, 6MWTD: six-minute walk test distance; CRP: C-reactive protein; CTEPH: chronic thromboembolic pulmonary hypertension; ECMO: extracorporeal membrane oxygenation; MPAP: mean pulmonary arterial pressure; NYHA: New York Heart Association functional class

, This single centered study (Clinicaltrial.gov Identifier NCT03205085 -Primary Investigator: Prof. Olaf Mercier) will include 100 patients with CTEPH before endarterectomy and 50 patients with PAH referred for double lung transplantation, and will follow them up for 6 months after surgery. All patients will undergo a complete right heart deep phenotyping (including echocardiography and cardiac magnetic resonance with 4D blood flow sequence) and biological bio banking at inclusion (before surgery) and at 6 months after surgery. It can be hypothesized that the molecular changes observed after surgery can reflect the pathways involved in right heart failure in PH, None of the patients had chronic inflammatory disease

N. F. Voelkel, R. A. Quaife, and L. A. Leinwand, Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure, Circulation, vol.114, pp.1883-91, 2006.

D. Srivastava and E. N. Olson, A genetic blueprint for cardiac development, Nature, vol.407, pp.221-227, 2000.

S. Guimaron, J. Guihaire, M. Amsallem, F. Haddad, E. Fadel et al., Current Knowledge and Recent Advances of Right Ventricular Molecular Biology and Metabolism from Congenital Heart Disease to Chronic Pulmonary Hypertension, BioMed Res Int, 2018.

S. Batkai, C. Bär, and T. Thum, MicroRNAs in right ventricular remodelling, Cardiovasc Res, vol.113, pp.1433-1473, 2017.

F. Fontan and E. Baudet, Surgical repair of tricuspid atresia, Thorax, vol.26, pp.240-248, 1971.

H. Senzaki, S. Masutani, and H. Ishido, Cardiac rest and reserve function in patients with Fontan circulation, J Am Coll Cardiol, vol.47, pp.2528-2563, 2006.

N. Galiè, M. Humbert, and J. Vachiery, ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT), Eur Heart J, vol.37, pp.67-119, 2015.

M. Amsallem, O. Mercier, Y. Kobayashi, K. Moneghetti, and F. Haddad, Forgotten No More: a Focused Update on the Right Ventricle in Cardiovascular Disease, JACC Heart Fail, vol.6, pp.891-903, 2018.

A. Vonk-noordegraaf, F. Haddad, H. J. Bogaard, and P. M. Hassoun, Noninvasive imaging in the assessment of the cardiopulmonary vascular unit, Circulation, vol.131, pp.899-913, 2015.

M. Amsallem, T. Kuznetsova, K. Hanneman, A. Denault, and F. Haddad, Right Heart Imaging in Patients with Heart Failure: A Tale of Two Ventricles, Curr Opin Cardiol, vol.31, pp.469-82, 2016.

J. Sanz, M. Kariisa, and S. Dellegrottaglie, Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance, JACC Cardiovasc Imaging, vol.2, pp.286-95, 2009.

S. Mahapatra, R. A. Nishimura, P. Sorajja, S. Cha, and M. D. Mcgoon, Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension, J Am Coll Cardiol, vol.47, pp.799-803, 2006.

A. Campo, S. C. Mathai, L. Pavec, and J. , Hemodynamic predictors of survival in sclerodermarelated pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.182, pp.252-60, 2010.

M. Dupont, W. Mullens, and H. N. Skouri, Prognostic role of pulmonary arterial capacitance in advanced heart failure, Circ Heart Fail, vol.5, pp.778-85, 2012.

P. Pellegrini, A. Rossi, and M. Pasotti, Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure, Chest, vol.145, pp.1064-70, 2014.

N. Al-naamani, I. R. Preston, J. K. Paulus, N. S. Hill, and K. E. Roberts, Pulmonary Arterial Capacitance Is an Important Predictor of Mortality in Heart Failure With a Preserved Ejection Fraction, JACC Heart Fail, vol.3, pp.467-74, 2015.

G. Saydain, A. Awan, P. Manickam, P. Kleinow, and S. Badr, Pulmonary Hypertension an Independent Risk Factor for Death in Intensive Care Unit: Correlation of Hemodynamic Factors with Mortality

, Clin Med Insights Circ Respir Pulm Med, vol.9, pp.27-33, 2015.

D. Chemla, V. Castelain, P. Hervé, Y. Lecarpentier, and S. Brimioulle, Haemodynamic evaluation of pulmonary hypertension, Eur Respir J, vol.20, pp.1314-1345, 2002.

A. Vonk-noordegraaf, B. E. Westerhof, and N. Westerhof, The Relationship Between the Right Ventricle and its Load in Pulmonary Hypertension, J Am Coll Cardiol, vol.69, pp.236-279, 2017.

N. Saouti, N. Westerhof, and P. E. Postmus, Vonk-Noordegraaf A. The arterial load in pulmonary hypertension, Eur Respir Rev, vol.19, pp.197-203, 2010.

M. Amsallem, D. Boulate, and M. Aymami, Load Adaptability in Patients with Pulmonary Arterial Hypertension, Am J Cardiol, vol.120, pp.874-82, 2017.

J. Lankhaar, N. Westerhof, and T. Faes, Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension, Eur Heart J, vol.29, pp.1688-95, 2008.

N. Saouti, N. Westerhof, and F. Helderman, Right ventricular oscillatory power is a constant fraction of total power irrespective of pulmonary artery pressure, Am J Respir Crit Care Med, vol.182, pp.1315-1335, 2010.

R. J. Tedford, P. M. Hassoun, and S. C. Mathai, Pulmonary capillary wedge pressure augments right ventricular pulsatile loading, Circulation, vol.125, pp.289-97, 2012.

M. Gerges, C. Gerges, and A. Pistritto, Pulmonary Hypertension in Heart Failure. Epidemiology, Right Ventricular Function, and Survival, Am J Respir Crit Care Med, vol.192, pp.1234-1280, 2015.

M. Amsallem, J. M. Sternbach, and S. Adigopula, Addressing the Controversy of Estimating Pulmonary Arterial Pressure by Echocardiography, J Am Soc Echocardiogr, vol.29, pp.93-102, 2016.

T. Kind, T. Faes, A. Vonk-noordegraaf, and N. Westerhof, Proportional Relations Between Systolic, Diastolic and Mean Pulmonary Artery Pressure are Explained by Vascular Properties, Cardiovasc Eng Technol, vol.2, pp.15-23, 2011.

D. Chemla, V. Castelain, and M. Humbert, New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure, Chest, vol.126, pp.1313-1320, 2004.

F. Haddad, K. Kudelko, O. Mercier, B. Vrtovec, R. T. Zamanian et al., Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies, Prog Cardiovasc Dis, vol.54, pp.154-67, 2011.

F. Haddad, M. Elmi-sarabi, E. Fadel, O. Mercier, and A. Y. Denault, Pearls and pitfalls in managing right heart failure in cardiac surgery, Curr Opin Anaesthesiol, vol.29, pp.68-79, 2016.

C. Gerges, M. Gerges, and M. B. Lang, Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in "out-of-proportion" pulmonary hypertension, Chest, vol.143, pp.758-66, 2013.

E. Tampakakis, P. J. Leary, and V. N. Selby, The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease, JACC Heart Fail, vol.3, pp.9-16, 2015.

R. Naeije, R. Vanderpool, and B. P. Dhakal, Exercise-induced pulmonary hypertension: physiological basis and methodological concerns, Am J Respir Crit Care Med, vol.187, pp.576-83, 2013.

J. S. Janicki, K. T. Weber, M. J. Likoff, and A. P. Fishman, The pressure-flow response of the pulmonary circulation in patients with heart failure and pulmonary vascular disease, Circulation, vol.72, pp.1270-1278, 1985.

G. D. Lewis, E. Bossone, and R. Naeije, Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases, Circulation, vol.128, pp.1470-1479, 2013.

P. Herve, E. M. Lau, and O. Sitbon, Criteria for diagnosis of exercise pulmonary hypertension, Eur Respir J, vol.46, pp.728-765, 2015.

G. Kovacs, A. Olschewski, A. Berghold, and H. Olschewski, Pulmonary vascular resistances during exercise in normal subjects: a systematic review, Eur Respir J, vol.39, pp.319-347, 2012.

