, aussi affecter la susceptibilité de l'alliage à l'anoblissement, vol.168

, une réduction de pH à la surface et qu'une production de H2O2 à de faibles concentrations d'oxygène soient des facteurs contributifs pour l'anoblissement. Par exemple, Dickinson et al. en 1996 [169] ont observé une augmentation du potentiel d'abandon de +350 mV pour l'acier inoxydable 316L. Ce comportement est semblable à celui d'un acier partiellement recouvert d'un dépôt de MnO2. Le potentiel obtenu lors de l'anoblissement est en accord total avec le potentiel de réduction d

, Ces auteurs attribuent alors l'origine des dépôts riches en Mn à des bactéries qui oxydant du Mn qui ont colonisé la surface : biofouling par oxyde de manganèse. 4.2. Etude des matériaux récupérés par microscopie

, Les électrodes ont été étudiés en SEM dans le but de vérifier la présence de biofilms, alors que les hydrogels ont été récupérés dans le but d'étudier leur dégradation. La Figure IV.28 présente l'électrode d'Inox 2205 du bac témoin examiné en MEB à différents grossissements et différentes zones. La surface d'acier immergée dans le bac témoin présente une surface rugueuse (Figure IV.28(a)). La rugosité de l'électrode est due à la présence d'une structure organique et d'une cristallisation (cristaux NaCl) bien visibles dans les Figures IV.28(c) et (d). La structure organique provient des organismes marins formant le biofilm. De même, Les hydrogels ainsi que les électrodes utilisés dans l'expérience précédente ont été récupérés après les 30 jours d'immersion

, Le milieu marin contenant une infinité de diatomées [170], nous avons pu identifier que quelques-unes d'après la forme et la taille de chacune. La diatomée observée sur la Figure IV, Les diatomées observées sont encerclées en bleu alors que les bactéries en rouge, vol.30

, Elle appartient à la classe Diatomophyceae et la famille Hemidiscaceae

, La diatomée observée sur la Figure IV.30(e) est appelé Rhizosoleniineae. Elle appartient à la classe Bacillariophyceae et la famille Rhizosoleniaceae, vol.172

, Re" fe" rences!

L. Hall-stoodley, J. W. Costerton, and P. Stoodley, Bacterial biofilms: From the natural environment to infectious diseases, Nat. Rev. Microbiol, vol.2, issue.2, pp.95-108, 2004.

I. Doghri, Interactions moléculaires entre microorganismes au sein de biofilms en milieu marin : mise en évidence de biomolécules antibiofilm, 2018.

T. Miko?ajczyk and D. Wo?owska-czapnik, Multifunctional alginate fibres with antibacterial properties, Fibres Text. East. Eur, vol.13, issue.3, pp.35-40, 2005.

M. A. Raza, Z. Kanwal, A. Rauf, A. N. Sabri, S. Riaz et al., Size-and ShapeDependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes, Nanomater, vol.6, issue.4, 2016.

A. Kumar and M. , Design and in vitro investigation of nanocomposite hydrogel based in situ spray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry, J. Appl. Polym. Sci, vol.133, issue.14, pp.1-14, 2016.

M. Torabfam and H. Jafarizadeh-malmiri, Microwave-enhanced silver nanoparticle synthesis using chitosan biopolymer: Optimization of the process conditions and evaluation of their characteristics, Green Process. Synth, 2017.

A. Ali, I. U. Haq, J. Akhtar, M. Sher, N. Ahmed et al., Synthesis of Ag-NPs impregnated cellulose composite material: its possible role in wound healing and photocatalysis, IET Nanobiotechnology, vol.11, issue.4, pp.477-484, 2017.

L. Cordero-arias, Electrophoretic deposition of ZnO/alginate and ZnO-bioactive glass/alginate composite coatings for antimicrobial applications, Mater. Sci. Eng. C, vol.55, pp.137-144, 2015.

M. Auffan, C. Santaella, W. Achouak, A. Thill, and M. Wiesner, Encyclopedia of Nanotechnology, 2016.

H. Ma, P. L. Williams, and S. A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles -A review, Environ. Pollut, vol.172, pp.76-85, 2013.

