, the proof goes through the construction of a sequence of integers by concatenating blocks whose largest prime factor is constant, and linking blocks together with separating integers

, For an integer m ? 2, P ? (m) denotes the smallest prime factor of m. Let N ? 1. A path of integers ? N of length l is a l-uple C =, IV.2 Notation The letters p, q, q , r, r will always denote generic prime numbers

, N } into paths is said to be optimal if it contains F (N ) paths (see the Introduction for the definition of F )

. ?-n-?-n, Then C is said to be n-factorable if all the integers of C are multiple of n. Then C can be written as C = nD where D is a path of integers ? N/n. For integers 1 ? n ? N

P. Melotti, The free-fermionic C (1) 2 loop model, double dimers and Kashaev's recurrence", Journal of Combinatorial Theory, Series A, vol.158, pp.407-448, 2018.

P. Melotti, The free-fermion eight-vertex model: couplings, bipartite dimers and Zinvariance

P. Melotti and &. E. Saias, On path partitions of the divisor graph

T. Bourgeat, J. Bringer, H. Chabanne, R. Champenois, J. Clément et al., New Algorithmic Approaches to Point Constellation Recognition"; dans "ICT Systems Security and Privacy Protection, pp.80-90, 2014.

T. Bourgeat, M. Heinrich, P. Melotti, and &. Robert, A probabilistic HadwigerNelson problem

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964.

V. Adler, A. Bobenko, and Y. Suris, Classification of Integrable Equations on Quad-Graphs. The Consistency Approach, Communications in Mathematical Physics, vol.233, issue.3, pp.513-543, 2003.

V. Adler, A. Bobenko, and Y. B. Suris, Geometry of the Yang-Baxter Maps: pencils of conics and quadrirational mappings, Communications in Analysis and Geometry, vol.12, issue.5, pp.967-1008, 2004.

M. Aizenman and B. Nachtergaele, Geometric aspects of quantum spin states, Communications in Mathematical Physics, vol.164, issue.1, pp.17-63, 1994.

A. V. Akopyan, Geometry in figures. Createspace, 2011.

J. W. Alexander and G. B. Briggs, On types of knotted curves, Annals of Mathematics, vol.28, issue.1/4, pp.562-586, 1926.

J. Ashkin and E. Teller, Statistics of Two-Dimensional Lattices with Four Components, Physical Review, vol.64, pp.178-184, 1943.

M. Assis, The 16-vertex model and its even and odd 8-vertex subcases on the square lattice, 2017.

O. Babelon, D. Bernard, and M. Talon, Introduction to Classical Integrable Systems. Cambridge Monographs on Mathematical Physics, 2003.

J. Baik, P. Deift, and T. Suidan, Combinatorics and random matrix theory, 2016.

Y. Baryshnikov and R. Pemantle, Asymptotics of multivariate sequences, part III: Quadratic points, Advances in Mathematics, vol.228, issue.6, pp.3127-3206, 2011.

R. J. Baxter, Partition function of the eight-vertex lattice model, Annals of Physics, vol.70, issue.1, pp.193-228, 1972.

R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors, Annals of Physics, vol.76, issue.1, pp.1-24, 1973.

R. J. Baxter, Solvable Eight-Vertex Model on an Arbitrary Planar Lattice, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.289, pp.315-346, 1359.

R. J. Baxter, Exactly solved models in statistical mechanics, 1982.

R. J. Baxter, Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics, Proc. R. Soc. Lond. A, vol.404, pp.1-33, 1826.

R. J. Baxter, S. B. Kelland, and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, Journal of Physics A: Mathematical and General, vol.9, issue.3, pp.397-406, 1976.

R. J. Baxter, J. H. Perk, and H. Au-yang, New solutions of the star-triangle relations for the chiral Potts model, Physics Letters A, vol.128, issue.3, pp.138-142, 1988.

V. V. Bazhanov, Trigonometric Solution of Triangle Equations and Classical Lie Algebras, Phys. Lett, vol.159, pp.321-324, 1985.

