full Tannakian subcategory (£)*** C (€) of objects isomorphic to an object of the form q*&’,
where q : X — Spec(F,) is the structural morphism and &’ is in Coef(Spec(F,), ().

Every morphism f : ) — X of smooth connected F,-varieties, induces a faithful tensor func-
tor f* : Coef (X, () — Coef (), (), hence for every £ in F-Isoc(X) a natural closed immersion
G(f*€) C G(E). If moreover Y and X are geometrically connected, f* induces a faithful tensor
functor f* : Coef?*’(X, () — Coef?*’(), () fitting into a commutative diagram

3We need this condition to guarantee that £U) is still a étale lisse Q,-sheaf and not only a Weil lisse Q,-sheaf.
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Coef(X,l) —— Coef(Y, ()

| |

Coef?(X, ) —— Coef?(), 1),

hence for every € in F-Isoc(X) a commutative exact diagram

0 —— G(f*&9°) —— G(f*€) —— G[FE)™ —— 0

l I l (6.3.1.2.1)

0 — G(E9°) —— G(E) —— G(E)™ — 0.

where, by | , Corollary 3.2.7], the left and the middle vertical arrows are closed immer-
sions and the right vertical arrow is surjective.

If ¢ # p, the groups G(€) and G(E£9°°) identifies with the Zariski closure of IIg and Ilggeo
respectively.

6.3.1.3 Independence

Let € be in Coef(X, ). For every t € |X| there is a characteristic polynomial ¢(€) € Q,[T] of
Ein t (see e.g. | ; 2.1.4 and 2.2.10.]). One says that £ is algebraic if for every t € X,
the polynomial ¢((&) lies in Q[T]. Recall that & is called ¢p-pure (of weight w € Z) if i,(¢(E))
has all the roots of complex absolute value ¢*VFdw/2 Moreover we say that & is p-plain if it
algebraic and the roots of ¢((€) are A-adic units for every place A of Q over every ¢ # p. Take
another prime ¢’ # ¢ and fix & in Coef(X, () and &y in Coef (X, ¢'). We say that & and &y are
t-compatible (or that & is an f-adic companion of Ey) if 1(P(Er)) = e (P(Er)) for all t € | X|.
6.3.1.4 Properties
We recall the following properties:
Fact 6.3.1.4.1. Assume that X is geometrically connected and let £ be in Coef (X, /).

1. If € is 1p-pure, then it is geometrically semisimple.

2. If € is geometrically semisimple then G(£9°°)" is a semisimple algebraic group.

3. Take another £ in Coef (X, ¢) such that ¢((E) = ¢(E’) for every t € |X|. Then £%° ~ £,

4. The category of geometrically semisimple objects is stable by pull-back.

5. Every semisimple object is geometrically semisimple.

6. Assume that £ is geometrically semisimple and that f: J — X is a morphism of smooth
geometrically connected F-varieties. Then G(§*€)° = G(€)° if and only if G(§*£9°)° =

G (E9°0)0
Proof.
1. This is | , Theorem 3.4.1] if ¢ # p and | , Remark 10.6.] if ¢ = p.
2. This is the Global monodromy theorem: | , Corollarie 1.3.9] if ¢ # p and the proof
of | , Corollary 4.10] if ¢ = p. See | , Theorem 3.4.3] for more details.
3. If ¢ # p this is Chebotarev’s theorem and if £ = p it is | , Proposition A.4.1].
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4. This follows from the fact that being geometrically semisimple is equivalent to being
a direct sum in Coef?“’(X,¢) of yy-pure coefficient objects (this uses the companion
conjecture (| |, | |)) and this condition is stable by pull-back; see | :
Corollary 3.5.8.] for more details.

5. This follows from the fact that G(£9°°) C G(€) is a normal subgroup.

6. One implication follows from the fact that G(£9°°)° and G(x*£9°°)" are the derived sub-
groups of G(£)° and G(z*E)" respectively; this is a consequence of the Global monodromy
theorem see e.g. the proof of | , Corollary 3.4.10]. The other implication follows
from | , Proposition 3.2.6]. O

6.3.1.5 Behaviour under open immersion

Fact 6.3.1.5.1. Let j : Y/ — X be a dense open immersion of smooth connected I -varieties.
Then the following hold:

1. The functor j* : Coef(X,¢) — Coef (U, ¢) is fully faithful;
2. For every £ in Coef(X, (), the natural inclusion G(j*€) C G(€) is an isomorphism;

3. If X and U are geometrically connected, for every £ in Coef (X, ¢) the natural inclusion
G(j*&£9°°) C G(£9°°) is an isomorphism.

is fully faithful.
Proof.

1. If ¢ # p, this follows from the fact that j : i — X induces a surjection m(U) — 7 (X).
If ¢ = p this is | , Theorem 5.3].

2. By the general Tannakian formalism it is enough to show that the functor j* : Coef (X, () —
Coef(U,0) is fully faithful and that the essential image is closed under sub-objects. The
first condition is point (1). If £ = p, the second condition is | , Lemma 1.4.6] and,
if ¢ # p, the second condition follows from the normality of X.

3. The proof is the same as the one of (2), replacing, when ¢ = p, | , Theorem 5.3]
and | , Lemma 1.4.6] with | , Theorem 5.2.1.] and | , Proposition 5.3.1]
respectively. O

Fact 6.3.1.5.2. Let j : &/ — X be a dense open immersion of smooth connected I -varieties.
Then £ in Coef (X, () is algebraic (resp. ty-pure, resp. p-plain) if and only j*€ in Coef(U, ¢)
is algebraic (resp. tp-pure, resp. p-plain).

Proof. This follows from | , Theorem 3.3.1| (resp. | , Corollaire 1.8.10] if ¢ # p and
| , Remark 2.1.11] if £ = p, resp. | , Proposition 3.1.12]) ]

6.3.2 Coefficient objects over finitely generated fields

Let k£ be an infinitely generated field of characteristic p > 0 and let X be a smooth connected
k-variety. In this section we define and study coefficient objects over X.
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6.3.2.1 Definitions

For every couples (X;,&;), i = 1,2, with A; € Model(X) and &; is in Coef(X;, (), write
(XQ,SQ) >'j (Xlagl) (OI' snnply (XQ,SQ) - (Xlagl)) lf XQ >-j Xl and 52 ~ ]*51

Definition 6.3.2.1.1. The category of (-adic coefficient objects Coef(X, /) over X is the
following category:

e The objects are equivalence classes [£] of couples (X, &) where X € Model(X) and &
is in Coef (X, (). The equivalence relation is given by the relations (Xy,&1) ~ (X, &) if
there exists a couple (X3, &;) such that (X3,&) = (X, &), i =1,2.

e A morphism [g] : [£] — [£'] between [£] and [£'] in Coef(X, () with representatives
(X, &) and (X7, &) is an equivalence class of couples (U, g) where U in Model(X) is such
that U >; X and U >y X’ and g is a morphism j*& — i"*&'. The equivalence relation is
given by the relations (U, g1) ~ (Us, g2) if there exists Us in Model(X) with Us >, U;,
i=1,2, and jig1 = j382.

If ¢ = p we write also Coef(X,p) := F-Isoc'(X) and we call them overconvergent F-

isocrystals over X.
We write [0] for the equivalence class of (X', 0) where 0 is the trivial coefficient object over
X. The equivalence class of [0] does not depend on the choice of the model X of X.

6.3.2.2 Operations and properties

For [€] in 65&()(, ) with representatives (X, &;), ¢ = 1,2, there exists a representative (X3, &)
with (Xg,gg) i (.)C,Z,gz), 1 =1,2. Then:

e Since, by Fact 6.3.1.5.1, &; is irreducible (resp. semisimple, resp. geometrically semisim-
ple) if and only if j;&; is irreducible (resp. semisimple, resp. geometrically semisimple),
we say that [£] is irreducible (resp. semisimple, resp. geometrically semisimple) if for
any representative (X, &) of [£], € is irreducible (resp. semisimple, resp. geometrically
semisimple) over X. The equivalence class [£°°] of (X, £¥) is then semisimple and it does
not depend on the choice of the representative of (X, &) of [£].

e Since, by Fact 6.3.1.5.2, & is algebraic (resp. t,-pure, p-plain) if and only if jf&; is
algebraic (resp. ty-pure, p-plain) we say that if for any of the representative (X, &) of [£],
£ is algebraic (resp. ¢-pure, p-plain) over X.

6.3.2.3 Tensor products and direct sums

If [£] and [£'] are in 6(;&()(, ¢) with representatives (X, &) and (X”,£’), there exists always a
model X of X with X = X and X = X’. Since the functors j* : Coef(X, () — Coef(X, ()
and j* : Coef(/i;, 0) — Coef(X’, () preserve the operation @ (resp. ®), the equivalence class
(€@ F), (resp. [ERF]) of (X,i*EDi*E") (resp. (X,i*E®j"*E)) does not depend on the choice
of the representatives (X,€) and (X’,&’) of [£] and [£']. Then every semisimple [£] is direct
sum of irreducible objects.

6.3.2.4 Kernels and cokernels

If [g] : [€] — [€] is a morphism in Coef(X,¢) represented by (U, [g:]), i = 1,2, there exists a
model Us of X with Us > U; and jig1 = j3g2. Since the functors jf : Coef (U;, () — Coef(Us, ()
are exact, the equivalence class Ker([g]) (resp. [Coker([g])]) of (U, Ker(g)) (resp. (U, Coker([g]))
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does not depend on the choice of the representative (U, g) of [g] : [E] — [E£]. We say that [g]
is a monomorphism (resp. epimorphism) if [Ker(g)] = 0 (resp. [Coker([g])]).
6.3.2.5 Compatibility

Take an ¢/ # (. If [£)] is in E(Ia/f(X7 ) with representative (X, &) and [Ey] is in E(Ia/f(X, 0
with representative (Xp, &), we say that [Ey] and [£] are compatible (or that [&] is an ¢'-adic
companion of [Ey]) if there exists X' in Model(X) with X' >, Xy and X >, X such that j;&
and j;, &y are compatible over X.

6.3.2.6 Functoriality

Every morphism f : Y — X of smooth connected k-varieties induces a functor

f*: Coef(X, ) — Coef(Y, /)

as follow.

For every morphism f : Y — X of smooth connected k-varieties and every [£] in Esza/f(X ),
with representative (X, &), there is always a model f: Jy — &) of f such that X} >; X. Since
for every couple of such models §; : V; — &, « = 1,2, there exists always a model {3 : V3 — X3
with (f3 : Vs — &3) = (fi : Vi — X)), the equivalence class f*[€] of (1, §9*E) does not depend
on the choice of the model f: Yy — &) of f: Y — X such that X; =; .

Similarly, if [g] : [£1] — [£2] is a morphism in Coef(X,{) represented by (U, g), there is
always a model f : Jy — U of § such that Uy >; U and the equivalence class [f*(g)] : [E1] — [&2]
of (W1, 'j*g) does not depend on the choice of the model f: Y, — U of f such that Uy >=; U.

6.3.2.7 Monodromy groups

For [£] in Coef(X, /) with representatives (X;,&;), ¢ = 1,2, there exists a representative
(X3, &) with (X5,&3) >, (X, &). If G(&;) denotes the monodromy group of & over X; (see
Section 6.3.1.5), by Fact 6.3.1.5.1(2) we have G(&;) ~ G(j1&1) ~ G(j3&) ~ G(&). Hence
G([€]) := G(E) is well defined independently on the choice of (X,&) of [£]. We call it the
arithmetic monodromy group of [£]. Similarly, using Fact 6.3.1.5.1(3), if X is also geometri-
cally connected, G([€]9¢°) := G(£9°°) is independent from the choice of (X,&). We call it the
geometric monodromy group of [£].

6.3.3 Comparison with the category of lisse sheaves

Let X be a smooth connected k-variety. In this subsection we assume ¢ # p. In this case,
we have another candidate for a category of f-adic local systems: LS(X,¢). In this section we
compare these two options.

6.3.3.1 Comparison functor

We construct a functor:

® : Coef(X, V) — LS(X, /).

Let [F] be in EE(X, () with representative (X;, F;), i = 1,2, then there exists a (X3, F3) such
that (X3, F3) > (A&, F;). Then the commutative diagram
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X
/ zjl
Xg (— X
\ ja,
shows that ®([F]) := j%F does not depend on the choice of the representative (X', F) of the
equivalence class of [F].

Similarly, if [g] : [F] — [G] is a morphism in Coef (X, ¢) represented by (U, g), the morphism
®([g]) : ®([F]) — D([G]) defined by jj;;(g) does not depend on the choice of the representative
(U, ) of [g] : [F] — 9]

Since for every X € Model(X) the natural morphism 71 (X) — m(X) is surjective, the

image Ilg (7)) of pa(F)) coincide with IIx and @ : Coef (X, ¢) — LS(X,?) is fully faithful. The
functor ¢ : Coef (X, ¢) — LS(X, /) is not essentially surjective in general.

Remark 6.3.3.1.1. If X = k =TF,(7), any F,-model of X is a dense open subscheme U C IP’%FP
and there is an exact sequence

0— Iy > m(k) > mU)—0

where [, is the subgroup generated by the inertia groups of the points in ]P’}Fp —U. Hence a

representation of 7 (k) is in the essential image of @ : ESE(X, ¢) — LS(X,?) if and only if it
is unramified outside finitely many places.

However, its essential image is big enough to contains all the representations coming from
geometry. More precisely, if the f : Y — X is a smooth proper morphism, choose a smooth
proper model f: Y — X of f: Y — X. By smooth proper base change, R'f,Q, is LS(X,/)
and R'f,Qy is in LS(X,¢). If we write [R'f.Q,| for the equivalence class of (X, R*§.Qy), then
we have ®([R'f,Q,]) = R'f.Qy.

6.3.3.2 Geometric image

Assume now that X is geometrically connected. Then, for every [F] in Coef(X, /), we can
restrict pg(7)) to m(X3) obtaining a representation

pa(F),  M(X5) = GL(Qy),

with image Tle(r) . If (X, F) is a representative for [F], in general Ily (s is very different
from Il zgeo.

Example 6.3.3.2.1. If X = P}, then m(Xg) = 050 that Ha, =0 for all [F] in Coef (X, ().
However, if K is any model of k, then P — K is a model of P}, hence it is not true in general
that H].‘geo =0

However, there is a commutative exact diagram of groups

1] —— 7T1(XE) — 7T1(X) —_— 7T1(k’) — 1
l l (6.3.3.2.2)

1 —— 7T1(XF) — 7T1(X) _— 7T1(1Fq) — 1
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where the central and right arrows are surjective. Since the image of a normal subgroup trough

a surjection is a normal subgroup, m (X3) — m1(XF) has normal image, hence (7). € Mzoeo

is a normal subgroup. As a consequence, we get the following (a mild generalization of | ,
Theorem 5.7|), which is needed to apply Fact 6.1.2.1(2) in our setting.

Lemma 6.3.3.2.3. If [F] is geometrically semisimple, then:
Lie(Hé([]_—])E)ab =0.

Proof. Let (X,F) be a representative for [F]. Since Ilg(z))_ is a normal subgroup of Ilxse,
the Zariski closure G(®([F])z) of Ile(7),. is a normal subgroup of G(F9°). Since F9¢ is ge-
ometrically semisimple, by Fact 6.3.1.4.1(2) G(F9°) is a semisimple algebraic group, hence
G(®([F])z) is a semisimple algebraic group. By | , §1, Corollaire|, this implies that

Lie(Iy ()" = Lie(G(®(|F]))) = 0. =

6.4 Exceptional loci of coefficient objects

Let X be a smooth geometrically connected k-variety.

6.4.1 Definitions and first properties
6.4.1.1 Definitions

For every morphism f : Y — X of smooth connected k-varieties and every [£] in Esza/f(X, 0),
with representative (X, £), there is always a model §* : V; — & of f such that &; =; X'. Hence,
as in Section 6.3.2.7, we get a well defined closed immersion G(f*[€]) = G(f*E) C G(G*E) ~
G(€) = G([&]). So we can define:

Definition 6.4.1.1.1. We say that = € | X| is algebraically generic (resp. algebraically strictly
generic) for [£] if G(z*[€])° = G([€])° (resp. G(z*[€]) = G([€])).

Write X" (resp. Xg™) for the set of z € |X| that are algebraically generic (resp. alge-
braically strictly generic) for [£]. Define the following sets:

X=X - XE" XG(Sd) = XENX(<d); XE(<d) = X5 N X (< d)

X[‘?]ex = | X]| - X[Sgg]en; X[f;fx(g d) == X[Sg]e“ N X (< d); X[Sgg]"’”(g d) = X[sggﬁen NX(<a).

We call X[egi the algebraic exceptional locus of [£] and X[sg]e"” its algebraic strictly-exceptional
locus. For further use we gather an easy lemma on the behaviour of the exceptional locus under
finite étale cover.

Lemma 6.4.1.1.2. Let f: Y — X be a connected finite étale cover. Then we have:
F(YFg) = Xig

Proof. Choose a model of f : Y — X such that f: Y — X is finite étale and a representative
class of (X, €) is defined over X. Then Lemma 6.4.1.1.2 follows from the fact that G(f*[€]) =
G(f*€) C G(€) = G([€]) is an open subgroup by | , Proposition 3.3.4]. O
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6.4.1.2 Comparison with the exceptional locus of ®([.F])

Assume ¢ # p. In the introduction, for any F in LS(X, Qy), we defined the exceptional locus

X¢* and the strictly exceptional locus X§*. So, if we have a [F] in Coef(X, (), we have four
subsets of X:

gen . sgen . gen . sgen
Xt Xm s Xegry Xe(a)y:

To apply Fact 6.1.2.1 in our setting, we need to compare them.

Lemma 6.4.1.2.1. The following hold:

sgen sgen gen gen
L Xom & X and Xgz) © X5

2. If F is geometrically semisimple then X g??ﬂ) =X [‘[’;?

Proof. Choose a model § : K' — X of x — X such that a representative (X,F) of
[F] is defined over X. Since IIr = Iz and Iz = He(r)e. (1) amounts to show
that if II;. » = Iz (vesp. Il» C IIx is an open subgroup) then G(f*F) = G(F) (resp.
G F)? = G(F)?). So (1) follow from the fact that G(F) and G(f*F) are the Zariski
closures of I1 and I} 7 respectively.

Then (2) amounts to show that if G(f*F)? = G(F)? then I » C IIx is an open sub-
group. So assume that G(f*F)° = G(F)°. Replacing F, with a finite field extension,
we can assume that K’ is geometrically connected over F,. Since G(f*F)° = G(F)°,
Fact 6.3.1.4.1(6) implies that G(§*F9°)? = G(F9*°)°. Since G(f*F9°)? = G(F°)° is a
semisimple algebraic group (6.3.1.4.1(2)), by | , §1, Corollaire| we deduce that [T zoeo
is open in Ilzgeo. There is a commutative diagram with exact rows:

jire
0 —— Il g0 — Tl y > 0
fIgF 1]—— Hf*}—geo
\ \ H]: \
O —> H]:geo 7 H]: 7 H]:geo 7 0,

where the right vertically arrow is surjective, since K’ is geometrically connected over .
So there is a surjection

I £geo II
Foeo _ UF
Hf* Fgeo Hf* F

In particular Hrfl—ff is finite hence Il £ is open in II. 0

6.4.2 Proof of Theorem 6.1.5.1.1

Now we are ready to prove Theorem 6.1.5.1.1. Let [£] be a geometrically semisimple overcon-
vergent F-isocrystal over X. For every x € | X/, choose a model f : K" — & of x — X such that
a representative (X, &) of [£] is defined over X.