T. J. Brunner, In Vitro Cytotoxicity of Oxide Nanoparticles : Comparison to Asbestos , Silica , and the Effect of Particle Solubility In Vitro Cytotoxicity of Oxide Nanoparticles : Comparison to Asbestos , Silica , and the Effect of Particle Solubility ?, Environ. Sci. Technol, vol.40, issue.14, pp.4374-4381, 2006.

J. Pandiarajan and M. Krishnan, Properties, synthesis and toxicity of silver nanoparticles, Environ. Chem. Lett, vol.15, issue.3, pp.387-397, 2017.

D. M. Yebra, S. Kiil, and K. Dam-johansen, Antifouling technology -Past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coatings, vol.50, issue.2, pp.75-104, 2004.

D. Daehne, C. Fürle, A. Thomsen, B. Watermann, and M. Feibicke, Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission, Integr. Environ. Assess. Manag, vol.13, issue.5, pp.892-905, 2017.

J. P. Maréchal and C. Hellio, Challenges for the development of new non-toxic antifouling solutions, Int. J. Mol. Sci, vol.10, issue.11, pp.4623-4637, 2009.

B. Antizar-ladislao, Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review, Environ. Int, vol.34, issue.2, pp.292-308, 2008.

R. Trepos, Innovative Approaches for the Development of New Non-Toxic Antifouling Solutions, 2016.

M. Lehaitre and C. Compère, Real-Time Coast. Obs. Syst. Mar. Ecosyst. Dyn. Harmful Algal Bloom. Theory, Instrum. Model, pp.463-493, 2008.

Y. H. An and R. J. Friedman, Concise review of mechanisms of bacterial adhesion to biomaterial surfaces, J. Biomed. Mater. Res, vol.43, issue.3, pp.338-348, 1998.

J. D. Bryers, Medical biofilms, Biotechnol. Bioeng, vol.100, issue.1, pp.1-18, 2008.

, Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings, Prog. Org. Coatings, vol.50, issue.2, pp.75-104, 2004.

S. L. Percival and D. W. Wiliams, Escherichia coli, Microbiology of Waterborne Diseases, pp.89-117, 2014.

J. Y. Lim, J. Yoon, and C. J. Hovde, A brief overview of Escherichia coli O157:H7 and its plasmid O157, J. Microbiol. Biotechnol, vol.20, issue.1, pp.5-14, 2010.

L. M. Schlecht, Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue, 2015.

M. Masalha, I. Borovok, R. Schreiber, Y. Aharonowitz, and G. Cohen, Analysis of Transcription of the Staphylococcus aureus Aerobic Class Ib and Anaerobic Class III Ribonucleotide Reductase Genes in Response to Oxygen, J. Bacteriol, vol.183, issue.24, pp.7260-7272, 2001.

C. M. Nichols, J. P. Bowman, and J. Guezennec, Effects of incubation temperature on growth and production of exopolysaccharides by an antarctic sea ice bacterium grown in batch culture, Appl. Environ. Microbiol, vol.71, issue.7, pp.3519-3542, 2005.

R. H. Vreeland, C. D. Litchfield, E. L. Martin, and E. Elliot, Halomonas elongata, a New Genus and Species of Extremely Salt-Tolerant Bacteria, Int. J. Syst. Bacteriol, vol.30, issue.2, pp.485-495, 1980.

D. L. Tison and R. J. Seidler, Vibrio aestuarianus: a New Species from Estuarine Waters and Shellfish, Int. J. Syst. Bacteriol, vol.33, issue.4, pp.699-702, 1983.

M. Travers, Several strains, one disease: experimental investigation of Vibrio aestuarianus infection parameters in the Pacific oyster, Crassostrea gigas, Vet. Res, vol.48, p.32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01528062

L. Yannick, Caractérisation de la virulence d'une souche de Vibrio aestuarianus, pathogène de l'huître Crassostrea gigas, 2006.

B. Austin and X. Zhang, Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates, Lett. Appl. Microbiol, vol.43, issue.2, pp.119-124, 2006.

T. Sawabe, Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species, Int. J. Syst. Evol. Microbiol, vol.50, issue.1, pp.265-271, 2000.

