S. Weiner, W. Traub, and S. B. Parker, Macromolecules in Mollusc Shells and Their Functions in Biomineralization, Philos. Trans. R. Soc. London. B, Biol. Sci, vol.304, pp.425-434, 1984.

S. Weiner and H. D. Wagner, The material bone: Structure-Mechanical Function Relations, Annu. Rev. Mater. Sci, vol.28, pp.271-298, 1998.

?. Wheeler and A. P. , Phosphoproteins of Oyster (Crassostrea virginica) Shell Organic Matrix, Hard Tissue Mineralization and Demineralization, pp.171-187, 1992.

A. P. Wheeler, J. W. George, and C. A. Evans, Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell, Science, vol.212, pp.1397-1398, 1981.

A. P. Wheeler, K. C. Low, and C. S. Sikes, CaCo3 crystal-binding properties of peptides and their influence on crystal-growth, Acs Symp. Ser, vol.444, pp.72-84, 1991.

A. P. Wheeler, K. W. Rusenko, J. W. George, and C. S. Sikes, Evaluation of calcium binding by molluscan shell organic matrix and its relevance to biomineralization, Comp. Biochem. Physiol. -Part B Biochem, vol.87, pp.953-960, 1987.

M. Wiens, M. Bausen, F. Natalio, T. Link, U. Schlossmacher et al., The role of the silicatein-? interactor silintaphin-1 in biomimetic biomineralization, Biomaterials, vol.30, pp.1648-1656, 2009.

M. Wiens, H. Schröder, X. Wang, T. Link, D. Steindorf et al., Isolation of the Silicatein-? Interactor Silintaphin-2 by a Novel Solid-Phase Pull-Down Assay, vol.50, pp.1981-1990, 2011.

A. Williams, S. J. Carlson, C. Brunton, L. E. Holmer, and L. Popov, A Supra-Ordinal Classification of the Brachiopoda, Philos. Trans. R. Soc. London B Biol. Sci, vol.351, 1996.

W. Wiltschko, U. Munro, R. Wiltschko, and J. L. Kirschvink, Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior, J. Exp. Biol, p.205, 2002.

R. Wood and A. Y. Zhuravlev, Escalation and ecological selectively of mineralogy in the Cambrian Radiation of skeletons, Earth-Science Rev, vol.115, pp.249-261, 2012.

D. Worms and S. Weiner, Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules, J. Exp. Zool, vol.237, pp.11-20, 1986.

A. L. ?-wrange, J. Valero, L. S. Harkestad, Ø. Strand, S. Lindegarth et al., Massive settlements of the Pacific oyster, Crassostrea gigas, Scandinavia. Biol. Invasions, vol.12, pp.1145-1152, 2010.

M. Yano, K. Nagai, K. Morimoto, and H. Miyamoto, Shematrin: A family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata, Comp. Biochem. Physiol. -B Biochem. Mol. Biol, vol.144, pp.254-262, 2006.

J. Young, J. Didymus, and S. Mann, On the reported presence of vaterite and aragonite in coccoliths of Emiliania huxleyi, Bot. Mar, vol.34, pp.589-591, 1991.

J. R. Young, S. A. Davis, P. R. Bown, and S. Mann, Coccolith Ultrastructure and Biomineralisation, J. Struct. Biol, vol.126, pp.195-215, 1999.

C. Zhang and R. Q. Zhang, Matrix proteins in the outer shells of molluscs, Mar. Biotechnol, vol.8, pp.572-586, 2006.

?. Taylor and G. , Disintegration of Water Drops in an Electric Field, Proc. R. Soc. London A Math. Phys. Eng. Sci, vol.280, 1964.

V. G. Tusher, R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.5116-5121, 2001.

C. Wu, J. C. Tran, L. Zamdborg, K. R. Durbin, M. Li et al., A protease for "middle-down, proteomics. Nat. Methods, vol.9, pp.822-824, 2012.