6.4.2.1 Reducing to the semisimple case

We first reduce to the semisimple situation.

Lemma 6.4.2.1.1. Let [£] be in Coef (X, ¢). If [£] is geometrically semisimple then

er __ ex stex __ stex
X[g} = X[gss] and X[g] = X[Sss}
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Proof. The first (resp. the second) equality amounts to show that G(§*€)° = G(€)? if and only
it G(FE™) = G(E)" (resp. G(FE) = G(E) if and only it G(FE™) = G(E%)).

1. To prove the first equality, we can replace F, with a finite field extension, hence as-
sume that K’ is geometrically connected over [F,. Using Fact 6.3.1.4.1(4) we see that
f*& is again geometrically semisimple. Since semisimple implies geometrically semisimple
(6.3.1.4.1(5)) we get isomorphisms

5960 ~ (5960)55 ~ (6‘88)960

* [ CJeo\ ~ (§£* ©\geo ~ * 0\ SS)geo (,%) *(OSS)\S5\geo ~ g*( £SS\geo

frEXC) = (FFE)T = (1)) =~ ((FF(£7))7)7 = (€%)
where the equality (A) follows from Fact 6.3.1.4.1(3) since it implies that (€)% =~
(f*(£%%))*s. By Fact 6.3.1.4.1(6) we see that G(€)° = G(f*€) if and only G(£9%°)°
G(FE9°)°. So G(E9°)0 = G(§*&€9¢°)% if and only if G((£%%)9°)° = G(f*(£%)9°)°. But
£% is again geometrically semisimple so that we can apply again Fact 6.3.1.4.1(6) to get
that G((£%%)9°°)° = G(§*(£%%)9%°)" if and only if G(E%%)° = G(§*(£*%))°. This concludes
the proof of the first equality.

2. Now we deduce the second equality from the first one, via a purely group theoretic
argument. For 7 € {(), ss} we have an exact commutative diagram

0 —— G(f(£)° — G(*(£7)) — m(G(F(£7) —— 0

LJ?*O Lf/? lﬂo (9"

0 —— G(E&)° ——— G ——— m(G(EY) —— 0

By (1), ¢**Y is an isomorphism if and only if ¢° is an isomorphism. Assume this is the
case, so that mo(g’) is injective. Then ¢’ is an isomorphism if and only if 7(g’) is an
isomorphism if and only if |mo(G(E7))| = |mo(G(F*(E7)))]. We conclude observing that,
since taking semisimplification does not change the group of connected components, we
have:

mo(G(E))] = [mo(G(E7))]
mo(G(FE))| 2 mo(G((F7E)*))| = |mo(G((F(£%%))*))| = |mo(G(F(£%%)))]

This concludes the proof O

So from now assume that [£] is semisimple, hence that [£] ~ @;[&;] with each [&;] irreducible.

By | , Lemma 6.1], there exists a twist £ of & such that £ has determinant of finite
order under tensor.

6.4.2.2 Reducing to the algebraic case

Assume first that £ is not algebraic. We reduce to the situation in which £ is algebraic using

the following, which is a consequence of the companion conjecture (| |, | |, | |,
[ |, see | , Corollary 3.3.3])
Fact 6.4.2.2.1. Let X' be a smooth geometrically connected F,-variety and let £ be in Coef (X, ()

irreducible with finite order determinant. Then & is algebraic.

By Fact 6.4.2.2.1 Ei(ji) is algebraic, hence [£'] := @i[é’i(ji)] is algebraic. Then we have:
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Lemma 6.4.2.2.2. There is an equality
Xiey = Xpey

Proof. We need to show that G(*€)° = G(£)° if and only if G(f*£")° = G(£')°. Replacing F,
with a finite field extension, we can assume that K’ is geometrically connected over F,. By Fact
6.3.1.4.1(6) G(FE)® = G(FE)° if and only if G(F€9°)? = G(*E9)" and G(F°E')° = G(E)° if
and only if G(§*£9¢°)% = G(£'9¢°)°. Since £'9°° = £9¢° this concludes the proof. O

So, using Lemma 6.4.2.2.2, we may and do assume that £ is algebraic.

6.4.2.3 Companions and independence

The idea is then to take, for some ¢ # p, an f-adic companion F; of £, to which we can apply
Fact 6.1.2.1(2) thanks to Proposition 6.3.3.2.3, and to prove that the exceptional loci of F and
& coincide. To do this, we exploit the companions conjecture (| |, [ | [ ])-

Fact 6.4.2.3.1 (| , Theorem 4.2]). Let X be a smooth geometrically connected F-variety
and let £ be in Coef (X, p) irreducible with finite order determinant. Then, for every ¢ # p
there exists a (unique) F in Coef(X, ) which is (-compatible with &.

Since &; and 5i(ji) are algebraic, for every ¢ > 0, j; € @p is an algebraic number. In particular
there exists an ¢ such that for every i > 0 and every place A in Q over /, j; is a A-adic unit.
Fix such ¢ and write F;; for the f-adic companion of & over X given by Fact 6.4.2.3.1. Since
for every ¢ > 0 and every place X in Q over ¢, j; is a A-adic unit, .Fé(;/ji) is in Coef (X, 0) (see
Section 6.3.1.1) and it is an (-adic companion of &;. Consider [Fy| in Coef (X, ¢) represented by
(X, @i]:z(l/j")), so that [Fy] is an f-adic companion of £. Then from Lemmas 6.4.1.2.1, 6.3.3.2.3
and Fact 6.1.2.1 it is enough to prove the following.

Fact 6.4.2.3.2. For 7 € {(,('} fix a [£;] in 6(?&()(, 7). Assume that [&] and [Ex] are geomet-
rically semisimple and t-compatible. Then

gen __ yrgen sgen __ ~yrsgen
Xigy) = Xjg,y and X" = Xg )

Proof. By Lemma 6.4.2.1.1 we can assume that [£] and [£y] are semisimple. Choose a model
f: K' — X of © — X such that there are representatives (X, &) and (X,&») of [&] and
[Ev] are defined over X. Then the first (resp. the second) equality amounts to show that
G(*&)° = G(&)) if and only if G(f*&€)° = G(En)° (resp. G(f*&) = G(&) if and only if
G(f*Ev) = G(Er)). They both follows from the proof of | , Corollaire 8.7]. O

6.5 Convergent F-isocrystals over finitely generated fields

6.5.1 Convergent F-isocrystals over finite fields

Let X be a smooth connected F,-variety. We first quickly review the theory of convergent
F-isocrystals over X and its relation with the theories of overconvergent F-isocrystals and p-
adic representations. Then we study the behaviour of convergent F-isocrystals under open
immersions of smooth F -varieties.
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6.5.1.1 Convergent and overconvergent F-isocrystals

Write F-Isoc(X) (resp. Isoc(X)) for the category of Q,-convergent F-isocrystals on X (resp.
convergent F-isocrystals) and consider the canonical diagram of functors:

_)!ISU

F-Isoc'(X) i Isoc'(X)

l(_)conv l(_)conv

_\geo

F-Isoc(X) o Isoc(X).
Recall the following.
Fact 6.5.1.1.1. | | The functor (=)™ : F-Isoc!(X) — F-Isoc(X) is fully faithful.

6.5.1.2 Slopes

Let £ be in F-Isoc(X) of rank r. For every t € |X|, one considers the multi-set {a}(€)}1<i<r
of slopes of £ at t. These are rational numbers that we assume to be ordered as a}(€) < --- <
at(&). See | , Sections 3 and 4| for more details on the theory of slopes. We say that

& is isoclinic (of slope a!{(€)) if a}(£) = al(€) for every t € |X| and that £ is unit-root if
it is isoclinic of slope 0. Write F-Isoc,,(X) C F-Isoc(X) for the Tannakian subcategory of
unit-root convergent F-isocrystals.

Fact 6.5.1.2.1. | | There is a natural equivalence of categories
dy : F-Isoc,, (X) ~ LS(X, p).
We say that £ has constant Newton polygon if the function

Ng :|X| — Q"
t = (ay(€))1<icr

is constant. Write F-Isoconp(X) C F-Isoc(X) for the Tannakian subcategory of convergent
F-isocrystals with constant Newton Polygon.

Fact 6.5.1.2.2 (| , Theorem 3.12, Corollary 4.2]). Let £ be in F-Isoc(X).
1. There exists a dense open immersion j : Y — X such that j*€ is in F-Isoconp (U);

2. If € is in F-Isoccnp(X), then there exists a unique filtration
0=ECEC...CE1CE, =€ inF-Isoc(X)
such that &;/&;_1 is isoclinic of some slope s; with s1 < 3 < ... < sp,.

In general, if (P) is a property of convergent F-isocrystals, we say that a & in F-Isoc'(X)
has (P) if £ has (P).

6.5.1.3 Monodromy groups

F-Isoc(X) is a Tannakian @p—linear category and the choice of a geometric point t of X, defines
a fibre functor t* : F-Isoc(X) — Vectg . For £ in F-Isoc(X) write G(£) for the Tannaka
group of the Tannakian subcategory (£) C F-Isoc(X). If X is geometrically connected, define
similarly G(£9¢°). The fully faithful functor (£) — (£9¢°) induces a closed immersion G(£9¢°) C
G(E), with G(€9°) normal in G(&); | , Appendix| and | , Propositon 2.2.4]. The
algebraic group G(&)*' := G(&)/G(E9%°) is abelian and identifies with the Tannakian group
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of the full Tannakian subcategory (£)°" C (£) of objects isomorphic to an object of the form
q*&’, where q : X — Spec(F,) is the structural morphism and £’ is in F-Isoc(F,).

If € is in F-Isoc'(X) the fully faithful functor (=)™ : (£) — (£°™) of Section 6.5.1.1,
induces a closed immersion G(£°™) C G(&). Similarly, if X' is geometrically connected there
is a natural closed immersion G(E£9¢%") C G(£9%°) fitting into a commutative exact diagram

O G(gconv,geo) ¢ G(gconv) G(gcom))cst 0

[ [ |

0 — G(&9°) —— G() —— G(&)* —— 0,
where the right vertical arrow is surjective (see Section 5.2.2 in Chapter 5).

Fact 6.5.1.3.1. Let £ be in F-Isoc'(X) and assume that it is pure and p-plain. Then
G(E«™) C G(&) is an epimorphic subgroup of maximal rank. If moreover X is geometri-
cally connected the following hold:

1. G(&9eocom) C G(€9%°) is a subgroup of maximal rank;
2. The abelianization of G(£9¢>°°™") is reductive;

3. If £ is semisimple the natural map
G(gconv)/G(ggeo,conv) _> G(E’)/G((C/’geO)
is an isogeny.

Proof. All the statement follow from Fact 6.5.1.1.1 and the results in Chapter 5. More precisely,
the first statement follows from Fact 6.5.1.1.1 and Corollary 5.2.3.2.1. Assume that X is
geometrically connected. Then (1) is Theorem 5.1.2.2.1, (2) follows from (1), Fact 6.3.1.4.1(1)
and Lemma 5.2.3.2.3. Finally (3) follows froms from the first statement, (1) and Corollary
5.2.3.2.2. O

Every morphism §: ) — X of smooth connected F,-varieties, induces a faithful tensor func-
tor f* : F-Isoc(X) — F-Isoc()), hence for every £ in F-Isoc(X) a natural closed immersion
G(f*€) C G(E). If moreover Y and X are geometrically connected, f* induces a faithful tensor
functor §* : Isoc(X) — Isoc()) fitting into a commutative diagram

F-Isoc(X) —— F-Isoc())

| J

Isoc(X) —— Isoc()),

hence for every € in F-Isoc(X) a commutative exact diagram

0 —— G(f€9%°) —— G(f*€) — G(f* &) —— 0

j j l (6.5.1.3.2)

0 —— G(E9°) ——— G(E) —— G(E)™ —— 0

where the left and the vertical arrows are closed immersion and the right vertical arrow is
surjective.
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6.5.1.4 Behaviour under open immersion

The analogue of Fact 6.3.1.5.1(1) holds in the setting of convergent F-isocrystals.

Fact 6.5.1.4.1 (| , Theorem 2.2.3]). Let j : Y — X be a dense open immersion of con-
nected smooth F -varieties. The functor j* : F-Isoc(U) — F-Isoc(X) is fully faithful.

However the analogues of Fact 6.3.1.5.1(2-3) do not hold in the setting of convergent F-
isocrystals.

Example 6.5.1.4.2. Let f : JJ — & be a non isotrivial family of elliptic curves with at least
one supersingular fibre. Write j : & C X for the dense open subset with ordinary fibres and
& = le*Oy/@p for the first convergent higher direct image. Then one has G(€) = G Ly, while
G(*€) C GLy is the Borel subgroup of upper triangular matrices. So, while £ is irreducible
and doesn’t have constant Newton polygon, j*€ has constant Newton polygon hence it acquires
a two steps filtration, reflecting the filtration of the p-divisible group of the generic fibre of
f: Y — X into étale and multiplicative part.

In Example 6.5.1.4.2, we see that the obstruction on G(j*€) C G(€) to be an isomorphism is
the presence of new subobjects of j*£ arising from the slope filtration on ¢4. We show that this
is the only obstruction, obtaining an analogue of Fact 6.3.1.5.1(2-3) for convergent F-isocrystal
with constant Newton polygon.

Proposition 6.5.1.4.3. Let j : Y — X be a dense open immersion of connected smooth
[F-varieties and let £ be in F-Isoccnp(A). Then:

1. The natural closed immersion G(3*£) C G(€) is an isomorphism.

2. If U and X are geometrically connected, the natural closed immersion G(j*£9¢°) C G(£9¢°)
is an isomorphism.

Proof.

1. By Fact 6.5.1.4.1, the functor F-Isoc(X') — F-Isoc(U/) is fully faithful, so that G(E°"™) C
G(€) is an epimorphic subgroup. Since any &£ in (£) is in F-Isoccnp(X), by the group
theoretic Lemma 6.5.1.4.4 below, it is enough to show that that if £ is in F-Isoccnp(X)
and semisimple, then j*&’ is semisimple. Since every semisimple convergent F-isocrystal
in F-Isoccnp(X) is a direct sum of isoclinic semisimple F-isocrystals, we may and do
assume that &’ is isoclinic and semisimple. As twisting is an equivalence of categories,
we can assume that £ is in F-Isoc,,.(X). By Fact 6.5.1.2.1, it is enough to show that
that any semisimple p in Rep@p(m(X )) stays semisimple after restriction via the map
m(U) — m(X). We conclude observing that, since Y — X is an open immersion of
connected normal schemes, the map m(U) — 7 (X) is surjective.

2. We deduce (2) from (1) and Fact 6.5.1.4.1. There is a commutative exact diagram:

0 —— G(*E7°) —— G(*E) —— G(*E)™t —— 0

l [ |

0 —— G(E9°) —— G(E) — G(E)* — 0.

Since the middle vertical arrow is an isomorphism by point (1), it is enough to show that
the right vertical surjection is an isomorphism. By the Tannakian formalism, one needs
to prove that the fully faithful functor

Repyg, (G(€)™) = Repg (G(*E)™).
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is essentially surjective. Write qx : X — F, and qiy : 4 — I, for the structural morphisms.
By Section 6.5.1.3, the categories Rep@p(G(E)CSt) and Rep@p(G(j*é’)CSt) are canonically
equivalent to the Tannakian subcategories (€)' C (€) and (G*E)*" C (J*€) made by
convergent F-isocrystals of the form q% & and q;,&’ for some £’ in F-Isoc(F,), respectively.
Take any q;,€" in (j*E)°**. Since q%&’ in F-Isoc(X) is such that j*q3&" = g;,€’, it is enough
to show that q%&’ is in (€)' Since it is of the form q%¢&’, it is enough to show that
qy€ is in (£). By the point (1), the natural functor j* : (£) — (3*&) is an equivalence of
categories, so that there exists a 7 in (€) such that j*7T ~ ¢;,&" and it is enough to show
that q%& ~ T. Since, by Fact 6.5.1.4.1, the functor j* : F-Isoc(X) — F-Isoc(Uf) is fully
faithfully, hence conservative, we conclude observing that j*q3&" ~ q;;,& ~*T. O

Lemma 6.5.1.4.4. Let H C G be a closed immersion of algebraic groups over an algebraically
closed field L of characteristic zero. Assume that H is an epimorphic subgroup and that

Repr(G) — Repr(H) sends semisimple representations to semisimple representations. Then
H=G.

Proof.

e Assume first that G and H are connected. Since H C G is epimorphic, by | , Lemma
1.6] it is enough to show that the the map X*(G) — X*(H) induced at the level of the
groups of characters is an isogeny. Since Rep(G) — Rep(H) sends semisimple repre-
sentations to semisimple representations, the inclusion H C G restricts to an inclusion
R,(H) C R,(G). So there is a commutative exact diagram:

1 — R,(H) >

H/Ry(H) —— 1

[

» G/R,(G) —— 1.

g

1 — R.(G) >

Hence it is enough to show that the induced morphism H/R,(H) — G/R,(G) is an
isogeny Since H — G is epimorphic, by Lemma 6.A.3(2) also H/R,(H) — G/R.(G)
is epimorphic. Since H/R,(H) is reductive, by Lemma 6.A.2(1), we see that the right
vertical arrow is surjective. So it is enough to show that

Dim(G/Ry(G)) > Dim(H/R,(H)).

By the Levi decomposition, the surjection H — H/R,(H) admits a splitting j. Write
L= j(H/R,(H)) for the corresponding Levi factor. To conclude, we have to show that
L injects into G/R,(G), i.e. that LN R,(G) = 1. Since R,(G) is normal in G, the group
R,(G) N L is normal in L. Since R,(G) N L is unipotent it is also connected. But L is
reductive, so that all the connected normal unipotent subgroups are trivial.

e We reduce to the case in which G and H are connected. There is a commutative diagram
with exact rows:

1 —— HY > H > mo(H) —— 1
G

1 > G° > mo(G) —— 1.

g

Since H C G is epimorphic, by Lemma 6.A.3(2), the morphism mo(H) — m(G) is
epimorphic as well. Since my(H) is finite (hence reductive), this implies that mo(H) —
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7o(G) is surjective. By diagram chasing, it is enough to show that the left vertical arrow
is an isomorphism. Since R, (H®) = R,(H) C R,(G) = R,(G"), the functor Rep(G°) —
Repr(H®) sends semisimple representations to semisimple representations. So, by the
previous point it is enough to show that H° C G is an epimorphic subgroup. This
follows from the fact that H C G is an epimorphic subgroup and Lemma 6.A.3(1). n

6.5.2 Convergent F-isocrystals over finitely generated fields

Let k be a finitely generated field of characteristic p > 0 and let X be a connected smooth
k-variety. In this section, mimicking Section 6.3.2, we construct and study a Q,-linear category

F-Isoc(X) of convergent F-isocrystals over X.