J. Legrand, Les microalgues : pour quoi faire ?, p.18, 2015.

, Définition et caractéristique d'une micro-algue, p.13, 2018.

M. Mejdand?i?, S. Bosak, and Z. Ljube?i?, Blue Diatoms: Global Phenomenon of ?Greening? in Shellfish and Record of Planktonic Haslea Species in the South Adriatic Sea, Nase More, vol.64, issue.1, pp.38-44, 2017.

K. Batyrova, A. Gavrisheva, E. Ivanova, J. Liu, and A. Tsygankov, Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae chlorella sp, Int. J. Mol. Sci, vol.16, issue.2, pp.2705-2716, 2015.

. Nrel, A look back at the U. S. Department of Energy's aquatic species program: biodiesel from algae, vol.328, p.1998

W. Daniels, Aquaculture Production Systems, 2013.

A. L. Manuell, J. Quispe, and S. P. Mayfield, Structure of the Chloroplast Ribosome: Novel Domains for Translation Regulation, PLoS Biol, vol.5, issue.8, p.209, 2007.

G. D. Bixler and B. Bhushan, Review article: Biofouling: Lessons from nature, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.370, pp.2381-2417, 1967.

K. Lovetri, P. Gawande, N. Yakandawala, and S. Madhyastha, Biofouling and AntiFouling of Medical Devices, Biofouling: Types, Impact and Anti-Fouling, pp.105-127, 2010.

J. Chan and S. Wong, Biofouling : types, impact, and anti-fouling, 2010.

M. S. Smeltzer, C. L. Nelson, and R. P. Evans, Biofilms and Aseptic Loosening, The Role of Biofilms in Device-Related Infections, pp.57-74, 2008.

J. Ntienoue, Étude , caractérisation et suivi électrochimique de la surface de l 'acier inoxydable 254 SMO en milieux aqueux naturels amazoniens, 2013.

N. and L. Bozec, Réaction de réduction de l'oxygène sur les aciers inoxydables en eau de mer naturelle. Influence du biofilm sur les processus de corrosion, 2000.

L. Jessem, Influence des réactions enzymatiques sur le comportement électrochimique de l'acier inoxydable EN X2CrNiMo17-11-2 (AISI 316L) en biocorrosion: Rôle des processus interfaciaux sur la modification du film passif, 2015.

J. Liao, H. Fukui, T. Urakami, and H. Morisaki, Effect of biofilm on ennoblement and localized corrosion of stainless steel in fresh dam-water, Corros. Sci, vol.52, issue.4, pp.1393-1403, 2010.

K. M. Ismail, A. Jayaraman, T. K. Wood, and J. C. Earthman, The influence of bacteria on the passive film stability of 304 stainless steel, Electrochim. Acta, vol.44, issue.26, pp.4685-4692, 1999.

N. L. Bozec, C. Compère, M. Her, A. Laouenan, D. Costa et al., Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater, Corros. Sci, vol.43, issue.4, pp.765-786, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01770132

C. Compere, P. Jaffre, and D. Festy, Aging of type 316L stainless steel in seawater: Relationship between open-circuit potential, exposure time, and fitting potential, Corrosion, vol.52, issue.7, pp.496-501, 1996.

B. Little, J. Lee, and R. Ray, MICROBIOLOGICALLY INFLUENCED CORROSION: GLOBAL PHENOMENA, LOCAL MECHANISMS, 2011.

D. Thierry, N. Larché, C. Leballeur, S. L. Wijesinghe, and T. Zixi, Corrosion potential and cathodic reduction efficiency of stainless steel in natural seawater, Mater. Corros, vol.66, issue.5, pp.453-458, 2015.

F. Xu, J. Duan, C. Lin, and B. Hou, Influence of Marine Aerobic Biofilms on Corrosion of 316L Stainless Steel, J. Iron Steel Res. Int, vol.22, issue.8, pp.715-720, 2015.

E. Huttunen-saarivirta, P. Rajala, M. Marja-aho, J. Maukonen, E. Sohlberg et al., Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades, Bioelectrochemistry, vol.120, pp.27-42, 2018.

