A. Michel, Pièces mécaniques soudées -Rappels et définitions. Ed. Techniques Ingénieur, pp.1-12, 2006.

, Norme ISO : ISO/TR 581 :2005 -Soudabilité -Matériaux métalliques -Principes généraux, 2005.

P. Rajiv-sharan-mishra, N. Sarathi-de, and . Kumar, Friction Stir Welding and Processing, 2014.

S. , S. Lee, T. Kim, S. J. Hu, W. W. Cai et al., Characterization of joint quality in ultrasonic welding of battery tabs, Journal of Manufacturing Science and Engineering, vol.135, issue.2, 2013.

C. Q. Zhang, J. D. Robson, and P. , Prangnell : Dissimilar ultrasonic spot welding of aerospace aluminum alloy AA2139 to titanium alloy TiAl6V4, Journal of Materials Processing Technology, vol.231, pp.382-388, 2016.

G. M. Sheng, J. W. Huang, B. Qin, B. Zhou, S. Y. Qiu et al., An experimental investigation of phase transformation superplastic diffusion bonding of titanium alloy to stainless steel, Journal of Materials Science, vol.40, issue.24, pp.6385-6390, 2005.

G. Mahendran, V. Balasubramanian, and T. Senthilvelan, Developing diffusion bonding windows for joining AZ31B magnesium-AA2024 aluminium alloys, Materials & Design, vol.30, issue.4, pp.1240-1244, 2009.

G. Mahendran, V. Balasubramanian, and T. Senthilvelan, Developing diffusion bonding windows for joining AZ31B magnesium and copper alloys, The International Journal of Advanced Manufacturing Technology, vol.42, issue.7-8, pp.689-695, 2009.

S. Rajakumar and V. Balasubramanian, Diffusion bonding of titanium and AA7075 aluminum alloy dissimilar joints-process modeling and optimization using desirability approach, The International Journal of Advanced Manufacturing Technology, vol.86, issue.1-4, pp.1095-1112, 2016.

D. M. Fronczek, J. Wojewoda-budka, R. Chulist, A. Sypien, A. Korneva et al., Structural properties of Ti/Al clads manufactured by explosive welding and annealing, Materials & Design, vol.91, pp.80-89, 2016.

I. A. Bataev, A. A. Bataev, V. I. Mali, D. V. Pavlyukova, P. S. Yartsev et al., Nucleation and growth of titanium aluminide in an explosion-welded laminate composite, The Physics of Metals and Metallography, vol.113, issue.10, pp.947-956, 2012.

R. N. Raoelison, D. Racine, Z. Zhang, N. Buiron, D. Marceau et al., Magnetic pulse welding : Interface of Al/Cu joint and investigation of intermetallic formation effect on the weld features, Journal of Manufacturing Processes, vol.16, issue.4, pp.427-434, 2014.

H. Yu, H. Dang, and Y. Qiu, Interfacial microstructure of stainless steel/aluminum alloy tube lap joints fabricated via magnetic pulse welding, Journal of Materials Processing Technology, vol.250, pp.297-303, 2017.

M. Avettand-fènoël, G. Racineux, L. Debeugny, and R. Taillard, Microstructural characterization and mechanical performance of an AA2024 aluminium alloy -Pure copper joint obtained by linear friction welding, Materials & Design, vol.98, pp.305-318, 2016.

C. H. Muralimohan, V. Muthupandi, and K. Sivaprasad, The influence of aluminium intermediate layer in dissimilar friction welds, International Journal of Materials Research, vol.105, issue.4, pp.350-357, 2014.

W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-smith et al., Friction stir butt welding. Brevet (GB) no.9125978· 8, 1991.

P. L. Threadgill, Terminology in friction stir welding, Science and Technology of Welding and Joining, vol.12, issue.4, pp.357-360, 2007.

W. M. Thomas, P. L. Threadgill, and E. D. Nicholas, The feasibility of friction stir welding steel, Science and Technology of Welding andJoining, vol.4, issue.6, pp.365-372, 1999.

C. J. Dawes and W. M. Thomas, Friction stir process welds aluminium alloys : The process produces low-distortion, high-quality, low-cost welds on aluminium, Welding Journal, vol.75, issue.3, pp.41-45, 1996.

T. J. Lienert, W. L. Stellwag, B. B. Grimmett, and R. W. Warke, Friction stir welding studies on mild steel. Welding Journal, vol.82, pp.1-9, 2003.

A. P. Reynolds, Visualisation of material flow in autogenous friction stir welds. Science and technology of welding and joining, vol.5, pp.120-124, 2000.

M. Watanabe, K. Feng, Y. Nakamura, and S. Kumai, Growth manner of intermetallic compound layer produced at welding interface of friction stir spot welded aluminum/steel lap joint, Materials transactions, vol.52, issue.5, pp.953-959, 2011.