R. Oliveira, M. Agarwal, and J. A. Tracy, Age-related upper limits of normal for maximum upright exercise pulmonary haemodynamics, Eur Respir J, vol.47, pp.1179-88, 2016.

G. Kovacs, P. Herve, and J. A. Barbera, An official European Respiratory Society statement: pulmonary haemodynamics during exercise, Eur Respir J, vol.50, 2017.

C. Firpo, J. I. Hoffman, and N. H. Silverman, Evaluation of fetal heart dimensions from 12 weeks to term, Am J Cardiol, vol.87, pp.594-600, 2001.

F. Haddad, S. A. Hunt, D. N. Rosenthal, and D. J. Murphy, Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle, Circulation, vol.117, pp.1436-1484, 2008.

F. Haddad, J. Guihaire, and M. Skhiri, Septal curvature is marker of hemodynamic, anatomical, and electromechanical ventricular interdependence in patients with pulmonary arterial hypertension, Echocardiogr, vol.31, pp.699-707, 2014.

J. J. Atherton, T. D. Moore, and S. S. Lele, Diastolic ventricular interaction in chronic heart failure, Lancet, vol.349, pp.1720-1724, 1997.

I. Belenkie, E. R. Smith, and J. V. Tyberg, Ventricular interaction: from bench to bedside, Ann Med, vol.33, pp.236-277, 2001.

C. Gan, J. Lankhaar, and J. T. Marcus, Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension, Am J Physiol Heart Circ Physiol, vol.290, pp.1528-1561, 2006.

M. Rabinovitch, C. Guignabert, M. Humbert, and M. R. Nicolls, Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension, Circ Res, vol.115, pp.165-75, 2014.

J. Vachiéry, Y. Adir, and J. A. Barberà, Pulmonary hypertension due to left heart diseases, J Am Coll Cardiol, vol.62, pp.100-108, 2013.

M. Amsallem, D. Boulate, and Z. Kooreman, Investigating the value of right heart echocardiographic metrics for detection of pulmonary hypertension in patients with advanced lung disease, Int J Cardiovasc Imaging, vol.33, pp.825-860, 2017.

L. G. Rudski, W. W. Lai, and J. Afilalo, Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography, J Am Soc Echocardiogr, vol.23, pp.685-713, 2010.

I. M. Lang, R. Pesavento, D. Bonderman, and J. Yuan, Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding, Eur Respir J, vol.41, pp.462-470, 2013.

N. H. Kim, M. Delcroix, and D. P. Jenkins, Chronic thromboembolic pulmonary hypertension, J Am Coll Cardiol, vol.62, pp.92-101, 2013.

L. Guérin, F. Couturaud, and F. Parent, Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism

, Thromb Haemost, vol.112, pp.598-605, 2014.

O. Mercier, A. Ataam, J. Langer, and N. B. , Abnormal pulmonary endothelial cells may underlie the enigmatic pathogenesis of chronic thromboembolic pulmonary hypertension, J Heart Lung Transplant, vol.36, pp.305-319, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01824263

G. Simonneau, A. Torbicki, P. Dorfmüller, and N. Kim, The pathophysiology of chronic thromboembolic pulmonary hypertension, Eur Respir Rev, vol.26, p.160112, 2017.

L. J. Dell'italia and R. A. Walsh, Application of a time varying elastance model to right ventricular performance in man, Cardiovasc Res, vol.22, pp.864-74, 1988.

K. Kusunose, R. S. Tsutsui, and K. Bhatt, Prognostic value of RV function before and after lung transplantation, JACC Cardiovasc Imaging, vol.7, pp.1084-94, 2014.

B. E. Westerhof, N. Saouti, W. J. Van-der-laarse, and N. Westerhof, Vonk Noordegraaf A. Treatment strategies for the right heart in pulmonary hypertension, Cardiovasc Res, vol.113, pp.1465-73, 2017.

N. K. Kapur, M. L. Esposito, and Y. Bader, Mechanical Circulatory Support Devices for Acute Right Ventricular Failure, Circulation, vol.136, pp.314-340, 2017.

W. E. Hopkins, L. L. Ochoa, G. W. Richardson, and E. P. Trulock, Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome, J Heart Lung Transplant, vol.15, pp.100-105, 1996.

S. M. Kawut, D. B. Taichman, C. L. Archer-chicko, H. I. Palevsky, and S. E. Kimmel, Hemodynamics and survival in patients with pulmonary arterial hypertension related to systemic sclerosis, Chest, vol.123, pp.344-50, 2003.

T. Oosterhof, I. I. Tulevski, H. W. Vliegen, A. M. Spijkerboer, and B. Mulder, Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels, Am J Cardiol, vol.97, pp.1051-1056, 2006.

W. E. Hopkins and A. D. Waggoner, Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome, Am J Cardiol, vol.89, pp.34-42, 2002.

M. Oka, N. Homma, and L. Taraseviciene-stewart, Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats, Circ Res, vol.100, pp.923-932, 2007.

J. J. Ryan and S. L. Archer, The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure, Circ Res, vol.115, pp.176-88, 2014.

M. S. Mcmurtry, S. Bonnet, and X. Wu, Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis, Circ Res, vol.95, pp.830-870, 2004.

E. D. Michelakis, M. S. Mcmurtry, and X. Wu, Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels, Circulation, vol.105, pp.244-50, 2002.

S. A. Van-wolferen, J. T. Marcus, and N. Westerhof, Right coronary artery flow impairment in patients with pulmonary hypertension, Eur Heart J, vol.29, pp.120-127, 2008.

X. Bian, A. G. Williams, P. A. Gwirtz, and H. F. Downey, Right coronary autoregulation in conscious, chronically instrumented dogs, Am J Physiol, vol.275, pp.169-75, 1998.

L. Piao, Y. Fang, K. Parikh, J. J. Ryan, P. T. Toth et al., Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension, J Mol Med, vol.91, pp.1185-97, 2013.

A. Gómez, D. Bialostozky, and A. Zajarias, Right ventricular ischemia in patients with primary pulmonary hypertension, J Am Coll Cardiol, vol.38, pp.1137-1179, 2001.

J. Nagendran, G. Sutendra, and I. Paterson, Endothelin axis is upregulated in human and rat right ventricular hypertrophy, Circ Res, vol.112, pp.347-54, 2013.

J. Nagendran, S. L. Archer, and D. Soliman, Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility, Circulation, vol.116, pp.238-286, 2007.

D. Boulate, A. Ataam, J. Connolly, and A. J. , Early Development of Right Ventricular Ischemic Lesions in a Novel Large Animal Model of Acute Right Heart Failure in Chronic Thromboembolic Pulmonary Hypertension, J Card Fail, vol.23, pp.876-86, 2017.

G. Sutendra, P. Dromparis, and R. Paulin, A metabolic remodeling in right ventricular hypertrophy is associated with decreased angiogenesis and a transition from a compensated to a decompensated state in pulmonary hypertension, J Mol Med, vol.91, pp.1315-1342, 2013.

P. Noly, F. Haddad, and J. Arthur-ataam, The importance of capillary density-stroke work mismatch for right ventricular adaptation to chronic pressure overload, J Thorac Cardiovasc Surg, vol.154, pp.2070-2079, 2017.

R. Ross, Atherosclerosis--an inflammatory disease, N Engl J Med, vol.340, pp.115-141, 1999.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, pp.868-74, 2002.

P. Libby, P. M. Ridker, and G. K. Hansson, Leducq Transatlantic Network on Atherothrombosis Inflammation in atherosclerosis: from pathophysiology to practice, J Am Coll Cardiol, vol.54, pp.2129-2167, 2009.

M. A. Dale, M. K. Ruhlman, and B. T. Baxter, Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy, Arterioscler Thromb Vasc Biol, vol.35, pp.1746-55, 2015.

F. Hellenthal, W. A. Buurman, W. Wodzig, and G. Schurink, Biomarkers of abdominal aortic aneurysm progression. Part 2: inflammation, Nat Rev Cardiol, vol.6, pp.543-52, 2009.

M. Amsallem, T. Saito, Y. Tada, R. Dash, and M. V. Mcconnell, Magnetic Resonance Imaging and Positron Emission Tomography Approaches to Imaging Vascular and Cardiac Inflammation, Circ J, vol.80, pp.1269-77, 2016.