N. G. Reed, The history of ultraviolet germicidal irradiation for air disinfection, Public Health Rep, vol.125, issue.1, pp.15-27, 2010.

. Lenntech, UV Systems -Lenntech hydroponic, p.18, 2018.

&. Gom'air, . Système-d'ultrasons-pour, and . Le-nettoyage, , p.19, 2018.

C. M. Cooney, Triclosan comes under scrutiny, Environ. Health Perspect, vol.118, issue.6, p.242, 2010.

R. L. Calderon, The epidemiology of chemical contaminants of drinking water, Food Chem. Toxicol, vol.38, pp.13-20, 2000.

R. G. Kleijnen, The Chlorine Dilemma Final Report, p.18, 2011.

, Guidelines for Drinking-water Quality THIRD EDITION INCORPORATING THE FIRST AND SECOND ADDENDA Volume 1 Recommendations Geneva 2008 WHO Library Cataloguing-in-Publication Data, 2008.

S. Venkatnarayanan, P. Murthy, R. Kirubagaran, and V. P. Venugopalan, Chlorine dioxide as an alternative antifouling biocide for cooling water systems: Toxicity to larval barnacle Amphibalanus reticulatus (Utinomi), Mar. Pollut. Bull, vol.124, issue.2, pp.803-810, 2017.

D. Boudjellaba, La mesure des sous-produits de chloration dans les eaux du golfe de Fos, 2014.

M. Barthomeuf, Bactericidal efficiency of UVA-active titanium dioxide thin layers on bacteria from food industry environments, Mater. Technol, vol.32, issue.13, pp.782-791, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01572020

P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum et al., Bactericidal activity of photocatalytic TiO(2) reaction: toward an understanding of its killing mechanism, Appl. Environ. Microbiol, vol.65, issue.9, pp.4094-4102, 1999.

S. Dalhatou, Application des techniques d ' oxydation avancée pour la dépollution des effluents organiques dans les eaux de rejets industriels : Cas des savonneries, 2014.

, Les produits biocides | Anses -Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail

S. Rouillon, S. Ourdanabia, S. Jamart, C. Hernandez, and O. Meunier, Étude de l'efficacité d'un produit détergent désinfectant pour sols et surfaces sur les souches bactériennes isolées à partir de l'environnement hospitalier, Pathol. Biol, vol.54, issue.6, pp.325-330, 2006.

R. J. Ross and F. P. Forest-service, Wood handbook : wood as an engineering material, 2010.

S. Palanti and E. Feci, A Wood Preservative Based on Commercial Silica Nanodispersions and Boric Acid against Fungal Decay through Laboratory and Field Tests, Open J. For, vol.03, issue.02, pp.57-61, 2013.

A. Fonchy, Comment mieux contrôler avec moins de Biocides ?, 2016.

E. International, &. Cahiers-d'optique-oculaire, and . Pdf, , 1997.

, ANTIBIOTIQUES, p.18, 2007.

L. Drago, L. Cappelletti, E. De, L. Vecchi, S. Pignataro et al., Antiadhesive and antibiofilm activity of hyaluronic acid against bacteria responsible for respiratory tract infections, APMIS, vol.122, issue.10, pp.1013-1019, 2014.

W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim et al., Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol, vol.74, issue.7, pp.2171-2178, 2008.

M. C. Straccia, G. G. Ayala, I. Romano, and P. Laurienzo, Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity, Carbohydr. Polym, vol.125, pp.103-112, 2015.

I. Malagurski, S. Levic, M. Mitric, V. Pavlovic, and S. Dimitrijevic-brankovic, Bimetallic alginate nanocomposites: New antimicrobial biomaterials for biomedical application, Mater. Lett, vol.212, pp.32-36, 2018.

R. Y. Pelgrift and A. J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Adv. Drug Deliv. Rev, vol.65, pp.1803-1815, 2013.

I. Capek, Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions, Adv. Colloid Interface Sci, vol.110, issue.1-2, pp.49-74, 2004.

