, Energy Demand Research Project: Final Analysis Schleich et al, Energy Policy, vol.61, pp.1097-1106, 2011.

. Schultz, Energy, vol.90, pp.351-358, 2015.

D. Schumatz, T. Inc, and . Shen, Energy Policy, vol.98, pp.19-32, 2014.

. Sullivan,

S. &. Freeman and . Co,

. Sullivan, Nexant Torriti 2012 Energy, vol.44, issue.1, pp.576-583, 2016.

. Ueno, Applied Energy, vol.83, issue.2, pp.166-183, 2006.

. Van-dam, Building Research and Information, vol.38, issue.5, pp.458-469, 2010.

. Van-elburg, Dutch Energy Savings Monitor for the Smart Meter Vassileva et al, Applied Energy, vol.93, pp.575-582, 2012.

. Xu, Energy Procedia, vol.75, pp.2694-2699, 2015.

A. Table, 1: Studies included in analysis General Ecological Scale Questions, 1998.

, I use energy-ecient bulbs

, If I am oered a plastic bag in a store, I take it

, I kill insects with a chemical insecticide

, When I do outdoor sports/activities, I stay within the allowed areas

, I wait until I have a full load before doing my laundry

, I use a cleaner made especially for bathrooms, rather than an all-purpose cleaner

, I reuse my shopping bags

, In the winter, I keep the heat on so that I do not have to wear a sweater

, In winter, I turn down the heat when I leave my house for more than 4 hours. 19. In nearby areas, I use public transportation, ride a bike

, I buy clothing made from all-natural fabrics


, I ride a bicycle, take public transportation, or walk to work or other

, Altruism Questionnaire (Costa and McCrae, 1992) 1. Some people think that I am selsh and egotistical

, I try to be courteous to everyone I meet

, Some people think of me as cold and calculating

, I generally try to be thoughtful and considerate

, I'm not known for my generosity

, Most people I know like me

, I think of myself as a charitable person

J. Falk, A. Goette, L. Human, and D. , I go out of my way to help others if I can. Bibliography Abeler, American Economic Review, vol.101, issue.2, p.47092, 2011.

M. A. Alahmad, P. G. Wheeler, A. Schwer, J. Eiden, and A. Brumbaugh, , 2012.

, A comparative study of three feedback devices for residential real-time energy monitoring, IEEE Transactions on, vol.59, issue.4, 20022013.

B. R. Alexander, Dynamic pricing? Not so fast! A residential consumer perspective, The Electricity Journal, vol.23, issue.6, p.3949, 2010.

H. Allcott, Rethinking real-time electricity pricing, Resource and Energy Economics, vol.33, issue.4, p.820842, 2011.

H. Allcott, Social norms and energy conservation, Journal of Public Economics, vol.95, issue.9, p.10821095, 2011.

F. Allerding and H. Schmeck, Organic smart home: Architecture for energy management in intelligent buildings, Proceedings of the 2011 workshop on Organic computing, p.6776, 2011.

O. Armantier and A. Boly, Framing of incentives and eort provision, International Economic Review, vol.56, issue.3, p.917938, 2015.

S. Z. Attari, M. L. Dekay, C. I. Davidson, D. Bruin, and W. B. , Public perceptions of energy consumption and savings, Proceedings of the National Academy of sciences, vol.107, p.1605416059, 2010.

I. Ayres, S. Raseman, and A. Shih, Evidence from two large eld experiments that peer comparison feedback can reduce residential energy usage, Economics, and Organization, vol.29, issue.5, p.9921022, 2012.

A. Bäckman, The Nordic electricity system as a common-pool resource, 2011.

S. Bager and L. Mundaca, Making`Smart Meters' smarter? Insights from a behavioural economics pilot eld experiment in Copenhagen, Denmark. Energy Research & Social Science, vol.28, p.6876, 2017.

V. S. Balijepalli, V. Pradhan, S. A. Khaparde, and R. M. Shereef, Review of demand response under smart grid paradigm, ISGT2011-India, p.236243, 2011.

C. L. Ballard and S. G. Medema, The marginal eciency eects of taxes and subsidies in the presence of externalities: A computational general equilibrium approach, Journal of Public Economics, vol.52, issue.2, 1993.