P. Dorfmüller, F. Perros, K. Balabanian, and M. Humbert, Inflammation in pulmonary arterial hypertension, Eur Respir J, vol.22, pp.358-63, 2003.

P. M. Hassoun, L. Mouthon, and J. A. Barberà, Inflammation, growth factors, and pulmonary vascular remodeling, J Am Coll Cardiol, vol.54, pp.10-19, 2009.

L. C. Price, S. J. Wort, and F. Perros, Inflammation in pulmonary arterial hypertension, Chest, vol.141, pp.210-231, 2012.

R. Quarck, T. Nawrot, B. Meyns, and M. Delcroix, C-reactive protein: a new predictor of adverse outcome in pulmonary arterial hypertension, J Am Coll Cardiol, vol.53, pp.1211-1219, 2009.

E. Soon, A. M. Holmes, and C. M. Treacy, Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension, Circulation, vol.122, pp.920-927, 2010.

J. Cracowski, F. Chabot, and J. Labarère, Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension, Eur Respir J, vol.43, pp.915-922, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02271055

G. A. Heresi, M. Aytekin, J. P. Hammel, S. Wang, S. Chatterjee et al., Plasma interleukin-6 adds prognostic information in pulmonary arterial hypertension, Eur Respir J, vol.43, pp.912-916, 2014.

M. Humbert, G. Monti, and F. Brenot, Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension, Am J Respir Crit Care Med, vol.151, pp.1628-1659, 1995.

R. Quarck, M. Wynants, E. Verbeken, B. Meyns, and M. Delcroix, Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension, Eur Respir J, vol.46, pp.431-474, 2015.

D. Bonderman, J. Jakowitsch, and C. Adlbrecht, Medical conditions increasing the risk of chronic thromboembolic pulmonary hypertension, Thromb Haemost, vol.93, pp.512-518, 2005.

M. M. Hoeper, J. Niedermeyer, F. Hoffmeyer, P. Flemming, and H. Fabel, Pulmonary hypertension after splenectomy?, Ann Intern Med, vol.130, pp.506-515, 1999.

X. Jaïs, V. Ioos, and C. Jardim, Splenectomy and chronic thromboembolic pulmonary hypertension, Thorax, vol.60, pp.1031-1035, 2005.

M. K. Frey, S. Alias, and M. P. Winter, Splenectomy is modifying the vascular remodeling of thrombosis, J Am Heart Assoc, vol.3, p.772, 2014.

D. Bonderman, J. Jakowitsch, and B. Redwan, Role for staphylococci in misguided thrombus resolution of chronic thromboembolic pulmonary hypertension, Arterioscler Thromb Vasc Biol, vol.28, pp.678-84, 2008.

F. Langer, R. Schramm, M. Bauer, D. Tscholl, T. Kunihara et al., Cytokine response to pulmonary thromboendarterectomy, Chest, vol.126, pp.135-176, 2004.

M. Wynants, R. Quarck, and A. Ronisz, Effects of C-reactive protein on human pulmonary vascular cells in chronic thromboembolic pulmonary hypertension, Eur Respir J, vol.40, pp.886-94, 2012.

N. Skoro-sajer, C. Gerges, and M. Gerges, Usefulness of thrombosis and inflammation biomarkers in chronic thromboembolic pulmonary hypertension-sampling plasma and surgical specimens, J Heart Lung Transplant, vol.37, pp.1067-74, 2018.

J. K. Hennigs, H. J. Baumann, and N. Lüneburg, Fibrinogen plasma concentration is an independent marker of haemodynamic impairment in chronic thromboembolic pulmonary hypertension, Sci Rep, vol.4, p.4808, 2014.

A. Sydykov, A. Mamazhakypov, and A. Petrovic, Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers, Front Physiol, vol.9, p.609, 2018.

M. Begieneman, F. Van-de-goot, and . C. Van-der-bilt-i-a, Pulmonary embolism causes endomyocarditis in the human heart, Heart, vol.94, pp.450-456, 2008.

K. Iwadate, M. Doi, and K. Tanno, Right ventricular damage due to pulmonary embolism: examination of the number of infiltrating macrophages, Forensic Sci Int, vol.134, pp.147-53, 2003.

J. A. Watts, J. Zagorski, M. A. Gellar, B. G. Stevinson, and J. A. Kline, Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats, J Mol Cell Cardiol, vol.41, pp.296-307, 2006.

C. Dewachter, L. Dewachter, and B. Rondelet, Activation of apoptotic pathways in experimental acute afterload-induced right ventricular failure, Crit Care Med, vol.38, pp.1405-1418, 2010.

C. Dewachter, A. Belhaj, and B. Rondelet, Myocardial inflammation in experimental acute right ventricular failure: Effects of prostacyclin therapy, J Heart Lung Transplant, vol.34, pp.1334-1379, 2015.

J. A. Watts, M. A. Gellar, L. K. Stuart, M. Obraztsova, and J. A. Kline, Proinflammatory events in right ventricular damage during pulmonary embolism: effects of treatment with ketorolac in rats, J Cardiovasc Pharmacol, vol.54, pp.246-52, 2009.

J. Zagorski, M. A. Gellar, M. Obraztsova, J. A. Kline, and J. A. Watts, Inhibition of CINC-1 decreases right ventricular damage caused by experimental pulmonary embolism in rats, J Immunol, vol.179, pp.7820-7826, 2007.

J. Zagorski, N. Sanapareddy, M. A. Gellar, J. A. Kline, and J. A. Watts, Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats, Physiol Genomics, vol.34, pp.101-112, 2008.

E. J. Birks, V. J. Owen, and P. B. Burton, Tumor necrosis factor-alpha is expressed in donor heart and predicts right ventricular failure after human heart transplantation, Circulation, vol.102, pp.326-357, 2000.

S. Nergui, Y. Fukumoto, and E. Z. Do, Role of endothelial nitric oxide synthase and collagen metabolism in right ventricular remodeling due to pulmonary hypertension, Circ J, vol.78, pp.1465-74, 2014.

M. L. Handoko, F. S. De-man, and C. M. Happé, Opposite effects of training in rats with stable and progressive pulmonary hypertension, Circulation, vol.120, pp.42-51, 2009.

M. E. Campian, M. Hardziyenka, and K. De-bruin, Early inflammatory response during the development of right ventricular heart failure in a rat model, Eur J Heart Fail, vol.12, pp.653-661, 2010.

F. S. De-man, M. L. Handoko, and J. Van-ballegoij, Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension, Circ Heart Fail, vol.5, pp.97-105, 2012.

L. A. Ahmed, A. Obaid, H. F. Zaki, and A. M. Agha, Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotalineinduced pulmonary hypertension in rats, Eur J Pharmacol, vol.740, pp.379-87, 2014.

D. Moreira-gonçalves, R. Ferreira, and H. Fonseca,

R. Paulin, G. Sutendra, and V. Gurtu, A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension, Circ Res, vol.116, pp.56-69, 2015.

R. Nogueira-ferreira, D. Moreira-gonçalves, and A. F. Silva, Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines, Int J Cardiol, vol.203, pp.858-66, 2016.

K. M. Rice, N. Manne, and M. B. Kolli, Curcumin nanoparticles attenuate cardiac remodeling due to pulmonary arterial hypertension, Artif Cells Nanomedicine Biotechnol, vol.44, pp.1909-1925, 2016.

J. Wang, X. Zuo, and J. Xu, Evaluation and Treatment of Endoplasmic Reticulum

, Stress in Right Ventricular Dysfunction during Monocrotaline-Induced Rat Pulmonary Arterial Hypertension, Cardiovasc Drugs Ther, vol.30, pp.587-98, 2016.

A. K. Alencar, G. C. Montes, and T. Montagnoli, Activation of GPER ameliorates experimental pulmonary hypertension in male rats, Eur J Pharm Sci, vol.97, pp.208-225, 2017.

M. B. Brown, E. Neves, and G. Long, High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension, Am J Physiol Regul Integr Comp Physiol, vol.312, pp.197-210, 2017.

J. Guihaire, T. Deuse, and D. Wang, Pulmonary hypertension: macrophage infiltration corelates with right ventricular remodeling in an experimental model of pulmonary hypertension, J Heart Lung Transplant, vol.36, pp.370-370, 2017.

