M. Balwani and R. J. Desnick, The porphyrias: advances in diagnosis and treatment, Blood, vol.120, pp.4496-504, 2012.

D. F. Bishop, V. Tchaikovskii, A. V. Hoffbrand, M. E. Fraser, and S. Margolis, X-linked sideroblastic anemia due to carboxyl-terminal ALAS2 mutations that cause loss of binding to the ?-subunit of succinyl-CoA synthetase (SUCLA2), J Biol Chem, vol.287, pp.28943-55, 2012.

C. Delaby, J. To-figueras, J. C. Deybach, R. Casamitjana, H. Puy et al., Role of two nutritional hepatic markers (insulin-like growth factor 1 and transthyretin) in the clinical assessment and follow-up of acute intermittent porphyria patients, J Intern Med, vol.266, pp.277-85, 2009.

M. Demasi, C. A. Penatti, R. Delucia, and E. J. Bechara, The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implication in neuropsychiatric manifestations in porphyries, Free Radic Biol Med, vol.20, pp.291-300, 1996.

J. K. Dowman, B. K. Gunson, D. F. Mirza, S. R. Bramhall, M. N. Badminton et al., UK Liver Selection and Allocation Working Party. Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis, Liver Transpl, vol.18, pp.195-200, 2012.

V. Guillet, N. Gueguen, R. Cartoni, A. Chevrollier, V. Desquiret et al., Bioenergetic defect associated with mKATP channel opening in a mouse model carrying a mitofusin 2 mutation, FASEB J, vol.25, pp.1618-1645, 2011.

C. Handschin, J. Lin, J. Rhee, A. K. Peyer, S. Chin et al., Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha, Cell, vol.122, pp.505-520, 2005.

M. Hermes-lima, R. F. Castilho, V. G. Valle, E. J. Bechara, and A. E. Vercesi, Calcium-dependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid, Biochim Biophys Acta, vol.1180, pp.201-207, 1992.

A. L. Herrick, B. M. Fisher, M. R. Moore, S. Cathcart, K. E. Mccoll et al., Elevation of blood lactate and pyruvate levels in acute intermittent porphyria: a reflection of heme deficiency, Clin Chim Acta, vol.190, pp.157-62, 1990.

M. L. Huang, D. J. Lane, and D. R. Richardson, Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease, Antioxid Redox Signal, vol.15, pp.3003-3022, 2011.

G. A. Hunter and G. C. Ferreira, Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis, Biochim Biophys Acta, vol.1814, pp.1467-73, 2011.

A. Johansson, C. Möller, J. Fogh, and P. Harper, Biochemical characterization of porphobilinogen deaminase-deficient mice during phenobarbital induction of heme synthesis and the effect of enzyme replacement, Mol Med, vol.9, pp.193-202, 2003.

R. Jover, F. Hoffmann, V. Scheffler-koch, and R. L. Lindberg, Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital, Eur J Biochem, vol.267, pp.7128-7165, 2000.

E. B. Kearney, M. Mayr, and T. P. Singer, Regulatory properties of succinate dehydrogenase: activation by succinyl CoA, pH, and anions, Biochem Biophys Res Commun, vol.46, pp.531-538, 1972.

S. Krähenbühl, C. Talos, U. Wiesmann, and C. L. Hoppel, Development and evaluation of a spectrophotometric assay for complex III in isolated mitochondria, tissues and fibroblasts from rats and humans, Clin Chim Acta, vol.230, pp.177-87, 1994.

R. L. Lindberg, C. Porcher, B. Grandchamp, B. Ledermann, K. Bürki et al., Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria, Nat Genet, vol.12, pp.195-204, 1996.

R. L. Lindberg, R. Martini, M. Baumgartner, B. Erne, J. Borg et al., Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria, J Clin Invest, vol.103, pp.1127-1161, 1999.

B. K. May, S. C. Dogra, T. J. Sadlon, C. R. Bhasker, T. C. Cox et al., Molecular regulation of heme biosynthesis in higher vertebrates, Prog Nucleic Acid Res Mol Biol, vol.51, pp.1-51, 1995.

U. A. Meyer, M. M. Schuurmans, and R. L. Lindberg, Acute porphyrias: pathogenesis of neurological manifestations, Semin Liver Dis, vol.18, pp.43-52, 1998.

D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry, pp.567-597, 2000.

S. Ogura, K. Maruyama, Y. Hagiya, Y. Sugiyama, K. Tsuchiya et al., The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver, BMC Res Notes, vol.4, p.66, 2011.

L. M. Oliveri, C. Davio, A. M. Batlle, and E. N. Gerez, ALAS1 gene expression is down-regulated by. Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice, Biochem J, vol.442, pp.303-313, 2012.

J. Onuki, Y. Chen, P. C. Teixeira, R. I. Schumacher, M. H. Medeiros et al., Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid, Arch Biochem Biophys, vol.432, pp.178-87, 2004.

C. B. Peek, A. H. Affinati, K. M. Ramsey, H. Y. Kuo, W. Yu et al., Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice, Science, vol.342, p.1243417, 2013.

B. Pereira, R. Curi, E. Kokubun, and E. J. Bechara, 5-aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats, J Appl Physiol, vol.72, pp.226-256, 1992.

M. Podvinec, C. Handschin, R. Looser, and U. A. Meyer, Identification of the xenosensors regulating human 5-aminolevulinate synthase, Proc Nat Acad Sci U S A, vol.101, pp.9127-9159, 2004.

P. Puigserver, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha, Int J Obes (Lond), vol.29, issue.1, pp.5-9, 2005.

H. Puy, L. Gouya, J. C. Deybach, and . Porphyrias, Lancet, vol.375, pp.924-961, 2010.

A. Rötig, D. Sidi, A. Munnich, and P. Rustin, Molecular insights into Friedreich's ataxia and antioxidant-based therapies, Trends Mol Med, vol.8, pp.221-225, 2002.

M. M. Schuurmans, F. Hoffmann, R. L. Lindberg, and U. A. Meyer, Zinc mesoporphyrin represses induced hepatic 5-aminolevulinic acid synthase and reduces heme oxygenase activity in a mouse model of acute hepatic porphyria, Hepatology, vol.33, pp.1217-1239, 2001.

A. A. Sima, J. C. Kennedy, D. Blakeslee, and D. M. Robertson, Experimental porphyric neuropathy: a preliminary report, Can J Neurol Sci, vol.8, pp.105-118, 1981.

Z. F. Soonawalla, T. Orug, M. N. Badminton, G. H. Elder, J. M. Rhodes et al., Liver transplantation as a cure for acute intermittent porphyria, Lancet, vol.363, pp.705-711, 2004.

