F. Mas, Solidification and phase transformations in a dissimilar steel weld 18MND5/309L/308L : evolution of microstructure and mechanical properties, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01153912

G. Phd and . University,

A. Blouin, Rupture des liaisons bimétalliques dans la transition fragileductile. PhD, 2012.

L. Corre and V. , Etude de la compétition déchirure ductile/rupture fragile : application de la tenue mécanique des tubes en acier C-Mn et de leurs joints soudés, 2006.

C. Jang, Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel, International. Journal of Pressure Vessels and Piping, vol.85, pp.635-646, 2008.

K. Rajasekhar, C. S. Harendranath, R. Raman, and S. D. Kulkarni, Microstructural evolution during solidification of austenitic stainless steel welds metals : a color metallographic and electron microprobe analysis study, Materials Characterization, vol.38, pp.53-65, 1997.

B. Chassignole, Influence de la structure métallurgique des soudures en acier inoxydable austénitique sur le contrôle non destructif par ultrasons, Sciences Appliquées de Lyon, 2000.

P. Jeong, Ultrasonic Characterization of Centrifugally Cast Stainless Steel. Palc Alto (Californie) : Electric Power Research Institue, 1987.

N. Jahanzeb, Effect of microstructure on the hardness heterogeneity of dissimilar metal joints between 316L stainless steel and SS400 steel, Materials Science & Engineering A, vol.700, pp.338-350, 2017.

I. Hajiannia, M. Shamanian, and M. Kasiri, Microstructure and mechanical properties of AISI 347 stainless steelA355 low alloy steel dissimilar joint produced by gas tungsten arc welding, Materials and Design, vol.50, pp.566-573, 2013.

R. L. Klueh and J. F. King, Austenitic stainless steel -ferritic steel weld joint failures, Welding Journal, vol.61, pp.302-311, 1982.

Z. Sun and T. Moisio, Weld metal/ferritic steel interface in laser welded austenitic/ferritic dissimilar steel joints, Journal of Materials Science Letters, vol.13, pp.802-805, 1994.

. Bibliographie,

M. F. Gittos and T. G. Gooch, The interface below stainless steel and nickel-alloy claddings, Welding Research Supplement, pp.461-472, 1992.

F. Gauzzi and S. Missori, Microstructural transformations in austenitic-ferritic transition joints, Journal of Materials Science, vol.23, pp.782-789, 1988.

N. Murugan and R. S. Parmar, Effect of welding conditions on microstructure and properties of type 316L stainless steel submerged arc cladding. Welding Research Supplement, pp.210-217, 1997.

J. Dupont and C. S. Kusko, Technical note : martensite formation in austenitic/ferritic dissimilar alloy welds, Welding Journal, pp.51-54, 2007.

L. Lamthanh, Acceptabilité de défauts en rupture fragile dans les soudures d'acier pour tubes : modèles FAD et approche locale, 2003.

C. L. David and J. E. King, Cleavage initiation in the intercritically reheated coarse grained heat affected zone : Part I fractographic evidence. Metallurgical and Materials Transaction A, vol.25, pp.563-573, 1994.

G. Béranger, G. Henry, and G. Sanz, Le livre de l'acier, 1994.

D. Rathod, S. Pandey, A. Sivanandam, and P. Singh, Metallurgical Behaviour and Carbon Diffusion in Buttering Deposits Prepared With and Without Buffer Layers, 2017.

, Acta Metallurgica Sinica (English Letters), vol.30, issue.01, pp.120-132

F. Mas, G. Martin, P. Bréchet, Y. Tassin, C. Roch et al., Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel, Materials Science & Engineering A, vol.667, pp.156-170, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01981007

P. Hornet, Prise en compte de l'effet mismatch dans le comportement mécanique des structures soudés fissurées. Séminaire sur la prévention de la rupture dans des joints soudés, 2000.

G. Wang, H. Wang, F. Xuan, and S. Tu, Local fracture behavior and integrity assessment of a dissimilar metal welded joint in nuclear power systems, 13th International Conference on Fracture, 2013.

M. F. Dodge, H. B. Dong, and M. F. Gittos, Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems, Materials Research Innovations, vol.18, pp.4-907, 2014.

A. C. Mackenzie, J. W. Hancock, and D. K. Brown, On the influence of state of stress on ductile failure initiation in high-strength steels, Eng. Fract. Mech, vol.9, pp.167-188, 1977.

A. Stacey, J. Y. Barthelemy, R. H. Legatt, and R. A. Ainsworth, Incorporation of residual stresses in to the SINTAP defect assessment procedure, Engineering Fracture Mechanics, vol.67, pp.573-611, 2000.

. Bibliographie,

T. L. Panontin and M. R. Hill, The effect of residual stresses on brittle and ductile fracture initiation predicted by micromechanical models, International journal of Fracture, vol.82, pp.317-333, 1996.

D. M. Finch and F. M. Burkedin, Effects of welding residual stresses on significance of defects in various types of welded joints, pp.721-735, 1992.