G. Barnicoat and M. Danson, The ageing population and smart metering: a eld study of householders' attitudes and behaviours towards energy use in Scotland, Energy Research & Social Science, vol.9, p.107115, 2015.

R. M. Benders, R. Kok, H. C. Moll, G. Wiersma, and K. J. Noorman, New approaches for household energy conservationin search of personal household energy budgets and energy reduction options, Energy Policy, vol.34, issue.18, p.36123622, 2006.

M. Borenstein, L. V. Hedges, J. P. Higgins, and H. R. Rothstein, Introduction to Meta-Analysis, 2009.

S. Borenstein, M. Jaske, and A. Rosenfeld, Dynamic pricing, advanced metering, and demand response in electricity markets, 2002.

K. Boun-my and B. Ouvrard, Nudge and Tax in an Environmental Public Goods Experiment: Does Environmental Sensitivity Matter?, Resource and Energy Economics, 2018.

P. Bradley, A. Coke, and M. Leach, Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider, Energy Policy, vol.98, p.108120, 2016.

J. W. Brehm, A theory of psychological reactance, 1966.

D. Brent, L. Gangadharan, A. Mihut, and M. C. Villeval, Taxation, redistribution and observability in social dilemmas. GATE WP 1726, 2017.
URL : https://hal.archives-ouvertes.fr/halshs-01609971

K. Buchanan, R. Russo, A. , and B. , Feeding back about ecofeedback: How do consumers use and respond to energy monitors?, Energy Policy, vol.73, p.138146, 2014.

K. Buchanan, R. Russo, A. , and B. , The question of energy reduction: The problem (s) with feedback, Energy Policy, vol.77, p.8996, 2015.

J. Burgess and M. Nye, Re-materialising energy use through transparent monitoring systems, Energy Policy, vol.36, issue.12, p.44544459, 2008.

S. Buryk, D. Mead, S. Mourato, and J. Torriti, Investigating preferences for dynamic electricity taris: The eect of environmental and system benet disclosure, Energy Policy, vol.80, 2015.

D. Card and A. B. Krueger, Time-series minimum-wage studies: a metaanalysis, American Economic Review, vol.85, issue.2, p.238243, 1995.

J. Carroll, S. Lyons, D. , and E. , Reducing household electricity demand through smart metering: The role of improved information about energy saving, Energy Economics, vol.45, p.234243, 2014.

T. L. Cherry, S. Kallbekken, and S. Kroll, The impact of trial runs on the acceptability of environmental taxes: Experimental evidence, Resource and Energy Economics, vol.38, p.8495, 2014.

T. Chiang, S. Natarajan, and I. Walker, A laboratory test of the ecacy of energy display interface design, Energy and Buildings, vol.55, p.471480, 2012.

R. B. Cialdini, Crafting normative messages to protect the environment, Current Directions in Psychological Science, vol.12, issue.4, p.105109, 2003.

R. B. Cialdini, R. R. Reno, and C. A. Kallgren, A focus theory of normative conduct: Recycling the concept of norms to reduce littering in public places, Journal of Personality and Social Psychology, vol.58, issue.6, p.1015, 1990.

F. Cochard, M. Willinger, and A. Xepapadeas, Eciency of nonpoint source pollution instruments: An experimental study. Environmental and Resource Economics, vol.30, p.393422, 2005.

B. Corgnet and R. Hernán-gonzález, Revisiting the trade-o between risk and incentives: The shocking eect of random shocks? Management Science, 2018.

D. L. Costa and M. E. Kahn, Energy conservation nudges and environmentalist ideology: Evidence from a randomized residential electricity eld experiment, Journal of the European Economic Association, vol.11, issue.3, p.680702, 2013.

P. T. Costa and R. R. Mccrae, Revised NEO Personality Inventory (NEO-PI-R) and NEO Five Factor Model (NEO-FFI), 1992.

R. Croson and M. Marks, The eect of recommended contributions in the voluntary provision of public goods, Economic Inquiry, vol.39, issue.2, p.238249, 2001.