A. L. Frump, K. N. Goss, and A. Vayl, Estradiol improves right ventricular function in rats with severe angioproliferative pulmonary hypertension: effects of endogenous and exogenous sex hormones, Am J Physiol Lung Cell Mol Physiol, vol.308, pp.873-90, 2015.

B. Rondelet, C. Dewachter, and F. Kerbaul, Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure, Eur Heart J, vol.33, pp.1017-1043, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00690431

A. Belhaj, L. Dewachter, and F. Kerbaul, Heme oxygenase-1 and inflammation in experimental right ventricular failure on prolonged overcirculation-induced pulmonary hypertension, PloS One, vol.8, p.69470, 2013.

M. Vistnes, A. Waehre, and S. Nygård, Circulating cytokine levels in mice with heart failure are etiology dependent, J Appl Physiol, vol.108, pp.1357-64, 2010.

A. Waehre, M. Vistnes, and I. Sjaastad, Chemokines regulate small leucine-rich proteoglycans in the extracellular matrix of the pressure-overloaded right ventricle, J Appl Physiol, vol.112, pp.1372-82, 2012.

H. Luitel, A. Sydykov, and Y. Schymura, Pressure overload leads to an increased accumulation and activity of mast cells in the right ventricle, Physiol Rep, vol.5, p.13146, 2017.

G. Olivetti, C. Lagrasta, R. Ricci, E. H. Sonnenblick, J. M. Capasso et al., Long-term pressure-induced cardiac hypertrophy: capillary and mast cell proliferation, Am J Physiol, vol.257, pp.1766-72, 1989.

M. J. Overbeek, K. Mouchaers, and H. M. Niessen, Characteristics of interstitial fibrosis and inflammatory cell infiltration in right ventricles of systemic sclerosis-associated pulmonary arterial hypertension, Int J Rheumatol, p.604615, 2010.

G. Torre-amione, S. Kapadia, C. Benedict, H. Oral, J. B. Young et al., Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD), J Am Coll Cardiol, vol.27, pp.1201-1207, 1996.

S. Hegewisch, H. J. Weh, and D. K. Hossfeld, TNF-induced cardiomyopathy, Lancet, vol.335, pp.294-299, 1990.

M. S. Finkel, C. V. Oddis, T. D. Jacob, S. C. Watkins, B. G. Hattler et al., Negative inotropic effects of cytokines on the heart mediated by nitric oxide, Science, vol.257, pp.387-396, 1992.

V. Pasceri, J. T. Willerson, and E. T. Yeh, Direct proinflammatory effect of C-reactive protein on human endothelial cells, Circulation, vol.102, pp.2165-2173, 2000.

S. Verma, S. Li, and M. V. Badiwala, Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein, Circulation, vol.105, pp.1890-1896, 2002.

S. Von-haehling, R. S. Von-bardeleben, and T. Kramm, Inflammation in right ventricular dysfunction due to thromboembolic pulmonary hypertension, Int J Cardiol, vol.144, pp.206-217, 2010.

T. Yang, Z. Li, and G. Chen, Increased levels of plasma CXC-Chemokine Ligand 10, 12 and 16 are associated with right ventricular function in patients with idiopathic pulmonary arterial hypertension, Heart Lung J Crit Care, vol.43, pp.322-329, 2014.

K. W. Prins, S. L. Archer, and M. Pritzker, Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension, J Heart Lung Transplant, vol.37, pp.376-84, 2018.

M. Odeh, E. Sabo, and A. Oliven, Circulating levels of tumor necrosis factor-alpha correlate positively with severity of peripheral oedema in patients with right heart failure, Eur J Heart Fail, vol.8, pp.141-147, 2006.

R. M. Lang, L. P. Badano, and V. Mor-avi, Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging, J Am Soc Echocardiogr, vol.28, pp.1-39, 2015.

T. Damy, A. Kallvikbacka-bennett, and K. Goode, Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure, J Card Fail, vol.18, pp.216-241, 2012.

S. Ghio, S. Pica, and C. Klersy, Prognostic value of TAPSE after therapy optimisation in patients with pulmonary arterial hypertension is independent of the haemodynamic effects of therapy, Open Heart, 2016.

B. Wranne, F. J. Pinto, E. Hammarström, F. G. St-goar, J. Puryear et al., Abnormal right heart filling after cardiac surgery: time course and mechanisms, Br Heart J, vol.66, pp.435-477, 1991.

G. Tamborini, M. Muratori, and D. Brusoni, Is right ventricular systolic function reduced after cardiac surgery? A two-and three-dimensional echocardiographic study, Eur J Echocardiogr, vol.10, pp.630-634, 2009.

M. Amsallem, A. J. Sweatt, and M. C. Aymami, Right Heart End-Systolic Remodeling Index Strongly Predicts Outcomes in Pulmonary Arterial Hypertension: Comparison With Validated Models, Circ Cardiovasc Imaging, vol.10, p.5771, 2017.

N. M. Fine, L. Chen, and P. M. Bastiansen, Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension, Circ Cardiovasc Imaging, vol.6, pp.711-732, 2013.

F. Haddad and M. Amsallem, Full Circle on Pulmonary Flow Dynamics in Pulmonary Arterial Hypertension, JACC Cardiovasc Imaging, vol.10, pp.1278-80, 2017.

J. M. Hilde, I. Skjørten, and O. J. Grøtta, Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension, J Am Coll Cardiol, vol.62, pp.1103-1114, 2013.

N. C. Nanda, R. Gramiak, and T. I. Robinson, Shah PM Echocardiographic evaluation of pulmonary hypertension, Circulation, vol.50, pp.575-81, 1974.

A. E. Weyman, J. C. Dillon, H. Feigenbaum, and S. Chang, Echocardiographic patterns of pulmonic valve motion with pulmonary hypertension, Circulation, vol.50, pp.905-915, 1974.

K. H. Parker and C. J. Jones, Forward and backward running waves in the arteries: analysis using the method of characteristics, J Biomech Eng, vol.112, pp.322-328, 1990.

D. Chemla, V. Castelain, G. Simonneau, Y. Lecarpentier, and P. Hervé, Pulse wave reflection in pulmonary hypertension, J Am Coll Cardiol, vol.39, pp.743-747, 2002.

V. Castelain, P. Hervé, Y. Lecarpentier, P. Duroux, G. Simonneau et al., Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension, J Am Coll Cardiol, vol.37, pp.1085-92, 2001.

J. S. Arkles, A. R. Opotowsky, and J. Ojeda, Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension, Am J Respir Crit Care Med, vol.183, pp.268-76, 2011.

H. Takahama, R. B. Mccully, R. P. Frantz, and G. C. Kane, Unraveling the RV Ejection Doppler Envelope: Insight Into Pulmonary Artery Hemodynamics and Disease Severity, JACC Cardiovasc Imaging, vol.10, pp.1268-77, 2017.

F. Haddad, O. A. Spruijt, and A. Y. Denault, Right Heart Score for Predicting Outcome in

. Idiopathic, Familial, or Drug-and Toxin-Associated Pulmonary Arterial Hypertension, JACC Cardiovasc Imaging, vol.8, pp.627-665, 2015.

S. Ghio, C. Klersy, and G. Magrini, Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension, Int J Cardiol, vol.140, pp.272-280, 2010.

C. Tei, K. S. Dujardin, and D. O. Hodge, Doppler echocardiographic index for assessment of global right ventricular function, J Am Soc Echocardiogr, vol.9, pp.838-885, 1996.

Z. Cabrita, I. Ruísanchez, C. Grapsa, and J. , Validation of the isovolumetric relaxation time for the estimation of pulmonary systolic arterial blood pressure in chronic pulmonary hypertension, Eur Heart J Cardiovasc Imaging, vol.14, pp.51-56, 2013.

Y. J. Shimada, M. Shiota, R. J. Siegel, and T. Shiota, Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study, J Am Soc Echocardiogr, vol.23, pp.943-53, 2010.

J. Voigt, G. Pedrizzetti, and P. Lysyansky, Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging, Eur Heart J Cardiovasc Imaging, vol.16, pp.1-11, 2015.

J. G. Dumesnil, R. M. Shoucri, J. L. Laurenceau, and J. Turcot, A mathematical model of the dynamic geometry of the intact left ventricle and its application to clinical data, Circulation, vol.59, pp.1024-1058, 1979.