K. E. Anderson, J. R. Bloomer, H. L. Bonkovsky, J. P. Kushner, C. A. Pierach et al., Recommendations for the diagnosis and treatment of the acute porphyrias, Ann. Intern. Med, vol.142, pp.439-450, 2005.

C. S. Lin, M. J. Lee, S. B. Park, and M. C. Kiernan, Purple pigments: the pathophysiology of acute porphyric neuropathy, Clin. Neurophysiol, vol.122, pp.2336-2344, 2011.

J. W. Albers and J. K. Fink, Porphyric neuropathy. Muscle Nerve, vol.30, pp.410-422, 2004.

H. L. Crimlisk, The little imitator-porphyria: a neuropsychiatric disorder, J. Neurol. Neurosurg. Psychiatry, vol.62, pp.319-328, 1997.

H. Puy, L. Gouya, and J. C. Deybach, Porphyrias. Lancet, vol.375, pp.924-937, 2010.

N. Utz, B. Kinkel, J. P. Hedde, and H. Bewermeyer, MR imaging of acute intermittent porphyria mimicking reversible posterior leukoencephalopathy syndrome, Neuroradiology, vol.43, pp.1059-1062, 2001.

M. Siegesmund, A. M. Van-tuyll-van-serooskerken, P. Poblete-gutiérrez, and J. Frank, The acute hepatic porphyrias: current status and future challenges, Best Pract. Res. Clin. Gastroenterol, vol.24, pp.593-605, 2010.

H. Thadani, A. Deacon, and T. Peters, Diagnosis and management of porphyria, B.M.J, vol.320, pp.1647-1651, 2000.

J. W. Albers, W. C. Robertson, and J. R. Daube, Electrodiagnostic findings in acute porphyric neuropathy, Muscle Nerve, vol.1, pp.292-296, 1978.

M. Yamada, M. Kondo, M. Tanaka, R. Okeda, S. Hatakeyama et al.,

H. Tsukagoshi, An autopsy case of acute porphyria with a decrease of both uroporphyrinogen I synthetase and ferrochelatase activities, Acta Neuropathol, vol.64, pp.6-11, 1984.

E. Pischik and R. Kauppinen, Neurological manifestations of acute intermittent porphyria, Cell. Mol. Biol, vol.55, pp.72-83, 2009.

D. K. Kochar, A. Poonia, B. L. Kumawat, . Shubhakaran, and B. K. Gupta, Study of motor and sensory nerve conduction velocities, late responses (F-wave and H-reflex) and somatosensory evoked potential in latent phase of intermittent acute porphyria, 2000.

, Electromyogr. Clin. Neurophysiol, vol.40, pp.73-79

H. Puy, J. C. Deybach, J. Lamoril, A. M. Robreau, V. Da-silva et al.,

B. Grandchamp and Y. Nordmann, Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria, Am. J. Hum. Genet, vol.60, pp.1373-1383, 1997.

C. Delaby, J. To-figueras, J. C. Deybach, R. Casamitjana, H. Puy et al.,

, Role of two nutritional hepatic markers (insulin-like growth factor 1 and transthyretin) in the clinical assessment and follow-up of AIP patients, J. Intern. Med, vol.266, pp.277-285

D. J. Waxman and L. Azaroff, Phenobarbital induction of cytochrome P-450 gene expression, Biochem. J, vol.281, pp.577-592, 1992.

Z. F. Soonawalla, T. Orug, M. N. Badminton, G. H. Elder, J. M. Rhodes et al., Liver transplantation as a cure for acute intermittent porphyria, Lancet, vol.363, pp.705-706, 2004.

J. K. Dowman, B. K. Gunson, D. F. Mirza, S. R. Bramhall, and M. N. Badminton,

P. N. Newsome, Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis, Liver Transpl, vol.18, pp.195-200, 2012.

M. R. Moore, A century of porphyria. The pathogenesis of acute porphyria, 1990.

, Mol. Aspects Med, vol.11, pp.49-57

C. Solis, A. Martinez-bermejo, T. P. Naidich, W. E. Kaufmann, K. H. Astrin et al., Acute intermittent porphyria: studies of the severe References, 2004.

H. P. Monteiro, D. S. Abdalla, A. Faljoni-alario, and E. J. Bechara, Generation of active oxygen species during coupled autoxidation of oxyhemoglobin and deltaaminolevulinic acid, Biochim. Biophys. Acta, vol.881, pp.100-106, 1986.

A. Kappas, S. Sassa, R. A. Galbraith, and Y. Nordmann, The porphyrias, The Metabolic Basis of Inherited Diseases, pp.2103-2159, 1995.

J. T. Hindmarsh, The porphyrias: recent advances, Clin. Chem, vol.32, pp.1255-1263, 1986.

R. Berger, H. Van-faassen, and G. P. Smith, Biochemical studies on the enzymatic deficiencies in hereditary tyrosinemia, Clin. Chim. Acta, vol.134, pp.129-141, 1983.

G. Mitchell, J. Larochelle, M. Lambert, J. Michaud, A. Grenier et al., Neurologic crises in hereditary tyrosinemia, N. Engl. J. Med, vol.322, pp.432-437, 1990.

H. Gurer and N. , Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic, Biol. Med, vol.29, pp.927-945, 2000.

T. Sakai, Y. Morita, T. Araki, M. Kano, and T. Yoshida, Relationship between deltaaminolevulinic acid dehydratase genotypes and heme precursors in lead workers, Am. J. Ind. Med, vol.38, pp.355-360, 2000.

P. W. Stacpoole, D. S. Kerr, C. Barnes, T. Bunch, P. R. Carney et al., Controlled clinical trial of dichloroacetate for treatment of congenital lactic acidosis in children, Pediatrics, vol.117, pp.1519-1531, 2006.

H. Puy, L. Gouya, and J. C. Deybach, Porphyrias, vol.375, pp.924-937, 2010.

R. Kauppinen and P. Mustajoki, Acute hepatic porphyria and hepatocellular carcinoma, Br. J. Cancer, vol.57, pp.117-120, 1988.

P. L. Thunnissen, J. Meyer, and R. W. De-koning, Acute intermittent porphyria and primary liver-cell carcinoma, Neth. J. Med, vol.38, pp.171-174, 1991.

T. Douki, J. Onuki, M. H. Medeiros, E. J. Bechara, J. Cadet et al., Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid, vol.428, pp.93-96, 1998.

G. L. Wilson, N. J. Patton, and S. P. Ledoux, Mitochondrial DNA in beta-cells is a sensitive target for damage by nitric oxide, Diabetes, vol.46, pp.1291-1295, 1997.