E. Dal-bó and P. Bó, Do the right thing: The eects of moral suasion on cooperation, Journal of Public Economics, vol.117, p.2838, 2014.

S. Darby, Smart metering: What potential for householder engagement? Building Research & Information, vol.38, p.442457, 2010.

S. Darby, , 2016.

, Smart Grid Handbook, chapter Smart Meters and Residential Customers, p.11191132

S. Darby, The eectiveness of feedback on energy consumption. A Review for DEFRA of the Literature on Metering, Billing and direct Displays, vol.486, 2006.

J. De-quidt, F. Fallucchi, F. Kölle, D. Nosenzo, and S. Quercia, Bonus versus penalty: How robust are the eects of contract framing, Journal of the Economic Science Association, vol.3, issue.2, p.174182, 2017.

J. Delaney and S. Jacobson, Payments or persuasion: Common pool resource management with price and non-price measures. Environmental and Resource Economics, p.126, 2015.

M. A. Delmas, M. Fischlein, and O. I. Asensio, Information strategies and energy conservation behavior: A meta-analysis of experimental studies from, Energy Policy, p.729739, 1975.

E. Dütschke and A. Paetz, Dynamic electricity pricingwhich programs do consumers prefer?, Energy Policy, vol.59, p.226234, 2013.

H. Edelmann and T. Kästner, Cost-benet analysis for the comprehensive use of smart metering, 2013.

. Edf, Grille de prix de l'ore de fourniture d'électricité. Accessed, 2016.

M. Egger, G. D. Smith, M. Schneider, and C. Minder, Bias in metaanalysis detected by a simple, graphical test, The BMJ, vol.315, issue.7109, p.629634, 1997.

K. Ehrhardt-martinez, K. A. Donnelly, and S. Laitner, Advanced metering initiatives and residential feedback programs: A meta-review for household electricity-saving opportunities, American Council for an Energy-Ecient Econ, 2010.

T. Ericson, Households' self-selection of dynamic electricity taris, Applied Energy, vol.88, issue.7, p.25412547, 2011.

A. Essl and S. Jaussi, Choking under time pressure: The inuence of deadline-dependent bonus and malus incentive schemes on performance, Journal of Economic Behavior & Organization, vol.133, p.127137, 2017.

, Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee and the Committee of the Regions. A policy framework for climate and energy in the period from, European Commission, 2014.

, European Commission, 2014.

, Progress on energy eciency in Europe, European Environment Agency, 2016.

, Final energy consumption by sector and fuel, European Environment Agency, 2017.

, Renewable energy in Europe, European Environment Agency, 2017.

, Total greenhouse gas emission trends and projections, European Environment Agency, 2017.

, Trends and pro jections in Europe, European Environment Agency, 2017.

A. Faruqui, The ethics of dynamic pricing, Smart Grid, p.6183, 2012.

A. Faruqui and S. George, Quantifying customer response to dynamic pricing, The Electricity Journal, vol.18, issue.4, p.5363, 2005.

A. Faruqui, D. Harris, and R. Hledik, Unlocking the 53ebillion savings from smart meters in the EU: How increasing the adoption of dynamic taris could make or break the EU's smart grid investment, Energy Policy, vol.38, issue.10, p.62226231, 2010.

A. Faruqui, R. Hledik, and J. Tsoukalis, The power of dynamic pricing, The Electricity Journal, vol.22, issue.3, p.4256, 2009.

A. Faruqui and J. Palmer, Dynamic pricing and its discontents, Regulation, vol.34, p.16, 2011.

A. Faruqui and S. Sergici, Arcturus: international evidence on dynamic pricing, The Electricity Journal, vol.26, issue.7, p.5565, 2013.

A. Faruqui, S. Sergici, and A. Sharif, The impact of informational feedback on energy consumptiona survey of the experimental evidence, Energy, vol.35, issue.4, p.15981608, 2010.

E. Fehr and K. M. Schmidt, A theory of fairness, competition, and cooperation, The Quarterly Journal of Economics, vol.114, issue.3, p.817868, 1999.

P. J. Ferraro and M. K. Price, Using nonpecuniary strategies to inuence behavior: Evidence from a large-scale eld experiment, Review of Economics and Statistics, vol.95, issue.1, p.6473, 2013.