C. C. Wu and M. J. Maccoss, Shotgun proteomics: tools for the analysis of complex biological systems, Curr. Opin. Mol. Ther, vol.4, pp.242-250, 2002.

?. Yates and J. R. , Mass Spectral Analysis in Proteomics, Annu. Rev. Biophys. Biomol. Struct, vol.33, pp.297-316, 2004.

N. Zhang, R. Aebersold, and B. Schwikowski, ProbID: A probabilistic algorithm to identify peptides through sequence database searching using tandem mass spectral data, Proteomics, vol.2, pp.1406-1412, 2002.

Y. Zhang, B. R. Fonslow, B. Shan, M. Baek, and J. R. Yates, Protein Analysis by Shotgun / Bottom-up Proteomics, Chem. Rev, vol.113, pp.2343-2394, 2013.

P. G. Willmer, Volume regulation and solute balance in the nervous tissue of an osmoconforming bivalve (Mytilus edulis), J. exp. Biol, vol.77, pp.157-179, 1978.

J. Thomsen, Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, vol.7, pp.3879-3891, 2010.

J. Beldowski, A. Löffler, B. Schneider, and L. Joensuu, Distribution and biogeochemical control of total CO2 and total alkalinity in the Baltic Sea, J. Mar. Syst, vol.81, pp.252-259, 2010.

J. Thomsen, K. Haynert, K. M. Wegner, and F. Melzner, Impact of seawater carbonate chemistry on the calcification of marine bivalves, Biogeosciences, vol.12, pp.4209-4220, 2015.

A. M. Jansson and N. Kautsky, Biology of benthic organisms, pp.359-366, 1977.

N. Kautsky, Growth and size structure in a baltic Mytilus edulis population, Mar. Biol, vol.68, pp.117-133, 1982.

J. Thomsen, Naturally acidified habitat selects for ocean acidification-tolerant mussels, Sci. Adv, vol.3, 2017.

H. A. Lowenstam, Minerals formed by organisms, Science, vol.211, pp.1126-1131, 1981.

J. W. Morse, R. S. Arvidson, A. Lüttge, and A. , Calcium Carbonate Formation and Dissolution, 2007.

G. G. Waldbusser, Saturation-state sensitivity of marine bivalve larvae to ocean acidification, 2015.

J. Thomsen, I. Casties, C. Pansch, A. Körtzinger, and F. Melzner, Food availability outweighs ocean acidification effects in juvenile Mytilus edulis : laboratory and field experiments, Glob. Chang. Biol, vol.19, pp.1017-1027, 2013.

J. G. Carter, Guide to bivalve shell microstructures, Skelet. growth Aquat. Org, vol.142, 1980.

E. M. Harper, Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia?, J. Zool, vol.251, pp.179-186, 2000.

C. Joubert, Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization, BMC Genomics, vol.11, p.613, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542855

S. C. Fitzer, Biomineral shell formation under ocean acidification: a shift from order to chaos, Sci. Rep, vol.6, p.21076, 2016.

H. M. Welladsen, P. C. Southgate, and K. Heimann, The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae)

, Molluscan Res, vol.30, pp.125-130, 2010.

F. Gizzi, Shell properties of commercial clam Chamelea gallina are influenced by temperature and solar radiation along a wide latitudinal gradient, Sci. Rep, vol.6, p.36420, 2016.

V. Tunnicliffe, Survival of mussels in extremely acidic waters on a submarine volcano, Nat. Geosci, vol.2, pp.344-348, 2009.

J. Arivalagan, Insights from the shell proteome: biomineralization to adaptation, Mol. Biol. Evol, p.219, 2016.

D. Feng, Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation, Sci. Rep, vol.7, p.45754, 2017.

S. Weiner, Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells, Calcif. Tissue Int, vol.29, pp.163-170, 1979.

M. Suzuki, Identification and characterisation of a calcium carbonate-binding protein, blue mussel shell protein (BMSP), from the nacreous layer, ChemBioChem, vol.12, pp.2478-2487, 2011.

G. Falini, S. Albeck, S. Weiner, and L. Addadi, Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules, Science, vol.271, pp.67-69, 1996.