D. E. Sawyer and B. Van-houten, Repair of DNA damage in mitochondria, Mutat. Res, vol.434, pp.161-176, 1999.

S. Shahzidi, T. Stokke, H. Soltani, J. M. Nesland, and Q. Peng, Induction of apoptosis by hexaminolevulinate-mediated photodynamic therapy in human colon carcinoma cell line 320DM, J. Environ. Pathol. Toxicol. Oncol, vol.25, pp.159-171, 2006.

L. Cekaite, Q. Peng, A. Reiner, S. Shahzidi, S. Tveito et al., Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate, BMC Genomics, vol.13, p.273, 2007.

Z. F. Soonawalla, T. Orug, M. N. Badminton, G. H. Elder, J. M. Rhodes et al., Liver transplantation as a cure for acute intermittent porphyria, Lancet, vol.363, pp.705-706, 2004.

J. K. Dowman, B. K. Gunson, D. F. Mirza, S. R. Bramhall, M. N. Badminton et al., UK Liver Selection and Allocation Working Party, Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis, Liver Transpl, vol.18, pp.195-200, 2012.

S. R. Ennis, A. Novotny, J. Xiang, P. Shakui, T. Masada et al., Transport of 5-aminolevulinic acid between blood and brain, vol.959, pp.226-234, 2003.

S. M. Ocheltree, H. Shen, Y. Hu, J. Xiang, R. F. Keep et al., Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice, Pharm. Res, vol.21, pp.1680-1685, 2004.

M. Zimmermann and A. C. Stan, PepT2 transporter protein expression in human neoplastic glial cells and mediation of fluorescently tagged dipeptide derivative beta-Ala-Lys-Nepsilon-7-amino-4-methyl-coumarin-3-acetic acid accumulation, J. Neurosurg, vol.112, pp.1005-1014, 2010.

J. Onuki, Y. Chen, P. C. Teixeira, R. I. Schumacher, M. H. Medeiros et al., Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid, Arch. Biochem. Biophys, vol.432, pp.178-187, 2004.

A. Gorchein and R. Webber, Delta-aminolaevulinic acid in plasma, cerebrospinal fluid, saliva and erythrocytes: studies in normal, uraemic and porphyric subjects, Clin. Sci. (Lond), vol.72, pp.103-112, 1987.

C. Andant, H. Puy, C. Bogard, J. Faivre, J. C. Soul-e et al., Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors, J. Hepatol, vol.32, pp.933-939, 2000.

J. Onuki, P. C. Teixeira, M. H. Medeiros, D. D?-ornemann, T. Douki et al., Is 5-aminolevulinic acid involved in the hepatocellular carcinogenesis of acute intermittent porphyria?, Cell. Mol. Biol, vol.48, pp.17-26, 2002.

C. Andersson, L. Bjersing, and F. Lithner, The epidemiology of hepatocellular carcinoma in patients with acute intermittent porphyria, J. Intern. Med, vol.240, pp.195-201, 1996.

A. E. Vercesi, R. F. Castilho, A. R. Meinicke, V. G. Valle, M. Hermes-lima et al., Oxidative damage of mitochondria induced by 5-aminolevulinic acid: role of Ca2þ and membrane protein thiols, Biochim. Biophys. Acta, vol.1188, pp.86-92, 1994.

M. Hermes-lima, How do Ca2þ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radic, Biol. Med, vol.19, pp.381-390, 1995.

Y. He, X. Xia, C. Xu, H. Yu, D. Bai et al., 5-Aminolaevulinic acid enhances ultrasound-induced mitochondrial damage in K562 cells, Ultrasonics, vol.50, pp.777-781, 2010.

D. C. Wallace, A mitochondrial paradigm of metabolic and degenerative diseases, aging and cancer: a dawn for evolutionary medicine, Annu. Rev. Genet, vol.39, pp.359-407, 2005.

J. Nunnari and A. Suomalainen, Mitochondria: in sickness and in health, Cell, vol.148, pp.1145-1159, 2012.

S. Ogura, K. Maruyama, Y. Hagiya, Y. Sugiyama, K. Tsuchiya et al., The effect of 5-aminolevulinic acid on cytochrome C oxidase activity in mouse liver, BMC Res. Notes, vol.17, p.66, 2011.

V. Desquiret, D. Loiseau, C. Jacques, O. Douay, Y. Malthi-ery et al., Dinitrophenol-induced mitochondrial uncoupling in vivo triggers respiratory adaptation in HepG2 cells, Biochim. Biophys. Acta, vol.1757, pp.21-30, 2006.

V. Desquiret, N. Gueguen, Y. Malthi-ery, P. Ritz, and G. Simard, Mitochondrial effects of dexamethasone imply both membrane and cytosolic-initiated pathways in HepG2 cells, Int. J. Biochem. Cell. Biol, vol.40, pp.1629-1641, 2008.

G. N. De-iuliis, J. K. Wingate, A. J. Koppers, E. A. Mclaughlin, and R. J. Aitken, Definitive evidence for the nonmitochondrial production of superoxide anion by human spermatozoa, J. Clin. Endocrinol. Metab, vol.91, 2006.

M. Colombini, VDAC structure, selectivity and dynamics, vol.1818, pp.1457-1465, 2012.

D. Loiseau, A. Chevrollier, C. Verny, V. Guillet, N. Gueguen et al., Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease, vol.61, pp.315-323, 2007.

S. Horie and M. Morrison, Cytochrome c oxidase components. I. Purification and properties, J. Biol. Chem, vol.238, pp.1855-1860, 1963.

A. V. Kuznetsov and E. Gnaiger, Laboratory Protocol. Complex I (NADH: Ubiquinone Oxidoreductase, EC 1.6.5.3) Mitochondrial Membrane Enzyme, pp.1-8, 2003.

A. M. James, Y. H. Wei, C. Y. Pang, and M. P. Murphy, Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations, Biochem. J, vol.318, pp.401-407, 1996.

P. Rustin, D. Chretien, T. Bourgeron, B. Gerard, A. Rotig et al., Biochemical and molecular investigations in respiratory chain deficiencies, Clin. Chim. Acta, vol.228, pp.35-51, 1994.

C. Jacques, A. Chevrollier, D. Loiseau, L. Lagoutte, F. Savagner et al., Exp. Cell. Res, vol.312, issue.6, pp.737-745, 2006.

C. Jacques, J. F. Fontaine, B. Franc, D. Mirebeau-prunier, S. Triau et al., Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours, Br. J. Cancer, vol.101, pp.132-138, 2009.

J. F. Cornelius, P. J. Slotty, M. E. Khatib, A. Giannakis, B. Senger et al., Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells, Photodiagn. Photodyn. Ther, vol.11, issue.1, 2014.

M. D. Kars, R. Kara, Y. Gündo-gdu, A. Kepceo-glu, and H. S. K?l?ç, Femtosecond laser induced photodynamic therapy on 5-ALA treated SKMEL-30 cells: an efficient theranostic strategy to combat melanoma, Biomed. Pharmacother, vol.68, issue.5, 2014.