P. Gilles, V. Robin, and M. Fontaine, Welding Residual Stress Effect on Dissimilar Metal Weld Junction Fracture, 2009.

W. Steven and A. G. Haynes, The temperature of formation of martensite and bainite in low-alloy steel, JISI, vol.183, pp.349-359, 1956.

H. Finkler and M. Schirra, Transformation behaviour of high temperature martensitic steels with 8-14% chromium, Materials technology, Steel research, vol.67, pp.328-342, 1996.

J. P. Cunat, Aciers inoxydables, critères de choix et structure, Traité Matériaux métalliques, vol.4, 2000.

F. C. Hull, Effect of ?-ferrite on the hot cracking of stainless steel, Welding Journal, vol.46, pp.399-409, 1967.

J. A. Brooks, A. W. Thompson, and C. J. Williams, A fundamental study of the beneficial effects of ? ferrite in reducing weld cracking, pp.71-83, 1984.

S. Kou and Y. K. Yang, Fusion-boundary macrosegregation in dissimilar-filler welds, Welding Journal, vol.86, pp.303-312, 2007.

Y. K. Yang and S. Kou, Weld-bottom macro-segregation caused by dissimilar filler metals, Welding Journal, vol.86, pp.379-387, 2007.

F. Ornath, J. Soudry, and B. Z. Weiss, Weld pool segregation during the welding of low alloy steels with austenitic electrodes, Welding Journal, vol.60, pp.227-230, 1981.

Y. Zhao, J. Gong, X. Wang, W. Gao, and Q. Li, Carbon diffusion in dissimilar joints between P91 and 12Cr1MoV steels welded by different consumables at high temperature, Materials at High Temperatures, vol.32, pp.557-565, 2015.

X. Gomez and J. Echeberria, Microstructure and mechanical properties of low alloy steel T11-austenitic stainless steel 347H bimetallic tubes, Materials Science and technology, vol.16, pp.187-193, 2000.

O. Grong and N. Christensen, Effects of weaving on temperature distribution in fusion welding, Materials Science and Technology, vol.2, p.967973, 1986.

A. R. Khalifeh, A. Dehghan, and E. Hajjari, Dissimilar Joining of AISI 304L/St37 Steels by TIG Welding Process, Acta Metall. Sin, vol.26, issue.6, pp.721-727, 2013.

F. Mas, C. Tassin, N. Valle, F. Robaut, F. Charlot et al., Metallurgical Characterization of coupled carbon diffusion and precipitation in dissimilar metal welds, Journal of Materials Science, vol.51, issue.10, pp.4864-4879, 2016.

C. D. Lundin, Dissimilar metal welds -transition joint literature review, Weld. Res. Suppl, vol.61, pp.58-63, 1982.

C. Sudha, A. L. Terrance, S. K. Albert, and M. Vijayalakshmi, Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr-Mo steels, J. Nucl. Mater, vol.302, pp.193-205, 2002.

Y. Y. Ying, S. R. Kae, S. R. Haur, and C. Chun, The study of carbon migration in dissimilar welding of the modified 9Cr-1Mo steel, J. Mater. Sci. Lett, vol.20, pp.1429-1432, 2001.

C. Sudha, V. T. Paul, A. L. Terrance, S. Saroja, and M. Vijayalakshmi, Microstructure and microchemistry of hard zone of dissimilar weld of Cr-Mo steel, Weld. J, vol.85, pp.71-80, 2006.

R. Anand, C. Sudha, V. T. Paul, and S. Saroja, Microstructural changes in Grade 22 ferritic steel clad successively with Ni-based and 9Cr filler metals, Weld. J, vol.89, pp.65-74, 2010.

A. K. Bhaduri, S. Venkadesan, P. Rodriguez, and P. G. Mukunda, Transition metal joints for steam generators -an overview, Int. J. Press. Vessels Pip, vol.58, pp.251-265, 1994.

J. Frei, B. T. Alexandrov, and M. Rethmeier, Low heat input gas metal arc welding for dissimilar metal weld overlays part I : the heat-affected zone, Weld. World, vol.60, pp.1-15, 2016.

D. W. Rathod, S. Pandey, P. K. Singh, and R. Prasad, Experimental analysis of dissimilar metal weld joint : ferritic to austenitic stainless steel, Mater. Sci. Eng. A, vol.639, pp.259-268, 2015.

D. W. Rathod, S. Pandey, P. K. Singh, and R. Prasad, Mechanical properties variations and comparative analysis of dissimilar metal pipe welds in pressure vessel system of nuclear plants, J. Press. Vessel Technol, vol.138, p.11403, 2016.

D. W. Rathod, Weldability Investigations of Dissimilar Metal Joints for Nuclear Plant Applications, 2015.

M. Sireesha, V. Shankar, S. K. Albert, and S. Sundaresan, Microstructural features of dissimilar welds between 316LN austenitic stainless steel and alloy 800, Mater. Sci. Eng. A, vol.292, pp.74-82, 2000.