M. Kong, X. G. Chen, K. Xing, and H. J. Park, Antimicrobial properties of chitosan and mode of action: A state of the art review, Int. J. Food Microbiol, vol.144, issue.1, pp.51-63, 2010.

L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids), J. Nanoparticle Res, vol.9, issue.3, pp.479-489, 2007.

P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde, Metal Oxide Nanoparticles as Bactericidal Agents, Langmuir, vol.18, issue.17, pp.6679-6686, 2002.

Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biomed. Mater. Res, vol.52, issue.4, pp.662-668, 2000.

S. Pal, Y. K. Tak, and J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol, vol.73, issue.6, pp.1712-1732, 2007.

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chemie Int. Ed, vol.44, issue.22, pp.3358-3393, 2005.

, Zeoform: The eco-friendly building material of the future?, p.20, 2018.

M. Constantin, I. Asmarandei, V. Harabagiu, L. Ghimici, P. Ascenzi et al., Removal of anionic dyes from aqueous solutions by an ion-exchanger based on pullulan microspheres, Carbohydr. Polym, vol.91, issue.1, pp.74-84, 2013.

R. J. Pinto, M. C. , C. Pascoal, and T. Trindade, Composites of Cellulose and Metal Nanoparticles, Nanocomposites -New Trends Dev, 2012.

P. Serp, M. Corrias, and P. Kalck, Carbon nanotubes and nanofibers in catalysis, Appl. Catal. A Gen, vol.253, issue.2, pp.337-358, 2003.

N. S. Capanema, Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair, J. Appl. Polym. Sci, vol.135, issue.6, p.45812, 2018.

E. M. De and A. Braz, Modified chitosan-based bioactive material for antimicrobial application: Synthesis and characterization, Int. J. Biol. Macromol, vol.117, pp.640-647, 2018.

Z. Li, W. Hu, Y. Zhao, L. Ren, and X. Yuan, Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes, Colloids Surfaces B Biointerfaces, vol.169, pp.151-159, 2018.

H. No, N. Y. Park, S. H. Lee, and S. P. Meyers, Antibacterial activity of chitosans and chitosan oligomers with different molecular weights

G. Tsai, M. Tsai, J. Lee, and M. Zhong, Effects of Chitosan and a LowMolecular-Weight Chitosan on Bacillus cereus and Application in the Preservation of Cooked Rice, 2006.

N. Liu, Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli, 2006.

G. Georges, Matériaux hybrides à base de nanoparticules magnétiques et d'alginate Application en tant que bioadsorbant spécifique d'ions métalliques, 2018.

J. Minghou, W. Yujun, X. Zuhong, G. Yucai, I. It et al., Studies on the M :G ratios in alginate, pp.4-6, 1955.

D. E. Clark, H. C. Green, and C. Kelco, Alginic acid and process of making same, 1936.

M. Dumont, Élaboration et caractérisation de fibres mixtes Alginate / Chitosane, 2016.

K. Niemelä and E. Sjöström, Alkaline degradation of alginates to carboxylic acids, Carbohydr. Res, vol.144, issue.2, pp.241-249, 1985.

A. Haug and O. Smidsrød, Selectivity of Some Anionic Polymers for Divalent Metal Ions, Acta Chem. Scand, vol.24, pp.843-854, 1970.

K. Y. Lee and D. J. Mooney, Alginate: Properties and biomedical applications, Prog. Polym. Sci, vol.37, issue.1, pp.106-126, 2012.

A. Parveen, T. Ali, M. Wahid, and S. Rao, Facile biological approach for immobilization, physicochemical characterization and antibacterial activity of noble metals nanocomposites, Mater. Lett, vol.148, pp.86-90, 2015.

S. Shankar, L. F. Wang, and J. W. Rhim, Preparations and characterization of alginate/silver composite films: Effect of types of silver particles, Carbohydr. Polym, vol.146, pp.208-216, 2016.

N. Eghbalifam, M. Frounchi, and S. Dadbin, Antibacterial silver nanoparticles in polyvinyl alcohol/sodium alginate blend produced by gamma irradiation, Int. J. Biol. Macromol, vol.80, pp.170-176, 2015.