B. Pereira, R. Curi, E. Kokubun, and E. J. Bechara, 5-aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats, J. Appl. Physiol, vol.72, pp.226-230, 1992.

N. Felitsyn, C. Mcleod, A. L. Shroads, P. W. Stacpoole, and L. Notterpek, The heme precursor delta-aminolevulinate blocks peripheral myelin formation, J. Neurochem, vol.106, pp.2068-2079, 2008.

M. Demasi, C. A. Penatti, R. Delucia, and E. J. Bechara, The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias, Free Radic, Biol. Med, vol.20, pp.291-299, 1996.

A. A. Juknat, M. L. Kotler, A. Quaglino, N. M. Carrillo, and T. Hevor, Necrotic cell death induced by delta-aminolevulinic acid in mouse astrocytes. Protective role of melatonin and other antioxidants, J. Pineal Res, vol.35, pp.1-11, 2003.

A. Adhikari, C. A. Penatti, R. R. Resende, H. Ulrich, L. R. Britto et al., 5-Aminolevulinate and 4, 5-dioxovalerate ions decrease GABA(A) receptor density in neuronal cells, synaptosomes and rat brain, Brain Res, vol.1093, pp.95-104, 2006.

E. J. Bechara, F. Dutra, V. E. Cardoso, A. Sartori, K. P. Olympio et al., The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons, Comp. Biochem. Physiol. C Toxicol. Pharmacol, vol.146, pp.88-110, 2007.

Z. Malik and H. Lugaci, Destruction of erythroleukemic cells by photoactivation of endogenous porphyrins, Br. J. Cancer, vol.56, pp.589-595, 1987.

Q. Peng, K. Berg, J. Moan, M. Kongshaug, and J. M. Nesland, 5-Aminolevulinic acidbased photodynamic therapy: principles and experimental research, Photochem. Photobiol, vol.65, pp.235-251, 1997.

R. Bhowmick and A. W. Girotti, Rapid upregulation of cytoprotective nitric oxide in breast tumor cells subjected to a photodynamic therapy-like oxidative challenge, Photochem. Photobiol, vol.87, pp.378-386, 2011.

S. Navarro, P. Hoyo, Y. Campos, M. Abitbol, M. J. Mor-an-jim-enez et al., Increased mitochondrial respiratory chain enzyme activities correlate with minor extent of liver damage in mice suffering from erythropoietic protoporphyria, Exp. Dermatol, vol.14, pp.26-33, 2005.

M. Hefti, I. Albert, and V. Luginbuehl, Phenytoin reduces 5-aminolevulinic acidinduced protoporphyrin IX accumulation in malignat glioma cells, J. Neurooncol, vol.108, pp.443-450, 2012.

T. Takeuchi, H. B. Gray, and W. A. Goddard, III-Electronic structures of Halogenated porphyrins: spectroscopic properties of ZnTFPPX8 (TFPPX8 ¼ Octa-.beta.-halotetrakis (pentafluorophenyl)porphyrin; x ¼ Cl, Br), Am. Chem. Soc, vol.116, pp.9730-9732, 1994.

M. T. Ryan and N. J. Hoogenraad, Mitochondrial-nuclear communications, Annu. Rev. Biochem, vol.76, pp.701-722, 2007.

J. Laafi, Biochimie, vol.106, pp.157-166, 2014.

, L'implication de la mitochondrie a été proposée pour expliquer la physiopathologie de certaines pathologies liées au déficit de synthèse de l'hème tells la porphyries aiguë intermittente PAI, 1991.

, Notre projet de thèse était d'étudier la fonction énergétique mitochondriale en situation de blocage de la synthèse de l'hème. Pour cela, nous avons analysé la porphyrie aiguë intermittente (PAI) qui est la porphyrie hépatique la plus sévère, 2014.

, Cette étude nous a permis d'étudier la mitochondrie dans son environnement physiologique, et cela lors d'une activation massive de la voie de synthèse de l'hème suite à l'induction par le phénobarbital. Le deuxième modèle in vitro est un modèle de cellules hépatiques humaines, 1998.

, Nous avons étudié la fonction énergétique mitochondriale dans 3 tissus différents, le foie, le muscle squelettique et le cerveau. La pathologie a une origine hépatique car le foie est le site principal d'accumulation des précurseurs d'hème notamment l'acide delta amino-levulinique, Le modèle animal, s'appliquait à des souris femelles de 8 semaines de vie car la PAI touche le plus fréquemment les femme jeunes, 2010.

, La carence en hème au niveau neurologique ainsi que la neurotoxicité de l'ALA ont été proposées comme explication de la physiopathologie de la PAI, Tracy, 2011.

, Lors des crises de PAI, les signes neurologiques font partis du tableau des crises de PAI (Eun Young, 2011.

A. K. Aarsand, P. H. Petersen, and S. Sandberg, Estimation and application of biological variation of urinary delta-aminolevulinic acid and porphobilinogen in healthy individuals and in patients with acute intermittent porphyria, Clin Chem, vol.52, pp.650-656, 2006.

B. H. Ahn, H. S. Kim, S. Song, I. H. Lee, J. Liu et al., A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis, vol.23, pp.14447-14452, 2008.

J. W. Albers and J. K. Fink, Porphyric neuropathy, Handbook of Clinical Neurology, vol.36, pp.613-627, 2013.

J. W. Albers and J. K. Fink, Porphyric neuropathy, Muscle Nerve, vol.30, pp.410-422, 2004.

J. W. Albers, W. C. Robertson, and J. R. Daube, Electrodiagnostic findings in acute porphyric neuropathy, Muscle Nerve, vol.1, pp.292-296, 1978.

K. E. Anderson, J. R. Bloomer, and H. L. Bonkovsky, Recommendations for the diagnosis and treatment of the acute porphyries, Ann Intern Med, vol.142, pp.439-450, 2005.

K. Andersson, A. Sassa, and D. Bishop, Disorders of heme biosynthesis : X-linked sideroblastic anemia and the porphyrias, pp.2991-3062, 2001.

G. R. Andrew and G. H. Elder, Alternative splicing and tissue-specific transcription of human and rodent ubiquitous 5-aminolevulinate synthase (ALAS1) genes, Biochimica et Biophysica Acta, vol.1518, pp.95-105, 2001.

K. S. Ashwani, C. Parker, C. Bowden, M. Thapar, L. Liu et al., Liver Transplantation in the Management of Porphyria, vol.60, pp.1082-1089, 2014.