D. W. Rathod, S. Pandey, S. Aravindan, and P. K. Singh, Diffusion Control and Metallurgical Behavior of Successive Buttering on SA508 Steel Using Ni-Fe Alloy and Inconel 182. Metallography, Microstructure, and Analysis, vol.5, pp.450-460, 2016.

A. L. Schaeffler, Welding Journal, vol.26, p.601, 1947.

L. Li, M. Chai, Y. Li, W. Bai, and Q. Duan, Effect of Welding Heat Input on Grain Size and Microstructure of 316L Stainless Steel Welded Joint, Applied Mechanics and Materials, vol.331, pp.578-582, 2013.

G. Reddy, T. Mohandas, A. Rao, and V. V. Satyanarayana, Influence of welding process on microstructure and mechanical properties of dissimilar austenitic-ferritic stainless steel welds. Materials and Manufacturing Processes, vol.20, pp.147-173, 2005.

N. P. Dhaliwal, R. Mittal, S. Gill, and P. Khullar, Comparative evaluation of impact strength of dissimilar metal weld between T91 and 304SS prepared by SMAW and GTAW techniques, Indian Journal of Science and Technology, vol.9, issue.39, 2016.

G. Karthik, P. Karuppuswamy, and V. Amarnath, Comparative evaluation of mechanical properties and micro structural characteristics of 304 stainless steel weldments in TIG and SMAW welding process, International Journal pf Current Engineering and Technology, 2014.

M. F. Dodge, H. B. Dong, and M. F. Gittos, Effect of post-weld heat treatment on microstructure evolution in dissimilar joints for subsea oil and gas systems, Materials Research Innovations, vol.18, pp.4-907, 2014.

H. Dong, C. Liao, L. Yang, and C. Dong, Effects of post-weld heat treatment on dissimilar metal joint between aluminum alloy and stainless steel, Materials Science and Engineering A, vol.550, pp.423-428, 2012.

J. L. Bucaille, S. Stauss, E. Felder, and J. Michler, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Materialia, vol.51, pp.1663-1676, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00613073

O. Ancelet and P. Matheron, Development of a new measurement system for tensile testing, pp.2010-25667, 2010.

P. W. Bridgman and M. C. Graw-hill, Studies in Large Plastic Flow and Fracture, 1952.

N. Solomon and I. Solomon, Deformation induced martensite in AISI 316 stainless steel, Revista De Metalurgia, vol.46, issue.2, pp.121-128, 2010.

D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, A further step towards an understanding of size-dependent crystal plasticity : In-situ tension experiments of miniaturized single-crystal copper samples, Acta Materialia, vol.56, pp.580-92, 2008.

D. Bhattacharyya, R. W. Wheeler, R. P. Harrison, and L. Edwards, The Observation of Slip Phenomena in Single Crystal Fe Samples During In Situ Micro-Mechanical Testing Through Orientation Imaging, Microscopy and Microanalysis, vol.20, pp.1060-1069, 2014.

. Bibliographie,

A. Reichardt, M. Ionescu, J. Davis, L. Edwards, R. P. Harrison et al., In situ micro tensile testing of He+2 ion irradiated and implanted single crystal nickel film, Acta Materialia, vol.100, pp.147-154, 2015.

H. T. Vo, A. Reichardt, D. Frazer, N. Bailey, P. Chou et al., In situ micro-tensile testing on proton beam-irradiated stainless steel, Journal of Nuclear Materials, vol.493, pp.336-342, 2017.

F. Katsuhiko and K. Fukuya, Development of Micro Tensile Method in an FIB System for Evaluating Grain Boundary Strength, Materials Transactions, vol.52, pp.20-24, 2011.

M. Bourcier, M. Bornert, A. Dimanov, E. Héripré, and J. Raphanel, Multiscale experimental investigation of crystal plasticity and grain boundary sliding in synthetic halite using digital image correlation, Journal of Geophysical Research : Solid Earth, vol.118, issue.2, pp.511-526, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00870345

L. Allais, M. Bornert, T. Bretheau, and D. Caldemaison, Experimental characterization of the local strain field in a heterogenous elastoplastic material, Acta metall. mater, vol.42, issue.11, pp.3865-3880, 1994.

L. A. Giannuzzi and J. R. Michael, Ion channelling vs. electron channelling image contrast, Microsc Microanal, vol.18, pp.694-695, 2012.

P. Babu, R. Irukuvarghula, S. Harte, A. Preuss, and M. , Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel, 2016.

, Acta Materialia, vol.120, pp.391-402

A. Basa, C. Thaulow, and A. Barnoush, Chemically induced phase transformation in austenite by focused ion beam, Metallurgical Mater. Trans. A, vol.45, issue.3, pp.1189-1198, 2013.

K. E. Knipling, D. J. Rowenhorst, R. W. Fonda, and G. Spanos, Effects of focused ion beam milling on austenite stability in ferrous alloys, Mater. Charact, vol.61, issue.1, pp.1-6, 2010.

P. Hosemann, D. Kiener, Y. Wang, and S. A. Maloy, Issues to consider using nanoindentation on shallow ion beam irradiated materials, Journal of Nuclear Materials, vol.425, pp.136-145, 2012.