6.5.2.1 Definitions

For every couples (X}, &;), i = 1,2, with X; € Model(X) and € in F-Isoc(X), write (Xy, &) >
(Xlagl) (Ol" sunply (XQ,EQ) - (X1,51)) if Xg >j Xl and 52 ~ ]*51

Definition 6.5.2.1.1. The category F-Isoc(X) of convergent F-isocrystals over X is the fol-
lowing category:

e The objects are equivalence classes [£] of couples (X, &) where X € Model(X) and &
is in F-Isoc(X'). The equivalence relation is given by the relations (X, &) ~ (b, &) if
there exists a couple (X3, &3) such that (X3, &) = (&}, &), i=1,2.

e A morphism [g] : [E] — [£] between [£] and [£’] in F-Isoc(X) with representatives (X, &)
and (X7, &’) is an equivalence class of couples (U, g) where U € Model(X) is such that
U X and U >y X' and g is a map j* — i’"*£'. The equivalence relation is given by
(Uy,g1) ~ (Us, go) if there exists Us in Model(X) with Us =, U;, i = 1,2 and jig1 = j582.

If [£] and [€'] are in F/—-I\S_SC(X), we can always choose representatives of the forms (X, £) and
(X, €&’). By Fact 6.3.1.5.1, once such representatives are chosen, one has HomF?Sgc(X)([S], [E']) =

HOmF—Isoc(X) (87 5,) .
6.5.2.2 Operations

Most of the constructions of Sections 6.3.2.2, 6.3.2.3, 6.3.2.4 go trough without any change.
For example:

e For every [£'] and [€] in F-Isoc(X) there are well defined tensor product [£] ® [£'] and
direct sum [E] @ [E'];

e For every morphism [g] : [E] — [£'], there are well defined notion of kernel [Ker[g]], of
cokernel [Coker([g])], of monomorphism and of epimorphism. If there exists a monomor-
phism [g] : ['] — [£], we write [E'] C [€] and [£/E'] := [Coker([g])]

However, since Facts 6.3.1.5.1 fails for convergent F-isocrystals, the notions of irreducibility
and semisimplicity behave differently in F-Isoc(X) (see Example 6.5.1.4.2).
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6.5.2.3 Slopes and slope filtration

Also the notion of having constant Newton polygon (resp. being isoclinic (of slope s), resp.
being unit-root) is not stable under open immersion. So we give the following definition.

Definition 6.5.2.3.1. We say that [£] has constant Newton polygon (resp. is isoclinic (of slope
s), resp. is unit-root) if there exists a representative class of (X, E) such that £ has constant
Newton polygon (resp. is isoclinic (of slope s), resp. is unit-root) over X.

If [£] has constant Newton polygon (resp. is unit-root) we call any representative (X, &)
of the equivalence class of [£] such that £ has constant Newton polygon (resp. is unit-root)
over X, a representative with constant Newton polygon (resp. a unit-root representative).
Let F-Isoconp(X) (resp. F/—_I\S-(;CM.(X)) be the subcategory of F/—_I;(;C(X> of convergent F-
isocrystals that have constant Newton polygon (resp. that are unit-root).

If [£] in :F/—I\S_(;CCNP(X) has representatives (&, &;), i = 1,2, with constant Newton polygon,
then there exists a representative (X5, &) with (X3, &) =, (X, &). If

0=&60C&EL1C...C&E1CE,=6&
is the slope filtration of &; over X; of Fact 6.5.1.2.2, then
0=3;&0Ci&1C... Cii&ira1 Cii&ir = Ji&i

identifies with the slope filtration of j;€ over X3. Hence, by the unicity of the slope filtration,
the equivalence class [£;] of (X, &;) does not depend on the choice of the representative (X, )
with constant Newton polygon of [£].

In particular, every [£] in F-Isoccnp(X) has a canonical filtration
0=[&]C&]Cl&)C...ClEl,
such that [£;/&;_4] is isoclinic of slope s; with s < s9 < ... < 5.

6.5.2.4 Functoriality

As in Section 6.3.2.6, every morphism f : Y — X of smooth connected k-varieties induces a
functor

f*: F-Isoc(X) — F/—-I\sgc(Y)
as follow. o

For every morphism f : ¥ — X of smooth connected k-varieties and every [£] in F-Isoc(X),
with representative (X, E), there is always a model f : J) — &) of f such that X; =; X. Since
for every couple of such models f; : V; = &, i = 1,2, there exists always a model {3 : Vs — X3
with (f; : Vs = X5) = (fi : Vi — X)), the equivalence class f*[€] of (Y1, 5*E) does not depend
on the choice of the model §: Y, — &) of f such that/{l/h X.

Similarly, if [g] : [£1] — [&:] is a morphism in F-Isoc(X) represented by (U, g), there is
always a model f : Yy — X of f such that & >=; X and the equivalence class [f*(g)] : [E1] — [&2]
of (M1, f**g) does not does not depend on the choice of the model §: Yy — X; of f such that
X > X. o o

If [£] is in F-Isoc(X)“ST (resp. F-Isoc(X),,), we can always choose a model f: Y, — X,
of f such that &X; =; & and such that j*€ has constant Newton polygon (resp. is unit-root)
over X;. This shows that if [£] has constant Newton Polygon (resp. is unit-root) then f*[£]
has constant Newton Polygon (resp. is unit-root).
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6.5.2.5 Monodromy groups

For [£] in EI;;CCNP(X) with representatives (X;, &;), ¢ = 1,2, with constant Newton polygon,
there exists a representative (X5, &) with (X3, &) =, (X, &). If G(E&;) denotes the monodromy
group of & over X; (see Section 6.3.1.5), by Fact 6.5.1.4.3(1) we have G(&) ~ G(j;&1) ~
G(j5&2) ~ G(&). Hence G([€]) := G(E) is well defined independently on the choice of the
representative class (X, &) with constant Newton polygon of [£]. We call it the arithmetic
monodromy group of [£].

Similarly, using Fact 6.3.1.5.1(2), if X is also geometrically connected, G([£]9¢°) := G(E9%°)
is independent from the choice of (X, £) with constant Newton polygon. We call it the geometric
monodromy group of [£].

6.5.3 Comparisons

Let X be a smooth connected k-variety. In the p-adic setting, we have other two candidate
for a category of p-adic local systems over X: the category LS(X,p) of étale lisse Q,-sheaves

and the category F-Isoc'(X ) of overconvergent F-isocrystals introduced in Section 6.3. In this
section we compare these options.
6.5.3.1 Comparison with the category of p-adic lisse sheaves

We use the equivalence of categories @y of Fact 6.5.1.2.1 to construct a functor:

® : F-Isoc(X),, — LS(X, p).

For every [€] in F/—_I\SEC(X)W with unit-root representative (X, ), the equivalence of category
in Fact 6.5.1.2.1 induces a (&) in LS(X,p). Let [€] be in F-Isoc,,(X) with unit-root
representatives (X;, &), i = 1,2. Then there exists a (X3,&3) such that (X3,&) = (X}, &).
Then the commutative diagram

Xg +— X
Jxg
\ li)@
Xy

shows that ®([€]) := j3Px(E) does not depend on the choice of the representative (X, E) of
the equivalence class of [£].

Similarly, if [g] : [£] — [£'] is a morphism in F-Isoc,,(X) represented by (U,g), the
morphism ®([g]) : D([€]) — P([€']) defined by j;;(Py(g)) does not depend on the choice of the
representative (U, g) of [g] : [£] — [£]-

Since the morphism 7, (X) — 7 (&) is surjective, the functor ¢ : PTI\S;CW(X) — LS(X, p).
is fully faithful and the monodromy group G([€]) of [£] identifies with the Zariski closure of
the image Hq)([g]) of Pa([€])-

6.5.3.2 Comparison with the category of overconvergent F-isocrystals

Similarly, we use the functor (—)®"" in Section 6.5.1.1 to construct a functor:

—~——

(_)conv : F—ISOCT(X) N F—ISOC(X7 p)
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Let [£] be in F-Isoc' (X),, with representative (X;, &), i = 1,2, then there exists a (X3, &)
such that (X3,&) > (&}, &;). Then the commutative diagram

AT

X3<—X

L

shows that the equivalence class [£]°" of (X,EC"””) does not depend on the choice of the
representative (X, &) of the equivalence class of [£].

Similarly, if [g] : [] — [£] is a morphism in F-Isoc'(X) represented by (I, g), the morphism
[g]eomy o (€] — [E7]°™ represented by (U, (g)®™) does not depend on the choice of the
representative (U, g) of [g] : [£] = [£].

We say that [€] in F-Isoc!(X) has constant Newton polygon if [£]°" has constant Newton

polygon. For every [€] in F-Isoc'(X) with constant Newton Polygon, there is well defined
closed immersion G([£]°™) C G([€]). If moreover X is geometrically connected, there is well
defined closed immersion G([E]“"9¢°) C G([£]9¢) fitting into a commutative diagram closed
immersions:

G ) —— G(iEl™)

/

G([E]90) —— G([€]).

6.6 Exceptional loci of convergent F-isocrystals

Let X be a smooth geometrically connected k-variety. In this section we define the exceptional
loci of convergent F-isocrystals, we prove Theorem 6.1.5.2.1 and Corollary 6.1.6.1 and finally
we discuss the relation between various exceptional loci associated to an overconvergent F-
isocrystal.

6.6.1 Exceptional loci and Theorem 6.1.5.2.1
6.6.1.1 Definitions

As mentioned in Section 6.5.2.4 every morphism f : Y — X of smooth connected k-varieties

induces a functor F-Isoconp(X) — F-Isocenp(Y). Hence, arguing as in Section 6.4.1.1, for
every [€] be in F-Isoccnp(X), there is a well defined closed immersion G(f*[€]) C G([€]).

Definition 6.6.1.1.1. We say that = € | X| is algebraically generic (resp. algebraically strictly
generic) for [£] if G(z*[€])° ~ G([€])° (resp. G(z*[€]) =~ G([€])).

Write X" (resp. Xg™) for the set of z € [X| that are algebraically generic (resp. alge-
braically strictly generic) for [£]. Define the following sets:

X = X=X XgEd)=XGEnX(£d); Xg'(sd):=Xg" NX(<d);

X = | X = X5 XiEe(Sd) = Xm0 X(<d); X (< d) = X" N X(< d),
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We call X[%ﬁ the algebraic exceptional locus of [£] and X[Sgt]egﬁ its algebraic strictly-exceptional
locus.

Lemma 6.6.1.1.2. Let f: Y — X be a connected finite étale cover. Then we have:
F¥5le) = Xg)

Proof. Choose a model of f : Y — X of f: Y — X such that f : Y — X is finite étale and
a representative class of (X, &) is defined over X. Then Lemma 6.6.1.1.2 follows from the fact
that G(f*[€]) = G(F*E) C G(E) = G(]|€]) is an open subgroup by | , Lemma 6.2]. O

6.6.1.2 Proof of Theorem 6.1.5.2.1

Let [€] be in F-Tsoc!(X) pure and p-plain with constant Newton polygon. Points (1) and (2)
of Theorem 6.1.5.2.1, follow from Theorem 6.1.5.1.1 and Lemma 6.6.1.2.1 below.

Lemma 6.6.1.2.1. If x € X then
(Gl €)= (G(EF™)) and k(G [E5™)) = rk(G(EL™))

Proof. Choose a model § : K" — X of + — X such that a representative (X,&) of [£] is
defined over X and &£ has constant Newton polygon over X. Then Lemma 6.6.1.2.1 amounts
to show that if G(f*€)" = G(€)° then rk(G(fFE°™)) = rk(G(E°™)) and tk(G(f*E™)) =
rk(G(f*€5°™)). Then the first equality follows from Fact 6.5.1.3.1. The second equality follows
from the first and the commutative diagram with surjective vertical arrows:

G(f*gconv)() c \ G(gcom))o

| |

G(f*glconv)() c y G((c/‘lconv)(). ]
Theorem 6.1.5.2.1(3) follows from Theorem 6.1.5.1.1 and Lemma 6.6.1.2.2 below.
Lemma 6.6.1.2.2. If G([£]{"""9%°)° is abelian then

gen gen
Xiey & Agtgom

Proof. Choose a model §: ' — X of  — X such that a representative (X, ) of [£] is defined
over X and & has constant Newton polygon over X'. Then Lemma 6.6.1.2.1 amounts to show
that if G(f*€)° = G(€)° and G(E77""9%°)" is abelian then G(f*€f™)° = G(Efo)Y

Replacing F, with a finite field extension, we can assume that K’ is geometrically connected
over F,. Replacing X with a finite étale cover we can assume that G(£°™) is connected. Then
there is a exact commutative diagram

0= G(FEF™") —— G(J°EP™) — G &™) — 0
0 = G(EFO™) — 5 G(EF™) —— G(EF™)™ —— 0

on which the right vertical arrow is surjective. So it is enough to show that Dim(G(f*E7“"*"")) >
Dim(G(E{*"")). Since G(E7*°) is abelian by assumption, by Fact 6.5.1.3.1(2) G(f*&{“>"")°
and G(E7*"")0 are tori and so, by the commutative diagram

G(f*gcom}) ¢ ; G(gcmw) G(f*gconv)O ¢ ; G(gcmw)o
G(f*glconv) < s G(glconv) G(f*gfonv)O c s C;(é’fm’w)o7
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it is enough to show that rk(G(f*€9°7<™)) = rk(G(£9°*™)). But since z € X", by Fact
6.3.1.4.1(6) we have G(£9°°)° = G(£9%°)" and we conclude by Fact 6.5.1.3.1(1). O

6.6.1.3 Proof of Corollary 6.1.6.1

Before proving Corollary 6.1.6.1, let us observe that if we have a [€] in F-Isoc,,(X), we have
four subset of X:
xgen. X sgen. xgen . xsgen
€l [l o([€])? 2([e])-

and, as in Lemma 6.4.1.2.1(1), one has inclusions

sgen sgen gen gen
Xagep € Xig and Xage) € X

Proof of Corollary 6.1.6.1. Let f : Y — X be a smooth proper morphism of k-varieties. Up
to replace X with a dense open subset, the constructible sheaf F, := Rif*(@p is a p-adic lisse
sheaf. Hence, for every x € | X]|, it corresponds to a representation

pr, :m(X) = GL(H' (Y5, Q,))

such that pr, , identifies with the natural action of m () on GL(H*(Yz, Q,)). By spreading out
we find a smooth connected F -variety K with generic point 7 : Spec(k) — K and a commutative
cartesian diagram

Y
f

X

k

<

—

|

(o]0

n
By | ], the higher direct image in crystalline cohomology R'f,O,, /g, 1s in F-Isoc(X). Let
[Rif*OY/@p] be the object in FTI\SSC(X) represented by (X, Rif*Oy/@p). By Theorem 4.6.5.4.1

in Chapter 4, there exists a Rif*(’);/@ in F-Isoc'(X) such that

i T conv __ i
(R1.OL o )™ = R0y q,.

Let [R'f,O! _]be the object in F-Isoc'(X) represented by (X, R0y, ), so that [Rif,OF _ eonv —

Y/Q, Y/Q,
[Rif*OY/@p]. Upon replacing X with a dense open subset, [£] := [Rif*(’);/@ ] has constant New-
ton polygon and its minimal slope is 0, hence [£]{”" is in F/—I_[ggcur(X). By [11179, 11, 5.4] and

proper base change, the functor ® : F-Isoc,,(X) — LS(X,p) constructed in Section 6.5.3.1,
identifies ®([£f"]) with pr, and the groups G([€]{"") and G (z*[£]{°") with G(F,) and G(F, )

respectively. Since by | | and | | the overconvergent F-isocrystal R’ f*OI, 2 is pure
D

and p-plain, Corollary 6.1.6.1 follows then from Theorem 6.1.5.2.1. O

6.6.2 Comparison with the overconvergent exceptional locus

Let [£] be in F-Isoc!(X) pure and p-plain with constant Newton polygon. To prove Theorem
6.1.5.2.1 we related in some case the exceptional loci of [£], [£]®™ and [£]{". We conclude
the chapter discussing further the comparison between these exceptional loci and proposing a

conjecture.
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6.6.2.1 A few inclusions

In the following two Lemmas 6.6.2.1.1 and 6.6.2.1.2 we prove that the exceptional locus of
(€] is always larger than the others.

. . gen gen Sgen Sgen
Lemma 6.6.2.1.1. There are inclusions X[g]wm, - X[g]gom, and chom C X[gﬁo,,w.

Proof. Let x € |X| and choose a model f : K" — X of x — X such that a representative
(X,E) of [£] is defined over X and £ has constant Newton polygon over X. Then Lemma
6.6.2.1.1 amounts to show that that if G(f*£°™)? = G(E<™)? (resp. G(f*E«™) = G(E«™))
then G(§°£1)° = G(&1)° (resp. G(F*&€1) = G(&1)). This follows from the commutative diagram
with surjective vertical arrows

G(f*gcon’u) c G(gcom)) G(f*gconv)o c ; G(gcom))o
G(f*glconv) c G(glcom)) G(f*glcom;)o c \ G(glconv)o_ ]
Lemma 6.6.2.1.2. There are inclusions szge]?m C nge]” and X[Sgg]ifm C X[Sgg]e”.

Proof. By Proposition 6.4.2.1.1, X[g;]” = X[gge!;} (resp. X[sggf” = ngsi?). Since there is also an
inclusion X [g;]fom cX f’[?is})mm (resp. X Egg]ifm CX fgff]‘com) we can assume that [£] is semisimple.

Let x € | X| and choose a model f : K" — X of z — X such that a representative (X, E) of [£]
is defined over X and £ has constant Newton polygon over X. Then Lemma 6.6.2.1.2 amounts
to show that if G(f*£“™)0 = G(E“™)0 (resp. G(f*E«™) = G(E«“™)) then G(f*€)° = G(&)°
(resp. G(f*€) = G(E)).

1. We show first that if G(f*£«™)? = G(E“™)° then G(f*€)° = G(E)°.

Replacing F, with a finite field extension, we can assume that K’ is geometrically con-
nected over F, and replacing X with a finite étale cover we can assume that G(£°") and
G(E) are connected. Since G(f*€™) = G(£°™) and

G(f*gCOTL’L}) g G(f*g) and G(f*gcanv) — G(gconv) g G((C/’)

are epimorphic subgroups, by Lemma 6.A.2(2) also G(f*€) C G(€) is an epimorphic
subgroup. By Lemma 6.A.2(1), it is enough to show that G(f*&) is reductive. Consider
the commutative diagram with exact rows:

0 —— G(f*&9°) —— G(f*€) —— GFE) —— 0

l [ |

0 —— G(E*) —— G(E) —— G(E)™ — 0.

Since £9¢° is semisimple, by Fact 6.3.1.4.1(4) also §*£9¢° is semisimple. Hence it is enough
to show that G(f*€)°" is reductive. Since £ is semisimple, G(€) is reductive. By Fact
6.5.1.3.1, G(f*€°™) = G(£°™) is a subgroup of maximal rank of both G(£) and G(f*€).
In particular G(f*€) is a subgroup of maximal rank of the reductive group G(€). Hence,
by the group theoretic Lemma 5.2.3.2.3 in Chapter 5, G(f*£) has no unipotent quotient
so that all the abelian quotient of G(§*£) are reductive. Since G(f*£)“*" is such a quotient,
we conclude the proof.