U. Fischbacher, z-tree: Zurich toolbox for ready-made economic experiments, Experimental Economics, vol.10, issue.2, p.171178, 2007.

U. Fischbacher, S. Gächter, and E. Fehr, Are people conditionally cooperative? evidence from a public goods experiment, Economics Letters, vol.71, issue.3, p.397, 2001.

C. Fischer, Feedback on household electricity consumption: A tool for saving energy?, Energy Eciency, vol.1, issue.1, p.79104, 2008.

E. R. Frederiks, K. Stenner, and E. V. Hobman, Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour, Renewable and Sustainable Energy Reviews, 2015.

B. S. Frey and S. Meier, Social comparisons and pro-social behavior, 2004.

, Testing "conditional cooperation" in a eld experiment, American Economic Review, vol.94, issue.5, p.17171722

R. G. Fryer, S. D. Levitt, J. List, and S. Sado, Enhancing the ecacy of teacher incentives through loss aversion: A eld experiment, National Bureau of Economic Research, 2012.

D. Geelen, A. Reinders, and D. Keyson, Empowering the end-user in smart grids: Recommendations for the design of products and services, Energy Policy, vol.61, p.151161, 2013.

T. J. Gerpott and M. Paukert, Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany, Energy Policy, vol.61, p.483495, 2013.

M. Gleerup, A. Larsen, S. Leth-petersen, and M. Togeby, The eect of feedback by text message (sms) and email on household electricity consumption: Experimental evidence, The Energy Journal, p.113132, 2010.

K. Goldsmith and R. Dhar, Incentives framing and task motivation: The intuitive appeal of gains and the actual ecacy of losses, Working Paper, 2011.

A. Goldthau, Rethinking the governance of energy infrastructure: Scale, decentralization and polycentrism, Energy Research & Social Science, vol.1, p.134140, 2014.

L. Gollwitzer, D. Ockwell, B. Muok, A. Ely, A. et al., Rethinking the sustainability and institutional governance of electricity access and minigrids: Electricity as a common pool resource, Energy Research & Social Science, vol.39, p.152161, 2018.

M. Goulden, B. Bedwell, S. Rennick-egglestone, T. Rodden, and A. Spence, Smart grids, smart users? the role of the user in demand side management, Energy Research & Social Science, vol.2, p.2129, 2014.

K. Gram-hanssen, Ecient technologies or user behaviour, which is the more important when reducing households' energy consumption?, Energy Eciency, vol.6, issue.3, p.447457, 2013.

L. A. Greening, D. L. Greene, and C. Diglio, Energy eciency and consumptionthe rebound eecta survey, Energy Policy, p.389401, 2000.

A. Grønhøj and J. Thøgersen, Feedback on household electricity consumption: Learning and social inuence processes, International Journal of Consumer Studies, vol.35, issue.2, p.138145, 2011.

V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella et al., Smart grid technologies: Communication technologies and standards, IEEE transactions on Industrial informatics, vol.7, issue.4, p.529539, 2011.

N. L. Hall, T. D. Jeanneret, and A. Rai, Cost-reective electricity pricing: Consumer preferences and perceptions, Energy Policy, vol.95, p.6272, 2016.

R. L. Hannan, V. B. Homan, and D. V. Moser, Bonus versus penalty: does contract frame aect employee eort?, p.151169, 2005.

T. Hargreaves, M. Nye, and J. Burgess, Making energy visible: A qualitative eld study of how householders interact with feedback from smart energy monitors, Energy Policy, vol.38, issue.10, p.61116119, 2010.

T. Hargreaves, M. Nye, and J. Burgess, Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term, Energy Policy, vol.52, p.126134, 2013.

T. Harries, R. Rettie, M. Studley, K. Burchell, and S. Chambers, Is social norms marketing eective? A case study in domestic electricity consumption, 2013.

, European Journal of Marketing, vol.47, issue.9, p.14581475

G. W. Harrison and J. T. Swarthout, Cumulative prospect theory in the laboratory: A reconsideration, 2016.

D. Heres, S. Kallbekken, and I. Galarraga, Understanding public support for externality-correcting taxes and subsidies: A lab experiment. Basque Centre for Climate Change Working Papers, 2013.