R. Kasada, Y. Takayama, K. Yabuuchi, and A. Kimura, A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion Engineering and Design, vol.86, pp.2658-61, 2011.

C. P. Frick, S. Orso, and E. Arzt, Acta Mater, vol.55, p.3845, 2007.

D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm, FIB damage of Cu and possible consequences for miniaturized mechanical tests, Materials Science and Engineering A, vol.459, issue.1-2, pp.262-272, 2007.

C. Mansilla, V. Ocelik, J. De-hosson, and . M. Th, Local residual stress measurements on nitride layers, Materials Science and Engineering A, vol.636, pp.476-483, 2015.

. Bibliographie,

L. Y. Chen, B. Z. Li, X. D. Wang, F. Jiang, Y. Ren et al., Atomic-scale mechanisms of tension-compression asymmetry in a metallic glass, ActaMater, vol.61, issue.6, pp.1843-1850, 2013.

G. S. Schajer, Practical Residual Stress Measurement Methods, 2013.

A. T. Dewald, M. R. Hill, and J. Strain, Improved data reduction for the deep-hole method of residual stress measurement, Anal. Eng. Des, vol.38, pp.65-77, 2003.

M. B. Prime, Residual Stress Measurement by Successive Extension of a Slot : The Crack Compliance Method, Appl. Mech. Rev, vol.52, pp.75-96, 1999.

W. Cheng, Residual Stress Measurement and the Slitting Method, 2007.

P. Scott, R. Francini, S. Rahman, A. Rosenfield, and G. Wilkowski, Fracture evaluation of fusion line cracks in nuclear pipe bimetallic welds. US Nuclear Regulatory Commission, 1995.

G. Ph, J. Devaux, and C. Faidy, ADIMEW project : Prediction of the ductile tearing of a cracked 16 dissimilar welded junction, Proc. of PVP2004, ASME Pressure Vessel and Piping Conference, 2004.

, Standard Test Method for Determination of Reference Temperature T 0 for Ferritic Steels in the Transition Range, pp.1921-1932

P. Balladon and B. Houssin, Ténacité dynamique et résistance à la déchirure d'une liaison bimétallique d'embout de tubulure en acier 16MND5-acier inoxydable austé-nitique, 1993.

, Standard Test Method for measurement of fracture toughness, ASTM E 1820-99a, 1999.

H. T. Wang, G. Z. Wang, F. Z. Xuan, and S. T. Tu, Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint, Nuclear Engineering and Design, pp.3234-3243, 2011.

H. T. Wang, G. Z. Wang, F. Z. Xuan, and S. T. Tu, Fracture mechanism of a dissimilar metal welded joint in nuclear power plant, Engineering Failure Analysis, vol.28, pp.134-148, 2013.

B. Tanguy, J. Besson, R. Piques, and A. Pineau, Ductile to brittle transition of an A508 steel characterized by Charpy impact test, part I., experimental results. Engineering Fracture Mechanics, vol.72, pp.49-72, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00142084

P. Hausild, Transition ductile-fragile dans un acier faiblement allié, 2002.

J. P. Mathieu, Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5 : prise en compte des hétérogénéités microstructurales, 2006.

S. Sekfali, Influence de la microstructure sur le comportement local dans les aciers 16MND5, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00419622

C. Bathias, Étude des mécanismes de la fissuration par fatigue des aciers ferritiques et des aciers austénitiques, 1972.

A. Andrieu, A. Pineau, D. Ryckelynck, and O. Bouaziz, Extension of Beremin model to bi-modal brittle failure, p.20, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00684693

, ème Congrès Français de Mécanique, CFM 2011, 2011.

J. A. Joyce and X. Gao, Analysis of material inhomogeneity in the European round robin fracture toughness data set, Journal of ASTM International, vol.247, pp.306-309, 2002.

K. Wallin, P. Nevasmaa, A. Laukkanen, and T. Planman, Master Curve analysis of inhomogeneous ferritic steels, Engng Fracture Mech, vol.71, pp.2329-2346, 2004.

X. Zhao, D. Lidbury, J. Quinta-da-fonseca, and A. Sherry, Introducing heterogeneity into brittle fracture modeling of a 22NiMoCr33 ferritic steel ring forging, ASTM special technical publications, vol.71, pp.518-539, 2007.

J. H. Chen, Physical models for cleavage fracture at various temperatures -Bases for local approach to fracture of HSLA steel, Materials Science and Engineering, 2007.

J. H. Chen, G. Z. Wang, and H. J. Wang, A Statistical model for cleavage fracture of low alloy steel, Acta Mater, vol.44, pp.3979-3989, 1996.

A. Lambert-perlade, Rupture par clivage de microstructures d'aciers bainitiques obtenues en conditions de soudage, 2001.
URL : https://hal.archives-ouvertes.fr/tel-00005749

R. O. Ritchie, J. F. Knott, and J. R. Rice, On the relationship between critical tensile stress and fracture toughness in mild steel, Journal of the Mechanics and Physics of Solids, vol.21, pp.395-410, 1973.