Y. Zhang, Q. Ma, F. Critzer, P. M. Davidson, and Q. Zhong, Physical and antibacterial properties of alginate films containing cinnamon bark oil and soybean oil, LWT -Food Sci. Technol, vol.64, issue.1, pp.423-430, 2015.

C. Acharya, C. R. Panda, P. K. Bhaskara, A. Sasmal, S. Shekhar et al., Physicochemical and antimicrobial properties of sodium alginate/gelatin-based silver nanoformulations, Polym. Bull, vol.74, issue.3, pp.689-706, 2017.

E. Diler, Étude de la corrosion atmosphérique du zinc et zinc-magnésium , en milieu marin, 2014.

G. Binnig and C. F. Quate, Atomic Force Microscope, Phys. Rev. Lett, vol.56, issue.9, pp.930-933, 1986.

F. Détrez, Nanomécanismes de Déformation des Polymères Semi-Cristallins : Etude In Situ par Microscopie à Force Atomique et Modélisation, 2008.

T. J. Moravec and T. W. Orent, Electron spectroscopy of ion beam and hydrocarbon plasma generated diamondlike carbon films, J. Vac. Sci. Technol, vol.18, issue.2, pp.226-228, 1981.

R. Trepos, Antifouling compounds from the sub-arctic ascidian synoicum pulmonaria: Synoxazolidinones A and C, pulmonarins A and B, and synthetic analogues, J. Nat. Prod, vol.77, issue.9, pp.2105-2113, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103850

J. F. Briand, Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites, Biofouling, vol.28, issue.5, pp.453-463, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01362664

L. D. Chambers, Investigation of Chondrus crispus as a potential source of new antifouling agents, Int. Biodeterior. Biodegrad, vol.65, issue.7, pp.939-946, 2011.

L. Jiao, Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc-loaded montmorillonite, 2017.

, Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy, Polym. Degrad. Stab, vol.86, issue.1, pp.1-9, 2004.

R. S. Vieira, M. L. Oliveira, E. Guibal, E. Rodríguez-castellón, and M. M. Beppu, Copper, mercury and chromium adsorption on natural and crosslinked chitosan films: An XPS investigation of mechanism, Colloids Surfaces A Physicochem. Eng. Asp, vol.374, issue.1-3, pp.108-114, 2011.

Y. C. Kwan, G. M. Ng, and C. H. Huan, Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum, Thin Solid Films, vol.590, pp.40-48, 2015.

M. Deschatre, B. Lescop, C. S. Colin, F. Ghillebaert, J. Guezennec et al., Characterization of exopolysaccharides after sorption of silver ions in aqueous solution, J. Environ. Chem. Eng, vol.3, issue.1, pp.210-216, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01183841

X. Yu, Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals, J. Environ. Sci. (China), vol.25, issue.5, pp.933-943, 2013.

G. Ertl, R. Hierl, H. Knözinger, N. Thiele, and H. P. Urbach, XPS study of copper aluminate catalysts, Appl. Surf. Sci, vol.5, issue.1, pp.49-64, 1980.

E. Cano, C. L. Torres, and J. M. Bastidas, An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity, Mater. Corros, vol.52, issue.9, pp.667-676, 2001.

X. F. Sun, C. Liu, Y. Ma, S. G. Wang, B. Y. Gao et al., Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge, Colloids Surfaces B Biointerfaces, vol.82, issue.2, pp.456-462, 2011.

M. C. Biesinger, L. W. Lau, A. R. Gerson, R. S. Smart, and Z. , Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides, Appl. Surf. Sci, vol.257, issue.3, pp.887-898, 2010.

K. T. Shalumon, K. H. Anulekha, S. Nair, S. Nair, K. P. Chennazhi et al., Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings, Int. J. Biol. Macromol, vol.49, pp.247-254, 2011.

W. Wu, Rhelogical and antibacterial performance of sodium alginate/zinc oxide composite coating for cellulosic paper, Colloids Surfaces B Biointerfaces, vol.167, pp.538-543, 2018.

L. Trandafiloví-c-a, D. K. Bo?aní, S. Dimitrijeví-c-brankoví, A. S. Luyt, V. Djokoví et al., Fabrication and antibacterial properties of ZnO-alginate nanocomposites, Carbohydr. Polym, vol.88, pp.263-269, 2011.