M. Balwani and R. J. Desnick, The porphyrias: advances in diagnosis and treatment, Hematology, pp.19-27, 2012.

A. R. Battersby, Nature'spathways to the pigments of life, Nat Prod Rep, vol.4, pp.77-87, 1987.

E. J. Bechara, Oxidative stress in acute intermittent porphyria and lead poisoning may be triggered by 5-aminolevulinic acid, Brazilian journal of medical and biological research, vol.29, issue.7, pp.841-851, 1996.

E. J. Bechara, F. Dutra, . Cardosove, A. Sartori, K. P. Olympio et al., The dual face of endogenous alpha-aminoketones: pro-oxidizing metabolic weapons, Comp Biochem Physiol C Toxicol Pharmacol, vol.146, pp.88-110, 2007.

G. Benard, B. Faustin, E. Passerieux, A. Galinier, C. Rocher et al., Physiological diversity of mitochondrial oxidative phosphorylation, Am J Physiol Cell Physiol, vol.291, pp.11-72, 2006.

S. Besur, W. Hou, P. Schmeltzer, and H. L. Bonkovsky, Clinically important features of porphyrin and heme metabolism and the prohyrias, Metabolites, vol.4, pp.977-1006, 2014.

R. S. Blaban, S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging, vol.120, pp.483-495, 2005.

H. L. Bonkovsky, J. T. Guo, W. Hou, T. Li, T. Narang et al., Porphyrin and heme metabolism and the porphyries, Comprehensive physiology, vol.3, issue.1, pp.365-401, 2013.

S. S. Bottomley, J. P. Foerster, J. N. Lukens, G. M. Rogers, F. Paraskevas et al., Sideroblastic anemias, Wintrobe's Clinical Hematology, pp.1012-1033, 2004.

M. F. Bouchard and D. C. Bellinger, Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults, Arch Gen Psychiatry, vol.16, pp.12-1313, 2009.

M. D. Brand, J. A. Buckingham, T. C. Esteves, K. Green, A. J. Lambert et al., Mitochondrial superoxide and aging: uncouplingprotein activity and superoxide production, Biochemical and society symposium, vol.71, pp.203-213, 2004.

M. D. Brand, J. L. Pakay, A. Ocloo, J. Kokoska, D. C. Wallace et al., The basal proton conductance of mitochondria depends on adenine nucleotide translocase content, The biochemical journal, vol.1, issue.2, pp.353-362, 2005.

N. V. Bykova, A. Stensballe, H. Egsgaard, O. N. Jensen, and I. M. Moller, Phosphorylation of formate dehydrogenase in potato tuber mitochondria". The journal of biological chemistry, vol.11, pp.26021-26030, 2003.

I. Bylesjo, A. Wikberg, and C. Andersson, Clinical aspects of acute intermittent porphyria in northern Sweden: a population-based study, Scand J Clinical Laboratory investigations, vol.69, pp.612-618, 2009.

S. E. Calvo and V. K. Mootha, The mitochondrial proteome and human disease, Annu Rev Genomics Hum Genet, vol.11, pp.25-44, 2010.

N. Capitanio, G. Capitanio, D. A. Demarinis, E. De-nitto, S. Massari et al., Factors affecting the H+/e-stoichiometry in mitochondrial cytochrome c oxidase : influence of the rate of electron flow and transmembrane delta pH, Biochemistry, vol.20, pp.10800-10806, 1996.

S. Cindy, M. Lin, S. B. Lee, C. Park, C. Matthew et al., Purple pigments: The pathophysiology of acute porphyric neuropathy, Clinical Neurophysiology, vol.122, pp.2336-2344, 2011.

L. Cekaite, Q. Peng, A. Reiner, S. Shahzidi, S. Tveito et al., Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinat, BMC Genomics, vol.8, 2007.

B. Chabrol and P. De-lonlay, Maladies Métaboliques Héréditaires" (livre), doing, Chapitre 9, pp.133-134, 2011.

M. A. Correia and J. M. Lunetta, Acute hepatic heme depletion: impaired gluconeogenesis in rats, Semin. Hematol, vol.26, pp.120-127, 1989.

H. L. Crimlisk, The little imitator-porphyria: a neuropsychiatric disorder, J Neurol Neurosurg Psychiatry, vol.62, pp.319-328, 1997.

T. A. Dailey, J. H. Woodruff, and H. A. Dailey, Examination of mitochondrial protein targeting ofhaem synthetic enzymes: In vivo identification of three functional haemresponsive motifs in5-aminolaevulinate synthase, Biochem. J, vol.386, pp.381-386, 2005.

F. Dayan and E. Dayan, Les porphyrines : les couleurs de la vie, 2013.

C. Delaby, J. To-figueras, J. C. Deybach, R. Casamitjana, H. Puy et al., Role of two nutritional hepatic markers (insulin-like growth factor 1 and transthyretin) in the clinical assessment and follow-up of acute intermittent porphyria patients, J Intern Med, vol.266, pp.277-285, 2009.

D. Marchi, U. Santo-domingo, J. Castelbou, C. Sekler, I. Wiederkehr et al., NCLX protein, but not LETM1, mediates mitochondrial Ca2+ extrusion, thereby limiting Ca2+-induced NAD(P)H production and modulating matrix redox state". The journal of biological chemistry, vol.18, pp.20377-20385, 2014.

E. Dowdle, P. Mustard, N. Spong, and L. Eales, The metabolism of (5-14C)deltaaminolaevulic acid in normal and porphyric human subjects, Clin Sci, vol.34, pp.233-251, 1968.

J. K. Dowman and B. K. Gunson,

D. F. Mirza, S. R. Bramhall, M. N. Badminton, and P. N. Newsome, Liver transplantation for acute intermittent porphyria is complicated by a high rate of hepatic artery thrombosis, Liver transplantation, vol.18, pp.195-200, 2012.

T. Douki, J. Onuki, M. H. Medeiros, E. J. Bechara, J. Cadet et al., Hydroxyl radicals are involved in the oxidation of isolated and cellular DNA bases by 5-aminolevulinic acid, FEBS Lett, vol.428, issue.1-2, pp.93-99, 1998.

G. Elder, P. Harper, M. Badminton, S. Sandberg, and J. C. Deybach, The incidence of inherited porphyrias in Europe, Journal of Inherited Metabolic Disease, vol.36, issue.5, pp.849-8597, 2012.

N. Felitsyn, C. Mcleod, A. L. Shroads, P. W. Stacpoole, and L. Notterpek, The heme precursor delta-aminolevulinate blocks peripheral myelin formation, J Neurochem, vol.106, issue.5, pp.2068-2079, 2008.

. Ferreira-fr, C. A. Silva, and S. X. Costa, Acute intermittent porphyria, an important and rare differential diagnosis of acute abdomen: case report and literature review, vol.23, pp.510-514, 2011.