W. Weibull, A statistical distribution function of wide applicability, Journal of Applied Mechanics, vol.18, pp.293-297, 1951.

F. M. Beremin, A local criterion for cleavage fracture of a nuclear pressure vessel steel, Met. Trans, vol.14, pp.2277-2286, 1983.

A. Pineau, A. A. Benzerga, and T. Pardoen, Failure of metals I : Brittle and ductile fracture, Acta Materialia, vol.107, pp.424-483, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308255

S. Chapuliot, Proposition d'un critère simple pour la rupture de l'acier de cuve dans le domaine de transition fragile/ductile. Rapport interne CEA, 2004.

S. Chapuliot, Compléments pour la proposition d'un critère de rupture fragile, Analyse de l'existence d'un Kmin et de la prise en compte de la longueur du front de fissure

C. Niclaeys, T. H. N'guyen, S. Marie, S. Chapuliot, and S. Degallaix, Non-fracture prediction of a C-Mn weld joint in the brittle-to-ductile fracture transition temperature range. Part I : Experimental results and numerical study, Engineering Fracture Mechanics, vol.79, pp.149-166, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00656103

E. Kantidis, Rupture fragile intergranulaire d'un acier faiblement allié, 1993.

T. Pardoen, D. Dumont, A. Deschamps, and Y. Brechet, Grain boundary versus transgranular ductile failure, Journal of the Mechanics and Physics of Solids, vol.51, pp.637-665, 2003.

T. G. Lindley, G. Oates, and C. E. Richards, A critical appraisal of carbide cracking mechanisms in ferride/carbide aggregates, Acta Metall, vol.18, pp.1127-1136, 1970.

J. Gurland, Observation on the fracture of cementite particles in spheroidized 1.05 C steel deformed at room temperature, Acta Metall, vol.20, pp.735-741, 1972.

A. Norme and . Nf, EN 10045-1, Matériaux métalliques : Essai de flexion par choc sur éprouvette Charpy, 1990.

C. Ruggieri and R. H. Dodds, Probabilistic modeling of brittle fracture including 3-D effects on constraint loss and ductile tearing, Journal de Physique IV Colloque, v, vol.6, issue.6, pp.353-362, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00254463

R. W. Koers, A. H. Krom, and A. Bakker, Prediction of cleavage fracture in the brittle to ductile transition region of ferritic steel, Constraint Effects in Fracture, Theory and Application, ASTM STP 1244, pp.191-208, 1994.

G. Bernauer, W. Brocks, and W. Schmitt, Modifications of the Beremin model for cleavage fracture in the transition region of ferritic steel, Engineering Fracture Mechanics, vol.64, pp.305-325, 1999.

C. Eripret, D. P. Lidbury, A. Sherry, and I. Howard, Prediction of fracture in the transition regime : Application to an A533B pressure vessel steel, Journal de Physique IV Proceedings of EUROMECH -MÉCAMAT96 1st European Mechanics of Materials Conference on Local Approach to Fracture 86-96, fontainebleau, pp.9-11, 1996.
URL : https://hal.archives-ouvertes.fr/jpa-00254459

. September, , 1996.

K. Wallin, The scatter in K IC results, Engineering Fracture Mechanics, vol.19, pp.1085-1093, 1984.

B. Wasiluk, J. P. Petti, and R. H. Dodds, Temperature dependance of Weibull stress parameters : Studies using the Euro-material, Engineering Fracture Mechanics, vol.73, pp.1046-1069, 2006.

P. Hausild, C. Berdin, and P. Bompard, Prediction of cleavage fracture for low alloy steel in the ductile-to-brittle transition temperature range, Materials Science and Engineering, vol.391, pp.188-197, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018919

. Bibliographie,

G. Qian, W. S. Lei, S. Zhu, J. Correia, and J. A. De, A new local approach to cleavage fracture and its application in a reactor pressure vessel, Procedia Structural Integrity, vol.13, pp.2174-2179, 2018.

X. Gao, G. Zhang, and T. S. Srivatsan, Prediction of cleavage fracture in ferritic steels : a modified Weibull stress model, Materials Science and Engineering A, vol.394, pp.210-219, 2005.

D. François, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, in : Fracture Mechanics and Damage, vol.II, 2013.

C. Zener, Fracturing of Metals, 1948.

C. Stroh, The formation of cracks as a result of plastic flow, Proc. Roy. Soc. Lond. A, vol.223, pp.404-414, 1954.

A. H. Cottrell, Theory of brittle fracture in steel and similar metals, vol.212, pp.192-203, 1958.

A. Cottrell, Strengths of grain boundaries in pure metals, Mater. Sci. Tech, vol.5, pp.1165-1167, 1989.

A. Cottrell, Strengthening of grain-boundaries by segregated interstitials in iron, Mater. Sci. Tech, vol.6, pp.121-123, 1990.

A. H. Cottrell, Strengths of grain boundaries in impure metals, Mater. Sci. Tech, vol.6, pp.325-329, 1990.

J. Chen and R. Cao, Micromechanism of Cleavage Fracture of Metals : a Comprehensive Microphysical Model for Cleavage Cracking in Metals, 2014.