G. Buffa, J. Hua, R. Shivpuri, and L. Fratini, A continuum based FEM model for friction stir welding-model development, Materials Science and Engineering : A, vol.419, issue.1-2, pp.389-396, 2006.

J. William, Arbegast : Ch. 13 -Application of friction stir welding and related technologies, Friction Stir Welding and Processing, pp.273-308, 2007.

M. Guerra, J. Schmidt, L. Mcclure, A. Murr, and . Nunes, Flow patterns during friction stir welding, Materials Characterization, vol.49, issue.2, pp.95-101, 2002.

K. Colligan, Material flow behavior during friction welding of aluminum, Welding Journal, vol.75, issue.7, pp.229-237, 1999.

J. H. Ouyang and R. Kovacevic, Material flow and microstructure in the friction stir butt welds of the same and dissimilar aluminum alloys, Journal of Materials Engineering and Performance, vol.11, issue.1, pp.51-63, 2002.

S. Xu, X. Deng, A. P. Reynolds, and T. U. , Seidel : Finite element simulation of material flow in friction stir welding, Science and Technology of Welding and Joining, vol.6, issue.3, pp.191-193, 2001.

H. Schmidt, J. Hattel, and J. Wert, Analytical model for the heat generation in friction stir welding. Modelling and Simulation in, Materials Science and Engineering, vol.12, issue.1, pp.143-157, 2003.

G. G. Roy, R. Nandan, and T. Debroy, Dimensionless correlation to estimate peak temperature during friction stir welding, Science and Technology of Welding and Joining, vol.11, issue.5, pp.606-608, 2006.

. R-nandan, . Debroy, and . Bhadeshia, Recent advances in friction-stir welding -Process, weldment structure and properties, Progress in Materials Science, vol.53, issue.6, pp.980-1023, 2008.

J. William, P. J. Arbegast, and . Hartley, Friction stir weld technology development at Lockheed Martin Michoud space systems-An overview, Proceeding -The Fifth International Conference on Trends in Welding Research, pp.558-562, 1998.

R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering : R : Reports, vol.50, issue.1-2, pp.1-78, 2005.

A. Ghazi, A. Imad, B. Bouchouicha, and M. Mazari, Influence des paramètres du procédé de soudage par friction malaxage (FSW) sur les propriétés mécaniques des assemblages, 12ème congrès de Mécanique, pp.1-3, 2015.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in SolidS, p.2, 1959.

K. N. Krishnan, On the formation of onion rings in friction stir welds, Materials science and engineering : A, vol.327, issue.2, pp.246-251, 2002.

C. Dalle-donne and G. Biallas, Fatigue and fracture performance of friction stir welded 2024-T3 joints, Proceedings : European Conference on Spacecraft Structure, pp.309-314, 1998.

R. S. Mishra, M. W. Mahoney, S. X. Mcfadden, N. A. Mara, and A. K. Mukherjee, High strain rate superplasticity in friction stir processes 7075 Al alloy. Scripta Materiallia, vol.42, pp.163-168, 2000.

Y. Kwon, Mechanical properties of fine-grained aluminum alloy produced by friction stir process, Scripta Materialia, vol.49, issue.8, pp.785-789, 2003.

E. O. Hall, The deformation and ageing of mild steel : II characteristics of the lüders deformation, Proceedings of the Physical Society. Section B, vol.64, issue.9, pp.747-753, 1951.

N. J. Petch, The cleavage strength of polycrystals, Journal of the Iron and Steel Institute, vol.174, pp.25-28, 1953.

I. Charit, S. Rajiv, M. W. Mishra, and . Mahoney, Multi-sheet structures in 7475 aluminum by friction stir welding in concert with post-weld superplastic forming, Scripta Materialia, vol.47, issue.9, pp.631-636, 2002.

S. Benavides, Y. Li, L. Murr, D. Brown, and J. Mcclure, Low-temperature frictionstir welding of 2024 aluminum, Scripta materialia, vol.41, issue.8, pp.809-815, 1999.

M. Wade and A. P. Reynolds, Friction stir weld nugget temperature asymmetry, Science and Technology of Welding and Joining, vol.15, issue.1, pp.64-69, 2010.

G. Hanadi, A. P. Salem, J. S. Reynolds, and . Lyons, Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet, Scripta Materialia, vol.46, pp.337-342, 2002.

N. Saito, I. Shigematsu, T. Komaya, T. Tamaki, G. Yamauchi et al., Grain refinement of 1050 aluminum alloy by friction stir processing, Journal of materials science letters, vol.20, issue.20, pp.1913-1915, 2001.

B. Heinz and B. Skrotzki, Characterization of a friction-stir-welded aluminum alloy 6013, Metallurgical and Materials Transactions B, vol.33, issue.3, pp.489-498, 2002.