E. Hirst and M. Brown, Closing the eciency gap: Barriers to the ecient use of energy, Resources, Conservation and Recycling, vol.3, issue.4, p.267281, 1990.

H. Holländer, A social exchange approach to voluntary cooperation, p.11571167, 1990.

C. A. Holt and S. K. Laury, Risk aversion and incentive eects, American Economic Review, vol.92, issue.5, p.16441655, 2002.

F. Hong, T. Hossain, and J. A. List, Framing manipulations in contests: A natural eld experiment, Journal of Economic Behavior & Organization, vol.118, p.372382, 2015.

T. Hossain and J. A. List, The behavioralist visits the factory: Increasing productivity using simple framing manipulations, Management Science, vol.58, issue.12, p.21512167, 2012.

S. Houde, A. Todd, A. Sudarshan, J. A. Flora, and K. C. Armel, , 2013.

, Real-time feedback and electricity consumption: A eld experiment assessing the potential for savings and persistence, Energy Journal, vol.34, issue.1, p.87102

A. Imas, S. Sado, and A. Samek, Do people anticipate loss aversion? Management Science, vol.63, p.12711284, 2016.

K. Jessoe, D. Rapson, and J. B. Smith, Smart Grid Handbook, chapter Utilization and Customer Behaviour: Smart Choices for the Smart Grid, p.11591174, 2016.

D. Kahneman, Reference points, anchors, norms, and mixed feelings. Organizational Behavior and Human Decision Processes, vol.51, p.296312, 1992.

D. Kahneman, J. L. Knetsch, and R. H. Thaler, Experimental tests of the endowment eect and the coase theorem, Journal of Political Economy, vol.98, issue.6, p.13251348, 1990.

D. Kahneman, J. L. Knetsch, and R. H. Thaler, Anomalies: The endowment eect, loss aversion, and status quo bias, Journal of Economic Perspectives, vol.5, issue.1, p.193206, 1991.

D. Kahneman and A. Tversky, Prospect theory: An analysis of decisions under risk, Econometrica, vol.47, p.278, 1979.

F. G. Kaiser, A general measure of ecological behavior, Journal of Applied Social Psychology, vol.28, issue.5, p.395422, 1998.

S. Kallbekken, S. Kroll, and T. L. Cherry, Do you not like Pigou, or do you not understand him? Tax aversion and revenue recycling in the lab, Journal of Environmental Economics and Management, vol.62, issue.1, p.5364, 2011.

S. Kaufmann, K. Kuenzel, and M. Loock, Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland, Energy Policy, vol.53, p.229239, 2013.

A. Kavousian, R. Rajagopal, and M. Fischer, Determinants of residential electricity consumption: Using smart meter data to examine the eect of climate, building characteristics, appliance stock, and occupants' behavior, Energy, vol.55, p.184194, 2013.

A. Kendel and N. Lazaric, The diusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities, Journal of Strategy and Management, vol.8, issue.3, p.231244, 2015.

A. R. Khan, A. Mahmood, A. Safdar, Z. A. Khan, and N. A. Khan, Load forecasting, dynamic pricing and dsm in smart grid: A review, Renewable and Sustainable Energy Reviews, vol.54, p.13111322, 2016.

U. Khan and R. Dhar, Licensing eect in consumer choice, Journal of Marketing Research, vol.43, issue.2, p.259266, 2006.

T. Krishnamurti, D. Schwartz, A. Davis, B. Fischho, W. B. De-bruin et al., Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters, Energy Policy, vol.41, p.790797, 2012.

A. Kühberger, The inuence of framing on risky decisions: A meta-analysis, Organizational Behavior and Human Decision Processes, vol.75, issue.1, p.2355, 1998.

P. Layer, S. Feurer, J. , and P. , Perceived price complexity of dynamic energy taris: An investigation of antecedents and consequences, Energy Policy, vol.106, p.244254, 2017.

F. R. Leijten, J. W. Bolderdijk, K. Keizer, M. Gorsira, E. Van-der-wer et al., Factors that inuence consumers' acceptance of future energy systems: The eects of adjustment type, production level, and price, Energy Eciency, vol.7, issue.6, p.973985, 2014.