S. Weiner and W. Traub, X-ray diffraction study of the insoluble organic matrix of mollusk shells, FEBS Lett, vol.111, pp.311-316, 1980.

H. Nakahara, M. Kakei, and G. Bevelander, Fine structure and amino acid composition of the organic envelope in the prismatic layer of some bivalve shells, Venus, vol.39, pp.167-177, 1980.

H. Li, Molecular characterization and expression analysis of chitinase from the pearl oyster Pinctada fucata, Comp. Biochem. Physiol. Part B Biochem. Mol. Biol, vol.203, pp.141-148, 2017.

M. Yonezawa, S. Sakuda, E. Yoshimura, and M. Suzuki, Molecular cloning and functional analysis of chitinases in the fresh water snail, Lymnaea stagnalis, J. Struct. Biol, 2016.

A. K. Hüning, Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: Implications for shell formation and energy metabolism, Mar. Biol, vol.160, pp.1845-1861, 2013.

J. Thomsen, Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, vol.7, pp.3879-3891, 2010.

C. Qin and . Li, In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus, J. Proteomics, vol.144, pp.87-98, 2016.

C. Zhang, L. Xie, J. Huang, L. Chen, and R. Zhang, A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata), Biochem. Biophys. Res. Commun, vol.342, pp.632-639, 2006.

P. Gao, Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell, PLoS One, vol.10, p.133913, 2015.

N. Kautsky, K. Johannesson, and M. Tedengren, Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I Gorwth and morphology, Mar. Ecol. Prog. Ser, vol.59, pp.203-210, 1990.

H. Miyamoto, A carbonic anhydrase from the nacreous layer in oyster pearls, Proc Natl Acad Sci, vol.93, 1996.

X. Ba, Complementary effects of multi-protein components on biomineralization in vitro

, J. Struct. Biol, vol.170, pp.83-92, 2010.

A. Ivanina, Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria, Comp. Biochem. Physiol. A. Mol. Integr. Physiol, vol.166, pp.101-112, 2013.

L. Roy, N. Jackson, D. J. Marie, B. Ramos-silva, P. Marin et al., Carbonic anhydrase and metazoan biocalcification : a focus on molluscs, Key Eng. Mater, pp.151-157, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194531

G. Panayotou, P. End, M. Aumailley, R. Timpl, and J. Engel, Domains of laminin with growthfactor activity, Cell, vol.56, pp.93-101, 1989.

M. Suzuki, A. Iwashima, M. Kimura, T. Kogure, and H. Nagasawa, The Molecular Evolution of the Pif Family Proteins in Various Species of Mollusks, Mar. Biotechnol, vol.15, pp.145-158, 2012.

B. Marie, J. Arivalagan, L. Mathéron, G. Bolbach, S. Berland et al., Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida
URL : https://hal.archives-ouvertes.fr/hal-01470764

, J. R. Soc. Interface, vol.14, 2017.

S. Blank, The nacre protein perlucin nucleates growth of calcium carbonate crystals, J. Microsc, vol.212, pp.280-291, 2003.

E. P. Mcgreal, L. Martinez-pomares, and S. Gordon, Divergent roles for C-type lectins expressed by cells of the innate immune system, Molecular Immunology, vol.41, pp.1109-1121, 2004.

M. Charlet, Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis, J. Biol. Chem, vol.271, pp.21808-21821, 1996.

A. Luna-acosta, Differential tissue distribution and specificity of phenoloxidases from the Pacific oyster Crassostrea gigas, Comp. Biochem. Physiol. Part B Biochem. Mol. Biol, vol.159, pp.220-226, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00616689

L. Cerenius and K. Söderhäll, The prophenoloxidase-activating system in invertebrates, Immunol. Rev, vol.198, pp.116-142, 2004.

R. P. Kuchel, A. Mccarthy, and D. A. Raftos, Phenoloxidase activity as an indicator of stress in the silver-lip pearl oyster, Pinctada maxima, Aquaculture, vol.364, pp.224-229, 2012.