2. We deduce from point (1) via a group theoretic argument, that if G(f*€«™) = G(E“™)
then G(f*€) = G(&).

By point (1), G(f*€)° = G(€)°. Considering the commutative diagram:
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0 —— G(f€)" —— GH*E) —— m(G(FE)) —— 0

[ J |

0 —— G(&)° —— G(E) —— m(G(E)) —— 0

one sees that it is enough to show that the natural map mo(G(f*E)) — m(G(E))) is
surjective. Since G(E°™) = G(f*E°™) C G(f*€) C G(E) is an epimorphic subgroup of
both G(f*€) and G(&), also G(f*€) C G(£) is an epimorphic subgroup. Hence also the
map mo(G(f*E)) — m(G(E)) is epimorphic. Since mo(G(f*E)) is finite (hence reductive),
we conclude by Lemma 6.A.2(1). O

6.6.2.2 A conjecture

Let us formulate a conjecture

Conjecture 6.6.2.2.1. Assume that [£] is pure and p-plain with constant Newton polygon.
Then:

gen _ gen, gen gen
Xigpeonw = X1 Xy & Xigpgom

To explain the conjecture, let us choose a representative (X, €) of [£] with constant Newton
polygon and let us recall a question of Crew.

In | , page 460] Crew asks whether G(E9¢>°"") is a parabolic subgroup of G(E9)
hence, by (6.5.1.3.2) whether G(£°™) is a parabolic subgroup of G(€). Since, by | , Pag
223, Proposition 2.2.5|, the stabilizer of a Tannakian filtration is a parabolic subgroup, it is
natural to wonder if G(£°™) is the stabilizer Staby(G(E)) inside G(E) of the slope filtration.
Clearly we have an inclusion G(E°") C Staby(G(E)), but it not know whether this is an
equality.

Assume that G(E°™) = Stabgy(G(E)) for all pure p-plain overconvergent F-isocrystals
with constant Newton polygon. Then G(£°™) is uniquely determined by G(€) and the slope

filtration hence one would get the inclusion X ff;]” CX [‘[’;}Zom. Since the inclusion X [ggfom C X [g‘;”

gen

has been proved in Lemma 6.6.2.1.2, the equality X[s] = X[%e]’f,,m) is then predicted by a positive

answer to a variant of Crew’s question. Since the inclusion X [g;}fom, cX [g;]?mw has been proved
gen gen

in Lemma 6.6.2.1.1, one would get also the inclusion X[g] C X[gﬁam.

In Lemma 6.6.1.2.2 the inclusion X" C X{7| is proved when G([£{"]) is abelian. We end
the chapter giving a further evidence for Conjecture 6.6.2.2.1. If [£] be pure and p-plain by
Lemma 6.4.2.1.1 one has Xf, = X{". If Conjecture 6.5.1.1 holds for [£] and [£]**, then one
should have
gen - gen gen gen
X[Sss]conv - X[gss} - X[g] - X[g]conv'

We prove this equality, without assuming Conjecture 6.6.2.2.1.
Lemma 6.6.2.2.2. Let [£] be pure and p-plain. Then

Xgen — Xgen n ngen — ngen
[gss]con'u [g]con'u a d [gss]con'u [g]con'u

Proof. Since the inclusions

gen gen sgen sgen
X[E]conu g X[Ess]conv and X[g]conv g X[gss]conv

follows from the definitions, we focus on the other inclusions.

Let x € |X| and choose a model f : K" — X of x — X such that a representative (X, &)
of [£] is defined over X and &£ has constant Newton polygon over X. Then Lemma 6.6.2.2.2
amounts to show that if G(§*(£%5)“™)° = G((£%%)*™)" (resp. G(f*(E%%)“™) = G((E%)“™))
then G(f€)° = G(E)° (resp. G(*E) = G(&)).
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1. Assume first G(f*(gss)corw)() — G((gss)conv)o.

Replacing F, with a finite field extension, we can assume that K’ is geometrically con-
nected over I, and replacing X’ with a finite étale cover we can assume that G(E°“™) is
connected. By counting dimension in the commutative diagram with exact rows

O N G(f*ggeo,conv) G(f*gconv) G(f*gcom})cst s 0

[ / l

O N G(ggeo,com)) SN G(Sconv) G(Econv)cst O

it is enough to show that G(£9¢0co)0 = G(f*E£9>cm)0 By Lemma 6.6.2.1.1, one has
G(*E%)0 = G(£*%)°, hence, by Fact 6.3.1.4.1(6), we see that G(§*E559)0 = G(E£359¢0)0.
Then, the commutative diagram with exact rows

0= G(F(£797)) — G(*(£7)) — G (€)™ — 0

[ [ |

0 N G((c/’ss,geo) G((c/’ss) G(gss)cst O
shows that
G(f*(gss»cst N G(gss)cst
is an isogeny. Hence, by Fact 6.5.1.3.1(3), also the map

G((f*(gss))conv)cst N G((gss)corw)cst

is an isogeny. Consider the commutative diagram with exact rows

0— G((f*((c/’ss,geo))conv) - G((f*((c/’ss))conv) - G((f*(é’ss))conv)cst — 0

| [ |

0 — G((gss,geo)conv) - G((gss)conv) - G((gss)conv)cst 0

Since the right vertical arrow is an isogeny, dimension counting implies that G((f*(£°%9¢))“™)
G((&ss9¢0)cemv)0 Since £ is geometrically semisimple, by Fact 6.3.1.4.1(4), also {*€ is ge-
ometrically semisimple. Hence

f*(gss,geo) ~ f*ggeo and &£%59¢° ~ ggeo’

so that
(f* ((E’SS,geO))CO'I”L’U ~ f*ggGD,COTL'U a,nd (gss,geo)conv ~ ggeo,conv

hence
G((f*(gss,geo))conv) ~ G(f*gg@O,COn’U) and G((gss,geo)conv) ~ G(ggeo,conv)'

Since G((f*(Ess,geo))conv)O — G((gss,geo)conv)(], also G(f*ggeo,conv)o — G(ggeo,conv)o and this
concludes the proof.

2. We deduce for point (1) and a group theoretic argument that if G(f*(£5%)<") = G((E%°)™)
then G(f*€“™) = G(E“™).

Assume that G(f*(£%%)°™) = G((£%%)°™). By point (1), G(f*&“™)° = G(E«“™)°.
Thanks to the commutative diagram with exact rows
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0 — G (&™) — G(*(£°")) — m(G(f*(£°™))) — 0

[ / I

0 G(gconv)o G(gconv) 7.(.O(Gt((c/’com;)) O,

it is enough to show that |mo(G(F°E“™))| > |mo(G(E°™))|. One has
WO(G(f*(ESS)COn'U)) ~ ﬂ_O(G((gSS)COnU))
hence the surjection
ﬂ_O(G(f*SCOnU)) s 7_(_O(G(f*((C/‘SS)CO'I”LU))

shows that it is enough to prove that
WO(G(SCOHU)) % ﬂ_O(G((Ess)conv)>
is an isomorphism. Since the functor 7 is right exact, there is an exact sequence
o(K) = mo(G(E“™)) — mo(G((E%*)™)) = 0

where K is the kernel of G(E°™) — G((E%)™). But K is contained in R,(G(£)) =
Ker(G(E) — G(€%9)), so that it is unipotent hence connected. Hence my(K) = 0 and this
concludes the proof. O

6.A Epimorphic morphisms

To control the exceptional locus of convergent F-isocrystals we used the notion of epimorphic
morphism. In this section, L is algebraically closed field of characteristic zero.

Definition 6.A.1. Let f : H — G be a morphism of algebraic groups over L. We say that
f + H — G is epimorphic if the induced functor Rep;(G) — Rep,(H) is fully faithful. If
f: H — G is a closed immersion, we say that H is an epimorphic subgroup of G.

Epimorphic subgroup have been studies in details in | I, | | and | |. For the
lack of a reference we prove a couple of easy lemmas that have been used several times in this
paper.

Lemma 6.A.2. Let f: H — G be a morphism of algebraic groups over L.

1. If H is reductive, then f: H — G is epimorphic if and only if is surjective.

2. Let g : L — H be another morphism of algebraic groups. If g and f o g are epimorphic,
then f is epimorphic.

Proof.

1. If f: H — G is surjective then it is clearly epimorphic. Assume now that H is re-
ductive. By the Tannakian formalism, it is enough to show that the essential image of
f*: Rep.(G) — Rep,(H) is closed under sub quotient. Let V' be in Rep, (G). Since H
is reductive, every H-invariant subquotient of V' is an H-invariant sub object, so that it
is enough to show that every H-invariant sub object W C V in also G-invariant. Since
H is reductive, there exist an ¢» € Endy (V) such that Ker(y) = W. Since f : H — G is
epimorphic v is also G-invariant, hence W = Ker(1)) is also G-invariant.
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2. Let V a representation of G. Then, since fog is epimorphic, we have V& = VI and, since
g is epimorphic, we have VF = V. Hence VH = VI = V% and f is epimorphic. O

Lemma 6.A.3. Let

0 > H' > H » HHH —— 0
G

0 > G ; » G/G'—— 0

be a commutative diagram of algebraic groups over L with exact rows.

1. If H is an epimorphic subgroup of G, G’ is connected and the right vertical arrow is an
isogeny, then H' is an epimoprhic subgroup of G'.

2. If H if an epimorphic subgroup of G, then H/H' — G/G' is epimorphic

3. If H' is an epimorphic subgroup of G’ and right vertical arrow is surjective then H is an
epimorphic subgroup of G

Proof.

1. Applying | , Lemma B.6.1] to the epimorphic inclusion H C G we see that H*(G/H, Og/i) =
k. Applying it to the inclusion H' C G’, it is enough to show that H°(G'/H', Or/ur) = k.
The morphism G'/H' — G/H is finite étale so that the map k = H°(G/H,O¢/u) —
HY(G'/H',O¢ypr) makes HY(G'/H',O¢iypr) into a finite étale k-algebra. We conclude
observing that, since G'/H’ is connected, the étale k-algebra H°(G'/H', O¢s/p) has no
idempotent elements.

2. Since H - H/H' and G — G /G’ are surjective, for every representation V of G/G’ we

have
VG/G’ _ VG _ VH _ VH/H’

3. Let V be representation of G. By assumption we know that V¢ = V', Since the right
vertical arrow is surjective

VH — (VH/>H/H/ — (VG/)H/H/ — (vG/)G/G/ — VG.
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Chapter 7

A note on the behaviour of the Tate
conjecture under finitely generated field
extension

7.1 Introduction

7.1.1 Statement

Let k be a field of characteristic p > 0 with algebraic closure k and write 7 (k) for the absolute
Galois group of k. For a k-variety Z write Zy := Z Xy, k and Pic(Zy,) for its geometric Picard
group. If ¢ # p is a prime, consider the (-adic cycle class map

ez Pic(Z5) @ Qr — H*(Z;, Qu(1))

and write NS(Z3) ® Qy for its image. Recall the (-adic Tate conjecture for divisors | |:

Conjecture 7.1.1.1 (T(Z,¢)). Assume that k is finitely generated and Z is a smooth and
proper k-variety. Then the map

Czp NS(ZE) ® Qg — U HQ(ZE, @g(l))m(k/)
[k':k]<+o0

is an isomorphism.

While Conjecture 7.1.1.1 is widely open in general, by the works of many people it is known
for abelian varieties (| |, | Iy | |y | |), K3 surfaces (| |, | |, | |,
| |, | |, | |) and some other special class of k-varieties; see for example | ,
Section 5.13] and | |. For abelian varieties and K3 surfaces, Conjecture 7.1.1.1 is closely
related to the finiteness of rational points on their moduli spaces; see | , Proposition 2]
and | |- This may suggest that Conjecture 7.1.1.1 could be easier to prove when k is a
finite field. The main result of this note is that, to prove Conjecture 7.1.1.1 for varieties over
finitely generated fields of positive characteristic, it is actually enough to prove it for varieties
over finite fields.

Theorem 7.1.1.2. Assume p > 0. Then T'(Z,/¢) for every finite field k of characteristic p
and every smooth projective k-variety Z implies T'(Z, () for every finitely generated field k of
characteristic p and every smooth proper k-variety Z.

See Section 7.3 for a discussion on results for cycles of higher codimension and different
fields.
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7.1.2 Remarks

By an unpublished result (|.]]) of De Jong (whose proof has been simplified in | , Theorem
4.3]), over finite fields the f(-adic Tate conjecture for divisors for smooth projective varieties
follows from the f-adic Tate conjecture for divisors for smooth projective surfaces. Hence
Theorem 7.1.1.2 implies the following:

Corollary 7.1.2.1. Assume p > 0. Then T(Z, /) for every finite field k of characteristic p
and every smooth projective k-surface Z implies T'(Z, () for every finitely generated field k of
characteristic p and every smooth proper k-variety Z.

Let us mention that if k is infinite and finitely generated, one can use the results of | |
(see Fact 1.3.2.2.1) if p = 0 or the results of Chapter 4 (see Corollary 4.1.7.1.2) if p > 0, together
with a spreading out argument to deduce that T'(Z, ¢) for all smooth proper k-varieties Z implies
T(Z,0) for all smooth proper varieties Z over all fields that are finitely generated over k.

7.2 Proof of Theorem 7.1.1.2

Fix an infinite finitely generated field & of characteristic p > 0 inside a fixed algebraic closure
k and a smooth proper k-variety Z. Let F, (resp. F) the algebraic closure of F,, in k (resp. k)

7.2.1 Strategy

The idea is to try and transpose the Hodge theoretic arguments of | , Section 5.1] to the
(-adic setting. We spread out Z to a smooth proper morphism Z — K of F -varieties such that
Z embeds as a dense open subset into a smooth proper F,-variety Z“"?. By smooth proper
base change and the global invariant cycles theorem (| |; see | , Theoreme 1.1.1]), a
class in H%(Z;, Qu(1))™®) arises from a class in H?(Zg™, Q,(1))™ ) hence, by T(Z°™, (),
from a divisor on Z". Compared to | , Section 5.1], the extra difficulties come from
the fact that resolution of singularities and the semisimplicity of the Galois action in ¢-adic
cohomology are not known. The first issue can be overcome using De Jong’s alteration theorem
and the second adjusting an argument of Tate (| , Proposition 2.6.]). Applying De Jong’s
alteration theorem, we find a generically étale alteration Z — Z such that Z embeds as a dense
open subset into a smooth proper [F -variety. However, the resulting morphism Z — Z — K is
not, in general, generically smooth, so that we cannot apply directly the global invariant cycles
theorem. To solve this issue, we use the main ingredients of its proof: the Hard Lefschetz
theorem | , Theorem 4.1.1] and the theory of weights for F,-schemes of finite type | :
Theorem 1].

7.2.2 Preliminary reductions

To prove T'(Z, (), one may freely replace k with a finite field extension. In particular we may
assume that all the connected components of Z; are defined over k and so, working with each
component separately, that Z is geometrically connected over k. The following well known
lemma, a slight variant of | , Theorem 5.2|, will be used twice.

Lemma 7.2.2.1. Let W be a smooth proper k-variety and g : W — Z a generically finite
dominant morphism. Then the following hold:

e The map g* : H*(Z, Qu(1)) — H*(Wz, Qq(1)) is injective.

e Forany z € H*(Z;, Qu(1)), if g*(2) is in the image of ey Pic(Wg)©@Qp — H*(Wr, Qu(1))
then z is in the image of cz_: Pic(Zg) ® Qo — H*(Zg, Qq(1)).
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In particular T(W, £) implies T'(Z, ¢).

Proof. Assume first that W is geometrically connected. Then, by Poincaré duality, there is a
morphism g, : H*(W, Q,(1)) — H?(Zz,Qu(1)) which is compatible with the push forward of
cycles g, : Pic(Wr) ® Qp — Pic(Zy) ® Qp and such that g.g* is equal to the multiplication by
the generic degree of g : W — Z. All the assertions then follow from the commutative diagram:

Pic(Z:) @ Q) —L— Pic(Wy) ® Qp —£— Pic(Z:) @ Q,

H(Z,Qu(1)) —L— H2(Wi, Qu(1)) —% H2(Z:, Qu(1)).

In general, we reduce to the situation where W is geometrically connected. To prove Lemma
7.2.2.1, we can freely replace k£ with a finite field extension and hence assume that all the
connected components W, of Wy are defined over k. Since g : W — Z is dominant and
generically finite and Z is connected, there is at least one connected component (say W)
mapping surjectively onto Z. Since Z and W; are smooth proper k-varieties of the same
dimension, the morphism ¢, : W; — W — Z is still dominant and generically finite. The
general case follows then from the geometrically connected case and the diagram:

Pic(Z) ® Q@ —— Pic(Wg) ® Q¢ —— Pic(W,7) @ Qp

! l !

H(Z7, Qu(1)) —— H*(Wg, Qu(1)) —— H*(W, 7, Qu(1)).
O

By De Jong’s alteration theorem (| ]) applied to Zz, there exists a smooth projective k-
variety W’ and a dominant generically finite morphism ¢’ : W’ — Z;. By descent and replacing
k with a finite field extension, there exist a smooth projective k-variety W and a dominant
generically finite morphism g : W — Z which, after base change along Spec(k) — Spec(k),
identifies with ¢’ : W/ — Z;. By Lemma 7.2.2.1, we may replace Z with W and hence we may
assume that Z is a smooth projective k-variety. Moreover one may assume that the Zariski
closure Gy of the image of 7 (k) acting on H*(Zz, Q,(1)) is connected and hence, since the action
of m (k) on NS(Zz) ® Qy factors through a finite quotient, that NS(Zy) ® Q, = NS(Z) ® Q.
The core of the proof is the following proposition.

Proposition 7.2.2.2. Let Z be a geometrically connected smooth projective k-variety such
that NS(Z;) @ Qr = NS(Z) ® Q. Assume that T'(V,¢) holds for every finite field extensions
F, C F, and every smooth proper ] F-varieties V. Up to replacing & with a finite field extension,
there exist a projective k-scheme Z and a dominant generically finite morphism A : Z — Z, such
that for every z € H?(Zz, Q(1))™®) the element h*(z) is in the image of Cz_ s Pic(Zy) ® @g —

H2<ZE7 Qf(l))
Before proving Proposition 7.2.2.2; let us show that it implies Theorem 7.1.1.2. Replacing

k with a finite field extension we can take h : 7 — 7 as _in the statement of Proposition
7.2.2.2. Write Zk .q for the reduced closed subscheme of Z Then hyeq : 7= . = Ly =

k,re
Zz is still dominant and generically finite and for every z € H? (Zk,Qg( ))”1(k) the element
h‘:‘ed(’z) < H2<Zk red7Q£< )) is in the lmage of CZE d PZC(ZkTed) ® Qé - Hz( kred’Qf( ))

So, by descent and replacing k& with a finite extension we can assume that 7 is geometrically
reduced and that all the irreducible components of Z; are defined over k. Then, by De Jong

alteration’s theorem applied to ZE and descent, up to replacing k with a finite field extension,
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there exists a generically finite dominant morphism W — Z with W a smooth projective k-
variety. The morphism g : W — Z — Z is still generically finite and dominant and for every
z € H*(Zz,Qu(1))™® there exists a cycles w € Pic(Ws) such that ey (w) = g*(2). So Theorem
7.1.1.2 follows from Lemma 7.2.2.1.

The next subsection is devoted to the proof of Proposition 7.2.2.2.

7.2.3 Proof of Proposition 7.2.2.2

Let Z be a geometrically connected smooth projective k-variety such that NS(Z;) @ Q, =
NS(Z) ® Q.