K. Maréchal and L. Holzemer, Getting a (sustainable) grip on energy consumption: The importance of household dynamics and`habitual practices, 2015.

, Energy Research & Social Science

M. B. Marks, D. E. Schansberg, and R. T. Croson, Using suggested contributions in fundraising for public good, Nonprot Management and Leadership, vol.9, issue.4, p.369384, 1999.

C. Mckerracher and J. Torriti, Energy consumption feedback in perspective: Integrating Australian data to meta-analyses on in-home displays, Energy Eciency, vol.6, issue.2, p.387405, 2013.

E. Melville, I. Christie, K. Burningham, C. Way, and P. Hampshire, The electric commons: A qualitative study of community accountability, Energy Policy, vol.106, p.1221, 2017.

K. Mizobuchi and K. Takeuchi, The inuences of nancial and non-nancial factors on energy-saving behaviour: A eld experiment in japan, Energy Policy, vol.63, p.775787, 2013.

P. G. Moatt, Experimetrics: Econometrics for experimental economics, 2015.

D. Mountain, Hydro One Networks Inc.: TOU Pricing Pilot Project Results, 2008.

N. Murtagh, B. Gatersleben, and D. Uzzell, 20:60:20: Dierences in energy behaviour and conservation between and within households with electricity monitors, PloS one, vol.9, issue.3, p.92019, 2014.

J. Naus, G. Spaargaren, B. J. Van-vliet, and H. M. Horst, Smart grids, information ows and emerging domestic energy practices, Energy Policy, vol.68, p.436446, 2014.

J. P. Nelson and P. E. Kennedy, The use (and abuse) of meta-analysis in environmental and natural resource economics: an assessment, Environmental and Resource Economics, vol.42, issue.3, p.345377, 2009.

A. Nilsson, C. J. Bergstad, L. Thuvander, D. Andersson, K. Andersson et al., Eects of continuous feedback on households' electricity consumption: Potentials and barriers, Applied Energy, vol.122, p.1723, 2014.

J. M. Nolan, P. W. Schultz, R. B. Cialdini, N. J. Goldstein, and V. Griskevicius, Normative social inuence is underdetected, Personality and Social Psychology Bulletin, vol.34, issue.7, p.913923, 2008.

C. Noussair and S. Tucker, Public observability of decisions and voluntary contributions in a multiperiod context, Public Finance Review, vol.35, issue.2, p.176198, 2007.

E. Ostrom, Governing the commons, 1990.

D. S. Parker, D. Hoak, and J. Cummings, , 2008.

G. Pepermans, Valuing smart meters, Energy Economics, vol.45, p.280294, 2014.

C. R. Plott, Externalities and corrective policies in experimental markets, The Economic Journal, vol.93, issue.369, p.106127, 1983.

R. G. Pratt and J. C. Fuller, , 2016.

, Smart Grid Handbook, chapter Demand Response, p.12531292

K. T. Raimi and A. R. Carrico, Understanding and beliefs about smart energy technology, Energy Research & Social Science, vol.12, p.6874, 2016.

G. Raw and D. Ross, Energy demand research project: Final analysis, Report to the Oce of Gas and Electricity Markets, 2011.

M. Rege and K. Telle, The impact of social approval and framing on cooperation in public good situations, Journal of Public Economics, vol.88, issue.7, p.1625, 2004.

, Renewable Energy Policy Network for the 21st Century, 2016.

, Global Status Report. REN21

L. L. Richter and M. G. Pollitt, Which smart electricity service contracts will consumers accept? the demand for compensation in a platform market, 2018.

, Energy Economics, vol.72, p.436450

R. Rosenthal, The le drawer problem and tolerance for null results, 1979.

, Psychological Bulletin, vol.86, issue.3, p.638

A. Samson, R. B. Cialdini, and R. Metcalfe, The Behavioral Economics Guide, Behavioral Science Solutions Ltd, 2018.

O. G. Santin, L. Itard, and H. Visscher, The eect of occupancy and building characteristics on energy use for space and water heating in Dutch residential stock, Energy and Buildings, vol.41, issue.11, p.12231232, 2009.