V. V. Bazhanov and Y. G. Stroganov, Hidden symmetry of free fermion model, Theoretical and Mathematical Physics, vol.62, issue.3, pp.253-260, 1985.

V. V. Bazhanov and Y. G. Stroganov, Hidden symmetry of free fermion model. II. Partition function, Theoretical and Mathematical Physics, vol.63, issue.2, pp.519-527, 1985.

V. V. Bazhanov and Y. G. Stroganov, Hidden symmetry of free fermion model, III. Inversion relations. Theoretical and Mathematical Physics, vol.63, issue.3, pp.604-611, 1985.

V. Beffara, S. Chhita, and K. Johansson, Airy point process at the liquid-gas boundary, Ann. Probab, vol.46, issue.5, pp.2973-3013, 2018.

A. A. Belavin, Exact solution of the two-dimensional model with asymptotic freedom, Physics Letters B, vol.87, issue.1, pp.117-121, 1979.

A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys, vol.241, p.605, 1984.

H. Bethe, Zur Theorie der Metalle. Zeitschrift für Physik, vol.71, issue.3, pp.205-226, 1931.

L. Boltzmann, Wissenschaftliche Abhandlungen von Ludwig Boltzmann. I, pp.1865-1874

. Ii and . Band, , pp.1875-1881

, Herausgegeben von Fritz Hasenöhrl, 1968.

C. Boutillier and B. De-tilière, The critical Z-invariant Ising model via dimers: the periodic case. Probability Theory and Related Fields, vol.147, pp.379-413, 2010.

C. Boutillier and B. De-tilière, The critical Z-Invariant Ising model via dimers: locality property, Communications in Mathematical Physics, vol.301, issue.2, pp.473-516, 2011.

C. Boutillier and B. De-tilière, Statistical mechanics on isoradial graphs

B. Deuschel, W. Gentz, M. König, M. Von-renesse, U. Scheutzow et al., Probability in Complex Physical Systems, pp.491-512, 2012.

C. Boutillier, B. De-tilière, and K. Raschel, The Z-invariant massive Laplacian on isoradial graphs. Inventiones mathematicae, vol.208, pp.109-189, 2017.

C. Boutillier, B. De-tilière, and K. Raschel, The Z-invariant Ising model via dimers. Probability Theory and Related Fields, 2018.

C. Boutillier and B. De-tilière, Height representation of XOR-Ising loops via bipartite dimers, Electron. J. Probab, vol.19, p.33, 2014.

B. Carlson and J. Todd, The Degenerating Behavior of Elliptic Functions, SIAM Journal on Numerical Analysis, vol.20, issue.6, pp.1120-1129, 1983.

G. D. Carroll and D. Speyer, The Cube Recurrence, Electr. J. Comb, vol.11, issue.1, 2004.

A. Cayley and . Xxvii, Note on the theory of determinants. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.21, issue.139, pp.180-185, 1861.

A. Chadozeau, Sur les partitions en chaînes du graphe divisoriel, Periodica Mathematica Hungarica, vol.56, issue.2, pp.227-239, 2008.

D. Chelkak, Planar Ising model at criticality: state-of-the-art and perspectives, 2017.

D. Chelkak, D. Cimasoni, and A. Kassel, Revisiting the combinatorics of the 2D Ising model, Annales de l'Institut Henri Poincaré D, vol.4, issue.3, pp.309-385, 2017.

D. Chelkak, A. Glazman, and S. Smirnov, Discrete stress-energy tensor in the loop O(n) model, 2016.

D. Chelkak and S. Smirnov, Universality in the 2D Ising model and conformal invariance of fermionic observables, Inventiones mathematicae, vol.189, issue.3, pp.515-580, 2012.

D. Cimasoni and H. Duminil-copin, The critical temperature for the Ising model on planar doubly periodic graphs, Electron. J. Probab, vol.18, p.18, 2013.

D. Cimasoni and N. Reshetikhin, Dimers on surface graphs and spin structures. I, Communications in Mathematical Physics, vol.275, issue.1, pp.187-208, 2007.