R. Jayakumar, P. Kumar, A. Mohandas, V. Lakshmanan, and R. Biswas, Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds, Int. J. Nanomedicine, vol.10, p.53, 2015.

H. R. Oxley, P. H. Corkhill, J. H. Fitton, and B. J. Tighe, Macroporous hydrogels for biomedical applications: methodology and morphology, vol.14, p.9, 1993.

D. Zhitomirsky, J. A. Roether, A. R. Boccaccini, and I. Zhitomirsky, Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications, J. Mater. Process. Technol, vol.209, issue.4, pp.1853-1860, 2009.

S. Seuss, M. Lehmann, and A. R. Boccaccini, Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass-Chitosan Composite Coatings, pp.12231-12242, 2014.

J. Karbowniczek, Electrophoretic deposition of organic / inorganic composite coatings containing ZnO nanoparticles exhibiting antibacterial properties, vol.77, pp.780-789, 2017.

M. Szklarska, G. Dercz, W. Simka, K. Dudek, and O. Starczewska, Alginate Biopolymer Coatings Obtained by Electrophoretic Deposition on Ti15Mo Alloy, vol.125, pp.919-923, 2014.

I. Santacruz, C. A. Gutiérrez, M. I. Nieto, and R. Moreno, Application of alginate gelation to aqueous tape casting technology, Mater. Res. Bull, vol.37, issue.4, pp.671-682, 2002.

F. Yokoyama, T. Fujino, K. Kimura, Y. Yamashita, K. Nagata et al., Formation of optically anisotropic alginic acid gels under dc electric fields, 1998.

J. García-torres, C. Gispert, E. Gómez, and E. Vallés, Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms, Phys. Chem. Chem. Phys, vol.17, issue.3, pp.1630-1636, 2015.

Q. Chen, L. Cordero-arias, J. A. Roether, S. Cabanas-polo, S. Virtanen et al., Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition, Surf. Coat. Technol, vol.233, pp.49-56, 2013.

A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mcintyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. interface Anal, vol.36, pp.1564-1574, 2004.

M. Salou, B. Lescop, S. Rioual, A. Lebon, J. Ben-youssef et al., Initial oxidation of polycrystalline Permalloy surface, Surf. Sci, vol.602, issue.17, pp.2901-2906, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01946229

N. M. Stark and L. M. Matuana, Surface chemistry changes of weathered HDPE/woodflour composites studied by XPS and FTIR spectroscopy, Polym. Degrad. Stab, vol.86, issue.1, pp.1-9, 2004.

P. X. Sheng, Y. P. Ting, J. P. Chen, and L. Hong, Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms, J. Colloid Interface Sci, vol.275, issue.1, pp.131-141, 2004.

D. C. Dominguez, Calcium signalling in bacteria, Mol. Microbiol, vol.54, issue.2, pp.291-297, 2004.

T. Onoda, J. Enokizono, H. Kaya, A. Oshima, P. Freestone et al., Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7, J. Bacteriol, vol.182, issue.5, pp.1419-1422, 2000.

S. Ghayempour, M. Montazer, and M. Mahmoudi-rad, Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: A low cytotoxic photocatalyst with antibacterial and antifungal properties, Carbohydr. Polym, vol.136, pp.232-241, 2016.

M. Safaei and M. Taran, Optimized synthesis, characterization, and antibacterial activity of an alginate-cupric oxide bionanocomposite, J. Appl. Polym. Sci, vol.135, issue.2, p.45682, 2018.

J. Díaz-visurraga, C. Daza, C. Pozo, A. Becerra, C. Plessing et al., Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy, Int. J. Nanomedicine, vol.7, pp.3597-612, 2012.

U. Zanzen, L. Bovenkamp-langlois, W. Klysubun, J. Hormes, and ·. Prange, The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study, vol.200, pp.401-412, 2018.

M. Rosenberg, H. Vija, A. Kahru, C. W. Keevil, and A. Ivask, Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces, Sci. Rep, vol.8, issue.1, p.8172, 2018.