7.2.3.1 Spreading out and alterations

Spreading out to F,, there exist a geometrically connected, smooth F,-variety K with generic
point 1 : k — K and a smooth projective morphism f: Z — K fitting into a cartesian diagram:

7z ",z

Lok

E—215 K.

By De Jong alteration’s theorem, there exist an integral smooth F, Varlety Z an open embed-
dmg i: Z — Z" with dense i image into a smooth prOJectlve F,-variety Zemp and a generically
étale, proper, dominant morphism § : Z — Z. Then Z is geometrically connected over
some finite field extension F, C [F,. Replacing F, with F,, amounts to replacing k£ with the
finite field extension k' := kI, so we can assume that Z and Z° are geometrically connected
over FF,.

Since Z — Z — [F, is quasi-projective, the morphism b : Z 5 Zis quasi-projective as well
([5P, Tag OC4N]) Since f : Z — K is projective, this implies that Z — K is quasi-projective.
Slnce bh: Z — Z and f: Z — K are proper, the morphism Z - Kis proper as well. So Z K
is proper and quasi-projective hence projective. The generic fibre Z — k of Z — K is then
a projective k-scheme endowed with a generically finite dominant morphism A : Z — Z. The
situation is summarized in the following diagram of [F -schemes:

in i
cm;
N c N Z P

lmlb

7",z

Lo}

E—"15 K.

The Leray spectral sequence for the morphism §: Z — K induces a map

Ler : H*(Zp, Qy(1)) — H°(Kr, R?1.Q/(1)),

fitting into a commutative diagram:
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Pic(Z ) ® Qp «+— Pic(Z;) ® Q

//l/ l-

Pic(Zs )®Qe 55 Pic(Zp) @ Q 4 Pic (Zr) ® Qy % H?(Zz, Qu(1))
H2(Z2™,Qu(1) S5 H(Z2,Qu(1)) o H*(Zp, Qu(1)) b » HO(Kr, R*1.Qu(1)).

7.2.3.2 Hard Lefschetz Theorem

Write ¢ € m(F,) for the arithmetic Frobenius of IF, and, for every m(F,)-module V', write V2,
for the generalized eigenspace on which ¢ acts with generalized eigenvalue 1.

Let z be in H?(Zg, Q¢(1))™®. In this section we lift h*(z) € H?(Zz, Qu(1)) to H*(Zx, Qu(1))Z,,.
By smooth proper base change, the action of 71 (k) on H*(Z, Q,(1)) factors trough the canon-
ical surjection 7 (K) — 71 (k), hence H?(Zz, Q(1))™®) ~ H2(Z;, Q,(1))™ ™). Since f: Z — K
is smooth and projective, by the Hard Lefschetz Theorem | , Theorem 4.1.1] and | ,
Proposition 2.1], the map Ler : H*(Zr, Q,(1)) — H°(Kp, R2f*(@g(1)) is surjective. Consider the
diagram:

H2(Z2™, Qu(1)) —— H2(Zr, Qu(1)) <2 H2(Zr, Qu(1)) —= HO(Ks, R.Qu(1)).

Since

S H2(ZE7 @@( ))ﬂl(k = HO(’CFu R2f*(@f( ))Trl (Fa) - HOUCIFv R2f*@£( ))
the element z is in H°(Kp, R*f,Q,(1 ))gen In particular, since Ler : H%(Zr, Q(1)) — H°(Kr, R*.Q/(1))
is surjective, z is the image of some 2’ € H*(Zp, Qq(1))%,,, so that h*(2') € H2(Zg, Q,(1 )6

7.2.3.3 Theory of weights
We now prove that h*(z ) is the image of some Z € H2(Z5™ Qy(1))%,,,. Write d for the common

gen*
dimension of Z, Z and ZemP The localization exact sequence for the dense open immersion
Z — Z with complement D := Zemp _ Z gives an exact sequence

H23(Da, Qu—))(d) — HX (2, Qe(~1)(d) —» H(EE™, Qul-1))(d).

Combining this sequence with Poincaré¢ duality for the smooth varieties Z and ZNcmP, one sees
that the cokernel of i* : H2(Zg™, Q,(1)) — H?(Zr, Qu(1)) injects into (H243(Dr, Q,(—1))(d))".
By | , Corollaire 3.3.9], the group HQ(Z;mp,Qg(l)) is pure of weight 0, while by | ,
Theorem 3.3.1] the group (H2=3(Dgr, Q,(—1))(d))" is mixed of weights > 1. Hence, the image
of i* : HQ(ZVIE"”’, Q(1)) — H?(Zr,Q¢(1)) consists exactly of the generalized eigenspace on which
¢ acts with generalized eigenvalues of weight 0. So b*(z') € H2(Zs, Qu(1))¢

some Z € H2(Z{™, Q(1))%,,, by i* + H2(Z™, Qu(1)) — H?(Zp,Qu(1)).

Yen 1s the image of

7.2.3.4 Using the Tate conjecture
Since T(gcmp, ?) holds by assumption, it follows from | , Proposition 2.6.] that the injection

H(Z5™, Qu(1)™E) — H? (25, Qu(1))

has a 7 (F,)-equivariant splitting, so that H2(Z™, Q,(1 Neen = H2(ZE™ Q,(1))%. Hence, by
T(Z°m (), there exists a @ € ch(ZFC ) ® Qg such that ¢z, (w) = z. We conclude the proof
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observing that, thanks to the commutative diagram at the end of 7.2.3.1, h*(2) is the image of
iyi*(w) via ¢ : Pic(Z7) @ Q — H*(Zz, Qu(1)).

7.3 Higher codimensional cycles

In this section we discuss generalizations of Theorem 7.1.1.2 to cycles of higher codimension.
Compared with the case of divisors, the main issue is that | , Proposition 2.6] is no longer
available, so that we have to consider also conjectures about the semisimplicity of the Galois
action on étale cohomology.

7.3.1 Conjectures

Fix an i > 1, a k-variety Z and write C' H*(Zz) for the group of algebraic cycles of codimension
i modulo ratlonal equivalence. Recall the following conjectures (| )):

Conjecture 7.3.1.1. If k is finitely generated and Z is a smooth proper k-variety, then:
o T(Z,i,0) : The map cz_: CH(Zg) @ Qv = Upgesoo B2 (Z5 Quli))™ (¥) is surjective;
e S(Z,i,0) : The action of 7 (k) on H*(Zy, Q,(i)) is semisimple;

e WS(Z,i,() : The inclusion H*(Zz, Qu(i))™® C H*(Zz, Qu(i)) admits a 7, (k)-equivariant
splitting.

For a field K, one says that T'(K, i, ¢,r,d) holds if for every finitely generated field extension
K C k of transcendence degree < r and for every smooth proper k-variety Z of dimension d,
T(Z,i,0) holds. One defines similarly the conditions S(K,i,¢,r,d) and WS(K,i,¢,r,d).

7.3.2 Known results and an extension of Theorem 7.1.1.2

Clearly, for each smooth proper variety Z the condition S(Z,1,¢) implies WS(Z,i,). A recent
result | , Theorem 1] of Moonen shows that T'(Q, ¢, ¢, 0, d) for all integers ¢,d > 1 implies
S(Q,i,¢,r,d) for all integers r > 0 and it is classically known that T'(F,,,¢,0,d) together
with the equivalence of the homological and numerical equivalence relations for codimensional
i cycles implies S(F,,i,¢,r,d) for all integer r > 0; see | , Theorem 2|. If K is finite
(resp. K is infinite finitely generated), it follows from | , Theorem| and its proof (resp. a
classical argument of Serre (| , Section 10.6])) that S(K,1,¢,0,d) implies S(K,i,¢,r,d) for
all integers r > 1.

The arguments in | , Section 5.1], sketched at the beginning of Section 7.2, shows that
if K is of characteristic zero, then S(K,i,¢,0,d+r) and T(K,i,¢,0,d+r) imply T'(K,i,¢,r,d).
Similarly, Theorem 7.1.1.2 and its proof show that T'(F,, 1,¢,0,d+r) imply T'(F,, 1,¢,7,d). To
conclude, let us point out that, in the proof of Theorem 7.1.1.2, the only place where we used
the hypothesis that ¢ = 1 is in Section 7.2.3.4, to show that T(Zcmp, 1,¢) implies WS(Z"’mp, 1,0)
(which is the content of | , Proposition 2.6]). So, the proof of Theorem 7.1.1.2 shows the
following more general proposition.

Proposition 7.3.2.1. If p > 0, then T'(F,, 4, ¢, 0, d+r) and WS(F,, ¢, ¢,0,d+r) imply T'(F,, i, ¢, r,d).
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Chapter 8

Uniform boundedness for Brauer group of
forms in positive characteristic

8.1 Introduction

Let k be a field of characteristic p > 0 with algebraic closure k and write m; (k) for the absolute
Galois group of k. The letter ¢ will always denote a prime # p.

8.1.1 Brauer groups
8.1.1.1 Finiteness of Brauer groups

Let X be a k-variety. Write Br(X3)[p'] for the prime-to-p torsion of the (cohomological) Brauer
group Br(X7) := H?*(Xz,G,,) of X3 and recall that if X is smooth over k then Br(Xy) is
a torsion group. If k is finitely generated and X is smooth and proper over k, one expects
Br(X7)[p']™*®) to be small. This is predicted by (variants of) the f-adic Tate conjecture for
divisors (| E

Conjecture 8.1.1.1.1 (T(X,¢)). Assume that k is finitely generated and X is a smooth and
proper k-variety. Then the (-adic cycle class map

cx.  Pie(Xg) @ Qp — U H?( X7, Q1)) *)
[k k] <400
is surjective.

As it is well known (see e.g. | , Proposition 2.1.1]), Conjecture T'(X, ¢) holds if and only
if, for any finite field extension k& C &/, the (-primary torsion Br(Xz)[¢>®]™*") of Br(Xz)™*") is
finite. But one can expect stronger finiteness results.

Fact 8.1.1.1.2. Assume that k is finitely generated and X is a smooth and proper k-variety.
Then:

L (] , Theorem 5.5]): If p = 0 and the integral Mumford Tate conjecture for X holds
(| , Conjecture C.3]), then Br(X7)™®) is finite;
2. (| , Corollary 1.5]): If p > 0 and T'(X, ¢) holds for every prime ¢ # p (or equivalently

for one prime ¢ # p), then Br(Xz)[p']™® is finite.
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8.1.1.2 Uniform boundedness in forms

Let X be a smooth proper variety over a finitely generated field k. Recall that for a field
extension k C k' C k, a (k/k')-form of X is a k'-variety Y such that Y := Y xp k ~ X;. Let
k C k' be a finite field extension and let Y be a (k/k')-form of X. If p = 0 and X satisfies
the integral Mumford Tate conjecture (resp. if p > 0 and T'(X, ¢) holds for every prime ¢ # p),
then the same is true for Y, hence Br(Y;)™® (resp. Br(Y;)[p/]™*") is a finite group. But,
for an integer d > 1, it is not clear whether one can find a uniform bound (depending only on
X and d) for | Br(Ys)™®)| (resp. |Br(Yz)[p']™*)|), while &’ is varying among the finite field
extensions k C k" with [k’ : k] < d and Y among the (k/k')-forms of X. If p = 0, this is proved
by Orr-Skorobogatov in | , Theorem 5.1]. If p > 0, this is the first main result of this note.

Theorem 8.1.1.2.1. Assume that k is finitely generated, X is a smooth proper k-variety and
p > 0. If T(X,¢) holds for every prime ¢ # p (or equivalently for one prime ¢ # p), then for
every integer d > 1, there exists an integer N > 1, depending only on X and d, such that for
every finite field extension k C k' of degree < d and every (k/k')-form Y of X one has

| Br(Yp)[p')|" ") < .

8.1.2 Forms of representations

Theorem 8.1.1.2.1 is a consequence of two general results (Propositions 8.1.2.2.1 and 8.1.2.2.2)
on compatible system of 7 (k)-representations. Before stating them, we introduce some defini-
tions and notation. In the following, % is a finitely generated field of characteristic p > 0, F,
(resp. F) is the algebraic closure of F,, in k (resp. in k) and we write kg := k ®p, F ~ kF C k.
Set ly = 3 (resp. by = 2) if p # 3 (resp. p = 3) and s, = ¢ (resp. s, = 4) if £ # 2 (resp.
¢ = 2). Fix a collection T := {T;}¢z, of rank r finitely generated Z,-modules endowed with a
continuous action of 7 (k).

8.1.2.1 Definitions

We say that T is a compatible system of 7 (k)-modules if there exists a smooth geometrically
connected F -variety IC with generic point Spec(k) — K such that, for every prime ¢ # p, the
action of m; (k) on T} factors trough the canonical surjective morphism (k) — m(K) and the
collection {V; := Ty ® Q¢ }sz, give rise to a Q-rational compatible system on K in the sense of
Serre: for each closed point t € IC, the characteristic polynomial of the arithmetic Frobenius at
t acting on V; is in Q[T'] and independent of /.

Remark 8.1.2.1.1. The notion of compatible system is stable under subquotients and the
usual operations @, ®, V.

Definition 8.1.2.1.2. Let k C &’ be a finite field extension. A (k/k’)-form of T is a compatible
system of 7 (k")-representations U such that, for each ¢ # p, there exists a finite field extension
k" C ky, and an isomorphism of 7 (k;)-modules T; ~ U,.

8.1.2.2 Results

In Definition 8.1.2.1.2, the extension k C k; is allowed to depend on ¢. Our first main result
in this setting produces an extension of (explicitly) bounded degree that works for every prime

0+#p. Let ? € {0,F}.

Proposition 8.1.2.2.1. Let U be a (k/k)-form of 7. Then, there exists a finite field exten-
sion ko C ky of degree < |GL,.(Z/sy,)|* and a m (ky)-equivariant isomorphism Ty/(T})sors =
Ui/ (Up)iors for every prime £ # p.
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Proposition 8.1.2.2.1 reduces the problem of bounding uniformly the invariants of forms of
T to studying the action of w1 (k") on T, when k C k' is varying among the finite field extensions
of bounded degree. In this setting we prove:

Proposition 8.1.2.2.2. Suppose that T} is torsion free for £ > 0. Then there exists a finite
field extension k; C k' of degree < |GL,(Z/sy,)| with the following property: For every integer
d > 1 there exists an integer N > 1, depending only on 7" and d, such that, for every finite
field extension &’ C k" of degree < d, one has

(T ® Q/Z)™* : (T, ® Qe/Ze)™ ")) < N.
t#£p

Remark 8.1.2.2.3. In the proof of Theorem 8.1.1.2.1 we only use the version of Propositions
8.1.2.2.1 and 8.1.2.2.2 where ? = (). On the other hand, the proofs of the two versions are very
similar and we believe that both versions are of independent interest.

8.1.3 Motivic representation

The main motivation to state Theorems 8.1.2.2.1 and 8.1.2.2.2 in this generality is that they
apply directly to representations associated to f-adic étale cohomology of smooth proper k-
varieties; see Subsections 8.3.1.2 and 8.3.2.1. Since Theorems 8.1.2.2.1 and 8.1.2.2.2 require
only the compatibility of the compatible system and not further assumptions as purity, one
could apply them also to representations arising from the cohomology of some not necessarily
smooth and proper k-varieties (e.g. semi-abelian schemes).

8.1.4 Strategy

To prove Proposition 8.1.2.2.1, first we prove a group theoretic proposition (Proposition 8.2.1.1.1)
that bounds the number of connected components of the Zariski closure of the image of an ¢-adic
representation of a profinite group, only in terms of ¢ and of the rank of the representation. To
get Proposition 8.1.2.2.1, one has to get rid of the dependency on ¢. This follows formally from
the fact that the connectedness of the /-adic monodromy group can be read on the L-function
of the various compatible systems {T°" @ (T)')*™ }sp-

For the proof of Proposition 8.1.2.2.2, the key point is to show that, if the Zariski closure of
the image of (k) acting on V; is connected, then for every integer d > 0 there exists an integer
D > 1, depending only on d and T, such that, for every finite field extension k C k' of degree
< d, one has (T;/0)™®) = (T,/¢)"**) for every prime £ > D. To prove this, one exploits again
independence results, not in the f-adic setting but in the ultrafilter setting, recently obtained
by Cadoret-Hui-Tamagawa in | | and by Cadoret in | , Section 15].

Smooth proper base change theorem, the Weil conjectures (| |) and the independence
of £ of homological equivalence for divisors show that {T,(Br(Y%)) := im Br(Y;)[€"]}ezp is a
compatible system. In this setting, Propositions 8.1.2.2.1 and 8.1.2.2.2 are the positive char-
acteristic analogues of | , Propositions 5.4 and 5.5], hence we can conclude the proof of
Theorem 8.1.1.2.1 adjusting the arguments in | , Section 5.4].

8.1.5 Organization of the chapter

In Section 8.2 we prove Theorems 8.1.2.2.1 and 8.1.2.2.2. In Section 8.3 we apply Theorems
8.1.2.2.1 and 8.1.2.2.2 to representations coming from geometry and we prove Theorem 8.1.1.2.1.
We end the chapter in Section 8.3.2 discussing applications to abelian varieties.
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8.1.6 Conventions and notation

For the rest of the chapter k is a finitely generated field of characteristic p > 0 with algebraic
closure k C k. We write F, (resp. F) for the algebraic closure of F, in k (resp. k) and
kp:=k®p, F ~ kF C k. If R is a commutative ring, A an R-module and n, m integers > 0, set

Tn’m(A) Z:<4®R...®RA®R<4V ®R®RAV/

vV vV
n times m times

If G is an algebraic group over a field, write G° for its neutral component and my(G) for the
group of connected components. Write ¢y = 3 (resp. lo = 2) if p # 3 (resp. p=3) and s, =/
(resp. sp =4) if £ # 2 (resp. £ = 2).

8.2 Forms of representations

8.2.1 Proof of Proposition 8.1.2.2.1

Before proving Proposition 8.1.2.2.1, we collect a couple of preliminary propositions.

8.2.1.1 A group theoretical proposition

Let T be a free Z,-module of rank r and let IT C GL(T') be a closed subgroup. Write V' :=T®Q,
and let G C GL(V) be the Zariski closure of II. Then:

Proposition 8.2.1.1.1. |my(G)| < |GL,(Z/s¢)|

Proof. Write G"¢ for the Zariski closure of the image of II acting on the II-semisimplification
of V. Since the kernel of the natural surjection G — G"*? is unipotent hence connected, it
induces an isomorphism 7(G) =~ mo(G"?). So, one may assume that G is reductive. Write

H := Ker(Il — GL(T/s;)). Since [II : H] < |GL.(Z/s,)| and H acts trivially on GL(7T'/s,),
Lemma 8.2.1.1.2 below concludes the proof. O

Lemma 8.2.1.1.2. If GG is reductive and the action of IT on T'/s, is trivial, then G is connected.