J. Schleich, M. Klobasa, S. Gölz, and M. Brunner, Eects of feedback on residential electricity demandndings from a eld trial in Austria, Energy Policy, p.10971106, 2013.

C. Schlereth, B. Skiera, and F. Schulz, Why do consumers prefer static instead of dynamic pricing plans? an empirical study for a better understanding of the low preferences for time-variant pricing plans, European Journal of Operational Research, vol.269, issue.3, p.11651179, 2018.

F. L. Schmidt and J. E. Hunter, Methods of meta-analysis: Correcting error and bias in research ndings, 2014.

P. W. Schultz, M. Estrada, J. Schmitt, R. Sokoloski, and N. Silva-send, Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms, vol.90, p.351358, 2015.

P. W. Schultz, J. M. Nolan, R. B. Cialdini, N. J. Goldstein, and V. Griskevicius, The constructive, destructive, and reconstructive power of social norms, Psychological Science, vol.18, issue.5, p.429434, 2007.

M. Sebri, A meta-analysis of residential water demand studies. Environment, Development and Sustainability, vol.16, issue.3, p.499520, 2014.

R. Sloof and C. M. Van-praag, The eect of noise in a performance measure on work motivation: A real eort laboratory experiment, Labour Economics, vol.17, issue.5, p.751765, 2010.

A. Spence, C. Leygue, B. Bedwell, and C. Malley, Engaging with energy reduction: Does a climate change frame have the potential for achieving broader sustainable behaviour, Journal of Environmental Psychology, vol.38, p.1728, 2014.

J. M. Spraggon, L. A. Sobarzo, and J. K. Stranlund, A note on stochastic public revelation and voluntary contributions to public goods, Economics Letters, vol.126, p.144146, 2015.

T. Stanley, S. B. Jarrell, and H. Doucouliagos, , 2010.

, The American Statistician, vol.64, issue.1, p.7077

T. D. Stanley and H. Doucouliagos, Meta-regression analysis in economics and business, vol.5, 2012.

T. D. Stanley and H. Doucouliagos, Neither xed nor random: Weighted least squares meta-analysis, Statistics in Medicine, vol.34, issue.13, p.21162127, 2015.

T. D. Stanley and S. B. Jarrell, Meta-regression analysis: A quantitative method of literature surveys, Journal of Economic Surveys, vol.3, issue.2, p.161170, 1989.

C. Steindl, E. Jonas, S. Sittenthalter, E. Traut-mattausch, and J. Greenberg, Understanding psychological reactance: New developments and ndings, Zeitschrift für Pscyhologie, vol.223, p.205214, 2015.

K. Stenner, E. R. Frederiks, E. V. Hobman, and S. Cook, Willingness to participate in direct load control: The role of consumer distrust, Applied Energy, vol.189, p.7688, 2017.

J. C. Stephens, E. J. Wilson, and T. R. Peterson, Smart Grid (R)Evolution: Electric Power Struggles, 2015.

J. A. Sterne and R. M. Harbord, Funnel plots in meta-analysis, Stata Journal, vol.4, p.127141, 2004.

G. Strbac, Demand side management: Benets and challenges, Energy Policy, vol.36, issue.12, p.44194426, 2008.

Y. Strengers, Negotiating everyday life: The role of energy and water consumption feedback, Journal of Consumer Culture, vol.11, issue.3, p.319338, 2011.

R. Thaler, Toward a positive theory of consumer choice, Journal of Economic Behavior & Organization, vol.1, issue.1, p.3960, 1980.

R. H. Thaler and C. R. Sunstein, Libertarian paternalism, American Economic Review, vol.93, issue.2, p.175179, 2003.

R. H. Thaler and C. R. Sunstein, Nudge: Improving decisions about health, wealth, and happiness, 2008.

J. Torriti, Price-based demand side management: Assessing the impacts of time-of-use taris on residential electricity demand and peak shifting in Northern Italy, Energy, vol.44, issue.1, p.576583, 2012.

T. Ueno, F. Sano, O. Saeki, and K. Tsuji, Eectiveness of an energyconsumption information system on energy savings in residential houses based on monitored data, Applied Energy, vol.83, issue.2, p.166183, 2006.