J. William, Arbegast : A flow-partitioned deformation zone model for defect formation during friction stir welding, Scripta Materialia, vol.58, issue.5, pp.372-376, 2008.

Y. Morisada, T. Imaizumi, and H. Fujii, Clarification of material flow and defect formation during friction stir welding, Science and Technology of Welding and Joining, vol.20, issue.2, pp.130-137, 2015.

R. Ranjan, A. R. Khan, C. Parikh, and R. Jain, Raju Prasad Mahto, Srikanta Pal, Surjya K. Pal et Debashish Chakravarty : Classification and identification of surface defects in friction stir welding : An image processing approach, Journal of Manufacturing Processes, vol.22, pp.237-253, 2016.

S. Zimmer, Contribution à l'industrialisation Du Soudage Par Friction Malaxage, Arts et Métiers ParisTech, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00005619

Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, Three defect types in friction stir welding of aluminum die casting alloy, Materials Science and Engineering : A, vol.415, issue.1-2, pp.250-254, 2006.

A. Noor-zaman-khan, Z. A. Noor-siddiquee, . Khan, K. Suha, and . Shihab, Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys, Journal of Alloys and Compounds, vol.648, pp.360-367, 2015.

H. Liu, Y. Hu, Y. Peng, C. Dou, and Z. Wang, The effect of interface defect on mechanical properties and its formation mechanism in friction stir lap welded joints of aluminum alloys, Journal of Materials Processing Technology, vol.238, pp.244-254, 2016.

S. W. , Kallee : Ch. 5 -Industrial applications of friction Stir welding, Daniela Lohwasser et Chen Zhan, éditeurs : Friction Stir Welding -From Basics to Applications, pp.118-163, 2010.

U. Dressler, G. Biallas, and U. A. Mercado, Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3, vol.526, pp.113-117, 2009.

W. M. Thomas and E. D. Nicholas, Friction stir welding for the transportation industries, Materials & Design, vol.18, issue.4-6, pp.269-273, 1997.

H. Zhang, S. B. Lin, L. Wu, J. C. Feng, . L. Sh et al., Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy, Materials & Design, vol.27, issue.9, pp.805-809, 2006.

P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, Friction stir welding of aluminium alloys, International Materials Reviews, vol.54, issue.2, pp.49-93, 2009.

C. Bonnington, The tech behind apple's impossibly thin new iMacs, 2012.

T. Debroy, A. De, H. K. Bhadeshia, V. D. Manvatkar, and A. Arora, Tool durability maps for friction stir welding of an aluminium alloy, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.468, pp.3552-3570, 2012.

M. Girard, B. Huneau, and C. Genevois, Xavier Sauvage et Guillaume Racineux : Friction stir diffusion bonding of dissimilar metals, Science and Technology of Welding & Joining, vol.15, issue.8, pp.661-665, 2010.

C. Genevois, M. Girard, B. Huneau, X. Sauvage, and G. Racineux, Interfacial Reaction during Friction Stir Welding of Al and Cu, Metallurgical and Materials Transactions A, vol.42, issue.8, pp.2290-2295, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01006990

P. Pourahmad and M. Abbasi, Materials flow and phase transformation in friction stir welding of Al 6013/Mg, Transactions of Nonferrous Metals Society of China, vol.23, issue.5, pp.1253-1261, 2013.

M. and A. Simar, A review about Friction Stir Welding of metal matrix composites, Materials Characterization, vol.120, pp.1-17, 2016.

A. Ibrahim, R. S. Lima, C. C. Berndt, and B. R. , Marple : Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings, Surface and Coatings Technology, vol.201, pp.7589-7596, 2007.

, AWS : Structural Welding Code -Titanium, vol.1, 2007.

M. J. Donachie, Titanium : A Technical Guide. ASM, Materials Park, 1988.

M. J. Russell, C. Blignault, N. L. Horrex, and C. S. Wiesner, Recent developments in the Friction Stir Welding of titanium alloys, Welding in the World, vol.52, issue.9, pp.12-15, 2008.

W. Lee, C. Lee, W. Chang, Y. Yeon, and S. Jung, Microstructural investigation of friction stir welded pure titanium, vol.59, pp.3315-3318, 2005.

N. Xu, Q. Song, Y. Bao, and Y. Jiang, Shen et Xia Cao : Twinninginduced mechanical properties' modification of CP-Ti by friction stir welding associated with simultaneous backward cooling, Science and Technology of Welding and Joining, vol.22, issue.7, pp.610-616, 2017.

M. Kapil-gangwar and . Ramulu, Friction stir welding of titanium alloys : A review, vol.141, pp.230-255, 2018.

C. Stephen, G. L. Carniglia, and . Barna, Ch.8 -The working refractory product line -Classification of wording refractories, Handbook of Industrial Refractories Technology. Principles, Types, Properties and Applications, pp.271-305, 1992.