D. Cimasoni and N. Reshetikhin, Dimers on surface graphs and spin structures. II, Communications in Mathematical Physics, vol.281, issue.2, p.445, 2008.

H. Cohn, R. Kenyon, and J. Propp, A variational principle for domino tilings, Journal of the American Mathematical Society, vol.14, issue.2, pp.297-346, 2001.

J. De-gier, A. Lee, and J. Rasmussen, Discrete holomorphicity and integrability in loop models with open boundaries, J. Stat. Mech, vol.1302, p.2029, 2013.

B. De-tilière, Quadri-tilings of the plane. Probability Theory and Related Fields, vol.137, pp.487-518, 2007.

B. De-tilière, The Z-Dirac and massive Laplacian operators in the Z-invariant Ising model, 2018.

P. Deift, Fifty Years of KdV: An Integrable System. arXiv e-prints, 2019.

P. D. Francesco, P. Mathieu, and D. Senechal, Graduate Texts in Contemporary Physics, Conformal Field Theory, 1997.

P. , D. Francesco, and R. Soto-garrido, Arctic curves of the octahedron equation, Journal of Physics A: Mathematical and Theoretical, vol.47, issue.28, p.285204, 2014.

R. L. Dobrushin and H. C. Folguera, The description of a random field by means of conditional probabilities and conditions of its regularity, Theory of Probability and its Applications, vol.13, pp.197-224, 1968.

C. L. Dodgson, Condensation of determinants, being a new and brief method for computing their arithmetical values, Proceedings of the Royal Society of London, vol.15, pp.150-155, 1866.

. P. Dms-+-96]-n, A. S. Dolbilin, M. A. Mishchenko, M. I. Shtan&apos;ko, Y. M. Shtogrin et al., Homological properties of dimer configurations for lattices on surfaces, Functional Analysis and Its Applications, vol.30, issue.3, pp.163-173, 1996.

E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer, Duality relations and equivalences for models with O( N) and cubic symmetry, Nuclear Physics B, vol.190, pp.279-287, 1981.

V. G. , Drinfel'd. Quantum groups, Journal of Soviet Mathematics, vol.41, issue.2, pp.898-915, 1988.

J. Dubédat, Exact bosonization of the Ising model, 2011.

J. Dubédat, Topics on abelian spin models and related problems, Probab. Surveys, vol.8, pp.374-402, 2011.

H. Duminil-copin, J. Li, and I. Manolescu, Universality for the randomcluster model on isoradial graphs, Electron. J. Probab, vol.23, p.70, 2018.

H. Duminil-copin and M. Lis, On the double random current nesting field. arXiv e-prints, 2017.

B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Critical Gaussian multiplicative chaos: convergence of the derivative martingale, The Annals of Probability, vol.42, pp.1769-1808, 2014.

B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ. Inventiones mathematicae, vol.185, pp.333-393, 2011.

V. N. Dutyshev, Two-dimensional isotopic model of a fermion field with broken SU(2) symmetry, Soviet Journal of Experimental and Theoretical Physics, vol.51, p.671, 1980.

R. G. Edwards and A. D. Sokal, Generalization of the Fortuin-KasteleynSwendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D, vol.38, 1988.

N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-Sign Matrices and Domino Tilings (Part II), Journal of Algebraic Combinatorics, vol.1, issue.3, pp.219-234, 1992.

G. Epifanov, Reduction of a plane graph to an edge by a star-triangle transformation, In Soviet. Math. Doklady, vol.166, pp.13-17, 1966.

P. Erd?s, R. Freud, and N. Hegyvári, Arithmetical properties of permutations of integers, Acta Mathematica Hungarica, vol.41, issue.1, pp.169-176, 1983.

P. Erd?s and E. Saias, Sur le graphe divisoriel, Acta Arithmetica, vol.73, issue.2, pp.189-198, 1995.

L. Faddeev, Instructive history of the quantum inverse scattering method, Acta Applicandae Mathematica, vol.39, issue.1, pp.69-84, 1995.

C. Fan and F. Y. Wu, Ising model with Second-Neighbor Interaction. I. Some Exact Results and an Approximate Solution, Phys. Rev, vol.179, pp.560-569, 1969.