Proof. By | , Lemma 2.3|, it is enough to show that, for every irreducible representation
W of GL(V) one has W& = W& Since GL(V) is reductive, by | , Proposition 3.1] every
irreducible representation of GL(V') is a sub module of 7™ (V') and hence it is enough to show
that for every integers n,m > 0

0

Tn,m(v)G — Tn,m(v)G )

The Z,-module T™™(T') is a [l-invariant Z,-lattice in 7™ (V') and IT acts trivially on 7™(T") /s, =
T™™(T/sy), so that, by | , Lemma 2.1|, for every open subgroup U C II one has

Homp(Q, T"™(V)) = Homy (Qg, T™™(V)).
Applying this to U := Ker(Il — m(G)), one gets

T™(V)¢ = Homp(Qy, T™(V)) = Homy (Qp, T™™(V)) = T™™(V)<".
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8.2.1.2 Independence

Let 7 € {0, F}. Let T be a m(k)-compatible system of finitely generated Z,-modules of rank r
and write Gy, for the Zariski closure of the image of 7 (k?) acting on V; := T, ® Q.

Corollary 8.2.1.2.1. For every prime ¢ # p one has |mo(Ge2)| < |GL.(Z/ly)].

Proof. By Lemma 8.2.1.1.1, it is enough to show that if G/, » is connected then G » is connected
for every prime ¢ # (. By definition of a compatible system, there exists a smooth geometrically
connected F -variety IC with generic point Spec(k) — K such that, for every prime ¢ # p, the
action of (k) on T, factors trough the surjection 7 (k) — m(K). So it is enough to show
the corresponding statement for the actions of m;(K) and 1 (Kg) on V. This follows from Fact
8.2.1.2.2 below. O

Fact 8.2.1.2.2. G|, - is connected if and only if Gy- is connected.

Proof. To prove Fact 8.2.1.2.2 one can replace V, with its 7; (K)-semisimplification. So we may
and do assume that V; is semisimple as 7 (K)-module, hence as 71 (Kp)-module. Then, arguing
as in Lemma 8.2.1.1.2, it is enough to show that for every integers n,m > 0 one has

T (Ve)Or = T (V) 1o,

By | | and | | every semisimple 7 (K)-modules is direct sum of its pure components
(see | , Theorem 3.5.5] for more details) so that one reduces to the situation in which Vj,
and Vj, are pure. Then, by the theory of weights (| |), the dimensions of T™™(V,)%? and
T™(Vy, )%, can be read on the L-functions of 7™ (V;) and T™™(V,,) (see | , Proposi-
tion 3.4.11] for more details). Since 7™ (V;) and T™™(V},) are compatible, this concludes the
proof. O]

Remark 8.2.1.2.3. Fact 8.2.1.2.2 is proved in | |if ?=0and in | , Theorem 2.2] if
? =T and V, is pure.

8.2.1.3 Proof of Theorem 8.1.2.2.1

Keep the notation as in the statement of Proposition 8.1.2.2.1 and fix ? € {0,F}. We can
replace Ty with Ty /(T)iors and Uy with Up/(Up)sors, hence assume that T, and U, are torsion
free. Since T" and U are compatible systems, { Hy := T, @ Uy} 4, is a compatible system as well.
By Corollary 8.2.1.2.1, there exists a finite field extension k; C ky of degree < |GL,2(Z/sy,)|
such that the Zariski closure G, of the image of m (ky) acting on H, ® Qy is connected for every
prime ¢ # p. We claim that ky satisfies the conclusion of Proposition 8.1.2.2.1. By assumption,
there exists a finite extension k£ C k, and an isomorphism

wé c Hz’l(kl) g Hgl(klkg),

hence it is enough to show that HZI(@) = ngl(kzkg). Since Hzl(kgkg)/Hgl(kg) is torsion free, it
is enough to show that (H, ® Q)™ %) = (H, ® Q,)™*kv) and this follows from the facts that
ky C kiky is a finite field extension and Gy is connected. This concludes the proof.

8.2.2 Proof of Proposition 8.1.2.2.2

Keep the notation as in the statement of Proposition 8.1.2.2.1 and fix ? € {(), F}. Write

Vi=Ty®Quy My:=T,0Qu/Zsy; Ty:=Ty/L.
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8.2.2.1 Preliminary reduction

Write Gy, for the Zariski closure of the image Il,» acting on V,. By Corollary 8.2.1.2.1 and
replacing k» with a finite field extension of degree < |GL,(Z/sg, )|, one may assume that G- is
connected for every prime ¢ # p. Since by assumption there are at most finitely many 7, with
torsion and these are finitely generated Z,-modules, we may replace T, with Ty/(T})0rs hence
assume that T} is torsion free for every prime ¢ = p. The proof of Proposition 8.1.2.2.2 is the
combination of the following two claims and the arguments in Section 8.2.2.4.

Claim 1: For every integer d > 1 and for every prime ¢ # p, there exists an integer A, > 1,
depending only on d, ¢ and T, such that, for every finite field extension k C k' of degree < d,
one has [le(k/) : M”l(k" ] < A,

Claim 2: For every integer d > 1, there exists an integer D > 1 such that, for every prime

¢ > D and for every finite field extension k C k" of degree < d, one has Tzl(k) T;rl(lﬁ).

8.2.2.2 Proof of Claim 1

Since Il,» is a compact ¢-adic Lie group, it is topologically finitely generated and hence it has
finitely many open subgroups of bounded index. So it is enough to show that if U C I, is
an open subgroup then [MY : M,""] < +oco. This follows from | , Lemma 3.3.2] and the
connectedness of Gy». To the reader convenience, we briefly recall the argument.

I
“* = TF. The exact sequence

Since Gy is connected, one has V, e _ =VY and T,
0—=T1y,—=Vy— M, —0

induces a commutative diagram with exact rows:

0 VI T A T
) s VITE s MY 2 BT

So MY /M, is a quotient of the image of A. But A has finite image since MY is torsion and
HY(U,T,) is a finitely generated Z,-module by | , Proposition 9].

8.2.2.3 Proof of Claim 2

For any finite field extension k; C &, consider the images 11, C II; of 7y (k") C 7 (k) acting on
T .= I, L T,. By definition of a compatible system, there exists a smooth geometrically con-
nected IF-variety K with generic point Spec(k) — K such that, for every prime ¢ # p, the action
of m (k) on T, factors trough the canonical surjection m (k) — 7 (K). By the Grothendieck-
Ogg-Shafarevich formula, there exists a connected étale cover K’ — K such that the action of
7 (K') € m(K) on T factors trough the tame fundamental group of K'; see the proof of | ,
Lemma 12.3.1]. Since the tame fundamental groups of K’ and of every connected component of
Kf are topologically finitely generated, this implies that II; is topologically finitely generated.
Hence the group II; has finitely many open subgroups of index < d. So there are only finitely
many possibilities for the inclusions Iy, C I, while &k, C &’ is varying among the finite field
extensions of degree < d. So, to prove Claim 2, it is enough to show'® that, for every finite field
extension k; C k' of degree < d, there exists an integer D > 1, depending only on T and £/,

such that for ¢ > D’ one has T;rl(k) T;rl(k? .

'This is not a formal consequence of [mi(k7) : m(k')] being finite, as the example {1} C {1,-1} C
[Trz, GL(T'¢) shows.
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Let £ be the set of prime # p and write F' := [],.. F,. We use the formalism of ultrafilters?
on L; see | , Appendix|. To every ultrafilter u on £ one associates a maximal ideal m,
of F' and writes F, := F/m, for the characteristic zero residue field. The actions of (k)
and (k") on T induces actions on T, := T ®p F,. Since II, and II;, are topologically finitely
generated groups, by | , Lemma 4.3.3] and | , Lemma 4.4.2] it is enough to show

that T ") = 7 *) for every ultrafilter u. Write G, » and G for the Zariski closures of the

images of 7 (k») and 71 (k') acting on T,. Since k) — Gt and TuG“”“' = Tfl(k/), it is enough

to show that the natural inclusion Gy C Gy is an equality. Since 7 (k") C m(k-) has finite
index, one has G ,, = G, hence it is enough to show that G\ » is connected. This follows from
the fact that Gy is connected by preliminary reduction and Fact 8.2.2.3.1 below.

Fact 8.2.2.3.1. The group G, is connected if and only if G » is connected.
Proof. 1f 7 = () this is proved in | , Theorem 1.3.1] and if 7 = IF this is proved in | ,
Corollary 15.1.2]. O

8.2.2.4 End of the proof

To conclude the proof of Proposition 8.1.2.2.2, fix a finite field extension k» C k' of degree
< d. Up to replacing d with d! we may restrict to finite Galois extensions k; C £/, so that
m (k") € m(ke) is a normal subgroup. By Claim 1, it is enough to show that there exists an
integer A > 1, depending only on T" and d, such that for £ > A one has M;l(k?) = Mgm(k/) and,
by Claim 2, there exists an integer D > 1, depending only on 1" and d, such that for ¢ > D one
has Tzl(k?) = T?l(k/). We claim that A := max(D,d + 1) has the desired property.

Since M, = lim M,[¢™], it is enough to show that for ¢ > A and every n > 1 one has
M,[er)™ k) = M, [¢7]™ () For this, one argues by induction on n, the case n = 1 being the
definition of D. For n > 1, since T} is torsion free, there is a m(k7)-invariant identification
M,[0"] ~ T,/¢™ and a 7 (k;)-equivariant exact sequence

0— Ty — T,/ 0" — T,/0" 1 —0.

Combined with the inflation-restriction exact sequence for the normal inclusion 7 (k") C my (k),
this induces a commutative exact diagram

HY (1 (ko) e (W), T )

|

0 —— T, —— (Ty/t")*) s (T, ) s HY(7y(k2), T)

E ] : |
—— (T ) —— (T e 5 HY(my(K), Ty).

By the induction hypothesis the first and the third vertical arrows are isomorphisms for ¢ > A.
)
) = 0. But

—rq (K

By elementary diagram chasing it is enough to show that H(m(k-)/m(K'), T, (k

1(k2) Tm(k:’)
- Y

. ==
since T', one has

—Wl(k/) —7T1(k:7)

H' (mi(ke)/m(K), Ty ) = H (mi(ke) fm (), Ty ) = Hom(mi(ke) /m(K), (Z/€)") = 0

where the last equality follows from the fact that £ > d = |m (ko) /71 (K')]|.

2Tn this note an ultrafilter will always mean a non-principal ultrafilter.
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8.3 Proof of Theorem 8.1.1.2.1

8.3.1 Proof of Theorem 8.1.1.2.1

Retain the notation and the assumption of Proposition 8.1.1.2.1. For every finite field extension
k C k" and every (k/k')-form Y of X, write Y3 :=Y Xy k and

T,(Y) :=1mBr(Yp)[("];  Me(Y) :=T(Y) @ Qo/Zy; M(Y) := [T Me(Br(vp));
n L#p
HF(Y) = H* (Y, Ze(1));  H'(Y) := {Hj(Y)}.

8.3.1.1 Reducing to the Tate module of the Brauer group

Recall (see e.g. the proof of | , Proposition 2.1.1|) that there is a m;(k')-equivariant exact

sequence
0 — My(Br(Yz)) — Br(Yy)[(®] — H3(Yz, Z4(1))[(] — 0.

Since

e for every prime ¢ # p, the group H3(Yg, Ze(1))[¢*°] = H?*(Xy3,Z(1))[€>] is finite (of
cardinality depending only on X) and

e for / > 0 (depending only on X) one has H3(Yz, Z,(1))[¢(*] = H3(X3, Z,(1))[¢>] = 0
(I D

it is enough to prove Theorem 8.1.1.2.1 replacing Br(Yy)[p'] with M (Y).

8.3.1.2 Compatibility

We now prove that T(Y) is a compatible system of 7 (k’)-modules. Write NS(Yz) for the
Néron-Severi group of Yz. By the Kummer exact sequence

0— NS(Y;) ®Z — HZ(Y) = T)(Y) — 0,

it is enough to show that H* and NS(Y') := {NS(Y%) ® Z} s, are compatible systems of m; (k')-
modules. Write F, for the algebraic closure of F, in &’. By spreading out, there exists a
geometrically connected smooth F-variety K', with generic point ' : Spec(k’) — K', and a
smooth proper morphism §: Y — K’ fitting into a commutative cartesian diagram:

Y —— )Y

Lo

Spec(k') —— K.

By smooth proper base change, the action of m (k') on HZ(Y') factors trough the surjection
m (k') — m(K') and by | | the collection H*(Y) is a Q-rational compatible system. Since
homological and algebraic equivalences coincide rationally for divisors, NS(Y;) ® Q identifies
with the image of the cycle class map ¢y : Pic(Yy) ® Q — HF(Y) ® Q. So NS(Y) is a
compatible system of 7 (k’)-modules, hence T'(Y') is a compatible system of m; (k')-modules as
well.
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8.3.1.3 End of the proof

So we can apply Propositions 8.1.2.2.1 and 8.1.2.2.2 to T'(Y'). Hence, to conclude the proof,
we have just to adjust the arguments in | , Section 5.4|, replacing | , Propositions
5.4 and 5.5] with Propositions 8.1.2.2.1 and 8.1.2.2.2. Write r := Rankgz,(T,(X))? and set
= |GL,(Z/{y)|. By Proposition 8.1.2.2.1 for X}, there exists a finite field extension k' C ky
of degree < By such that there is an m;(ky )-equivariant isomorphism M (Y) ~ M(X). Then
one has:
M(X)Wl(k) C M(X)Trl(ky) ~ M(Y)Tl’l(k‘y) ) M(Y)ﬂ'l(k‘/)

Since T(X,¢) holds for every prime ¢ # p, by Fact 8.1.1.1.2 the group M (X)™*) is finite.
Hence it is enough to show that, for every integer d > 1, there exists an integer C' > 1,
depending only on X and d, such that for every finite field extension & C k” of degree < d one
has M(X)™*") < C. To prove this, one may replace k with a finite extension and then apply
Proposition 8.1.2.2.2 to conclude.

8.3.2 Further remarks
Let k£ be an infinite finitely generated field of characteristic p > 0.

8.3.2.1 Torsion of abelian varieties

Let X be a k-abelian variety of dimension g. By the Lang-Néron theorem | |, the group
X (K )tors is finite for every finite field extension k& C k' and, if X has no isotrivial geometric
isogeny factors, then the same is true for every field extension of kr. One can use Theorems
8.1.2.2.1 and 8.1.2.2.2 with the techniques in Section 8.3.1 to prove uniform boundedness results
for the torsion of the forms of abelian varieties. More precisely, one can prove that for every
integer d > 1, (resp. if X has no isotrivial geometric isogeny factors) there exists an integer
C = C(X,d) such that |Y(k")| < C for every finite extension of fields k C k' (resp. kp C k')
of degree < d and every k’-abelian variety Y that is a (k/k’) form of X. We conclude pointing
out that the statement for abelian varieties over k follows also from the Lang-Weil bound and
the specialization theory for torsion of abelian varieties.

8.3.2.2 Abelian varieties with CM

Recall that a k-abelian variety X has complex multiplication (or C'M for short) if the image
of the representation m (k) — GL(T,(X)) contains an abelian open subgroup. In characteristic
zero, Orr-Skorobogatov (| , Corollary C.2|) prove that there is an integer C' > 1, depending
only on d and g, such that | Br( 7)™ )| < C for every g-dimensional abelian variety with CM
defined over a number field k£ of degree < d. This result is a consequence of the characteristic
zero analogue | , Theorem 5.1| of Theorem 8.1.1.2.1 and of the fact (| , Theorem A])
that there are only finitely many Q-isomorphism classes of g-dimensional abelian varieties with
C'M defined over a number field of degree < d. Unfortunately, as Akio Tamagawa pointed out
to us, the positive characteristic analogue of | , Theorem A] is false: if X is the product of
g > 1 supersingular elliptic curves, the k-isogeny class of X contains infinitely many?® k-abelian
varieties that are not isomorphic over k. So there is no hope to deduce directly from Theorem

?Indeed, there is an inclusion o C X. Since k is infinite, the set I := Homy, (o, ap X ap) /Auty (o) ~ P (k)
is infinite. For each ¢ € I define f; : X — X; := X /z(ap) Assume by contradiction that the X, - fall into
finitely isomorphism many classes. Then there exist io and an infinite subset J C I such that, for every j€d,
there is an isomorphism g; : X =X, & Then, g;jo f; : X3 — X, o Is amap of degree p. Slnce there are only
finitely many maps Xz — X ¢ of degree D, there exists an 1nﬁn1te subset J' C J such that g; o f; = gjs o fj
for every j,5 € J'. But this 1mphes j(ap) = j'(ap) and this is a contradiction.
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8.1.1.2.1 the analogue of | , Corollary C.2| in positive characteristic. However, a positive
characteristic version of | , Corollary C.2|, via different techniques, has been announced by
Marco D’Addezio.
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Appendix A

Results on gonality

A.1 Introduction

In this chapter k is a field of characteristic p > 0 with algebraic closure k C k. For a k-variety
X, write |X| and X (k) for the set of closed and k-rational points, respectively.

A.1.1 Abstract modular schemes

Let p : m(X) — GL.(Z,) be a continuous representation of the étale fundamental group' of
X. By functoriality of the étale fundamental group, every x € |X| induces a continuous group
homomorphism 7 (x) — 7 (X), hence a “local" Galois? representation p, : m(z) — m (X) —
GL7(Zg) Set

= p(m(X)) T =p(m(Xz) I = pa(m(z)).

For every open subgroup U C Il write fi; : Xy — X for the connected étale cover corresponding
to the open subgroup p~1(U) C m(X) and ky for the smallest separable field extension of k
over which Xy is geometrically connected. Set Uy = U N 1lz.

Fact A.1.1.1. For every open subgroup U C II the following hold:

1. For every x € | X]|, we have that I, C U if and only if x lifts to a k(z)-rational point on
Xus;

2. The cover Xy, — Xj corresponding to the open subgroup Uy C Il is X Xy, k— Xz

In view of Fact A.1.1.1, we call Xy the connected abstract modular scheme associated to
U.

A.1.2 Genus and gonality

Assume from now on that X is a curve. Write gy and vy for the genus and the gonality® of
the smooth compactification of Xiz. The representation p : m(X) — GL,(Z,) is said to be
GLP (geometrically Lie perfect) if every open subgroup of Il has finite abelianization. Write
IIz(n) = Ker(Ily — GL,(Z;/¢")). From Theorem 3.1.4.2.2 in Chapter 3 one has the following.

1 As the choice of fibre functors will play no part in the following we will omit them for the notation for the
étale fundamental group.

2Recall that 71 (x) ~ 7(Spec(k(x)) identifies with the absolute Galois group of k(x).

3Recall that the gonality of smooth proper k-curve Y is defined as the minimum of the degrees of a non
constant morphism Y — IP%
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Fact A.1.2.1. Assume that p is GLP and ¢ # p. Then for every closed subgroup C' C II; of
codimension > 1 we have

ngrfoo genig(n) = +o0.

By the Riemann-Hurwitz formula one has (see | , Proposition 1.1(iv)])
gu = =1, (A.1.2.2)

hence it is natural to wonder whether not only the genus but also the gonality of Xcm(n) tends
to infinity. The answer not only is yes, but one can use gonality to obtain fine results on the
image of non necessarily GLP representations. The main result of this chapter is the following
extension of | , Theorem 3.3] to positive characteristic.