, Global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development, 2017.

S. Van-dam, C. Bakker, and J. Van-hal, Home energy monitors: Impact over the medium-term, Building Research & Information, vol.38, issue.5, p.458469, 2010.

G. L. Van-houtven, S. K. Pattanayak, F. Usmani, Y. , and J. , What are households willing to pay for improved water access? Results from a metaanalysis, Ecological Economics, vol.136, p.126135, 2017.

I. Vassileva, M. Odlare, F. Wallin, and E. Dahlquist, The impact of consumers' feedback preferences on domestic electricity consumption, Applied Energy, vol.93, p.575582, 2012.

M. A. Velez, J. K. Stranlund, and J. J. Murphy, What motivates common pool resource users? Experimental evidence from the eld, Journal of Economic Behavior & Organization, vol.70, issue.3, p.485497, 2009.

G. P. Verbong, S. Beemsterboer, and F. Sengers, Smart grids or smart users? Involving users in developing a low carbon electricity economy, Energy Policy, vol.52, p.117125, 2013.

F. A. Wolak, Do residential customers respond to hourly prices? Evidence from a dynamic pricing experiment, American Economic Review, vol.101, issue.3, p.8387, 2011.

, WMO Statement on the Status of the Global Climate in 2017, World Meteorological Organization, 2018.

Y. Yoshida, K. Tanaka, and S. Managi, Which dynamic pricing rule is most preferred by consumers? Application of choice experiment, Journal of Economic Structures, vol.6, issue.1, p.4, 2017.

, En revanche ces deux facteurs n'entraînent pas nécessairement une réduction de la demande globale. Or celle-ci est nécessaire pour atteindre le troisième ob jectif de l'UE, à savoir les économies d'énergie. L'eet sur la demande globale dépendra des retombées de l'utilisation d'incitations pour réduire la demande en période de pointe. C'est-à-dire, s'il y aura une réduction prolongée sur les périodes quand la demande est plus faible, L'intégration des EnR dans le système de production d'énergie et la réduction de la demande en période de pointe sont importants pour atteindre les objectifs de réduction de GES, et pour l'intégration des ER, 2011.

. Santin, Bien que de telles réductions puissent être réalisées grâce à l'amélioration de l'ecacité énergé-tique (normes pour les bâtiments à énergie zéro, modernisation des vieux bâtiments et utilisation d'appareils à basse consommation), le comportement des occupants est un facteur important de réduction de la consommation d'énergie en secteur résiden-tiel. Les caractéristiques des bâtiments peuvent représenter 42% de la consommation d'énergie d'un bâtiment, tandis que les caractéristiques et le comportement des occupants ne représentent que, Une réduction de la demande globale fait référence à une diminution de la consommation totale d'énergie à tout moment de la journée ou de l'année, vol.4, 2009.

, En outre, il existe un écart d'ecacité énergétique lorsque les gains d'ecacité réalisés sont inférieurs aux gains prévus. Cet écart est dû d'une part aux barrières comportementales, 1990.

. C'est-À-dire-;-greening, Compte tenu de la variation de la consommation d'énergie et de l'augmentation de la consommation après les gains 201, 2000.

C. Figure, Stratégies de déploiement de compteurs intelligents dans l'UE-27 d'ici 2020 à compter de juillet 2013, vol.2, p.57, 2014.

, A partir de 2013, les pays en vert foncé ont ociellement commencé l'installation de compteurs intelligents, ceux en vert hachuré prévoient d'installer des compteurs intelligents (une fois une décision ocielle a été prise), ceux en rouge ont décidé de ne pas installer des compteurs intelligents après une ACB négative ou non concluante, ceux en orange foncé n'ont pas encore pris une décision et ceux en orange hachuré ont commencé une installation sélective. Par exemple, en Allemagne, l'installation des compteurs intelligents se limite aux maisons neuves ou rénovées, La carte présente les résultats des analyses coûts-avantages (ACB) des États membres, qu'elles soient positives, négatives, non disponibles ou non concluantes, ainsi que l'état d'avancement du déploiement des compteurs intelligents, 2013.