C. Fan and F. Y. Wu, General Lattice Model of Phase Transitions, Phys. Rev. B, vol.2, pp.723-733, 1970.

B. Felderhof, Diagonalization of the transfer matrix of the free-fermion model, II. Physica, vol.66, issue.2, pp.279-297, 1973.

B. Felderhof, Diagonalization of the transfer matrix of the free-fermion model, III. Physica, vol.66, issue.3, pp.509-526, 1973.

B. Felderhof, Direct diagonalization of the transfer matrix of the zero-field freefermion model, Physica, vol.65, issue.3, pp.421-451, 1973.

T. A. Feo and J. S. Provan, Delta-Wye transformations and the efficient reduction of two-terminal planar graphs, Operations Research, vol.41, issue.3, pp.572-582, 1993.

M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev, vol.124, pp.1664-1672, 1961.

M. E. Fisher, On the Dimer Solution of Planar Ising Models, Journal of Mathematical Physics, vol.7, issue.10, pp.1776-1781, 1966.

S. Fomin and A. Zelevinsky, Cluster algebras. I, Foundations. J. Amer. Math. Soc, vol.15, issue.2, pp.497-529, 2002.

S. Fomin and A. Zelevinsky, The Laurent phenomenon, Advances in Applied Mathematics, vol.28, issue.2, pp.119-144, 2002.

S. Fomin and A. Zelevinsky, Cluster algebras. II. Finite type classification, Invent. Math, vol.154, issue.1, pp.63-121, 2003.

R. H. Fowler and G. S. Rushbrooke, An attempt to extend the statistical theory of perfect solutions, Trans. Faraday Soc, vol.33, pp.1272-1294, 1937.

W. Galleas and M. J. Martins, Yang-Baxter equation for the asymmetric eightvertex model, Physical Review E, vol.66, issue.4, p.47103, 2002.

A. Galluccio and M. Loebl, On the Theory of Pfaffian Orientations. I. Perfect Matchings and Permanents, Electr. J. Comb, vol.6, 1999.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Method for Solving the Korteweg-deVries Equation, Phys. Rev. Lett, vol.19, pp.1095-1097, 1967.

C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Korteweg-deVries equation and generalization. VI. Methods for exact solution, Comm. Pure Appl. Math, vol.27, pp.97-133, 1974.

T. George, Limit shapes for cube groves with periodic conductances, 2017.

J. W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics, 1902.

A. B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, Ann. Sci. Éc. Norm. Supér, vol.46, issue.4, pp.747-813, 2013.

R. B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field, Journal of Mathematical Physics, vol.11, pp.790-795, 1970.

G. R. Grimmett and I. Manolescu, Inhomogeneous bond percolation on square, triangular and hexagonal lattices, Ann. Probab, vol.41, issue.4, p.2013

R. Hirota, Nonlinear Partial Difference Equations. II. Discrete-Time Toda Equation, Journal of the Physical Society of Japan, vol.43, p.2074, 1977.

C. S. Hsue, K. Y. Lin, and F. Y. Wu, Staggered eight-vertex model, Phys. Rev. B, vol.12, pp.429-437, 1975.

C. A. Hurst, New approach to the Ising problem, Journal of Mathematical Physics, vol.7, issue.2, pp.305-310, 1966.

Y. Ikhlef and J. Cardy, Discretely holomorphic parafermions and integrable loop models, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.10, p.102001, 2009.

E. Ising, Contribution to the Theory of Ferromagnetism, Z. Phys, vol.31, pp.253-258, 1925.

J. L. Jacobsen and J. Kondev, Conformal field theory of the Flory model of polymer melting, Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, vol.69, p.66108, 2004.

M. Jimbo, Quantum R matrix for the generalized Toda system, Comm. Math. Phys, vol.102, issue.4, pp.537-547, 1986.

M. Jimbo and T. Miwa, Algebraic analysis of solvable lattice models, vol.85, 1994.

W. Jockusch, J. Propp, and P. Shor, Random Domino Tilings and the Arctic Circle Theorem. arXiv Mathematics e-prints, page math/9801068, 1998.