Y. Floderus, P. M. Shoolingin-jordan, and P. Harper, Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene, Clinical Genetics, vol.62, pp.288-97, 2002.

R. Garnier, Toxicité du plomb et de ses dérivés, Masson SAS) Pathologie Professionnelle et de l'Environnement, pp.67-88, 2005.

C. Handschin, J. Lin, J. Rhee, A. K. Peyer, S. Chin et al., Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC1alpha, Cell, vol.122, pp.505-515, 2005.

J. M. Hermann and J. Rimer, The intermembrane space of mitochondria, Antioxid Rdox Signal, vol.13, issue.9, pp.1341-1358, 2010.

M. Hermes-lima, V. G. Valle, A. E. Vercesi, and E. J. Bechara, Damage to rat liver mitochondria promoted by delta-aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphyria and lead-poisoning, Biochim Biophys Acta, vol.1056, issue.1, pp.57-63, 1991.

M. Hermes-lima, R. F. Castilho, V. G. Valle, E. J. Bechara, and A. E. Vercesi, Calciumdependent mitochondrial oxidative damage promoted by 5-aminolevulinic acid, Biochim Biophys Acta, vol.1180, issue.2, pp.201-206, 1992.

A. L. Herrick, B. M. Fisher, M. R. Moore, S. Cathcart, K. E. Mccoll et al., Elevation of blood lactate and pyruvate levels in acute intermittent porphyria-a reflection of haem deficiency ?, Clin Chim Acta, vol.190, issue.3, pp.157-162, 1990.

M. Hildenbeutel, E. L. Hegg, S. Stephan-k-1-,-gruschke, B. Meunier, and M. Ott, Assembly factors monitor sequential hemylation of cytochrome b to regulate mitochondrial translation, J.C. Biol, vol.26, 2014.

R. J. Hift, B. P. Davidson, C. Van-der-hooft, D. M. Meissner, and P. N. Meissner, Plasma fluorescence scanning and fecal porphyrin analysis for the diagnosis of variegate porphyria : precise determination of sensitivity and specifi city with detection of protoporphyrinogen oxidase mutations as a reference standard, Clin Chem, vol.50, pp.915-923, 2004.

A. K. Holley, V. Bakthavatchalu, J. M. Velez-roman, and D. K. St-clair, Manganese Superoxide Dismutase : Guardian of the Powerhouse, International journal of molecular sciences, vol.12, issue.10, pp.7114-7162, 2011.

R. K. Hopper, S. Carroll, A. M. Aponte, D. T. Johnson, S. French et al., Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium, Biochemistry, vol.28, pp.2524-2536, 2006.

M. L. Huang, D. J. Lane, and D. R. Richardson, Mitochondrial mayhem: the mitochondrion as a modulator of iron metabolism and its role in disease, Antioxid Redox Signal, vol.15, pp.3003-3019, 2011.

A. J. Hubert, P. L. Else, S. C. Manolis, and M. D. Brand, Proton leak in hepatocytes and liver mitochondria from archosaurs (crocodiles) and allometric relationships for ectotherms, vol.172, pp.387-397, 2002.

C. Hunte, H. Palsdottir, and B. L. Trumpower, Protonmotive pathways and mechanisms in the cytochrome bc1 complex, FEBS Lett, vol.545, pp.39-46, 2003.

J. A. Imlay, S. M. Chin, and S. Linn, Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro, Science, vol.240, pp.640-642, 1988.

F. R. Jornayvaz and G. I. Shulman, Regulation of mitochondrial biogenesis, Essays in Biochemistry, vol.47, pp.69-84, 2010.

R. Jover, . Hofmannf, V. Scheffer-koh, and R. L. Lindberg, Limited heme synthesis in porphobilinogen deamiase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by Phenobarbital, Eur J Biochem, vol.267, pp.7128-7137, 2000.

A. Kappas, S. Sassa, R. A. Galbraith, and Y. Nordmann, Metabolic and Molecular Basis of Inherited Disease, pp.2103-2159, 1995.

R. Kauppinen and . M. Fraunberg, Molecular and biochemical studies of acute intermittent porphyria in 196 patients and theirfamilies, Clin Chem, vol.48, pp.1891-1900, 2002.

H. J. Kim, O. Khalimonchuk, P. M. Smith, and D. R. Wing, Structure, function, and assembly of heme centers in mitochondrial respiratory complexes, Biochimica et Biophysica acta, vol.1823, issue.9, pp.1604-1616, 2014.

S. C. Kim, R. Sprung, Y. Chen, Y. Xu, H. Ball et al., Substrate and functional diversity of lysine acetylation revealed by a proteomics survey, Molecular Cell, vol.23, issue.4, pp.607-618, 2006.

E. Lang, M. Schafer, H. Scwender, N. J. Nuemann, and J. Franck, Occurrence of Malignant Tumours in the Acute Hepatic Porphyrias, Journal of Inherted Metabolic Disease Rapports. Epub ahead of print, 2015.

C. Lin, . Ming-jen, S. B. Park, and M. C. Kiernan, Purple pigments: The pathophysiology of acute porphyric neuropathy, Clinical Neurophysiology, vol.122, pp.2336-2344, 2011.

R. L. Lindberg, C. Porcher, B. Grandchamp, B. Ledermann, K. Bürki et al., Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria, Nature Genetics, vol.12, issue.2, pp.195-199, 1996.

R. L. Lindberg, R. Martini, and M. Baumgartner, Motor neuropathy in porphobilinogen deaminase-deficient mice imitates the peripheral neuropathy of human acute porphyria, J Clin Invest, vol.103, issue.8, pp.1127-1134, 1999.

C. M. Liu, R. Y. Wang, Z. X. Saijilafu, B. Y. Zhang, and F. Q. Zhou, MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration, Genes and development, vol.1, issue.27, pp.1473-1483, 2013.

S. Lyoumi, M. Abitbol, D. Rainteau, Z. Karim, F. Bernex et al., Protoporphyrin retention in hepatocytes and Kupffer cells prevents sclerosing cholangitis in erythropoietic protoporphyria mouse model, Gastroenterology, vol.141, issue.4, pp.1509-1528, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00631510

E. N. Maldonado and J. J. Lemasters, Warburg Revisited: Regulation of Mitochondrial Metabolism by Voltage-Dependent Anion Channels in Cancer Cells, Perspectives in Pharmacology, vol.342, pp.637-641, 2012.

M. Medeiors, P. E. Marchiori, and E. Bechara, Superoxide dismutase, glutathione peroxidase and catalase activities in the erythrocytes of patients with intermittent acute porphyria, Clinical Chemistry, vol.28, issue.1, pp.242-243, 1982.