S. K. Tiwari, D. Kumar-shukla, and R. Chandra, Friction stir welding of aluminum alloys : A review, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol.7, issue.12, pp.2403-2408, 2013.

M. S. Kenevisi, S. M. Mousavi-khoie, and M. Alaei, Microstructural evaluation and mechanical properties of the diffusion bonded Al/Ti alloys joint, Mechanics of Materials, vol.64, pp.69-75, 2013.

H. Woong, H. H. Sohn, S. H. Bong, and . Hong, Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal, Materials Science and Engineering : A, vol.355, issue.1-2, pp.231-240, 2003.

A. Winiowski and D. Majewski, Braze Welding TIG of Titanium and Aluminium Alloy Type Al -Mg. Archives of Metallurgy and Materials, vol.61, pp.133-142, 2016.

C. Boucher, L'aluminium et Ses Alliages : Soudabilité, Métallurgie Du Soudage, 2000.

C. Leyens and M. Peters, Ch. 1 -Structure and properties of titanium and titanium alloys. In Titanium and Titanium Alloys : Fundamentals and Applications, pp.1-36, 2005.

A. Hussain, S. Mehmood, N. Rasool, N. Li, and C. C. Dharmawardhana, Electronic Structure, Mechanical and Optical Properties of TiAl3 (L12 & D022) via FirstPrinciples Calculations, Chinese Journal Of Physics, vol.54, issue.1, 2016.

F. J. Van-loo and G. D. , Rieck : Diffusion in the titanium-aluminium system-I. Interdiffusion between solid Al and Ti or Ti-Al alloys, Acta Metallurgica, vol.21, issue.1, pp.61-71, 1973.

F. J. Van-loo and G. D. , Rieck : Diffusion in the titanium-aluminium system-II. Interdiffusion in the composition range between 25 and 100 at, % Ti*. Acta Metallurgica, vol.21, pp.73-84, 1973.

Y. Mishin and . Chr, Herzig : Diffusion in the Ti-Al system, Acta Materialia, vol.48, issue.3, pp.589-623, 2000.

P. Adrian and . Mouritz, Titanium alloys for aerospace structures and engines, Introduction to Aerospace Materials, page 636. Amer Inst of Aeronautics, 2012.

D. V. Lazurenko, I. A. Bataev, I. S. Laptev, A. A. Ruktuev, N. Iulia et al., Formation of Ti-Al intermetallics on a surface of titanium by non-vacuum electron beam treatment, Materials Characterization, vol.134, pp.202-212, 2017.

Y. Zhang, H. Li, and K. Zhang, Investigation of the laser melting deposited TiAl intermetallic alloy on Titanium alloy, Advanced Materials Research, pp.1638-1641, 2011.

H. S-mridha, L. Ong, . Poh, and . Cheang, Intermetallic coatings produced by TIG surface melting, Journal of Materials Processing Technology, vol.113, issue.1, pp.516-520, 2001.

B. Guo, J. Zhou, S. Zhang, and H. Zhou, Yuping Pu et Jianmin Chen : Phase composition and tribological properties of Ti-Al coatings produced on pure Ti by laser cladding, Applied Surface Science, vol.253, issue.24, pp.9301-9310, 2007.

Y. Liu, D. Wang, C. Deng, and L. Huo, Lijun Wang et Rui Fang : Novel method to fabricate Ti-Al intermetallic compound coatings on Ti-6Al-4V alloy by combined ultrasonic impact treatment and electrospark deposition, Journal of Alloys and Compounds, vol.628, pp.208-212, 2015.

J. Cizek, O. Man, P. Roupcova, K. Loke, and I. Dlouhy, Oxidation performance of cold spray Ti-Al barrier coated ?-TiAl intermetallic substrates, Surface and Coatings Technology, vol.268, pp.85-89, 2015.

M. Miyake, S. Tajikara, and T. Hirato, Fabrication of TiAl3 coating on TiAlbased alloy by Al electrodeposition from dimethylsulfone bath and subsequent annealing, Surface and Coatings Technology, vol.205, issue.21, pp.5141-5146, 2011.

Y. C. Chen and K. Nakata, Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys, Materials & Design, vol.30, issue.3, pp.469-474, 2009.

Y. Wei, J. Li, J. Xiong, and F. Huang, Fusheng Zhang et Syed Hamid Raza : Joining aluminum to titanium alloy by friction stir lap welding with cutting pin, Materials Characterization, vol.71, pp.1-5, 2012.

Y. Chen, W. Cao, S. Li, C. Chen, and J. Xie, Microstructure and mechanical Properties of friction stir weld of dissimilar Ti-6Al-4V titanium alloy to AA2024 aluminum alloy, Shanben Chen, Yuming Zhang et Zhili Feng, éditeurs : Transactions on Intelligent Welding Manufacturing, pp.153-162, 2018.