K. Johansson, The arctic circle boundary and the Airy process, Ann. Probab, vol.33, issue.1, pp.1-30, 2005.

H. Jordan, Eine Bemerkung Über die Monotonie von sn(tK), Archiv der Mathematik, vol.6, issue.3, pp.185-187, 1955.

M. Josefsson, When is a tangential quadrilateral a kite? Forum Geom, vol.11, 2011.

M. Josefsson, Characterizations of orthodiagonal quadrilaterals, Forum Geom, vol.12, pp.13-25, 2012.

M. Kac and J. C. Ward, A Combinatorial Solution of the Two-Dimensional Ising Model, Phys. Rev, vol.88, pp.1332-1337, 1952.

L. P. Kadanoff and H. Ceva, Determination of an Operator Algebra for the Two-Dimensional Ising Model, Phys. Rev. B, vol.3, pp.3918-3939, 1971.

L. P. Kadanoff and F. J. Wegner, Some critical properties of the eight-vertex model, Phys. Rev. B, vol.4, pp.3989-3993, 1971.

R. M. Kashaev, On discrete three-dimensional equations associated with the local Yang-Baxter relation, Letters in Mathematical Physics, vol.38, issue.4, pp.389-397, 1996.

P. W. Kasteleyn, The statistics of dimers on a lattice : I. The number of dimer arrangements on a quadratic lattice, Physica, vol.27, pp.1209-1225, 1961.

P. W. Kasteleyn, Dimer Statistics and Phase Transitions, Journal of Mathematical Physics, vol.4, issue.2, pp.287-293, 1963.

P. W. Kasteleyn, Graph theory and crystal physics, Graph Theory and Theoretical Physics, pp.43-110, 1967.

B. Kaufman, Crystal Statistics. II. Partition Function Evaluated by Spinor Analysis, Phys. Rev, vol.76, pp.1232-1243, 1949.

B. Kaufman and L. Onsager, Crystal Statistics. III. Short-Range Order in a Binary Ising Lattice, Phys. Rev, vol.76, pp.1244-1252, 1949.

A. E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks, Electrical World and Engineer, vol.34, issue.12, pp.413-414, 1899.

R. Kenyon, Annales de l'Institut Henri Poincaré (B) Probability and Statistics, vol.33, pp.591-618, 1997.

R. Kenyon, The Laplacian and Dirac operators on critical planar graphs, ventiones mathematicae, vol.150, pp.409-439, 2002.

R. Kenyon, Dimer problems. Encyclopedia of Mathematical Physics

G. L. Françoise, . Naber, and . Ts-tsun, , 2005.

R. Kenyon, Lectures on dimers. statistical mechanics, vol.16, pp.191-230, 2009.

R. Kenyon, The Laplacian on planar graphs and graphs on surfaces, Current developments in mathematics, pp.1-55, 2011.

R. Kenyon, Determinantal spanning forests on planar graphs. The Annals of Probability, vol.47, pp.952-988, 2019.

R. Kenyon, W. Y. Lam, S. Ramassamy, and M. Russkikh, Dimers and Circle patterns. arXiv e-prints, 2018.

R. Kenyon and A. Okounkov, Planar dimers and Harnack curves, Duke Math. J, vol.131, issue.3, pp.499-524, 2006.

R. Kenyon, A. Okounkov, and S. Sheffield, Dimers and amoebae, Annals of mathematics, pp.1019-1056, 2006.

R. Kenyon and R. Pemantle, Double-dimers, the Ising model and the hexahedron recurrence, Journal of Combinatorial Theory, Series A, vol.137, pp.27-63, 2016.

R. Kenyon, J. Propp, and D. Wilson, Trees and matchings. The Electronic Journal of Combinatorics, vol.7, 2000.

R. Kenyon and J. Schlenker, Rhombic embeddings of planar quad-graphs

, Trans. Amer. Math. Soc, vol.357, issue.9, pp.3443-3458, 2005.