L. Moullac and G. , Effect of hypoxic stress on the immune response and the resistance to

F. Aguilera and C. Mcdougall, Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa, BMC, vol.13, issue.1, p.96, 2013.

F. Aguilera, C. Mcdougall, and B. M. Degnan, Evolution of the tyrosinase gene family in bivalve molluscs: Independent expansion of the mantle gene repertoire, Acta Biomaterialia, vol.10, pp.3855-3865, 2014.

?. Alvares and K. , The role of acidic phosphoproteins in biomineralization, Connect. Tissue Res, vol.55, pp.34-40, 2014.

?. Blume-jensen, P. Hunter, and T. , Oncogenic kinase signalling, Nature, vol.411, pp.355-365, 2001.

J. E. Borbas, A. P. Wheeler, and C. S. Sikes, Molluscan shell matrix phosphoproteins: Correlation of degree of phosphorylation to shell mineral microstructure and to in vitro regulation of mineralization, J. Exp. Zool, vol.258, pp.1-13, 1991.

M. H. ?-cardone, N. Roy, H. R. Stennicke, G. S. Salvesen, T. F. Franke et al., Regulation of Cell Death Protease Caspase-9 by Phosphorylation, Science, vol.282, issue.5392, pp.1318-1321, 1998.

A. Champagne and M. Boutry, Proteomics of nonmodel plant species, Proteomics, vol.13, pp.663-673, 2013.

E. P. Chang and J. S. Evans, Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers, Biochemistry, vol.54, pp.5348-5355, 2015.

G. H. Dickinson, A. Ivanina, O. B. Matoo, H. O. Pörtner, G. Lannig et al., Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica, J. Exp. Biol, vol.215, pp.29-43, 2012.

P. ?-ditte, F. Dequiedt, E. Svastova, A. Hulikova, A. Ohradanova-repic et al., Phosphorylation of Carbonic, 2011.

, Anhydrase IX Controls Its Ability to Mediate Extracellular Acidification in Hypoxic Tumors, Cancer Res

S. C. Fitzer, P. Chung, F. Maccherozzi, S. S. Dhesi, N. A. Kamenos et al., Biomineral shell formation under ocean acidification: a shift from order to chaos, Sci. Rep, vol.6, p.21076, 2016.

S. C. Fitzer, M. Cusack, V. R. Phoenix, and N. A. Kamenos, Ocean acidification reduces the crystallographic control in juvenile mussel shells, J. Struct. Biol, vol.188, pp.39-45, 2014.

F. Gazeau, L. M. Parker, S. Comeau, J. Gattuso, O. Wa et al., Impacts of ocean acidification on marine shelled molluscs, Mar. Biol, vol.160, pp.2207-2245, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01255951

P. A. Guerette, D. G. Ginzinger, B. Weber, and J. M. Gosline, Silk properties determined by gland-specific expression of a spider fibroin gene family, Science, vol.272, issue.5258, pp.112-115, 1996.

G. He, A. Ramachandran, T. Dahl, S. George, D. Schultz et al., Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization, J. Biol. Chem, vol.280, pp.33109-33114, 2005.

P. M. Hecht, A. , and K. V. , Genetic characterization of tube and pelle, genes required for signaling between Toll and dorsal in the specification of the dorsal-ventral pattern of the Drosophila embryo, Genetics, vol.135, pp.405-417, 1993.

H. Hegyi and P. Bork, On the Classification and Evolution of Protein Modules, J. Protein Chem, vol.16, pp.545-551, 1997.

P. ?-huan, G. Liu, H. Wang, and B. Liu, Identification of a tyrosinase gene potentially involved in early larval shell biogenesis of the Pacific oyster Crassostrea gigas, Dev. Genes Evol, vol.223, pp.389-394, 2013.

A. K. Hüning, F. Melzner, J. Thomsen, M. A. Gutowska, L. Krämer et al., Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: Implications for shell formation and energy metabolism, Mar. Biol, vol.160, pp.1845-1861, 2013.