Y. Huang, Z. Lv, L. Wan, J. Shen, and J. F. Santos, A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy, Materials Letters, vol.207, pp.172-175, 2017.

S. Chen, L. Li, Y. Chen, and J. Huang, Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process, Journal of Alloys and Compounds, vol.509, issue.3, pp.891-898, 2011.

S. Rajiv, M. W. Mishra, and . Mahoney, Friction Stir Welding and Processing, 2007.

Y. V. Milman, D. B. Miracle, S. I. Chugunova, I. V. Voskoboinik, N. P. Korzhova et al., Mechanical behaviour of Al3Ti intermetallic and L1_{2} phase on its basis. Intermetallics, vol.9, pp.839-845, 2001.

H. Hu, X. Wu, R. Wang, Z. Jia, W. Li et al., Structural stability, mechanical properties and stacking fault energies of TiAl3 alloyed with Zn, Cu, Ag : Firstprinciples study, vol.666, pp.185-196, 2016.

W. Chen, H. Xiao, and Z. Fu, Sicong Fang et Dezhi Zhu : Reactive hot pressing and mechanical properties of TiAl3/Ti3AlC2/Al2O3 in situ composite, Materials & Design, vol.49, pp.929-934, 2013.

T. J. Lienert, Ch. 7 -Microstructure and Mechanical Properties of Friction Stir Welded Titanium Alloys, éditeurs : Friction Stir Welding and Processing, pp.123-154, 2007.

M. Krutzlinger, R. Marstatt, S. Suenger, and J. Luderschmid, Michael Friedrich Zaeh et Ferdinand Haider : Formation of Joining Mechanisms in Friction Stir Welded Dissimilar Al-Ti Lap Joints, Advanced Materials Research, pp.510-520, 2014.

Z. W. Chen and S. Yazdanian, Microstructures in interface region and mechanical behaviours of friction stir lap Al6060 to Ti-6Al-4V welds, Materials Science and Engineering : A, vol.634, pp.37-45, 2015.

Z. W. Chen, S. Yazdanian, and G. Littlefair, Effects of tool positioning on joint interface microstructure and fracture strength of friction stir lap Al-to-steel welds, Journal of Materials Science, vol.48, issue.6, pp.2624-2634, 2013.

Y. Chen, Q. Ni, and . Li-ming-ke, Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys, Transactions of Nonferrous Metals Society of China, vol.22, issue.2, pp.299-304, 2012.

R. David, Lide : Handbook of Chemistry and Physics, p.84, 2003.

Y. Combres, Propriétés du titane et de ses alliages, Techniques Ingénieur, pp.1-16, 2010.

, Christoph Leyens et Manfred Peters : Titanium and Titanium Alloys : Fundamentals and Applications, 2006.

A. Scialpi, M. De-giorgi, L. A. De-filippis, R. Nobile, and F. W. Panella, Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials, Materials & Design, vol.29, issue.5, pp.928-936, 2008.

H. Bisadi, M. Tour, and A. Tavakoli, The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 Alloy lap joint, American journal of Materials science, vol.1, issue.2, pp.93-97, 2011.

Y. Wang and J. Huang, Texture analysis in hexagonal materials, Materials Chemistry and Physics, vol.81, issue.1, pp.11-26, 2003.

K. J. Kim, S. Won, and J. Park, Texture analysis of 5182 aluminum alloy sheets for improved drawability by rolling process, Materialwissenschaft und Werkstofftechnik, vol.43, issue.5, pp.373-378, 2012.

V. Randle, The coincidence site lattice and the 'sigma enigma'. Materials Characterization, vol.47, pp.411-416, 2001.

. Shao-ju, M. Shih, . Park, J. H. David, and . Cockayne, The interpretation of indexing of high ? CSL grain boundaries from ceramics, Journal of microscopy, vol.227, issue.3, pp.309-314, 2007.

M. David, B. Saylor, A. Dasher, . Rollett, S. Gregory et al., Distribution of grain boundaries in aluminum as a function of five macroscopic parameters, Acta Materialia, vol.52, issue.12, pp.3649-3655, 2004.

T. Novoselova, P. Fox, R. Morgan, and W. O'neill, Experimental study of titanium/aluminium deposits produced by cold gas dynamic spray, Surface and Coatings Technology, vol.200, issue.8, pp.2775-2783, 2006.

, ASTM E8 / E8M-16a : Standard Test Methods for Tension Testing of Metallic Materials, 2016.

J. Bénard, A. Michel, J. Philibert, and J. Talbot, Métallurgie Générale. Masson, 2 édition, 1984.

Z. Zhang, D. Lunt, H. Abdolvand, A. J. Wilkinson, M. Preuss et al., Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension, International Journal of Plasticity, 2018.