Theorem A.1.2.3. Let C' C II; be a closed subgroup of of codimension j. The following hold:

1. If £ # p, the representation p is GLP and j > 1, then

nl—l>r—Poo Clg(n) = +09;

2. If £ #pand j > 3, then

ngrfoo TCg(n) = +09;

3. If {=pand j > 2, then
ngrfoo TCg(n) = +00.

Remark A.1.2.4. By (A.1.2.2), Theorem A.1.2.3 (2)-(3) implies that gcom_(n) tends to infinity.
It is not clear to us if it is possible to prove this directly. Note that, a posteriori, Theorem
A.1.2.3 (1) implies Fact A.1.2.1, but, actually, Fact A.1.2.1 is used in the proof of Theorem
A.1.2.3(1) (see right after Fact A.2.2.3.1).

A.1.3 Exceptional loci

Assume from now on that k is finitely generated and X is a curve. The main motivation for
proving Fact A.1.2.1 was to show (Theorem 3.1.3.2) that if £ # p and p is GLP, then for all
but at most finitely many x € X (k), the closed subgroup II, C II is open and there exists an
integer N > 1, depending only on p, such that for all such z one has [II : II,] < N. This was
a consequence of Fact A.1.2.1 and the following result of Samuel (| |) completed by an
argument of Voloch (see | , Theorem 3| for more details).

Fact A.1.3.1. Assume that k is finitely generated of positive characteristic. There exists an
integer ¢ > 2, depending only on k, such that for every smooth proper k-curve Y with genus
> g, the set Y (k) is finite.

Using Remark A.1.2.4, from Theorem A.1.2.3 we get the following, which extends | ,
Theorem 1.3| to positive characteristic.

Corollary A.1.3.2. Assume that X is a curve and k is finitely generated. The following hold:
1. If £ = p, then for all but at most finitely many = € X (k), II, C II has codimension < 1;

2. If £ # p, then for all but at most finitely many x € X (k), I, C IT has codimension < 2.
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A.1.4 Strategy

The general strategy is similar to the one of | |, but the technical details are more involved,
due to pathological phenomena arising from specific features of the geometry of curves in
positive characteristic. In particular, the major problems to overcome are the following:

1. Morphisms between smooth proper curves are not necessarely separable (see for example
Section A.2.2.3(3) and Lemma A.2.3.2.3);

2. The kernel of a morphism between abelian varieties is not necessarely reduced (see Lemma
A.2.3.2.5).

A.1.5 Organization of the chapter

In Section A.2 we construct auxiliary systems of curves of genus < 1 and we use this prove
Theorem A.1.2.3. In Section A.3 recall the construction of a projective system of abstract
modular schemes X,, — X, parametrizing points with small image and some facts about them.
After this, we prove Corollary A.1.3.2. All the results and the proofs in this paper work in the
characteristic zero setting but, since this situation is already treated in | |, we will assume
that p > 0 to simplify the exposition.

A.2 Proof of Theorem A.1.2.3

This section is devoted to the proof of Theorem A.1.2.3, following the strategy of | | which
we first recall.

A.2.1 Strategy

Assume k£ algebraically closed. We start with a projective system of smooth proper curves:
Yy s Yy, Y, 5 Y

such that Y,, — Y, is a (possibly ramified) Galois cover with group G, cyclic of prime-to-p

order (to simplify). Assume that 7y, is bounded when n goes to infinity. Then we construct

(Proposition A.2.1.4) a commutative and cartesian diagram of smooth proper curves

T Tn—1 TN—1 TN TN-—1
s Y, —— Y, | —— .. sy Yy —— Yy, —— ...
lfn |:| lfn—l lfN
e T TN_1
> B, —— B,_1 — ... By

where each B,, has genus < 1.
We apply this construction to a projective system

> Y, > Y, 1 —— ... Y1 — Y,

closely related to

. — XCHE(n) e XCHQ(N—U —_— ... XCHE(U e XC’HE(O) =X

(A.2.1.1)
attached to a (GLP) representation p : m(X) — GL,(Z,) (in fact Yy is the smooth compact-
ification of X). In that case (assuming moreover N = 0 to simplify), the auxiliary projective
system
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. BN E— BN_1 —_— ... Bl E— BO

is closely related to a projective system of the forms (A.2.1.1) but for the induced representation

Indggi)) (p), where B is an open curve in By and X C Yy maps to B. The contradiction then
arises from the constraints imposed on the groups G, (automorphism groups of genus < 1

curves) or on the curves B, (gp, < 1) by the Fact that vy, are bounded. For instance if p
is GLP, one can always assume that [ndiig))(p) is also GLP (Fact A.2.2.3.1), hence gp, <1
contradicts Fact A.1.2.1.

For the construction of the projective system we use the method of E-P decomposition

introduced in | , Section 2|. This method allows us to construct for n > 0 cartesian
diagrams:

e Tn—1 TNg+1 TN TN{+1 iy TNy —1
Y, —/— Y, — ... —— Yy, 5 Y1 oo —— Yy, —— YN, —— ..

l ﬁ Ing—1 lle
T, o1 Ty 41
~ 0 0 1
fn [ fn—1 g CN(] — BN0_1 > .. > .BN1

77;7, 7r'iLfl 7r§\,0+1 l

B, — B, > > By,

with the desired properties for some Ny, Ny > 0. So for each n > 0 the set F, of these
diagrams is not empty (Proposition A.2.3.2.2). Furthermore, deleting the last arrow we get
maps F,, — F,_1, so we endow the collection {F, },en with the structure of a projective system.
To obtain the result about the existence of a “limit" diagram we have to show (Proposition
A.2.1.4) that, for each n, F, is finite. This requires some extra technical conditions and that
G, is cyclic of prime-to-p order.

To state more precisely the results of Section A.2.3, let us recall the following definition.

Definition A.2.1.2. A finite group G is said to be k-exceptional if it appears as Galois group
of a Galois cover of smooth proper k-curves X — Y with gx = gy < 1.

Then, in Section A.2.3 we prove:

Proposition A.2.1.3. Assume that
.Y, =Y, = .. > =Y

is a projective system of non constant morphisms between smooth proper k-curves such that
Y, — Y, _1 is a (possibly ramified) Galois cover with group G,,. Assume that

lim vy, =7

n——+0o

is finite. Then all but finitely many G,, are k-exceptional.

Proposition A.2.1.4. Assume furthermore that G, is cyclic of a fixed prime-to-p order > 3,
for all but finitely many n. Then there exists an N > 0 such that we can construct a diagram

Tn Tn—1 U

N—-1 TN TN—1
> Y, > Y, 1 > sy Yy —— Yy —— ...
lfn |:| lfnfl
! 7"/_1
y B, —— B, —

lfN
—1 BN
with the following properties:

TN
\
7 e
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1. w! : B, = B,_1is a (possibly ramified) Galois cover of smooth proper curves with group
Gn;

2. One of the following holds:

(a) g5, = 0 and deg(f,)
(b) g, = 1 and deg(f,)

3. the square

s
X
2

Y

Y, LN Y, 1

lfﬂ E’ lfn—l
Bn = anl
is cartesian up to normalization.

A.2.2 Proof of Theorem A.1.2.3 assuming Propositions A.2.1.3 and
A.2.1.4

Retain the notation and the assumptions of Theorem A.1.2.3. By Fact A.1.1.1(2), to prove
Theorem A.1.2.3 we can assume k is algebraically closed, hence that IT = II.
A.2.2.1 Preliminary reduction

By | , Proposition 1.1(vi-vii)|, for every non constant morphism Z — Y of degree d
between smooth proper k-curves one has

Yy <7z < dyy. (A.2.2.1.1)
So, if
> X)) > X4 > > X
[ & | |
> X, > X,-1 > . > Xo

is a cartesian diagram of smooth proper curves, then vy, tends to infinity if and only if vy,
tends to infinity. Hence to prove to prove Theorem A.1.2.3, we can freely replace replace X
with a finite étale cover.

Fix an integer ng > 2. Replacing X with a finite étale cover, we can assume II = TI(ny).
By | , Lemma 3.5] and replacing X by Xy, for some n >> 0 we can assume CTI(n + ny)
is normal in CTI(n) and CTI(n + ng)/CTI(n) =~ (Z/¢™)’, where j is the codimension of C' in TI.
By (A.2.2.1.1) it is enough to prove that

nl—l>r—|I-100 en(nne) = +00,

so that we have to show that the gonality is not bounded in the tower of covers

(Z/Eno)j (Z/E"O)j (Z/E”O)j
/\ T S

...Xn+1 = XCH((nn0+no) - Xn = ch(nno)... - X3 = ch(gno) > Xy = XCH(QnO) > X=X
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where Xcmi(nng+no) — Xcti(nne) 18 @ Galois cover with group (Z/¢™)7. Assume by contradiction
that
lim 7y, =7 < +00.

n—-+o0o

Then, upon replacing X with Xcp,) for some n > 0, we can assume that vx, = v for
all n > 0. By Proposition A.2.1.3 almost all the Galois groups Xcringtn) — Xcmm) are
k-exceptional.

A.2.2.2 Proof of Theorem A.1.2.3 (2) and (3)

Assume first that j > 3 if £ # p and j = 2 if / = p. To obtain a contradiction, we use the
following;:

Fact A.2.2.2.1. | , Corollary 10| Suppose that k is an algebraically closed field of char-
acteristic p > 0. A finite subgroup of PGLy(k) is isomorphic to one of the following groups:

e A cyclic group;

e A dihedral group D, of order 2m, for some m > 0;

L A47 A5a S47

e An extension 1 - A — Il — @ — 1, with A an elementary abelian p-group and @ a
cyclic group of prime-to-p order;

e PSLy(F,-), for some r > 0;
e PGLy(F,"), for some r > 0;

where IF,,» denotes the finite field with p" elements.

By Fact A.2.2.2.1, (Z/¢{™)7 does not appear as a Galois group of a cover of genus zero
curves as soon as j > 1. So all the X, must have genus 1. But then, since all finite morphisms
between elliptic curves are unramified, (Z/¢™ )’ must be a quotient of the fundamental group
(H#p Z2) x Z, of an elliptic curve and this is not possible by the choice of j.

A.2.2.3 Proof of Theorem A.1.2.3 (1)

Assume now that ¢ = p, 7 > 1 and that p is GLP. The proof is similar to the proof contained
in | , Subsection 3.2.2]. The only difficulties come from inseparability phenomena. So we
just give a sketch to show how to overcome these new problems.

1. Preliminary reduction.
Since k is algebraically closed, II = II; , hence every open subgroup of II has finite
abelianization. Reasoning as in | , Page 15] we can reduce to a situation in which
Lie(IT) has abelian solvable radical (this is used in the last step to apply Fact A.2.2.3.1).
If j > 3, then Theorem A.1.2.3 (1) follows from Theorem A.1.2.3 (2) just proved. So we
need to deal with j =2 and j = 1.

2. j =2
Assume first that j = 2. By Fact A.2.2.2.1, (Z/¢™)? does not appear as a Galois group
of a cover of genus zero curves, hence Xcr,) has genus 1 for n > 1. But then, since
all finite morphisms between elliptic curves are étale, Galois with abelian Galois group,
CII(n) C II is normal and II/CTI(n) is abelian. By the exactness of inverse limit on
profinite group
I — l&n H/C’H(n)
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is an abelian quotient of I1. Since C' C II is not an open subgroup, @H/Cﬂ(n) is infinite
and this contradicts the fact that p is GLP. So, from now on we can assume that j = 1.

. Use of Proposition A.2.1.4.
By Proposition A.2.1.4 we can construct a cartesian diagram:

L (X)) Ty (X )t T (X)) 2y (X))t = Xt
lfn 0] lfn_l lfz 0 lh:f
y By — "B, , —s  — " B — " B =B

such that

(a) 7, : B, — B,_1 is a (possibly ramified) Galois cover of smooth proper curves with
group G,

(b) One of the following holds:

i. gp, = 0 and deg(f,) = Yo

ii. gp, =1 and deg(f,) =%

(c) the square

X, = X,

lfn 0 lfnfl

B, —™ B,_,
is cartesian up to normalization.

We will show that if p is GLP, then the genus of B,, should tend to infinity, contraddicting
(b) above.

. Reduction to the separable situation.

There is a factorization X" — (X") — B with the first morphism purely inseparable
and the second separable of degree d < . Write X’ for the scheme theoretic image of X
in (X*)" and denote with X/ the base change of X’ along B,, — B. Then we get another
system:

L) TS T (g T (X)) = (XY = (X))

lfn ﬁ lfnﬂ lfz |i lﬁ:f
i = _, B, B, =B

L (X)) (X

’ ’
e n-1 2 2

w— B, ———— B, > ..

such that the maps (X))®" — B, are all separable and of degree d. Since the map
X — X' is a universal homeomorphism it induces an isomorphism 7 (X) — m(X’) and
so a Lie perfect representation p’ of m1(X’). So, to prove that gp, is not bounded, we can
assume that the maps (X,,)?" — B, are separable after replacing 7, with some integer
d <

. Reduction to the étale Galois situation.

Since the maps are separable, the ramification locus S of X?* — B is finite, so we get
an open curve Y := B — (S U f(X%" — X)). Writing Y,, for the base change of Y along
the map B, — B we get étale maps X,, — Y,, and Y,, — Y,,_1. Then one reduces to the
situation in which the morphisms X,, — Y,, are finite étale Galois after replacing v with
some d < 7p!.
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6. Use of Fact A.1.2.1 and end of proof.
We use the following:

Fact A.2.2.3.1 (| , Proof of Lemma 3.6]). Let X — Y a finite étale Galois cover
of degree m between smooth curves over an algebraically closed field and p : m (X) —
GL,(Z,) a GLP representation such that Lie(II) has abelian solvable radical. Then the

induced representation ]ndiigf)) (p) : m(Y) = GLy,(Z) is GLP.

Since, by the preliminary reduction at the point 1 of Section A.2.2.3, the solvable radical
of Lie(II) is abelian, by Fact A.2.2.3.1 the representation py := [ndggf)) (p) is still GLP.
Defining U; := po(m1(Y;)) we can consider the system of covers Yy, — Y. We prove, as in
| , Lemma 3.7|, that N;U; is closed of codimension > 1. So by Fact A.1.2.1 we get
that the genus of gy, tends to infinity. But we have inclusions m1(Y;) — m (Yy,) — m(Y)
and hence non constant morphisms Y; — Yy, — Y. By assumption gy; < 1 and this is a
contradiction.

Corollary A.2.2.3.2. Let k be an algebraically closed field of characteristic p, fix a prime £ # p
and K/k a function field of transcendence degree 1. Assume that L/K is a Galois extension
ramified only at finitely many places such that I := Gal(L|K) is an (-adic Lie group with
Lie(IT)® = 0. Then there exists only finitely many extensions K C K’ C L with bounded
gonality.

Proof. See (the proof of) | , Corollary 3.9]. O

A.2.3 Construction of curves of low genus

The main results of this section are Propositions A.2.1.3 and A.2.1.4. They have been used in
the proof of Theorem A.1.2.3. In this subsection k is an algebraically closed field of positive
characteristic p.

A.2.3.1 E-P decomposition

We recall the technique of E-P decomposition from | , Section 2|. Let

vy LB

\Lﬂ'

Y/
be a diagram of non constant morphisms between smooth proper curves, where 7 : Y — Y’ is
a (possibly ramified) Galois cover with group G. We say that the diagram is G-equivariant if
for any o € G there exists op € Auty(B) such that f oo = ogo f. We say that the diagram is
G-primitive if for any commutative diagram of smooth proper curves

f
y T, g T%p
Ir
Y/
with deg(f") > 2 the diagram

vy L B

Ir

Y/
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is not G-equivariant.
For any diagram

we can construct a decomposition

v 5o 3B

Y/
with
Y — C
I
Y/
G-equivariant and Y — C' of degree maximal with this property. Since, by definition, we have

a morphism of group G — Auty(C) with kernel K, we can construct a equivariant-primitive
(E-P for short) decomposition of f, i.e. a diagram

>\
Sy

! !

Y —— C/(G/K) =B
with
Z — C G/K-equivariant and ¢ — B G/K-primitive.

! !

Y’ B
Now, if we have a commutative diagram of non constant morphisms of smooth proper k-curves
Vv B vy, S v 5B
I
B,

with m, : Y, — Y, 1 a (possibly ramified) Galois cover with group G,, we can apply the
previous construction several times to obtain the following diagram :

N
{ {
Yn, = Znaa » On_q By_1
1 fn—2 1l
YN_Q BN_Q

S
i = 7 — O = B

Lo
Yo = By
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where

is an E-P decomposition of f.

A.2.3.2 Construction

We start with a projective system of smooth proper curves of fixed gonality v = 7y,
Yy s vy, S Y, 5 Y

with Y,, — Y,,_1 a (possibly ramified) Galois cover with group G,. We want to construct a

related system of smooth proper curves with bounded genus. The construction is similar to the

one of | , Section 2|, with some complications arising from the existence of non separable

morphisms of curves in positive characteristic. Write

o) = [091V2)

log(\/g)

and for every n > v(7y) define F,, as the set of (isomorphism classes of) diagrams of non constant
morphism of smooth proper curves

™ Tn—1 TNo+1 TNy TNy +1 ™~ TNy -1

YTL —Tl> Yn_l “ > 7 YNO 7 YNo—l > 7 YNI 7 YNl_l E—
l ﬁ lfNO—l Iy
w w w
~ Ny No—1 Ny+1
fn [ fn—1 g CN() — BN()—I ” ? .BN1

! 7r271 7T§V0+1 l

B, —— B, _; > > B,

that satisfy the following properties:
1.0< N, <N, < n.
2. Ny <o(y).
3. g, = 1, deg(fx) = 3 for Ny <k < Nj.
4. goy, =11 Ny <n.
5. g, =0, deg(fr) = for Ny <k <n.

6. the square

Y, LN Vi1

lfk [T] lfk—l

Bk —k> Bk,1

is cartesian up to normalization and Gy = Aut(Yy — Yj_1)-equivariant for Ny < k < Nj.
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7. the square

7TN0
YNy — Yny-1

| g

No
Cny — Bny-1

is cartesian up to normalization and Gy, = Aut(Yy, — Yn,—1)-equivariant if Ny > NV;.

We can endow the family of F,, with the structure of a projective system F,, — F,,_; forgetting
the last arrow on the left. The following lemma will be used several times:

Lemma A.2.3.2.1. Let f: Y — Z a prime degree cover of smooth proper curves over k with
gy # gz. Then Y — Z is separable.

Proof. First observe that f is separable or purely inseparable, since the degree is prime. Assume
by contradiction that f is purely inseparable. Then by | , Corollary 4.21, Chapter 7| we
get gy = gz, contradicting the assumption. O]

We first prove:

Proposition A.2.3.2.2. The set F,, is non empty.
Proof. The proof is the same of | , Lemma 2.4| using the E-P decomposition and Lemma
A.2.3.2.3 instead of | , Lemma 2.5|. O
Lemma A.2.3.2.3. Let

¢ — B

;

be a diagram of smooth proper k-curves with deg(C — B) = 2 and 7 : C' — B’ a (possibly
ramified) Galois cover with group G.