?. Hunter and T. , Signaling-2000 and Beyond, Cell, vol.100, pp.113-127, 2000.

J. A. Jadlowiec, X. Zhang, J. Li, P. G. Campbell, and C. Sfeir, Extracellular matrix-mediated signaling by dentin phosphophoryn involves activation of the Smad pathway independent of bone morphogenetic protein, J. Biol. Chem, vol.281, pp.5341-5347, 2006.

C. Jolly, S. Berland, C. Milet, S. Borzeix, E. Lopez et al., Zona localization of shell matrix proteins in mantle of Haliotis tuberculata (Mollusca, Gastropoda), Mar. Biotechnol, vol.6, pp.541-551, 2004.

C. Joubert, C. Linard, L. Moullac, G. Soyez, C. Saulnier et al., Temperature and Food Influence Shell Growth and Mantle Gene Expression of Shell Matrix Proteins in the Pearl Oyster Pinctada margaritifera, PLoS One, vol.9, p.103944, 2014.

K. Julenius and A. G. Pedersen, Protein Evolution Is Faster Outside the, Cell. Mol. Biol. Evol, vol.23, pp.2039-2048, 2006.

H. Jung, A. Pena-francesch, A. Saadat, A. Sebastian, D. H. Kim et al., Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins, Proc. Natl. Acad. Sci, vol.113, pp.6478-6483, 2016.

N. Kautsky, K. Johannesson, and M. Tedengren, Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. Gorwth and morphology, Mar. Ecol. Prog. Ser, vol.59, pp.203-210, 1990.

J. A. ?-kolkman and W. Stemmer, Directed evolution of proteins by exon shuffling, Nat. Biotechnol, vol.19, pp.423-428, 2001.

B. M. ?-luken, L. Winn, J. Emsley, L. Da, and J. Crawley, The importance of vicinal cysteines, C1669 and C1670, for von Willebrand factor A2 domain function, Blood, vol.115, pp.4910-4913, 2010.

T. Maccarthy and A. Bergman, The limits of subfunctionalization, BMC, vol.7, issue.1, p.213, 2007.

K. Mann, A. J. Poustka, and M. Mann, Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix: identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin, Proteome Sci, vol.8, p.6, 2010.

C. Mcdougall, F. Aguilera, and B. M. Degnan, Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains, J. R. Soc. Interface, vol.10, 2013.

H. Miyamoto, F. Miyoshi, and J. Kohno, The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata, Zoolog. Sci, vol.22, pp.311-315, 2005.

S. Miyazawa, R. L. Jernigan, R. Goldstein, E. Shakhnovich, and S. Benner, Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation, Macromolecules, vol.18, pp.534-552, 1985.

K. Nagai, M. Yano, K. Morimoto, and H. Miyamoto, Tyrosinase localization in mollusc shells, 2007.

. Comp, Biochem. Physiol. B. Biochem. Mol. Biol, vol.146, pp.207-214

S. Narumi and E. Miyamoto, Activation and phosphorylation of carbonic anhydrase by adenosine 3',5'-monophosphate-dependent protein kinases, Biochim. Biophys. ActaEnzymol, vol.350, pp.215-224, 1974.

A. I. Nesvizhskii, Protein Identification by Tandem Mass Spectrometry and Sequence Database Searching, Mass Spectrometry Data Analysis in Proteomics, pp.87-120, 2007.

?. Nesvizhskii and A. I. , Proteogenomics: concepts, applications and computational strategies, Nat Meth, vol.11, pp.1114-1125, 2014.

L. M. Parker, P. M. Ross, . O'connor-w-a, H. O. Pörtner, E. Scanes et al., Predicting the response of molluscs to the impact of ocean acidification, Biology (Basel), vol.2, pp.651-692, 2013.

N. ?-le-roy, D. J. Jackson, B. Marie, P. Ramos-silva, and F. Marin, The evolution of metazoan ?-carbonic anhydrases and their roles in calcium carbonate biomineralization, Front. Zool, vol.11, p.75, 2014.