A. Elrefaey, M. Gouda, M. Takahashi, and K. Ikeuchi, Characterization of Aluminum/Steel Lap Joint by Friction Stir Welding, Journal of Materials Engineering and Performance, vol.14, issue.1, pp.10-17, 2005.

B. Li, Z. Zhang, Y. Shen, W. Hu, and L. Luo, Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration : Influences of process variables on the weld interfaces and tensile properties, Materials & Design, vol.53, pp.838-848, 2014.

G. Taguchi, S. Chowdhury, and . Wu-yuin, Taguchi's Quality Engineering Handbook. Shin Taguchi and Hiroshi Yano, 1 édition, 2005.

F. Picot, A. Gueydan, and M. Martinez, Florent Moisy et Eric Hug : A Correlation between the Ultimate Shear Stress and the Thickness Affected by Intermetallic Compounds in Friction Stir Welding of Dissimilar Aluminum Alloy, Stainless Steel Joints. Metals, vol.8, issue.3, p.179, 2018.

R. Pretorius, A. M. Vredenberg, F. W. Saris, and R. De-reus, Prediction of phase formation sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule, Journal of applied physics, vol.70, issue.7, pp.3636-3646, 1991.

K. Liu, X. P. Li, M. Rahman, and X. D. Liu, CBN tool wear in ductile cutting of tungsten carbide, Wear, vol.255, pp.1344-1351, 2003.

J. E. Jensen, R. G. Stewart, and H. Brechna, Sections XIV -Density. In Brookhaven National Laboratory Selected Cryogenic Data Notebook, volume II, 1980.

H. Edgar, F. E. Buyco, and . Davis, Specific heat of aluminum from zero to its melting temperature and beyond. Equation for representation of the specific heat of solids, Journal of Chemical & Engineering Data, vol.15, issue.4, pp.518-523, 1970.

J. Gilbert-kaufman, Properties of Aluminum Alloys : Tensile, Creep, and Fatigue Data at High and Low Temperatures, 1999.

V. V. Shtefan, B. I. Bairachnyi, G. V. Lisachuk, O. Yu, V. A. Smyrnova et al., Corrosion of Aluminum in Contact with Oxidized Titanium and Zirconium, vol.51, pp.711-718, 2016.

U. R. Kattner, J. Lin, and Y. A. Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metallurgical Transactions A, vol.23, issue.8, pp.2081-2090, 1992.

L. Xu, Y. Y. Cui, Y. L. Hao, and R. Yang, Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples, Materials Science and Engineering : A, pp.638-647, 2006.

A. Gueydan, Bernadette Domengès et Eric Hug : Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics, vol.50, pp.34-42, 2014.

T. Matsubara, . Shibutani, K. Uenishi, and . Kobayashi, Fabrication of a thick surface layer of Al3Ti on Ti substrate by reactive-pulsed electric current sintering, Intermetallics, vol.8, issue.7, pp.815-822, 2000.

M. Z. Khandkar, J. A. Khan, and A. P. , Reynolds : Prediction of temperature distribution and thermal history during friction stir welding : Input torque based model, Science and Technology of Welding and Joining, vol.8, issue.3, pp.165-174, 2003.

T. Shinoda, Y. Katsuragi, and K. Tani, Simplified temperature measurement system at tool tip and shoulder during FSW and Spot FSW, Proceedings of the 1st International Joint Symposium on Joining and Welding, pp.173-176, 2014.

W. Tang, X. Guo, J. C. Mcclure, L. E. Murr, and A. Nunes, Heat Input and Temperature Distribution in Friction Stir Welding, Journal of Materials Processing & Manufacturing Science, vol.7, issue.2, pp.163-172, 1998.

J. Huang, I. Hsiao, T. Wang, and B. Lou, Ebsd study on grain boundary characteristics in fine-grained Al alloys, Scripta Materialia, vol.43, issue.3, pp.213-220, 2000.

A. Dhal, S. K. Panigrahi, and M. S. Shunmugam, Insight into the microstructural evolution during cryo-severe plastic deformation and post-deformation annealing of aluminum and its alloys, Journal of Alloys and Compounds, vol.726, pp.1205-1219, 2017.

L. H. Liu, J. H. Chen, T. W. Fan, Z. R. Liu, Y. Zhang et al., The possibilities to lower the stacking fault energies of aluminum materials investigated by first-principles energy calculations, Computational Materials Science, vol.108, pp.136-146, 2015.

Q. Liu and N. Hansen, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation. Scripta metallurgica et materialia, vol.32, pp.1289-1295, 1995.

C. M. James and . Li, Possibility of Subgrain Rotation during Recrystallization, Journal of Applied Physics, vol.33, issue.10, pp.2958-2965, 1962.