1. If gg = 0 and g¢ > 2 then the diagram is G-equivariant.

2. If gg = 0 and go = gp = 1 then there exists a smooth proper k-curve B” with gg» = 0
and a cartesian square (up to normalization)

¢ — B
=
B/ "
Proof.
1. The morphism C' — B is separable by Lemma A.2.3.2.1. Then the generator of the Galois
group of C' — B is an hyperelliptic involution and so we can apply | , Corollary 4.31,
Chapter 7]

2. Again the morphism C' — B is separable by Lemma A.2.3.2.1 and so we can write
B = C/ < i > where i an hyperelliptic involution. Then the proof goes exactly as in

[ , Lemma 2.5 (2)].
[
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Proof of Proposition A.2.1.3. For n > v(7) the group G, is the Galois group of a Galois cover
of curves of genus < 1 by Proposition A.2.3.2.2. O

To get Proposition A.2.1.4 we need the following two finiteness Lemmas:

Lemma A.2.3.2.4. Let ¢ be a prime-to-p integer > 3. Given a (possibly ramified) Galois cover
Y — Z of smooth proper k-curves with Galois group G ~ Z/c and such that v = v; = 7,
there are only finitely many isomorphism classes of G-equivariant cartesian diagrams:

f

y — P!
lza |2
zZ —— P!
with deg(f) = deg(g) = v
Proof. See (the proof of) | , Lemma 2.6]|. O

Lemma A.2.3.2.5. Let Y be a smooth proper k-curve and let d be an integer > 1. Denote by
Ey 4 the set of all pairs (E, f), where E is a smooth proper k-curve of genus 1 and f:Y — E
is a non constant morphism of degree d, up to automorphisms of £. Then Ey, is finite.

Proof. This is similar to | , Lemma 2.7] but in positive characteristic there is the new
problem that if A — B is a morphism of abelian varieties the kernel is not necessarily an
abelian variety. We can assume that gy > 1. Fix y € Y (k) and consider the closed immersion
i:Y < Jy, induced by y of Y into its Jacobian. The reasoning in | , Lemma 2.7| shows
that

(a) Eygq is in bijection with the set Ej, . of surjective morphisms ¢ : Jy|y — E where E is
an elliptic curve such that the composition of ¥ < Jy, — £ is of degree d.

(b) It is enough to show that for every d the set Egy/k7d of ¢ € Ky, , 4 such that ker(¢) is
connected is finite.

(c) The subset Egic/lﬁd of ¢ € Ef}y/k’d such that ker(¢) is reduced is finite.

To conclude we construct a map

. 0 red,0
hd . EJY/k,d _> Ud/SdEJy/k,d/

with finite fibres. For any f € Ef}y/m consider the following commutative exact diagram, where

for every scheme K we denote with K., the associated reduced subscheme:

0 —— Kieq > Jyik >y Jyip/Krea = E' —— 0
0 » I > Iy > B > 0.

We have a factorization Y — E’ — FE, so that the degrees of Y — E’ and of £/ — FE are
bounded by d. So we can define hy as

Given any (¢ : Jy, — E') € Udrng;eYCf’kO,d,, the preimage h;l(Jy‘k — E') in contained in the set

of isogenies ' — E of degree < d, which is finite. So the conclusion follows from (c¢) above. [
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Proof of Proposition A.2.1.4. It is enough to show that @n Fn # 0. Since F,, # () by Proposi-
tion A.2.3.2.2 and a projective system of non empty finite sets has not empty projective limit,
it is enough to show that, for each n > 0, the set F, is finite. Fix such n, write

En :=A{fn: Y, — B, such that f, is contained in some diagram in F,}
and consider the obvious surjective map
U+ Fn = En.

From Lemma A.2.3.2.4 if Ny # n and from Lemma A.2.3.2.5 if Ny = n, &, is finite. So it is
enough to show that 1, has finite fibres. We have to prove that for any arrow Y,, — B,, there
are finitely many diagrams in F,, that contain that arrow. We first remark that a diagram of
smooth proper k-curves

A—— B
¢ —— D
that is cartesian up to normalization is uniquely determined by

A—— B

|

C

So any diagram in F,, containing Y;,, — B, is uniquely determined by Y,, — B, and (if Ny # n)
by Yy, = Ch,. Hence it is enough to show that there are only finitely many possibilities for
Yn, = Ch, once we fix Y,, — B,. By definition the map Cy, — By, is of degree 2 and so
it is separable by Lemma A.2.3.2.1. The conclusion follows from the fact that there are only
finitely many intermediate separable covers for the morphism of curves Yy, — By, and the
observation that Yy, — By, in uniquely determined by Y,, — B, (and Y,, — Y}, that is part
of the input datum). O

A.3 Proof of Corollary A.1.3.2

A.3.1 Construction of the abstract modular curves
A.3.1.1 Group theory

Let IT C GL,(Z¢) be a closed subgroup, write ®(II) for the Frattini subgroup of II (the inter-
section of all maximal open subgroups of IT) and write

II(n) := Ker(Il — GL,.(Z,/¢")) and 11, := Im(II — GL,(Z,/")).

By | , Pag. 148|, ®(II) C II is an open subgroup. For every integers j,n > 0 consider the
following sets:

o for j > 1, C;,(II) is the set of open subgroups U C II of the form U = CII(n) for some
closed subgroup C' of II of codimension > j

e Coyn(II) is the set of open subgroups U C II such that ®(II(n—1)) C U but II(n—1) € U.
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The family C;,, n > 0, is endowed with a natural structure of projective system given by the
maps ¢j,n : Cj,n+l(H) — ijn(H)I

Yjn U= Ulln)ifj > 1

VYo : U= UP(I(n—1))
Observe that v ,, is well defined by | , Lemma 3.1|. For any C := (C[n]),>0 € Hm C;, (I1),

write
Cloc] := lim C[n] = (1) C[n] CIL.

n>1

Lemma A.3.1.1.1.
1. C;,(1I) is finite.
2. Let C' C II be a closed subgroup.

(a) If C C Il is of codimension > j > 0, for every integer n > 1 there exists a U € C; ,,(II)
such that C C U.

(b) For n > 0 (depending only on II), if II(n — 1)  C there exists a U € Cp,(II) such
that C' C U.

3. Let Q = (C[n])nzo € I&HCJWL(H) Then:

(a) If j > 1, the closed subgroup C[oo] C II has codimension > j.
(b) If j = 0, the closed subgroup C|[oco] C II has codimension > 1.

Proof.

1. If 7 > 0 (resp. j = 0), every U € C; ,,(II) contains II(n) (resp. ®(II(n+1))), hence C;,(II)
is in bijection with a subset of the set of subgroups of the finite group II/TI(n) (resp.
II/®(II(n + 1))).

2. (a) Define U := CII(n).
(b) Define U := C®(II(n — 1)) and use | , Lemma 3.2|.

3. By definition of the projective system and induction (and | , Lemma 3.2| if j = 0),
for every n > 0 and N > n:

Cln] = C[n + 1]II(n) = C[N]I(n).

Hence we get:

So:

(a) follows from | , Corollary 5.3| since

(b) follows from the fact that II(n) € C[oo] for every n and the set of II(n) is a funda-
mental system of neighbourhoods of 1. O]
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A.3.1.2 Anabelian dictionary

Let X be a smooth geometrically connected k-variety and assume now that II is the image of a
continuous representation p : w1 (X) — GL,(Z,). Consider the following (possibly disconnected)
étale covers:

fj,n : Xj,n = H XU — X
UEijn(H)

Lemma A.3.1.2.1. Let z € X (k) and assume that there exists an n such that & f; (X} ,.(k)).
Then:

1. If y > 1, I, C Il is of codimension < j.

2. If j=0and n >0, II, C Il is open of index < [II : II(n)].
Proof. This follows from Fact A.1.1.1 and Lemma A.3.1.1.1 (2). O

Assume from now on that X is a curve.

Corollary A.3.1.2.2. Fix 3 integers j, ¢1,co > 0 and consider the following conditions:
1. pis GLP, ¢ # p and j > 0;
2. {#pandj>3.
3. f=pand j>2;

If one of the previous conditions holds, then there exists an integer N,(c1,c2) such that for
every U € C;,,(II) we have [ky : k] > ¢3 or vp > ¢4.

Proof. If condition (1) holds, this follows from Theorem A.1.2.3(1) as in the proof of | :
Corollaries 3.9-3.10-3.11]. If one of the conditions (2) or (3) holds, this follows from Theorem
A.1.2.3(2-3), as in | , Subsection 5.1.2]. O

A.3.2 Proof of Corollary A.1.3.2

Set j =3 if { # p and j = 2 if / = p. Consider the projective system of covers constructed in
Section A.3.1.2
fin: Xim =[] Xv—X.
UEC]',n

By Corollary A.3.1.2.2 and (A.1.2.2) we can choose an ng such that all the connected com-
ponents of Xj,, have genus larger then the constant g of Fact A.1.3.1 or are defined over a
non trivial extension of k. By Lemma A.3.1.2.1, the set of x € X (k) such that II, C II has
codimension > j lies in the image of f;, : X, (k) = X (k), which is finite by the choice of n,.
Hence it is finite and this conclude the proof of Corollary A.1.3.2.
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Index of definitions and notations

BT(ZE)J 63 gy, 54

C(n), 53 ky, 54

CH'(X), 36 spirt, 43

G(€), 51 spfm, 43

K(k), 40 SPna, D6

NS(X), 37 Etale fundamental group, 44
?(/((?;iioélél Brauer group, 63

X;jm, 53 Chow groups, 36

X5, 53 Convergent, F-isocrystals, 50
Xo9en, 44 Crystalline site, 47

X jtem, 44

F-Tsoc'(X), 51
F-Isoc'(X|K), 50

F-isocrystals, 48
Frattini subgroup, 45

®(II), 45 B Galois generic point, 53

Repg, (m (X, 7)), 44 Geometrically Lie perfect (GLP), 53
T, 54

vy, 54 Néron Severi group, 37

Coef(X, /), 51
Coef(X,p), 51
F-Crys(X|W), 48
F-Isoc(X|K), 50

NS-generic point, 56
Overconvergent F-isocrystals, 50

Slopes, 48

LS(X,Qy), 44 Sparse set, 45

C.(I1), 53 Specialization morphism for algebraic
m(X), 44 cycles, 43

qgu, b4 Strictly Galois generic point, 44
Conventions

We collect here some standard conventions and notation used in this thesis.

e A k-variety is a reduced scheme of finite type over k. If X is a k-variety, and & C &k’ is
a field extension, set X := X x; k. For x € X write k(z) its residue field and T for
a geometric point over z. Set |X| for the set of closed points. A curve is a k-variety of
dimension 1.

e If GG is an algebraic group over a field L of characteristic zero, we write G° for its neutral
component, mo(G) := G/G°, R,(G) for its unipotent radical and G** := G/R,(G). Set
Rep, (G) for the category of finite dimensional L-linear representations of G and X*(G)
its group of characters.

205



Acknowledgements

This thesis and, more generally, my Ph.D. studies have benefited from a number of different
people. I would like to thank:

First and foremost, my advisor Anna Cadoret, for her thorough guidance during my
Ph.D., for having read a huge number of horribly written drafts, for an enormous number
of helpful discussions, advices and insights, but also for teaching me that research is not
only about proving theorem but it is also taking a personal journey;

Yvan André and Mauritz Kerz for accepting refereeing my manuscript;

Francois Charles, Héléne Esnault and Javier Fresan for accepting to participate to the
jury in the day of the defence;

My “Cobuoreau” Vincent, for having the courage to read some of my drafts, for translating
into french Chapter 1 of this thesis and for innumerable lunches;

Akio Tamagawa, for hosting me at RIMS for two summers and for enlightening discus-
sions;

Tomoyuki Abe, for his infinite kindness, for the time he spent in listening and helping
me, for all the subtleties of the p-adic machinery that he taught me;

Atsushi Shiho, for his infinite patience in kindly answering to all my trivial questions;
Alexei Skorobogatov, for his constant encouragement;

Marco D’Addezio, for being almost a mathematical girlfriend, for helping me decoding
cryptic papers on overconvergent F-isocrystals and independence, for going crazy on epi-
morphic subgroup with me for a couple of weeks working on Chapter 5;

Matilde Manzaroli, for being almost a non-mathematical girlfriend, for our travels on
foot, by car, train, plane, for almost dying in a beach to see wonderful Greek ruins and
in general for being always with me in the last 2 years;

Gregorio Baldi, in advance, for lending me his shirt the day of my thesis defence, for
preparing an amazing breakfast with avocado and eggs, for a number of mathematical
(crazy) discussion and for teaching me how to learn without learning (which is a quite
convenient ability);

Various people that have participated and/or organized various working groups (even if
I don’t remember all of them, let me mention some: Leonardo, Mattia, Salim, Vincent
and Victoria);

Francesco Battistoni, for some funny discussion on Galois theory of number fields and
because some of the ideas in Chapter 5 arised to me when we were eating an "Hetero
classic" burger together at Tata burger;

206



Pascale Fuseau, because french bureaucracy can be crazy, but at the Ecole polytechnique
everything its easier thanks to her;

The two Romans (Elena and Nicola), Ludovica, for our beers at 18.00, the two British
house-mates for teaching me that it’s necessary to rinse the dishes, Tommaso and the
German girl, for helping me to survive the fist couples of months in Paris with a crazy
house owner and various problem:;

Various friends from Milan (Lilo, Zava, Valeria, Gabri, Samu, etc...), for what we have
done (and we will do) together;

Hugo, for often asking (coherent) mathematical questions, and Matthew, for coming all
days in our office at 11.15 to ask for having lunch;

My family (my mother, my father, my sister and my nephew) for their support in all the
years of my life.

207






universite

PARIS-SACLAY

Ecole doctorale
de mathematiques
Hadamard (EDMH)

Titre : Invariants ¢-adiques, p-adiques et géométriques en familles de variétés

Mots clés : Géométrie arithmétique, groupe fondamental étale, caractéristique positive, familles de variétés, F-isocristaux

(sur)convergents, cycles algébriques
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utilisera dans la suite de la thése. Le chapitre 2 est consacré a
résumer de maniére uniforme les nouveaux résultats présentés
dans ce manuscrit.

Les six chapitres restants sont originaux. Dans les chapitres 3 et
4 on démontre le théoréme suivant: soit f : Y — X un mor-
phisme lisse et prope sur une base X lisse et géométriquament
connexe sur un corps infini, finiment engendré et de caractéristique
positive. Alors il y a beaucoup de points fermées = € |X]| tels
que le rang du groupe de Néron-Severi de la fibre géométrique
de f en x est le méme du groupe de Néron-Severi de la fibre
géométrique générique. On preuve ¢a de la fagon suivant: on
étudie la spécialisation du faisceau lisse ¢-adique R?f.Q,(1)
(¢ # p); ensuite, on le relie avec la spécialisation du F-isocristal
sz*,c,,isOY/K(l) en passant par la catégorie des F-isocristaux
surconvergents. Au final, la conjecture de Tate varationelle dans la
cohomologie cristalline, nous permet de déduire le résultat sur les
groupes de Néron-Severi depuis le résultat sur RQf*,CTiSOy/K(l).
Cela étend en caractéristique positive des résultats de Cadoret-
Tamagawa et André en caractéristique zero.

Les chapitres 5 et 6 sont consacrés a I'étude des groupes de
monodromie des F-isocristaux (sur)convergents. En particulier, les
résultats dans le chapitre 5 sont un travail en commun avec Marco
D’Addezio. On étude les tores maximaux des groupes de mono-

dromie des F-isocristaux (sur)convergents et on utilise ga pour
démontrer un cas particulier d’'une conjecture de Kedlaya sur les
homomorphismes de F-isocristeaux convergents. En utilisant ce
cas particulier, on démontre que si A est une variété abélienne
sans facteurs d'isogénie isotriviaux sur un corps de fonctions F
sur Fp, alors le groupe A(FPef),,,, est fini. Cela peut étre co-
sidéré comme une extension du théoréme de Lang-Néron et donne
une réponse positive a une question d’Esnault. Dans le chapitre 6,
on définit une catégorie @p—linéaire des F-isocristeaux surconver-
gents et les groupes de monodromie de ces objets. En exploitant
la théorie des companions pour les F-isocristeaux surconvergents
et les faisceaux lisses, on étudie la théorie de spécialisation de ces
groupes de monodromie en transférant les résultats du chapitre 3
dans ce contexte.

Les derniers deux chapitres complétent et affinent les résultats
des chapitres précédents. Dans le chapitre 7, on démontre que
la conjecture de Tate pour les diviseurs sur les corps finiment en-
gendrés et de caractéristique p > 0 est une conséquence de la
conjecture de Tate pour les diviseurs sur les corps finis de ca-
ractéristique p > 0. Dans le chapitre 8, on démontre des résultats
de borne uniforme en caractéristique positive pour le groupes de
Brauer des formes des variétés qui satisfont la conjecture de Tate
¢-adique pour les diviseurs. Cela étend en caractéristique positive
un résultat de Orr-Skorobogatov en caractéristique zero.

Title : ¢-adic, p-adic and geometric invariants in families of varieties

Keywords : Arithmetic geometry, positive characteristic, families of varieties, étale fundamental group, (over)convergent

F-isocrystals, algebraic cycles.

Abstract : This thesis is divided in 8 chapters. Chapter 1 is of pre-
liminary nature: we recall the tools that we will use in the rest of the
thesis and some previously known results. Chapter 2 is devoted to
summarize in a uniform way the new results obtained in this thesis.
The other six chapters are original. In Chapters 3 and 4, we prove
the following: given a smooth proper morphism f : Y — X over a
smooth geometrically connected base X over an infinite finitely ge-
nerated field of characteristic p > 0, there are lots of closed points
x € |X| such that the rank of the Néron-Severi group of the geome-
tric fibre of f at x is the same of the rank of the Néron-Severi group
of the geometric generic fibre. To prove this, we first study the spe-
cialization of the ¢-adic lisse sheaf R f.Q,(1) (£ # p), then we re-
late it with the specialization of the F-isocrystal R? f crysOy ) i (1)
passing trough the category of overconvergent F-isocrystals. Then,
the variational Tate conjecture in crystalline cohomology allows us
to deduce the result on the Néron-Severi groups from the results on
RQf*,crySOy/K(l). These extend to positive characteristic results
of Cadoret-Tamagawa and André in characteristic zero.

Chapters 5 and 6 are devoted to the study of the monodromy
groups of (over)convergent F-isocrystals. Chapter 5 is a joint work
with Marco D’Addezio. We study the maximal tori in the monodromy

groups of (over)convergent F-isocrystals and using them we prove
a special case of a conjecture of Kedlaya on homomorphism of
convergent F-isocrystals. Using this special case, we prove that
if A is an abelian variety without isotrivial geometric isogeny factors
over a function field F' over F,, then the group A(FPerf),,  is finite.
This may be regarded as an extension of the Lang-Néron theorem
and answer positively to a question of Esnault. In Chapter 6, we de-
fine a @p-linear category of (over)convergent F-isocrystals and the
monodromy groups of their objects. Using the theory of companion
for overconvergent F-isocrystals and lisse sheaves, we study the
specialization theory of these monodromy groups, transferring the
result of Chapter 3 to this setting via the theory of companions.
The last two chapters are devoted to complements and refinement
of the results in the previous chapters. In Chapter 7, we show that
the Tate conjecture for divisors over finitely generated fields of cha-
racteristic p > 0 follows from the Tate conjecture for divisors over
finite fields of characteristic p > 0. In Chapter 8, we prove uni-
form boundedness results for the Brauer groups of forms of varie-
ties in positive characteristic, satisfying the ¢-adic Tate conjecture
for divisors. This extends to positive characteristic a result of Orr-
Skorobogatov in characteristic zero.
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