I. Sarashina and K. Endo, The complete primary structure of molluscan shell protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis, Mar. Biotechnol, vol.3, pp.362-369, 2001.

C. Sfeir, D. Lee, J. Li, X. Zhang, A. L. Boskey et al., Expression of phosphophoryn is sufficient for the induction of matrix mineralization by mammalian cells, J. Biol. Chem, vol.286, pp.20228-20238, 2011.

C. A. Shelton and S. A. Wasserman, pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo, Cell, vol.72, pp.515-525, 1993.

D. W. Shin, J. Ma, and D. H. Kim, The asp-rich region at the carboxyl-terminus of calsequestrin binds to Ca 2+ and interacts with triadin, FEBS Lett, vol.486, pp.178-182, 2000.

K. ?-de-smet and R. Contreras, Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins, Biotechnol. Lett, vol.27, pp.1337-1347, 2005.

S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi et al., Structures of mollusc shell framework proteins, Nature, vol.387, pp.563-564, 1997.

M. Suzuki, A. Iwashima, M. Kimura, T. Kogure, and H. Nagasawa, The Molecular Evolution of the Pif Family Proteins in Various Species of Mollusks, Mar. Biotechnol, vol.15, pp.145-158, 2013.

B. L. Thiel, D. D. Kunkel, and C. Viney, Physical and chemical microstructure of spider dragline: A study by analytical transmission electron microscopy, Biopolymers, vol.34, pp.1089-1097, 1994.

D. Tuckwell, Evolution of von Willebrand factor A (VWA) domains, 1999.

D. W. Urry, Characterization of soluble peptides of elastin by physical techniques, pp.673-716, 1982.

L. Wei, Q. Wang, X. Ning, C. Mu, C. Wang et al., Combined metabolome and proteome analysis of the mantle tissue from Pacific oyster Crassostrea gigas exposed to elevated pCO2, Comp. Biochem. Physiol. Part D Genomics Proteomics, vol.13, pp.16-23, 2015.

G. Xu and J. S. Evans, Model peptide studies of sequence repeat derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats, Biopolymers, vol.49, pp.303-312, 1999.

M. Yadav, S. Jhunjhunwala, Q. T. Phung, P. Lupardus, J. Tanguay et al., Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing, Nature, vol.515, pp.572-576, 2014.

K. K. Yates and R. B. Halley, Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay, Estuaries and Coasts, vol.29, pp.24-39, 2006.

W. Zhang, W. Deng, L. Zhou, Y. Xu, W. Yang et al., Identification of a juxtamembrane mechanosensitive domain in the platelet mechanosensor glycoprotein Ib-IX complex, Blood, vol.125, pp.562-569, 2015.

L. Bédouet, F. Rusconi, M. Rousseau, D. Duplat, M. A. Dubost et al., Identification of low molecular weight molecules as new components of the nacre organic matrix, Comp. Biochem. Physiol. Part B Biochem. Mol. Biol, vol.144, pp.532-543, 2006.

J. Drake, T. Mass, L. Haramaty, E. Zelzion, D. Bhattacharya et al., Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata, PNAS, vol.110, pp.3788-3793, 2013.

H. Kamiya, R. Sakai, and J. M. , Bioactive Molecules from Sea Hares, pp.215-239, 2006.

K. Mann, A. J. Poustka, and M. Mann, In-depth, high-accuracy proteomics of sea urchin tooth organic matrix, Proteome Sci, vol.6, p.33, 2008.

?. Della-monica, C. , D. Sala, G. , D. Riccardis et al., Total synthesis of bioactive peptides and depsipeptides from marine opisthobranch molluscs, Prog. Mol. Subcell. Biol, vol.43, pp.333-361, 2006.

A. Sato, S. Nagasaka, K. Furihata, S. Nagata, I. Arai et al., Glycolytic intermediates induce amorphous calcium carbonate formation in crustaceans, Nat. Chem. Biol, vol.7, pp.197-199, 2011.