Skip to Main content Skip to Navigation
Theses

Modern approaches for nonlinear data analysis of economic and financial time series

Résumé : L’axe principal de la thèse est centré sur des approches non-linéaires modernes d’analyse des données économiques et financières, avec une attention particulière sur les cycles économiques et les crises financières. Un consensus dans la littérature statistique et financière s’est établie autour du fait que les variables économiques ont un comportement non-linéaire au cours des différentes phases du cycle économique. En tant que tel, les approches/modèles non-linéaires sont requis pour saisir les caractéristiques du mécanisme de génération des données intrinsèquement asymétriques, que les modèles linéaires sont incapables de reproduire.À cet égard, la thèse propose une nouvelle approche interdisciplinaire et ouverte à l’analyse des systèmes économiques et financiers. La thèse présente des approches robustes aux valeurs extrêmes et à la non-stationnarité, applicables à la fois pour des petits et de grands échantillons, aussi bien pour des séries temporelles économiques que financières. La thèse fournit des procédures dites étape par étape dans l’analyse des indicateurs économiques et financiers en intégrant des concepts basés sur la méthode de substitution de données, des ondelettes, espace incorporation de phase, la m´méthode retard vecteur variance (DVV) et des récurrences parcelles. La thèse met aussi en avant des méthodes transparentes d’identification, de datation des points de retournement et de l´évaluation des impacts des crises économiques et financières. En particulier, la thèse fournit également une procédure pour anticiper les crises futures et ses conséquences.L’étude montre que l’intégration de ces techniques dans l’apprentissage de la structure et des interactions au sein et entre les variables économiques et financières sera très utile dans l’élaboration de politiques de crises, car elle facilite le choix des méthodes de traitement appropriées, suggérées par les données.En outre, une nouvelle procédure pour tester la linéarité et la racine unitaire dans un cadre non-linéaire est proposé par l’introduction d’un nouveau modèle – le modèle MT-STAR – qui a des propriétés similaires au modèle ESTAR mais réduit les effets des problèmes d’identification et peut aussi représenter l’asymétrie dans le mécanisme d’ajustement vers l’équilibre. Les distributions asymptotiques du test de racine unitaire proposées sont non-standards et sont calculées. La puissance du test est évaluée par simulation et quelques illustrations empiriques sur les taux de change réel montrent son efficacité. Enfin, la thèse développe des modèles multi-variés Self-Exciting Threshold Autoregressive avec des variables exogènes (MSETARX) et présente une méthode d’estimation paramétrique. La modélisation des modèles MSETARX et des problèmes engendrés par son estimation sont brièvement examinés.
Complete list of metadatas

Cited literature [159 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02280680
Contributor : Abes Star :  Contact
Submitted on : Friday, September 6, 2019 - 2:18:09 PM
Last modification on : Sunday, January 19, 2020 - 6:38:28 PM
Document(s) archivé(s) le : Thursday, February 6, 2020 - 5:04:29 PM

File

ADDO.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02280680, version 1

Collections

Citation

Peter Martey Addo. Modern approaches for nonlinear data analysis of economic and financial time series. General Mathematics [math.GM]. Université Panthéon-Sorbonne - Paris I; Università degli studi (Venise, Italie), 2014. English. ⟨NNT : 2014PA010033⟩. ⟨tel-02280680⟩

Share

Metrics

Record views

102

Files downloads

56