M. Dandel, H. Lehmkuhl, C. Knosalla, N. Suramelashvili, and R. Hetzer, Strain and strain rate imaging by echocardiography -basic concepts and clinical applicability, Curr Cardiol Rev, vol.5, pp.133-181, 2009.

Y. Kobayashi, M. Ariyama, and Y. Kobayashi, Comparison of left ventricular manual versus automated derived longitudinal strain: implications for clinical practice and research, Int J Cardiovasc Imaging, vol.32, pp.429-466, 2016.

M. Cameli, F. M. Righini, and M. Lisi, Comparison of right versus left ventricular strain analysis as a predictor of outcome in patients with systolic heart failure referred for heart transplantation, Am J Cardiol, vol.112, pp.1778-84, 2013.

M. Iacoviello, G. Citarelli, and V. Antoncecchi, Right Ventricular Longitudinal Strain Measures Independently Predict Chronic Heart Failure Mortality, Echocardiogr, vol.33, pp.992-1000, 2016.

K. Ryo, A. Goda, and T. Onishi, Characterization of right ventricular remodeling in pulmonary hypertension associated with patient outcomes by 3-dimensional wall motion tracking echocardiography, Circ Cardiovasc Imaging, vol.8, p.3176, 2015.

F. Maffessanti, D. Muraru, and R. Esposito, Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers, Circ Cardiovasc Imaging, vol.6, pp.700-710, 2013.

P. G. Yock and R. L. Popp, Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation, Circulation, vol.70, pp.657-62, 1984.

P. J. Currie, J. B. Seward, and K. L. Chan, Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterization study in 127 patients, J Am Coll Cardiol, vol.6, pp.750-756, 1985.

M. Berger, A. Haimowitz, A. Van-tosh, R. L. Berdoff, and E. Goldberg, Quantitative assessment of
URL : https://hal.archives-ouvertes.fr/hal-01527690

S. M. Shapiro, R. J. Oudiz, and T. Cao, Primary pulmonary hypertension: improved long-term

M. R. Fisher, G. J. Criner, and A. P. Fishman, Estimating pulmonary artery pressures by echocardiography in patients with emphysema, Eur Respir J, vol.30, pp.914-935, 2007.

J. D. Rich, S. J. Shah, R. S. Swamy, A. Kamp, and S. Rich, Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice, Chest, vol.139, pp.988-93, 2011.

J. P. Laaban, B. Diebold, R. Zelinski, M. Lafay, H. Raffoul et al., Noninvasive estimation of systolic pulmonary artery pressure using Doppler echocardiography in patients with chronic obstructive pulmonary disease, Chest, vol.96, pp.1258-62, 1989.

R. Tramarin, A. Torbicki, B. Marchandise, J. P. Laaban, and M. Morpurgo, Doppler echocardiographic evaluation of pulmonary artery pressure in chronic obstructive pulmonary disease. A European multicentre study

, European Office of the World Health Organization, Copenhagen, Eur Heart J, vol.12, pp.103-114, 1991.

S. J. Brecker, J. S. Gibbs, K. M. Fox, M. H. Yacoub, and D. G. Gibson,

A. L. Hinderliter, P. W. Willis, and R. J. Barst, Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Primary Pulmonary Hypertension Study Group, Circulation, vol.95, pp.1479-86, 1997.

D. S. Bach, J. L. Curtis, and P. J. Christensen, Preoperative echocardiographic evaluation of patients referred for lung volume reduction surgery, Chest, vol.114, pp.972-80, 1998.

S. M. Arcasoy, J. D. Christie, and V. A. Ferrari, Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease, Am J Respir Crit Care Med, vol.167, pp.735-775, 2003.

V. Dambrauskaite, M. Delcroix, and P. Claus, The evaluation of pulmonary hypertension using right ventricular myocardial isovolumic relaxation time, J Am Soc Echocardiogr, vol.18, pp.1113-1133, 2005.

F. Haddad, R. Zamanian, and A. Beraud, A novel non-invasive method of estimating pulmonary vascular resistance in patients with pulmonary arterial hypertension, J Am Soc Echocardiogr, vol.22, pp.523-532, 2009.

S. Lafitte, X. Pillois, and P. Reant, Estimation of pulmonary pressures and diagnosis of pulmonary hypertension by Doppler echocardiography: a retrospective comparison of routine echocardiography and invasive hemodynamics, J Am Soc Echocardiogr, vol.26, pp.457-63, 2013.

M. D'alto, E. Romeo, and P. Argiento, Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension, Int J Cardiol, vol.168, pp.4058-62, 2013.

M. Amsallem, H. Lu, and X. Tang, Optimizing Right Ventricular Focused Four-Chamber Views using Three-Dimensional Imaging, a comparative Magnetic Resonance based study, Int J Cardiovasc Imaging, vol.34, pp.1409-1426, 2018.

J. Guihaire, F. Haddad, and D. Boulate, Non-invasive indices of right ventricular function are markers of ventricular-arterial coupling rather than ventricular contractility: insights from a porcine model of chronic pressure overload, Eur Heart J Cardiovasc Imaging, vol.14, pp.1140-1149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879660

A. Cohen-solal, M. Faraggi, D. Czitrom, L. Guludec, D. Delahaye et al., Left ventricular-arterial system coupling at peak exercise in dilated nonischemic cardiomyopathy, Chest, vol.113, pp.870-877, 1998.

R. Gourgon, A. Cohen-solal, D. Himbert, and M. Dahan, Is ejection fraction an index of left ventricular function and/or of the condition of the arterial system?, Arch Mal Coeur Vaiss, vol.86, pp.97-106, 1993.

J. Sanz, A. García-alvarez, and L. Fernández-friera, Right ventriculo-arterial coupling in pulmonary hypertension: a magnetic resonance study, Heart, vol.98, pp.238-281, 2012.

P. Trip, T. Kind, and M. C. Van-de-veerdonk, Accurate assessment of load-independent right

M. Guazzi, F. Bandera, and G. Pelissero, Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis, Am J Physiol Heart Circ Physiol, vol.305, pp.1373-81, 2013.

G. Kang, R. Ha, and D. Banerjee, Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation, J Heart Lung Transplant, vol.35, pp.67-73, 2016.

G. R. Stevens, A. Garcia-alvarez, S. Sahni, M. J. Garcia, V. Fuster et al., RV dysfunction in pulmonary hypertension is independently related to pulmonary artery stiffness, JACC Cardiovasc Imaging, vol.5, pp.378-87, 2012.

K. Alfakih, S. Reid, T. Jones, and M. Sivananthan, Assessment of ventricular function and mass by cardiac magnetic resonance imaging, Eur Radiol, vol.14, pp.1813-1835, 2004.

N. Galea, I. Carbone, and D. Cannata, Right ventricular cardiovascular magnetic resonance imaging: normal anatomy and spectrum of pathological findings, Insights Imaging, vol.4, pp.213-236, 2013.

A. J. Swift, J. M. Wild, and S. K. Nagle, Quantitative magnetic resonance imaging of pulmonary hypertension: a practical approach to the current state of the art, J Thorac Imaging, vol.29, pp.68-79, 2014.

G. P. Mccann, C. T. Gan, A. M. Beek, H. Niessen, A. Vonk-noordegraaf et al.,

, Extent of MRI delayed enhancement of myocardial mass is related to right ventricular dysfunction in pulmonary artery hypertension, AJR Am J Roentgenol, vol.188, pp.349-55, 2007.

K. G. Blyth, B. A. Groenning, and T. N. Martin, Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension, Eur Heart J, vol.26, pp.1993-2002, 2005.

F. P. Junqueira, R. Macedo, and A. C. Coutinho, Myocardial delayed enhancement in patients with pulmonary hypertension and right ventricular failure: evaluation by cardiac MRI, Br J Radiol, vol.82, pp.821-827, 2009.

L. Bessa, F. P. Junqueira, M. L. Bandeira, and S. Da, Pulmonary arterial hypertension: use of delayed contrast-enhanced cardiovascular magnetic resonance in risk assessment, Arq Bras Cardiol, vol.101, pp.336-379, 2013.

