l-adic,p-adic and geometric invariants in families of varieties.

Abstract : This thesis is divided in 8 chapters. Chapter ref{chapterpreliminaries} is of preliminary nature: we recall the tools that we will use in the rest of the thesis and some previously known results. Chapter ref{chapterpresentation} is devoted to summarize in a uniform way the new results obtained in this thesis.The other six chapters are original. In Chapters ref{chapterUOIp} and ref{chapterneron}, we prove the following: given a smooth proper morphism $f:Yrightarrow X$ over a smooth geometrically connected base $X$ over an infinite finitely generated field of positive characteristic, there are lots of closed points $xin |X|$ such that the rank of the N'eron-Severi group of the geometric fibre of $f$ at $x$ is the same of the rank of the N'eron-Severi group of the geometric generic fibre. To prove this, we first study the specialization of the $ell$-adic lisse sheaf $R^2f_*Ql(1)$ ($ellneq p$), then we relate it with the specialization of the F-isocrystal $R^2f_{*,crys}mathcal O_{Y/K}(1)$ passing trough the category of overconvergent F-isocrystals. Then, the variational Tate conjecture in crystalline cohomology, allows us to deduce the result on the N'eron-Severi groups from the results on $R^2f_{*,crys}mathcal O_{Y/K}(1)$. These extend to positive characteristic results of Cadoret-Tamagawa and Andr'e in characteristic zero.Chapters ref{chaptermarcuzzo} and ref{chapterpadic} are devoted to the study of the monodromy groups of (over)convergent F-isocrystals. Chapter ref{chaptermarcuzzo} is a joint work with Marco D'Addezio. We study the maximal tori in the monodromy groups of (over)convergent F-isocrystals and using them we prove a special case of a conjecture of Kedlaya on homomorphism of convergent $F$-isocrystals. Using this special case, we prove that if $A$ is an abelian variety without isotrivial geometric isogeny factors over a function field $F$ over $overline{F}_p$, then the group $A(F^{mathrm{perf}})_{tors}$ is finite. This may be regarded as an extension of the Lang--N'eron theorem and answer positively to a question of Esnault. In Chapter ref{chapterpadic}, we define $overline Q_p$-linear category of (over)convergent F-isocrystals and the monodromy groups of their objects. Using the theory of companion for overconvergent F-isocrystals and lisse sheaves, we study the specialization theory of these monodromy groups, transferring the result of Chapter ref{chapterUOIp} to this setting via the theory of companions.The last two chapters are devoted to complements and refinement of the results in the previous chapters. In Chapter ref{chaptertate}, we show that the Tate conjecture for divisors over finitely generated fields of characteristic $p>0$ follows from the Tate conjecture for divisors over finite fields of characteristic $p>0$. In Chapter ref{chapterbrauer}, we prove uniform boundedness results for the Brauer groups of forms of varieties in positive characteristic, satisfying the $ell$-adic Tate conjecture for divisors. This extends to positive characteristic a result of Orr-Skorobogatov in characteristic zero.
Complete list of metadatas

Cited literature [181 references]  Display  Hide  Download

Contributor : Abes Star <>
Submitted on : Monday, September 9, 2019 - 3:31:06 PM
Last modification on : Tuesday, September 10, 2019 - 1:24:25 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02281903, version 1



Emiliano Ambrosi. l-adic,p-adic and geometric invariants in families of varieties.. Algebraic Geometry [math.AG]. Université Paris-Saclay, 2019. English. ⟨NNT : 2019SACLX019⟩. ⟨tel-02281903⟩



Record views


Files downloads