R. C. Selahattin-atmaca and K. Gul, The effect of zinc on microbial growth, J. iMedical Sci, vol.28, pp.595-597, 1998.

U. Siemann, Solvent cast technology -a versatile tool for thin film production, Prog. colloid Polym. Sci, vol.130, pp.1-14, 2005.

G. Germanos, S. Youssef, M. Abboud, W. Farah, B. Lescop et al., Diffusion and agglomeration of iron oxide nanoparticles in magnetic calcium alginate beads initiated by copper sorption, J. Environ. Chem. Eng, vol.5, issue.4, pp.3727-3733, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01700642

M. Matyash, F. Despang, C. Ikonomidou, and M. Gelinsky, Swelling and Mechanical Properties of Alginate Hydrogels with Respect to Promotion of Neural Growth, Tissue Eng. Part C Methods, vol.20, issue.5, pp.401-411, 2014.

A. Mcallister, Continuous Extrusion of Homogeneous and Heterogeneous Hydrogel Tubes, pp.799-801, 2013.

I. Marinho and C. Bjørge, Degradation of Calcium Gels of Alginate and Periodate Oxidised Alginate, 2016.

L. Benning, Assessment of hydrogels for bioprinting of endothelial cells, J. Biomed. Mater. Res. Part A, vol.106, issue.4, pp.935-947, 2018.

N. Golafshan, R. Rezahasani, M. Esfahani, M. Kharaziha, and S. N. Khorasani, Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material, Carbohydr. Polym, vol.176, pp.392-401, 2017.

T. and L. Norcy, Étude et valorisation de composés naturels ou d'analogues de synthèse contrôlant l'adhésion de salissures marines Déplier/Plier

M. P. Schultz, J. A. Finlay, M. E. Callow, and J. A. Callow, A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms, Biofouling, vol.15, issue.4, pp.243-251, 2000.

K. Zecher, A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity, J. Microbiol. Methods, vol.146, pp.104-114, 2018.

G. Borkow and J. Gabbay, Copper as a Biocidal Tool, Curr. Med. Chem, vol.12, p.2163, 2005.

E. Pinto, T. C. Sigaud-kutner, M. A. Leitao, O. K. Okamoto, D. Morse et al., Heavy metal-induced oxidative stress in algae, J. Phycol, vol.39, issue.6, pp.1008-1018, 2003.

D. Amsterdam, Susceptibility testing of antimicrobials in liquid media, Antibiot. Lab. Med, pp.52-111, 1996.

S. Gagneux-moreaux, Les métaux ( Cd , Cu , Pb et Zn ) dans la production des microalgues sur différents milieux de culture : biodisponibilité , bioaccumulation et impact physiologique, 2006.

F. Faÿ, G. Horel, I. Linossier, and K. Vallée-réhel, Effect of biocidal coatings on microfouling: In vitro and in situ results, Prog. Org. Coatings, vol.114, pp.162-172, 2018.

W. Wang, X. Li, J. Wang, H. Xu, and J. Wu, Influence of biofilms growth on corrosion potential of metals immersed in seawater, Mater. Corros, vol.55, issue.1, pp.30-35

E. Bardal, J. M. Drugli, and O. Gartland, The behaviour of corrosion-resistant steels in seawater : a review, 1993.

B. J. Little, J. S. Lee, and R. I. Ray, The influence of marine biofilms on corrosion: A concise review, Electrochim. Acta, vol.54, issue.1, pp.2-7, 2008.

F. J. Martin, S. C. Dexter, M. Strom, and E. J. Lemieux, Relations Between Seawater Ennoblement Selectivity and Passive Film Semiconductivity on Ni-Cr-Mo Alloys, Corros, issue.07255, p.7255, 2007.

W. H. Dickinson and F. Caccavo, The Ennoblement of Stainless Steel By Manganic Oxide Biofouling, Corros. Sci, vol.38, issue.8, pp.1407-1422, 1996.

A. Mcgaraghan, Phytoplankton Identification, p.18, 2016.

, Factsheet -Actinocyclus exiguus

, Sustain.no: Suborder: Rhizosoleniineae