U. A. Meyer, M. M. Schuurmans, and R. L. Lindberg, Acute porphyries : pathogenesis of neurological manifestations, Semin Liver Dis, vol.18, pp.43-52, 1998.

M. Milon and L. J. Wong, Diagnosis of mitochondrial myopathies, Molecular Genetics and Metaboloism, vol.110, pp.35-41, 2013.

H. P. Monteiro, D. S. Abdalla, O. Augusto, and E. Bechara, Free radical generation during delta-aminolevulinic acid autoxidation: Induction by hemoglobin and connections with porphyrinpathies, Arch.Biochem.Biophys, vol.271, pp.206-216, 1989.

M. R. Moore, A century of porphyria. The pathogenesis of acute porphyria, Mol Aspects Med, vol.11, pp.49-57, 1990.

M. P. Murphy, How mitochondria produce reactive oxygen species, Biochen J 1, vol.417, issue.1, pp.1-13, 2009.

M. P. Murphy, Slip and leak in mitochondrial oxidative phosphorylation, Biochim Biophys Acta, vol.977, issue.2, pp.123-141, 1989.

P. Mustajoki and Y. Nordmann, Early administration of heme arginate for acute porphyric attacks, Arch Intern Med, vol.153, 1993.

H. Namba, K. Narahara, K. Tsuji, Y. Yokoyama, and Y. Seino, Assignment of human porphobilinogen deaminase to 11q24.1-q24.2 by in situ hybridization and gene dosage studies, Cytogenet". Cell Genet, vol.57, pp.105-108, 1991.

J. Napiwotzki and B. Kadenbach, Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV, Biological Chemistry, vol.379, issue.3, pp.335-339, 1998.

S. Navarro, D. Hoyo, P. Campos, Y. Abitbol, M. Morán-jiménez et al., Increased mitochondrial respiratory chain enzyme activities correlate with minor extent of liver damage in mice suffering from erythropoietic protoporphyria, Exp Dermatol, vol.14, pp.26-33, 2005.

G. S. Neil and G. K. Herkes, The neurologic manifestations of the acute porphyrias, Journal Of Clinical Neuroscience, vol.18, pp.1147-1153, 2011.

D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, pp.662-663, 2000.

Y. Nordmann, Porphyries et porphyrinuries'' -Editions techniques -Encycl, Endocrinologie -nutrition, 1994.

S. Ogura, K. Maruyama, Y. Hagiya, Y. Sugiyama, K. Tsuchiya et al., The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver, BMC Res Notes, vol.4, p.66, 2011.

L. M. Oliveri, C. Davio, A. M. Batlle, and E. N. Gerez, ALAS1 gene expression is downregulated by Akt-mediated phosphorylation and nuclear exclusion of FOXO1 by vanadate in diabetic mice, Biochem J, vol.442, pp.303-310, 2012.

J. Onuki, P. C. Teixeira, M. H. Medeiros, D. Dörnemann, T. Douki et al., Is 5-aminolevulinic acid involved in the hepatocellular carcinogenesis of acute intermittent porphyria?, Cell Mol Biol, vol.48, issue.1, pp.17-26, 2002.

J. Onuki, Y. Chen, P. C. Teixeira, R. I. Schumacher, M. H. Medeiros et al., Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid, Arch Biochem Biophys, vol.432, pp.178-87, 2004.

D. J. Pagliarini and J. E. Dixon, Mitochondrial modulation: reversible phosphorylation takes center stage?'' trends, Biochem Sci, vol.31, pp.26-34, 2006.

S. Papa, V. Petruzzella, S. Scacco, R. Vergari, D. Panelli et al., Respiratory complex I in brain development and genetic disease, Neurochemical reasarch, vol.29, issue.3, pp.547-560, 2004.

E. Y. Park, Y. S. Kim, K. J. Lim, H. K. Lee, S. K. Lee et al., Severe neurologic manifestations in acute intermittent porphyria developed after spine surgery under general anesthesia a case report, Korean Journal of Anesthesiology, vol.67, pp.217-220, 2014.

B. Pereira, R. Curi, E. Kokubun, and E. J. Bechara, 5-aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats, J Appl Physiol, vol.72, pp.226-256, 1992.

J. D. Phillips, J. P. Kushner, H. A. Bergonia, and M. R. Franklin, Uroporphyria in the Cyp1a2-/-mouse, Blood Cells Mol Dis, vol.47, issue.4, pp.249-254, 2011.

E. Pischik and R. Kauppinen, Neurological manifestations of acute intermittent porphyria, Cell Mol Biol, vol.55, pp.72-83, 2009.

M. Podvinec, C. Handschin, R. Looser, and U. A. Meyer, Proceeding of the national academy of sciences of the united states of America, vol.101, pp.9127-9132, 2004.

P. Ponka, Tissue-Specific Regulation of Iron Metabolism and Heme Synthesis: Distinct Control Mechanisms in Erythroid Cells, Blood, vol.89, pp.1-25, 1997.

P. Puigserver, Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha, Int J Obes (Lond), vol.29, issue.1, pp.5-9, 2005.

H. Puy, J. C. Deybach, and J. Lamoril, Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria, Am J Hum Genet, vol.60, pp.1373-1383, 1997.

H. Puy, L. Gouya, and J. C. Deybach, Porphyrias". Lancet, vol.375, pp.924-937, 2010.

A. G. Roberts, S. J. Redding, and D. H. Llewellyn, An alternatively-spliced exon in the 5?-UTR of human ALAS1 mRNA inhibits translation and renders it resistant to haem-mediated decay, FEBS Lett, vol.579, pp.1061-1066, 2005.

M. E. Rocha, F. Dutra, B. Bandy, R. L. Baldini, S. L. Gomes et al., Oxidative damage to ferritin by 5-aminolevulinic acid, Arch Biochem Biophys, vol.409, issue.2, pp.349-56, 2003.

A. Rötig, D. Sidi, A. Munnich, and P. Rustin, Molecular insights into Friedreich's ataxia and antioxidant-based therapies, Trends Mol Med, vol.8, pp.221-224, 2002.

T. Russell and . Hepple, Mitochondrial involvement and impact in aging skeletal muscle, Aging Neuroscience, vol.6, pp.1-13, 2014.

D. J. Schaer, P. W. Buehler, A. I. Alayash, J. D. Belcher, and G. M. Vercellotti, Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins, Blood, vol.121, pp.1276-1284, 2013.

G. Schatz, Mitochondria : Beyond oxidative phosphorylation, Biochemistry Biophysic Acta, issue.1, pp.123-126, 1995.

M. E. Scassa, A. S. Guberman, J. M. Ceruti, and E. T. Cánepa, Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression, The journal of Biological Chemistry, vol.279, pp.28082-28092, 2004.