K. Wallin, Statistical modelling of fracture in the ductile-to-brittle transition region, Defect Assessment in Components-fundamentals and Applications ESIS/ECF 9, pp.415-445, 1991.

A. Bakker and R. W. Koers, Prediction of cleavage fracture events in the brittle-ductile transition region of a ferritic steel, Defect Assessment in Components -Fundamentals And Applications, pp.613-632, 1991.

L. Xia and L. Cheng, Transition from ductile tearing to cleavage fracture : A cell-model approach, Int. J. Frac, vol.87, pp.289-306, 1997.

X. Gao, J. Faleskog, and C. Shih, Analysis of ductile to cleavage transition in partthrough crack using a cell model incorporating statistics, Fat. Frac. Eng. Mat. Struct, vol.22, pp.239-250, 1999.

X. Gao, J. Faleskog, and C. F. Shih, Cell model for nonlinear fracture analysis -II

, Fracture-process calibration and verification, Int. J. Frac, vol.89, pp.375-398, 1998.

X. Gao, C. Ruggieri, and R. H. Dodds, Calibration of Weibull stress parameters using fracture toughness data, Int. J. Frac, vol.92, pp.175-200, 1998.

. Bibliographie,

X. Gao and R. H. Dodds, Constraint effects on the ductile-to-brittle transition temperature of ferritic steels : A Weibull stress model, Int. J. Frac, vol.102, pp.43-69, 2000.

F. Minami, M. Iida, W. Takahara, N. Konda, and K. Arimochi, Fracture mechanics analysis of Charpy test results based on the Weibull stress criterion, in : From Charpy to Present Impact Testing, pp.411-418, 2002.

J. Petti and R. H. Dodds, Calibration of the Weibull stress scale parameter, sigma(u), using the master curve, Eng. Frac. Mech, vol.72, pp.91-120, 2005.

J. Petti and R. H. Dodds, Ductile tearing and discrete void effects on cleavage fracture under small-scale yielding conditions, Int. J. Solids Struct, vol.42, pp.3655-3676, 2005.

L. Kaechele and A. Tetelman, A statistical investigation of microcrack formation, Acta Metall, vol.17, pp.463-475, 1969.

E. Kantidis, B. Marini, and A. Pineau, A criterion for intergranular brittle-fracture of a low-alloy steel, Fat. Frac. Eng. Mat. Struct, vol.17, pp.619-633, 1994.

O. Yahya, F. Borit, R. Piques, and A. Pineau, Statistical modelling of intergranular brittle fracture in a low alloy steel, Fat. Frac. Eng. Mat. Struct, vol.21, pp.1485-1502, 1998.

S. Chapuliot, M. H. Lacire, S. Marie, and M. Nédélec, Thermomechanical analysis of thermal shock fracture in the brittle/ductile transition zone. Part I : description of tests, Eng. Frac. Mech, vol.72, pp.661-673, 2005.

C. Jacquemoud, S. Marie, and M. Nédélec, Evaluation of the active plasticity hypothesis as a relevant justification of the warm pre stressing effect, Eng. Frac. Mech, vol.104, pp.16-28, 2013.

T. Yuritzinn, L. Ferry, S. Chapuliot, P. Mongabure, D. Moinereau et al., Illustration of the WPS benefit through BATMAN test series : Tests on large specimens under WPS loading configurations, Eng. Frac. Mech, vol.75, pp.2191-2207, 2008.

F. M. Beremin, Cavity formation from inclusions in ductile fracture of A508 steel, Metallurgical Transactions A, vol.12, pp.723-731, 1981.

P. F. Thomason, Ductile fracture of metals, 1990.

A. Andrieu, A. Pineau, J. Besson, D. Ryckelynck, and O. Bouaziz, Bimodal Beremin type model for brittle fracture of inhomogeneous ferritic steels : Theory and applications, Eng. Frac. Mech, vol.95, pp.84-101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00751911

A. Andrieu, Mécanismes et modélisation multi-échelle de la rupture fragile transet inter-granulaire des aciers pour réacteurs à eau sous pression, en lien avec le vieillissement thermique, 2013.

P. Joly, M. Yescas, and E. Keim, Fracture toughness in the ductile-brittle transition and thermal ageing behavior of decarburized heat affected zone of alloy 52 dissimilar metal welds of nuclear components, Proceedings of the ASME-2014 Pressure Vessel and Piping Conference, 2014.

P. Joly, AREVA Internal report, Thermal ageing by segregation of impurities at grain boundaries in low alloy steels 16MND5-18MND5, Investigation of kinetics model for the prediction of thermal ageing, 2007.

. Mclean, Grain boundaries in metals, 1957.

M. A. Islam, M. Novovic, P. Bowen, and J. F. Knott, Effect of phosphorus segregation on fracture properties of 2.25 Cr-1Mo pressure vessel steel, Journal of Materials Engineering and Performance, vol.12, issue.3, pp.244-248, 2003.