S. V. Babu-narayan, O. Goktekin, and J. C. Moon, Late gadolinium enhancement cardiovascular magnetic resonance of the systemic right ventricle in adults with previous atrial redirection surgery for transposition of the great arteries, Circulation, vol.111, pp.2091-2099, 2005.

J. Sanz, S. Dellegrottaglie, and M. Kariisa, Prevalence and correlates of septal delayed contrast enhancement in patients with pulmonary hypertension, Am J Cardiol, vol.100, pp.731-736, 2007.

A. Wagner, H. Mahrholdt, and T. A. Holly, Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study, Lancet, vol.361, pp.374-383, 2003.

D. He, M. Ye, L. Zhang, and B. Jiang, Prognostic significance of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy, Heart Lung J Crit Care, vol.47, pp.122-128, 2018.

W. M. Bradlow, R. Assomull, P. J. Kilner, J. Gibbs, M. N. Sheppard et al.,

, Understanding late gadolinium enhancement in pulmonary hypertension, Circ Cardiovasc Imaging, vol.3, pp.501-504, 2010.

B. Egemnazarov, S. Crnkovic, B. M. Nagy, H. Olschewski, and G. Kwapiszewska, Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions, Matrix Biol, vol.68, pp.507-528, 2018.

M. L. Shehata, D. Lossnitzer, and J. Skrok, Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling, Am J Roentgenol, vol.196, pp.87-94, 2011.

E. Herpel, S. Singer, and C. Flechtenmacher, Extracellular matrix proteins and matrix metalloproteinases differ between various right and left ventricular sites in end-stage cardiomyopathies, Virchows Arch Int J Pathol, vol.446, pp.369-78, 2005.

J. Wang, L. Zhao, and X. Pan, Hypoxia-stimulated cardiac fibroblast production of IL-6

B. H. Freed, M. Gomberg-maitland, and S. Chandra, promotes myocardial fibrosis via the TGF-?1 signaling pathway, vol.96, p.11, 2012.

A. J. Swift, S. Rajaram, and D. Capener, LGE patterns in pulmonary hypertension do not impact overall mortality, JACC Cardiovasc Imaging, vol.7, pp.1209-1226, 2014.

C. F. Azevedo, M. Nigri, and M. L. Higuchi, Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease, J Am Coll Cardiol, vol.56, pp.278-87, 2010.

O. A. Spruijt, L. Vissers, H. Bogaard, M. Hofman, A. Vonk-noordegraaf et al.,

, Increased native T1-values at the interventricular insertion regions in precapillary pulmonary hypertension, Int J Cardiovasc Imaging, vol.32, pp.451-460, 2016.

A. J. Baksi and D. J. Pennell, T1 mapping in heart failure: from technique to prognosis, toward altering outcome, Circ Cardiovasc Imaging, vol.6, pp.861-864, 2013.

N. Kawel-boehm, D. Buser, T. Greiser, A. Bieri, O. Bremerich et al., In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI, Int J Cardiovasc Imaging, vol.30, pp.323-331, 2014.

B. B. Mehta, D. A. Auger, and J. A. Gonzalez, Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance, J Cardiovasc Magn Reson, vol.17, p.110, 2015.

A. Hsiao, M. Lustig, and M. T. Alley, Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI, Am J Roentgenol, vol.198, pp.250-259, 2012.

M. Markl, F. P. Chan, and M. T. Alley, Time-resolved three-dimensional phase-contrast MRI

, Magn Reson Imaging, vol.17, pp.499-506, 2003.

A. Frydrychowicz, O. Wieben, E. Niespodzany, S. B. Reeder, K. M. Johnson et al.,

, Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation, Invest Radiol, vol.48, pp.819-844, 2013.

K. Hanneman, A. Kino, J. Y. Cheng, M. T. Alley, and S. S. Vasanawala, Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI, J Magn Reson Imaging, vol.44, pp.383-92, 2016.

C. J. François, S. Srinivasan, and M. L. Schiebler, 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot, J Cardiovasc Magn Reson, vol.14, p.16, 2012.

G. Reiter, U. Reiter, and G. Kovacs, Magnetic resonance-derived 3-dimensional blood flow pulmonary arterial pressure, Circ Cardiovasc Imaging, vol.1, pp.23-30, 2008.

U. Reiter, G. Reiter, and G. Kovacs, Evaluation of elevated mean pulmonary arterial pressure based on magnetic resonance 4D velocity mapping: comparison of visualization techniques, PloS One, vol.8, p.82212, 2013.

A. J. Barker, A. Roldán-alzate, and P. Entezari, Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions, Magn Reson Med, vol.73, pp.1904-1917, 2015.

U. Truong, B. Fonseca, and J. Dunning, Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension

, J Cardiovasc Magn Reson, vol.15, p.81, 2013.

M. A. De-raaf, I. Schalij, and J. Gomez-arroyo, SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction, Eur Respir J, vol.44, pp.160-168, 2014.

T. Sarashina, K. Nakamura, and S. Akagi, Reverse Right Ventricular Remodeling After Lung Transplantation in Patients With Pulmonary Arterial Hypertension Under Combination Therapy of Targeted Medical Drugs, Circ J, vol.81, pp.383-90, 2017.

M. Kasimir, G. Seebacher, and P. Jaksch, Reverse cardiac remodelling in patients with primary pulmonary hypertension after isolated lung transplantation, Eur J Cardio-Thorac Surg, vol.26, pp.776-81, 2004.

B. J. Rensing, J. C. Mcdougall, J. F. Breen, W. T. Vigneswaran, C. G. Mcgregor et al., Right and left ventricular remodeling after orthotopic single lung transplantation for end-stage emphysema, J Heart Lung Transplant, vol.16, pp.926-959, 1997.

O. A. Spruijt, H. Bogaard, and M. W. Heijmans, Predicting pulmonary hypertension with standard computed tomography pulmonary angiography, Int J Cardiovasc Imaging, vol.31, pp.871-880, 2015.

N. Nagaya, Y. Goto, and T. Satoh, Impaired regional fatty acid uptake and systolic dysfunction in hypertrophied right ventricle, J Nucl Med, vol.39, pp.1676-80, 1998.

E. L. Lundgrin, M. M. Park, and J. Sharp, Fasting 2-deoxy-2-[18F]fluoro-D-glucose positron, Am Thorac Soc, vol.10, pp.1-9, 2013.

R. Kluge, H. Barthel, and H. Pankau, Different mechanisms for changes in glucose uptake of the right and left ventricular myocardium in pulmonary hypertension, J Nucl Med, vol.46, pp.25-31, 2005.

Y. Y. Wong, G. Ruiter, and M. Lubberink, Right ventricular failure in idiopathic pulmonary arterial hypertension is associated with inefficient myocardial oxygen utilization, Circ Heart Fail, vol.4, pp.700-706, 2011.

F. S. De-man, M. L. Handoko, C. Guignabert, and H. J. Bogaard, Vonk-Noordegraaf A. Neurohormonal axis in patients with pulmonary arterial hypertension: friend or foe?, Am J Respir Crit Care Med, vol.187, pp.14-23, 2013.

M. L. Paffett, J. Hesterman, and G. Candelaria, Longitudinal in vivo SPECT/CT imaging reveals morphological changes and cardiopulmonary apoptosis in a rodent model of pulmonary arterial hypertension, PloS One, vol.7, p.40910, 2012.

T. Lahm, I. S. Douglas, and S. L. Archer, Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement, Am J Respir Crit Care Med, vol.198, pp.15-43, 2018.

S. X. Leng, J. E. Mcelhaney, J. D. Walston, D. Xie, N. S. Fedarko et al., ELISA and multiplex technologies for cytokine measurement in inflammation and aging research, J Gerontol A Biol Sci Med Sci, vol.63, pp.879-84, 2008.

N. Aziz, P. Nishanian, R. Mitsuyasu, R. Detels, and J. L. Fahey, Variables that affect assays for plasma cytokines and soluble activation markers, Clin Diagn Lab Immunol, vol.6, pp.89-95, 1999.

W. Goh, W. Wang, and L. Wong, Why Batch Effects Matter in Omics Data, and How to Avoid Them, Trends Biotechnol, vol.35, pp.498-507, 2017.

D. Chemla and P. Herve, Derivation of mean pulmonary artery pressure from systolic pressure: implications for the diagnosis of pulmonary hypertension, J Am Soc Echocardiogr, vol.27, p.107, 2014.