H. N. Raghuram-karthik-desu, A. Krishnamurthy, A. Balu, and . Singh, Mechanical properties of Austenitic Stainless Steel 304L and 316L at elevated temperatures, Journal of Materials Research and Technology, vol.5, issue.1, pp.13-20, 2016.

K. Kimapong and T. Watanabe, Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding. Materials transactions, vol.46, pp.835-841, 2005.

V. N. Yeremenko, Y. V. Natanzon, and V. Io-dybkov, The effect of dissolution on the growth of the Fe 2 Al 5 interlayer in the solid iron-liquid aluminium system, Journal of Materials Science, vol.16, issue.7, pp.1748-1756, 1981.

M. Movahedi, A. H. Kokabi, S. M. Seyed-reihani, H. Najafi, S. A. Farzadfar et al., Growth kinetics of Al-Fe intermetallic compounds during annealing treatment of friction stir lap welds, Materials Characterization, vol.90, pp.121-126, 2014.

G. V. Kidson, Some aspects of the growth of diffusion layers in binary systems, Journal of Nuclear Materials, vol.3, issue.1, pp.21-29, 1961.

, Liste des tableaux

P. .. Fsw,

, Comparaison des propriétés impliquées dans la soudure du couple Ti-Al, p.32

. Propriétés and . .. Ii, , p.43

). .. Cp-ti,

. .. Propriétés-de-l'aluminium-pur-aa1050-o,

. .. Données, 7 Caractéristiques mécaniques (vraies) du Ti Gr.II et du Al1050-O à température ambiante

, Caractéristiques mécaniques du titane en fonction de la température, p.62

, Caractéristiques mécaniques de l'aluminium en fonction de la température, p.63

. .. Données-générales-de-mise-en-oeuvre-de-la-soudure-fsw-de-ti-al, , p.68

, DoE de huit essais pour trois paramètres

. .. Modalités-du-plan-d'expériences-n°1,

. .. Modalités-du-plan-d'expériences-n°2,

. Constantes and . .. De-q-*,

, Résultats de traction/cisaillement en fonction des paramètres de soudage, p.86

, Propriétés mécaniques du titane et de l'aluminium pour les calculs de flèche critique, p.93

, Estimation de s e des matériaux du couple en flexion trois points (Annexe B), p.94

, Caractéristiques mécaniques extraites lors de la flexion trois points de la soudure, p.96

, Liste des paramètres pour des mesures à trois thermocouples

, Paramètres de mesures de température à

, Comparaison des propriétés mécaniques l'aluminium à 470 ?avec le titane à 400 ?, p.110

, Composition atomique d'une mesure EDS sur une zone fixe

, Énergie de formation des composés intermétalliques du couple Ti -Al, vol.122

. .. Données-du-modèle-ehf,

, Mesure de la croissance du TiAl 3 sous l'interface dans le titane, p.126

, Influences de conditions de soudages

. .. Comparaisons-des-propriétés-mécaniques-entre-le-cp-ti, , p.155

, Moyenne de la contrainte de cisaillement maximum des jonctions 316L/Al5083, p.161

É. Du-procédé-de and F. .. ,

, Schémas généraux de l'application de la soudure par friction malaxage, p.12

, Configuration de soudure par friction malaxage

. Axes and . .. Fsw,

, Vue en coupe d'une soudure Al-Al par friction malaxage

, Illustration des cercles concentriques selon les plans

, Illustrations des différences de transition de taille de grain

, Domaines

.. .. Défauts,

.. .. Défauts,

.. .. Défauts-de-fsw-par-transparence,

, Interface Ti-Al soudé en bout à bout

, Observations de l'interface Ti-Al soudée par FSLW

, Illustrations de la littérature de la configuration FSLW

, Observations du comportement de l'interface en caractérisation mécanique, p.37

. .. , Dénomination des faces des tôles de titane ou d'aluminium, p.42

.. .. Analyse-métallographique-du-titane,

.. .. Analyse,

. .. , Catégorisation des joints de grain des matériaux à l'état initial, p.53

, DRX du titane et de l'aluminium à l'état initial

.. .. Comparaison,

, Éprouvette de traction à température ambiante de Ti et Al à l'état initial, p.56

, Courbes de traction conventionnelles à température ambiante

, Courbe de traction vraie typique du titane et de l'aluminium

. .. Fractographies, , p.59

, Éprouvette de traction à chaud du titane, p.61

, Exemples de courbes de traction conventionnelles du Ti à différentes températures, p.62

, Éprouvette de traction à chaud de l'aluminium

, Exemples de courbes de traction conventionnelles de Al à différentes températures, vol.64

, Comparaison du titane et de l'aluminium en fonction de la température, p.65

.. .. Montage-de-la-soudure,

, Configuration FSLW pour la caractérisation mécanique

, Schéma du montage des plaques de formes complémentaires à souder, p.70

, Montage de mesure de température (1 thermocouple)