Y. X. Schneider, M. Hergersberg, and D. E. Goldgar, Ancestral founder of mutation W283X in the porphobilinogen deaminase gene among acute intermittent porphyria patients, Humann Heredity, vol.54, issue.2, pp.69-81, 2002.

L. K. Sharma, J. Lu, and Y. Bai, Mitochondrial respiratory complex I : structure, function and implication in human diseases, Current Medicinal Chemistry, vol.16, issue.10, pp.1266-1277, 2009.

L. J. Sharp and R. G. Haller, Metabolic and mitochondrial myopathies, Neurologic Clinics, vol.32, pp.777-799, 2014.

M. Siegesmund, A. M. Van-tuyll-van-serooskerken, P. Poblete-gutiérrez, and J. Frank, The acute hepatic porphyrias : current status and future challenges, Best Pract Res Clin Gastroenterol, vol.24, pp.593-605, 2010.

A. C. Silva, S. Almeida, M. Laço, A. L. Duarte, J. Domigues et al., Mitochondrial respiratory chain complex activity and bioenergetic alterations in human platelets derived from pre-symptomatic and symptomatic Huntington's disease carriers, Mitochondrion, issue.6, pp.801-809, 2013.

K. L. Snidreman, L. Trahms, and C. R. Scott, Tyrosinemia Type I". GeneReviews, 2014.

C. Solis, A. Martinez-bermejo, T. P. Naidich, W. E. Kaufmann, K. H. Astrin et al., Acute intermittent porphyria : studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyries, Arch Neurol, vol.61, pp.1764-70, 2004.

Z. F. Soonawalla, T. Orug, M. N. Badminton, G. H. Elder, J. M. Rhodes et al., Liver transplantation as a cure for acute intermittent porphyria, Lancet, vol.363, pp.705-706, 2004.

L. L. Spriet and G. J. Heigenhauser, Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise". Exercise and sport sciences reviews, vol.30, pp.91-95, 2002.

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends in Endocrinology and Metabolism, vol.23, issue.9, pp.420-428, 2012.

S. Strumilo, Short-term regulation of the alpha-ketoglutarate dehydrogenase complex by energy-linked and some other effectors, Biochemistry (Mosc), vol.70, issue.7, pp.726-735, 2005.

D. Tchernitchko, A. M. Robréau, T. Lefebvre, J. Lamoril, J. C. Deybach et al., Comprehensive cytochrome P450 CYP1A2 gene analysis in French caucasian patients with familial and sporadic porphyria cutanea tarda, Br J Dermatol, vol.166, issue.2, pp.425-434, 2012.

H. Thadani, A. Deacon, and T. Peters, Diagnosis and management of porphyria, BMJ, vol.320, pp.1647-51, 2000.

Q. Tian, T. Li, W. Hou, J. Zheng, L. W. Schrum et al., Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in humanliver cells, J. Biol. Chem, vol.286, pp.26424-26430, 2011.

J. A. Tracy and P. J. Dyck, Porphyria and its neurologic manifestations, Handbook of Clinical Neurology, vol.56, pp.839-849, 2014.

. C. Travaglini-allocatelli, Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms, Scientifica, pp.505-714, 2013.

L. Tretter and V. Adam-vizi, Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase, J. Neurosci, vol.24, pp.7771-7779, 2004.

A. Turkan, Y. Hiromasa, and T. E. Roche, Formation of a complex of the catalytic subunit of pyruvate dehydrogenase phosphatase isoform 1 (PDP1c) and the L2 domain forms a Ca2+ binding site and captures PDP1c as a monomer, Biochemistry, vol.30, issue.47, pp.15073-15085, 2004.

J. F. Turrnes, Mitochondrial formation of reactive oxygen species, The journal of physiology, vol.15, pp.335-344, 2003.

C. Unzu, A. Sampedro, I. Mauleón, M. Alegre, S. G. Beattie et al., Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice, Mol Ther, vol.19, pp.243-50, 2011.

N. Utz, B. Kinkel, J. P. Hedde, H. Bewermeyer, and . Mr, imaging of acute intermittent porphyria mimicking reversible posterior leukoencephalopathy syndrome, Neuroradiology, vol.43, pp.1059-1062, 2001.

P. Ventura, M. D. Cappellini, G. Biolcati, C. C. Guida, E. Rocchi et al., challenging diagnosis for potential fatal diseases: Recommendations for diagnosing acute porphyrias, European Journal Of Internal Medecine, vol.25, pp.497-505, 2014.

A. E. Vercesi, R. F. Castilho, A. R. Meinicke, V. G. Valle, M. Hermes-lima et al., Oxidative damage of mitochondria induced by 5-aminolevulinic acid: role of Ca2+ and membrane protein thiols, Biophys Acta, vol.1188, pp.86-92, 1994.

D. M. Walther, D. Papic, M. P. Bos, J. Thommassen, and D. Rapaport, Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria" Processing of national academy of sciences of united sates of America, vol.24, pp.2531-2536, 2009.

D. J. Waxman and L. Azaroff, Phenobarbital induction of cytochrome P-450 gene expression, Biochem J, vol.281, pp.577-92, 1992.

S. D. Whatley, S. Ducamp, L. Gouya, B. Grandchamp, C. Beaumont et al., C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload, Am J Hum Genet, vol.83, issue.3, pp.408-414, 2008.

C. L. Wu, L. S. Ro, S. M. Jung, T. C. Tsai, C. C. Chu et al., Clinical presentation and electrophysiological findings of porphyric neuropathies: a followup study, Muscle and Nerve, vol.51, pp.363-369, 2015.

M. Yamada, M. Kondo, M. Tanaka, R. Okeda, S. Hatakeyama et al., An autopsy case of acute porphyria with a decrease of both uroporphyrinogen I synthetase and ferrochelatase activities, Acta Neuropathol, vol.64, pp.6-11, 1984.

V. Yankovskaya, R. Horsefield, S. Törnroth, C. Luna-chavez, H. Miyoshi et al., Architecture of succinate dehydrogenase and reactive oxygen species generation, Science, vol.299, pp.700-704, 2003.

M. Yasuda, L. Gan, B. Chen, S. Kadirvel, C. Yu et al., RNAi-mediated silencing of hepatic Alas1 effectively prevents and treats the induced acute attacks in acute intermittent porphyria mice, Proc Natl Acad Sci, vol.27, pp.7777-7782, 2014.

J. Zheng, Y. Shan, R. W. Lambrecht, S. E. Donohue, and H. L. Bonkovsky, Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin, Molecularand cellular Biochemistry, vol.319, pp.153-161, 2008.

J. Zhuang, A. R. Reddi, Z. Wang, B. Khodaverdian, E. L. Hegg et al., Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins, Biochemistry, vol.45, pp.12530-12538, 2006.