D. Mukerjee, D. St-george, and B. Coleiro, Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach, Ann Rheum Dis, vol.62, pp.1088-93, 2003.

F. M. Wigley, J. Lima, M. Mayes, D. Mclain, J. L. Chapin et al., The prevalence of of community-based rheumatologists (the UNCOVER study), Arthritis Rheum, vol.52, pp.2125-2157, 2005.

R. L. Benza, D. P. Miller, and M. Gomberg-maitland, Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL), Circulation, vol.122, pp.164-72, 2010.

L. Chung, H. W. Farber, and R. Benza, Unique predictors of mortality in patients with pulmonary arterial hypertension associated with systemic sclerosis in the REVEAL registry, Chest, vol.146, pp.1494-504, 2014.

B. W. Kelemen, S. C. Mathai, and R. J. Tedford, Right ventricular remodeling in idiopathic and scleroderma-associated pulmonary arterial hypertension: two distinct phenotypes, Pulm Circ, vol.5, pp.327-361, 2015.

D. Jenkins, M. Madani, E. Fadel, A. M. D'armini, and E. Mayer, Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension, Eur Respir Rev, vol.26, p.16011, 2017.

B. Rhodes, B. G. Fürnrohr, and T. J. Vyse, C-reactive protein in rheumatology: biology and genetics, Nat Rev Rheumatol, vol.7, pp.282-291, 2011.

P. M. Ridker, C. H. Hennekens, J. E. Buring, and N. Rifai, C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women, N Engl J Med, vol.342, pp.836-879, 2000.

M. Amsallem, J. Guihaire, A. Ataam, and J. , Impact of the initiation of balloon pulmonary angioplasty program on referral of patients with chronic thromboembolic pulmonary hypertension to surgery, J Heart Lung Transplant, vol.37, pp.1102-1112, 2018.

J. Pepke-zaba, M. Delcroix, and I. Lang, Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry, Circulation, vol.124, pp.1973-81, 2011.

P. Dartevelle, E. Fadel, and S. Mussot, Chronic thromboembolic pulmonary hypertension, Eur Respir J, vol.23, pp.637-685, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01764863

P. A. Thistlethwaite, M. Mo, and M. M. Madani, Operative classification of thromboembolic disease determines outcome after pulmonary endarterectomy, J Thorac Cardiovasc Surg, vol.124, pp.1203-1214, 2002.

U. Ganter, R. Arcone, C. Toniatti, G. Morrone, and G. Ciliberto, Dual control of C-reactive protein gene expression by interleukin-1 and interleukin-6, EMBO J, vol.8, pp.3773-3782, 1989.

M. Pye, A. P. Rae, and S. M. Cobbe, Study of serum C-reactive protein concentration in cardiac failure

, Br Heart J, vol.63, pp.228-258, 1990.

K. Kaneko, T. Kanda, and Y. Yamauchi, C-Reactive protein in dilated cardiomyopathy, Cardiology, vol.91, pp.215-224, 1999.

M. Matsumoto, T. Tsujino, and M. Lee-kawabata, Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction, Cytokine, vol.49, pp.264-272, 2010.

M. Wynants, L. Vengethasamy, A. Ronisz, B. Meyns, M. Delcroix et al., NF-?B pathway is involved in CRP-induced effects on pulmonary arterial endothelial cells in chronic thromboembolic pulmonary hypertension, Am J Physiol Lung Cell Mol Physiol, vol.305, pp.934-976, 2013.

S. Verma, C. Wang, and S. Li, A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis, Circulation, vol.106, pp.913-922, 2002.

N. R. Sproston, M. El-mohtadi, M. Slevin, W. Gilmore, and J. J. Ashworth, The Effect of C-Reactive Protein Isoforms on Nitric Oxide Production by U937 Monocytes/Macrophages, Front Immunol, vol.9, p.1500, 2018.

A. J. Swift, D. Capener, and C. Johns, Magnetic Resonance Imaging in the Prognostic Evaluation of Patients with Pulmonary Arterial Hypertension, Am J Respir Crit Care Med, vol.196, pp.228-267, 2017.

A. Vonk-noordegraaf and N. Galiè, The role of the right ventricle in pulmonary arterial hypertension

, Eur Respir Rev, vol.20, pp.243-53, 2011.

N. F. Voelkel, J. Gomez-arroyo, A. Abbate, H. J. Bogaard, and M. R. Nicolls, Pathobiology of pulmonary arterial hypertension and right ventricular failure, Eur Respir J, vol.40, pp.1555-65, 2012.

M. Humbert, G. Monti, and F. Brenot, Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension, Am J Respir Crit Care Med, vol.151, pp.1628-1659, 1995.

S. Gallo, V. Sala, S. Gatti, and T. Crepaldi, HGF/Met Axis in Heart Function and Cardioprotection, Biomedicines, vol.2, pp.247-62, 2014.

D. A. Rappolee, A. Iyer, and Y. Patel, Hepatocyte growth factor and its receptor are expressed in cardiac myocytes during early cardiogenesis, Circ Res, vol.78, pp.1028-1064, 1996.

M. Aoki, R. Morishita, and Y. Taniyama, Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets, Gene Ther, vol.7, pp.417-444, 2000.

T. Nakamura, S. Mizuno, K. Matsumoto, Y. Sawa, H. Matsuda et al., Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF, J Clin Invest, vol.106, pp.1511-1520, 2000.

V. Sala and T. Crepaldi, Novel therapy for myocardial infarction: can HGF/Met be beneficial?, Cell Mol Life Sci, vol.68, pp.1703-1720, 2011.

S. Gallo, S. Gatti, and V. Sala, Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy, Cell Death Dis, vol.5, p.1185, 2014.

J. Min, Y. Lee, and J. H. Kim, Hepatocyte growth factor suppresses vascular endothelial growth factor-induced expression of endothelial ICAM-1 and VCAM-1 by inhibiting the nuclear factor-kappaB pathway, Circ Res, vol.96, pp.300-307, 2005.

J. Azuma, Y. Taniyama, and Y. Takeya, Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy, Gene Ther, vol.13, pp.1206-1219, 2006.

X. Chen, S. Minatoguchi, and K. Kosai, In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia-reperfusion injury through its multiple actions, J Card Fail, vol.13, pp.874-83, 2007.

T. Nakamura, K. Matsumoto, S. Mizuno, Y. Sawa, H. Matsuda et al., Hepatocyte growth factor prevents tissue fibrosis, remodeling, and dysfunction in cardiomyopathic hamster hearts, Am J Physiol Heart Circ Physiol, vol.288, pp.2131-2140, 2005.

Y. Taniyama, R. Morishita, and M. Aoki, Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy, Hypertens, vol.40, pp.47-53, 2002.

S. Mizuno and T. Nakamura, Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys, Am J Pathol, vol.166, pp.1895-905, 2005.

S. Rutella, G. Bonanno, and A. Procoli, Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features, Blood, vol.108, pp.218-245, 2006.

J. Chen, H. Zhang, and R. Zhang, Transfer of human hepatocyte growth factor reduces inflammation and prevents pulmonary arterial remodeling in monocrotaline-induced, Int J Clin Exp Pathol, vol.7, pp.8763-8772, 2014.

M. Ono, Y. Sawa, and S. Mizuno, Hepatocyte growth factor suppresses vascular medial hyperplasia and matrix accumulation in advanced pulmonary hypertension of rats, Circulation, vol.110, pp.2896-902, 2004.

M. Ono, Y. Sawa, and N. Fukushima, Gene transfer of hepatocyte growth factor with prostacyclin synthase in severe pulmonary hypertension of rats, Eur J Cardio-Thorac Surg, vol.26, pp.1092-1099, 2004.

W. Wang, K. Liu, and F. Zhang, Recombinant human hepatocyte growth factor transfection alleviates hyperkinetic pulmonary artery hypertension in rabbit models, J Thorac Cardiovasc Surg, vol.146, pp.198-205, 2013.

V. Riccieri, K. Stefanantoni, and M. Vasile, Abnormal plasma levels of different angiogenic molecules are associated with different clinical manifestations in patients with systemic sclerosis

, Clin Exp Rheumatol, vol.29, pp.46-52, 2011.