, Montage de mesure de température (3 thermocouples)

, Configuration par recouvrement pour analyses métallurgiques

. .. Résumé-de-la-littérature-des-paramètres-en-fslw-du-couple-ti--al, , p.73

, Bilan des DoE par un graphique des effets moyens

G. De-couplage-de-paramètres and F. .. ,

, Résultats de la simulation numérique de validation expérimentale, p.86

. .. , Graphiques des résultats de traction/cisaillement des jonctions, vol.87

L. Fractographies-de and . .. Meb, , p.89

, Contrastes chimiques sur des clichés MEB des surfaces de rupture de la partie titane, p.89

, Fractographies de la partie aluminium obtenues par MEB

, Comparaisons en contraste chimique des surfaces de rupture de la partie Aluminium, p.90

, Courbe du cisaillement de la jonction à s = 5 mm

, Schématisation des forces appliquées sur les deux éléments

, Comparaison des courbes F = f (s) expérimentales avec la simulation numérique, p.96

, Caractéristiques mécaniques des essais de flexion sur les soudures, p.97

. .. , Observation des déformations longitudinales à l'aide du logiciel Aramis ®, p.98

, Position de la fibre neutre pendant la flexion trois points

, Schématisation de la rupture dans l'intermétallique pendant un essai de traction, p.100

.. .. Positionnement-de-l'unique-thermocouple,

, Courbe de température (1 thermocouple) en fonction de la position de l'outil, p.102

, Combinaisons des paramètres de soudage pour les mesures de température, p.103

. .. Mesures, , p.105

. .. , Évolution de T max en fonction des paramètres de soudage v et ?, p.106

, Schéma de la coupe de mesure de température trois points à pion fixe, p.106

.. .. Mesures-de-températures-sur-place, 107 3.27 observation générale par MEB d'une vue en coupe de l'interface soudée, p.109

, Courbe de traction en température du titane à 400°C et de l'aluminium à 470°C, p.110

. .. , Défauts de cavité en vues en coupe d'interfaces jointes par FSLW, p.111

, Observation des particules et CLD à différents ?

, Observations sur les infiltrations dans le titane à l'interface

. .. Observations-de-la-coupe-longitudinale-d'un-cordon-de-soudure, , p.115

.. .. Diagramme-de-phase-ti/al,

.. .. Analyse-eds-d'une-infiltration,

, Diffractogramme de rayon X de l'interface soudée

, Diffractogrammes de rayons X de l'interface soudée sur des angles précis, p.118

D. Référence and .. .. Le-couple-ti-al,

, Courbes thermodynamiques des composés intermétalliques du couple Ti -Al, vol.122

, Chaleur effective de formation des IMC ordonnés

, Méthode de seuillage pour la quantification d'infiltrations de TiAl 3, p.125

, Corrélation des mesures d'intermétallique en fonction de ?

. .. Mesures-de-dureté-sur-une-vue-en-coupe-du-cordon-de-soudure, , p.127

, Diffractogramme de rayon X de l'interface soudée

. Schéma-d'une-vue-en-coupe and . .. Fsw, , p.129

E. Étude and .. .. ,

, Étude de la désorientation dans la zone du noyau proche de la surface, p.130

.. .. Ebsd,

, Étude de la microstructure de l'aluminium à l'interface

, Observations des particules dans l'aluminium à l'interface

. .. , Identification des désorientations de l'aluminium à l'interface, p.135

, Étude des types de joints de grains

. Étude, intermétallique TiAl 3 sous l'interface

, Figures de Pôles du TiAl 3 dans les infiltrations

, Étude des joints de grains dans la zone composée de TiAl 3 sous l'interface, p.138

, Gamme

, Évolution de la taille de grains en fonction de la température

, Évolution de la microstructure d'un grain sous une déformation plastique sévère, p.147

M. .. Cliché, , p.148

, Description des GND dans l'aluminium sous SPD

, Observations MET d'un sous-joint de grain

M. Observations and .. .. ,

, Observations des dislocations et des joints de grains dans l'aluminium à l'interface, p.152

, Observation MET des joints de grains dans le noyau de soudure, p.153

, Comparaisons des interfaces 316L/5083 aux Q

. .. , Observations des infiltrations à l'interface Al/acier inoxydable, p.156

.. .. Diagramme-de-phase-fe/al,

, Analyse EDS d'une infiltration dans l'acier inoxydable

. .. 47°, Diffractogramme des rayons X de l'interface soudée entre 35 et, p.158

. .. , Identification des intermétalliques FeAl 3 et Fe 2 Al 5 par MET, p.159

, Observations des intermétalliques à l'interface

. Corrélation-entre-?-max and . .. Imc,