J. Fukakura, M. Asano, M. Kikuchi, and M. Ishikawa, Effect of thermal ageing on fracture toughness of RPV steel, Nuclear engineering and design, vol.144, issue.3, pp.423-429, 1993.

H. Nakata, K. Fujii, K. Fukuya, R. Kasada, and A. Kimura, Grain boundary phosphorus segregation in thermally aged low alloy steels, Journal of Nuclear Science and Technology, vol.43, issue.7, pp.785-793, 2006.

E. Guyot, Vieillissement thermique des aciers faiblement alliés au Mn-Ni-Mo, Phases 1 & 2. Rapport interne AREVA, (NTCW-F 09-3999 fr), 2010.

H. Hänsel and H. J. Grabke, Grain boundary segregation of phosphorus and carbon in ferritic iron, Scripta Metallurgica, vol.20, issue.11, pp.1641-1644, 1986.

M. Guttmann, Thermochemical interactions versus site competition in grain boundary segregation and embrittlement in multicomponent systems, Journal de Physique IV, vol.5, issue.C7, pp.85-96, 1995.
URL : https://hal.archives-ouvertes.fr/jpa-00254000

S. G. Druce, G. Gage, and G. Jordan, Effect of ageing on properties of pressure vessel steels, Acta Metallurgica, vol.34, issue.4, pp.641-652, 1986.

B. L. King and G. Wigmore, Temper embrittlement in a 3% Cr-Mo turbine disc steel, Metallurgical Transactions A, vol.7, issue.11, pp.1761-1767, 1976.

M. Yescas, P. Ould, and J. Massoud, Mechanical properties and thermal aging of austenitic stainless steel homogeneous welds and dissimilar metal welds of french PWR primary circuit piping. Contribution of Materials Investigation and Operating Experience to Light Water NPP's Safety, Performance and Reliability, FONTE-VRAUD 9, 2018.

J. Soulacroix, C. Landron, K. Ayrad, J. Pellevoizin, E. Garbay et al., In-service thermal aging of cast austenitic stainless stainless steel containing a high ferrite fraction in PWR. Contribution of Materials Investigation and Operating Experience to Light Water NPP's Safety, Performance and Reliability, 2018.

D. J. Alexander, J. M. Vitek, and S. David, Long-term aging of type 308 stainless steel welds : Effects on properties and microstructure, 1994.

T. Takeuchi, J. Kameda, Y. Nagai, T. Toyama, Y. Matsukawa et al., Microstructural changes of a thermally aged stainless steel submerged arc BIBLIOGRAPHIE weld overlay cladding of nuclear reactor pressure vessels, Journal of Nuclear Materials. 2012, vol.425, pp.60-64

J. M. Vitek, S. A. David, D. J. Alexander, J. R. Keiser, and R. K. Nanstad, Low temperature aging behavior of type 308 stainless steel weld metal, Acta Metallurgica et Materialia, vol.39, 1991.

E. Barbé, C. Fu, and M. Sauzay, Fracture of coherent interfaces between an fcc metal matrix and the C r 23 C 6 carbide precipitate from first principles, Phys. Rev. Materials, vol.2, p.23605, 2018.

. Ph, M. Destuynder, S. Djaoua, and . Lescure, Quelques remarques sur la mécanique de la rupture élastique, J. Méc. Théor. Appl, vol.2, pp.113-135, 1983.

T. Pardoen and J. W. Hutchinson, An extended model for void growth and coalescence, Journal of the Mechanics and Physics of Solids, vol.48, pp.2467-2512, 2000.

A. Norme and . Nf-a, Mécanique de la rupture : Détermination à partir de la courbe J-?a des valeurs conventionnelles J0 et dJ/da, caractéristiques de la ré-sistance à la déchirure ductile, pp.3-183, 1987.

F. M. Beremin, Experimental and numerical study of the different stages in ductile rupture : Application to crack initiation and stable crack growth, Three dimensional constitutive relations and ductile fracture, pp.185-205, 1981.

U. Eisele and E. Roos, Evaluation of Different Fracture-Mechanical J-Intergal Initiation values with regard to their Usability in the Safety Assessment of Components, Nuclear Engineering and Design, vol.130, pp.237-247, 1991.

A. A. Griffith, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society, vol.221, pp.163-198, 1920.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part I -Yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, vol.99, pp.2-15, 1977.

J. W. Hutchinson, Singular behaviour at the end of a tensile crack in a hardening material, Journal of the Mechanics and Physics of Solids, vol.16, pp.13-31, 1968.

G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, vol.24, pp.361-364, 1957.

F. Mudry, Etude de la rupture ductile et de la rupture par clivage d'acier faiblement alliés, 1982.

J. R. Rice and G. F. Rosengren, Plane strain deformation near crack tip in a power-law hardening material, Journal of the Mechanics and Physics of Solids, vol.16, pp.1-12, 1968.

. Bibliographie,

G. Rousselier, Détermination de la ténacité d'un acier faiblement allié à partir de l'essai Charpy instrumenté, 1987.

F. Beremin, Effect of stress-triaxiality on the ductile tearing and the cleavage fracture of a mild steel, Journal de mécanique appliquée, vol.4, issue.3, pp.327-342, 1980.