M. Liang, Y. Pang, S. Zhang, and M. Zhang, Utility of Hepatocyte Growth Factor as a Biomarker for Early Diagnosis of Pulmonary Artery Hypertension, Mol Diagn Ther, vol.20, pp.463-471, 2016.

L. Ye, J. M. Lewis-russell, G. Davies, A. J. Sanders, H. Kynaston et al., Hepatocyte growth factor up-regulates the expression of the bone morphogenetic protein (BMP) receptors, BMPR-IB and BMPR-II, in human prostate cancer cells, Int J Oncol, vol.30, pp.521-530, 2007.

E. Spiekerkoetter, X. Tian, and J. Cai, FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension, J Clin Invest, vol.123, pp.3600-3613, 2013.

T. Kuznetsova, F. Haddad, and J. Knez, Cytokines profile in hypertensive patients with left ventricular remodeling and dysfunction, J Am Soc Hypertens, vol.9, pp.975-84, 2015.

J. B. Kim, Y. Kobayashi, and T. Kuznetsova, Cytokines profile of reverse cardiac remodeling following transcatheter aortic valve replacement, Int J Cardiol, vol.270, pp.83-91, 2018.

K. Rychli, B. Richter, and P. J. Hohensinner, Hepatocyte growth factor is a strong predictor of mortality in patients with advanced heart failure, Heart, vol.97, pp.1158-63, 2011.

C. Leo, V. Sala, and M. Morello, Activated Met signalling in the developing mouse heart leads to cardiac disease, PloS One, vol.6, p.14675, 2011.

Y. Guo, L. Su, N. Guo, and C. Liu, Novel therapy for idiopathic pulmonary arterial hypertension: Can hepatocyte growth factor be beneficial?, J Geriatr Cardiol, vol.9, pp.211-213, 2012.

R. Levi-montalcini, The nerve growth factor: its role in growth, differentiation and function of the sympathetic adrenergic neuron, Prog Brain Res, vol.45, pp.235-58, 1976.

A. Hassankhani, M. E. Steinhelper, and M. H. Soonpaa, Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells

, Dev Biol, vol.169, pp.309-330, 1995.

M. Ieda, H. Kanazawa, and Y. Ieda, Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts, Circulation, vol.114, pp.2351-63, 2006.

A. Caporali, G. B. Sala-newby, and M. Meloni, Identification of the prosurvival activity of nerve growth factor on cardiac myocytes, Cell Death Differ, vol.15, pp.299-311, 2008.

V. Freund-michel, M. Cardoso-dos-santos, and C. Guignabert, Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension, Am J Respir Crit Care Med, vol.192, pp.342-55, 2015.

K. Kimura, M. Ieda, and H. Kanazawa, Cardiac sympathetic rejuvenation: a link between nerve function and cardiac hypertrophy, Circ Res, vol.100, pp.1755-64, 2007.

D. M. Kaye, G. Vaddadi, S. L. Gruskin, X. J. Du, and M. D. Esler, Reduced myocardial nerve growth factor expression in human and experimental heart failure, Circ Res, vol.86, pp.80-84, 2000.

F. Qin, R. S. Vulapalli, S. Y. Stevens, and C. Liang, Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF, Am J Physiol Heart Circ Physiol, vol.282, pp.363-71, 2002.

K. Stefanantoni, I. Sciarra, and M. Vasile, Elevated serum levels of macrophage migration inhibitory factor and stem cell growth factor ? in patients with idiopathic and systemic sclerosis associated pulmonary arterial hypertension, Reumatismo, vol.66, pp.270-276, 2015.

Y. Wang, A. Khan, S. Heringer-walther, H. Schultheiss, C. V. Moreira-m-da et al.,

, Prognostic value of circulating levels of stem cell growth factor beta (SCGF beta) in patients with Chagas' disease and idiopathic dilated cardiomyopathy, Cytokine, vol.61, pp.728-759, 2013.

C. J. Rhodes, J. Wharton, and P. Ghataorhe, Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study, Lancet Respir Med, vol.5, pp.717-743, 2017.

P. Ganz, B. Heidecker, and K. Hveem, Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients With Stable Coronary Heart Disease, JAMA, vol.315, pp.2532-2573, 2016.

. Tabula-muris-consortium, S. Quake, T. Wyss-coray, and S. Darmanis, Transcriptomic characterization of 20 organs and tissues from mouse at single cell resolution creates a Tabula Muris, Nature

S. French, M. Amsallem, and N. Ouazani, Non-invasive right ventricular load adaptability indices in patients with scleroderma-associated pulmonary arterial hypertension, Pulm Circ, vol.8, p.2045894018788268, 2018.

B. A. Carabello and J. F. Spann, The uses and limitations of end-systolic indexes of left ventricular function, Circulation, vol.69, pp.1058-64, 1984.

V. Foris, G. Kovacs, M. Tscherner, A. Olschewski, and H. Olschewski, Biomarkers in pulmonary hypertension: what do we know?, Chest, vol.144, pp.274-83, 2013.

D. A. Morrow and J. A. De-lemos, Benchmarks for the assessment of novel cardiovascular biomarkers, Circulation, vol.115, pp.949-52, 2007.

R. Quarck and M. Delcroix, Is inflammation a potential therapeutic target in chronic thromboembolic pulmonary hypertension?, Eur Respir J, vol.44, pp.842-847, 2014.

D. L. Mann, Innate immunity and the failing heart: the cytokine hypothesis revisited, Circ Res, vol.116, pp.1254-68, 2015.

M. Berman, D. Gopalan, and L. Sharples, Right ventricular reverse remodeling after pulmonary endarterectomy: magnetic resonance imaging and clinical and right heart catheterization assessment

, Pulm Circ, vol.4, pp.36-44, 2014.

Y. Li, Y. Wang, and Z. Zhai, Relationship between echocardiographic and cardiac magnetic resonance imaging-derived measures of right ventricular function in patients with chronic thromboembolic pulmonary hypertension, Thromb Res, vol.135, pp.602-608, 2015.

, Le troisième chapitre de cette thèse explore le rôle des biomarqueurs immunitaires plasmatiques chez les patients atteints d'hypertension pulmonaire

, CRP) pour la prédiction de la survenue d'évèvenements post-opératoires précoces (décès ou transplantation ou besoin d'une ECMO ou d'un support prolongé par inotrope ou vasopresseurs) après endartériectomie pulmonaire chez des patients atteints d'hypertension pulmonaire post-embolique. La présence d'inflammation systémique pré-opératoire (indiquée par un taux de CRP supérieur ou égal à 10mg/dL était associée à une instabilité hémodynamique post-opératoire plus fréquence secondaire à une vasodilatation périphérique. Dans cette étude rétrospective, nous n'avons pu démontrer l'existence d'une corrélation significative entre le taux plasmatique de CRP et l'adaptation du coeur droit à l'hypertension pulmonaire évaluée par échocardiographie dans le sous-groupe de patients ayant bénéficié d'une échocardiographie, La première étude démontre la valeur pronostique de taux plasmatiques pré-opératoires élevés de C-reactive protein

, Le résultat négatif contraste avec les conclusions précédentes du lien entre l'inflammation systémique et la fonction cardiaque droite chez les patients atteints d'hypertension pulmonaire post-embolique, qui avait été démontré en comparant des patients avec ou sans inflammation systémique mais sans ajustant pour le niveau de résistance pulmonaire. Des investigations ultérieures sont nécessaires pour déterminer si, après appariement pour la post-charge, les patients opérables atteints d'hypertension pulmonaire postembolique avec CRP élevée ont une fonction ventriculaire droite, avaient des niveaux similaires de résistance pulmonaire, contrairement à la population totale

, profil protéomique immunitaire plasmatique associé à la défaillance cardiaque droite chez les patients atteints d'hypertension artérielle pulmonaire. Cette étude protéomique génératrice d'hypothèses a identifié des taux plasmatiques élevés de facteur de croissance hépatique (HGF : hepatic growth factor), de facteur de croissance nerveuse (NGF : nerve growth factor) et de Titre: Etude du Remodelage du Ventricule Droit dans l'Hypertension Pulmonaire: du Phénotypage Approfondi à l'Etude de la Protéomique Mots clés: Hypertension Pulmonaire, La deuxième étude fournit un exemple d'application pratique du phénotypage approfondi du coeur droit pour l'identification du