D. Miannay, Mécanique de la rupture, Les éditions de physique, p.104, 1995.

B. Sommaire, 1 Étude bibliographique sur les contraintes résiduelles, p.278

, B.1.1 Études générales

, Contraintes résiduelles de soudage dans les LBM inox, p.280

, Détermination expérimentale des contraintes résiduelles de compatibilité dans la couche dure

, Validation numérique des contraintes résiduelles expérimentales, p.284

, Effet des contraintes résiduelles de compatibilité sur les champs mécaniques dans les éprouvettes CT

, Annexe C Complément sur les essais in-situ

C. Sommaire, Protocole expérimental pour les essais in-situ

, Résultats complémentaires sur l'essai sur micro-éprouvette martensite-austénite entaillée

C. ,

C. , Perspectives pour les essais in-situ

, 2-a) avant de couper la soudure avec le micromanipulateur. La rotation de l'aiguille permet par la suite d'usiner le bloc sur toutes ses faces et de donner la forme souhaitée à la micro-éprouvette prismatique (Fig. C.2-b). Par ailleurs, la rotation de l'aiguille permet de donner aux surfaces de l'éprouvette l, p.70

, 3-a). Ensuite, en utilisant les trois moteurs de déplacement piézoélectriques, la tête libre de la micro-éprouvette est insérée dans le mors. Les congés de l'éprouvette sont ensuite soudés aux bords du mors (Fig. C.3-b) avec un dépôt de platine. Dans cette configuration, les soudures sont en compression pendant l'essai, ce qui leur confère une meilleure résistance à la rupture

C. Figure, 3 -(a) Usinage du premier mors dans la plaque en molybdène (b) Insertion de l'éprouvette dans le mors usiné et soudage par

, Une fois que l'éprouvette est fixée dans la plaque en molybdène, le deuxième mors est usiné dans l'extrémité de l'aiguille en tungstène (Fig. C.4-a). Enfin, la dernière étape consiste à insérer le deuxième mors dans la tête libre de la micro-éprouvette à l'aide encore une fois des trois moteurs de déplacement

, un marquage est effectué sur la surface observée de l'éprou-vette afin de mesurer les déformations locales et moyennes pendant l'essai. Ce marquage a consisté en un dépôt de grille de points en platine pour les essais sur éprouvette M et M/A (Fig. C.5-a)

E. , Détermination du facteur ? Pour une taille de fissure a 0 , ? est définie dans l'équation E.5 comme la pente entre la composante plastique de J, J pl , et l'aire plastique A pl

. De, A pl à partir de la simulation numérique de l'essai sur l'éprouvette CT afin de déterminer la valeur de ?

, Pour ce faire, les valeurs d'ouverture plastique v pl (i ) sont tout d'abord calculées à partir de l'équation E.8 et de la courbe force-ouverture numérique

, Dans un deuxième temps, les valeurs de J pl sont déterminées à partir de l'égalité suivante : E.4. DÉPENDANCE DE LA TÉNACITÉ CORRIGÉE AUX PARAMÈTRES DU MODÈLE NUMÉRIQUE couche dure dans le modèle numérique a peu d'influence sur le comportement global de l'éprouvette CT et donc sur les valeurs de ténacités calculées numériquement

F. 2. De-la-déchirure and . Ductile,

, intensité des contraintes et µ est une fonction dépendante de la géométrie de l'éprouvette donnée par les normes ou déterminée par calculs aux éléments finis

, De la même façon que pour la ténacité K IC définie comme valeur critique du facteur d'intensité de contrainte en mécanique élastique linéaire, une valeur critique de J, notée J IC , est souvent définie comme critère d'amorçage pour la déchirure ductile. La courbe J-?a est également utilisée pour décrire la propagation stable de la fissure dans une éprouvette testée. Cette dernière peut être déterminée avec différentes méthodes, certaines nécessitant de nombreux essais pour mesurer les avancées de fissure à chaque essai pour des efforts croissants, d'autres en exploitant un seul essai à décharges partielles

, Sous l'effet d'un chargement, la pointe de fissure subit une forte déformation plastique

, La taille du défaut augmente au départ sans que la propagation de fissure ne s'amorce (figure F.7), ce qui définit la phase d

, L'amorçage de la propagation de la fissure est très difficile à détecter expérimentalement

F. De-ce, ] préconisent de prendre pour valeur de J à l'amorçage, la valeur obtenue pour ?a = 0.2 mm, notée J 0.2 . Cette valeur ténacité à l'amorçage correspond alors à l'intersection de la droite d'émoussement

. Cependant, Eisele et Roos [177] ont montré que J 0.2 surestime la valeur de J à l'amorçage. Ils ont alors défini un nouveau paramètre J i sur la courbe J-?a, correspondant à la valeur de J pour la taille de la zone d'émoussement SZW (Stretch Zone Width). J i est alors la valeur de J pour la valeur de CTOD critique qui correspond à l'amorçage de la fissure