S. Khachatryan and A. Sedrakyan, On the Solutions of the Yang-Baxter Equations with General Inhomogeneous Eight-Vertex R-Matrix: Relations with Zamolodchikov's Tetrahedral Algebra, Journal of Statistical Physics, vol.150, issue.1, pp.130-155, 2013.

H. A. Kramers and G. H. Wannier, Statistics of the Two-Dimensional Ferromagnet. Part I. Physical Review, vol.60, pp.252-262, 1941.

I. M. Krichever, Baxter's equations and algebraic geometry. Functional Analysis and Its Applications, vol.15, pp.92-103, 1981.

O. E. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys, vol.13, issue.3, pp.194-215, 1969.

D. F. Lawden, Jacobi's Elliptic Functions, 1989.

G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar looperased random walks and uniform spanning trees, Ann. Probab, vol.32, issue.1B, pp.939-995, 2004.

P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math, vol.21, pp.467-490, 1968.

A. Leaf, The Kashaev equation and related recurrences, SIGMA Symmetry Integrability Geom. Methods Appl, vol.15, p.64, 2019.

W. Lenz, Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern, Z. Phys, vol.21, pp.613-615, 1920.

E. H. Lieb, Residual Entropy of Square Ice, Phys. Rev, vol.162, pp.162-172, 1967.

K. Y. Lin, Staggered eight-vertex model on the Kagome lattice, Journal of Physics A: Mathematical and General, vol.9, issue.4, p.581, 1976.

K. Y. Lin, Eight-vertex model on a ruby lattice, Journal of Physics A: Mathematical and General, vol.17, issue.16, p.3201, 1984.

K. Y. Lin and I. P. Wang, Staggered eight-vertex model with four sublattices, Journal of Physics A: Mathematical and General, vol.10, issue.5, p.813, 1977.

M. Lis, Circle patterns and critical Ising models, 2017.

D. Lucarelli, A. Saksena, R. Farrell, and I. Wang, Distributed inference for network localization using radio interferometric ranging. Wireless Sensor Networks, pp.52-73, 2008.

T. Lupu and W. Werner, A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field, Electron. Commun. Probab, vol.21, p.7, 2016.

P. Mazet, Recouvrements hamiltoniens de certains graphes, European Journal of Combinatorics, vol.27, issue.5, pp.739-749, 2006.

B. M. Mccoy, Advanced statistical mechanics, vol.146, 2010.

B. M. Mccoy and T. T. Wu, The two-dimensional Ising model, 2014.

N. Mcnew, Counting primitive subsets and other statistics of the divisor graph of {1, 2, 2018.

C. Mercat, Discrete Riemann surfaces and the Ising model, Communications in Mathematical Physics, vol.218, issue.1, pp.177-216, 2001.

J. Miller and S. Sheffield, Imaginary geometry I: interacting SLEs. Probability Theory and Related Fields, vol.164, pp.553-705, 2016.

B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas, Journal of Statistical Physics, vol.34, issue.5, pp.731-761, 1984.

L. Onsager, Crystal Statistics. I. A Two-Dimensional Model with an OrderDisorder Transition, Phys. Rev, vol.65, pp.117-149, 1944.

L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, Journal of the American Chemical Society, vol.57, issue.12, pp.2680-2684, 1935.

R. Peierls, On Ising's model of ferromagnetism, Mathematical Proceedings of the Cambridge Philosophical Society, vol.32, issue.3, pp.477-481, 1936.

R. Pemantle and M. C. Wilson, Analytic Combinatorics in Several Variables, 2013.

J. H. Perk and H. Au-yang, Yang-Baxter Equations, Encyclopedia of mathematical physics, vol.5, pp.465-473, 2006.

T. K. Petersen and D. Speyer, An arctic circle theorem for Groves, Journal of Combinatorial Theory, Series A, vol.111, issue.1, pp.137-164, 2005.

C. Pomerance, On the longest simple path in the divisor graph, Congr. Numer, vol.40, pp.291-304, 1983.

J. Propp, The Many Faces of Alternating-Sign Matrices, Discrete Models: Combinatorics, Computation, and Geometry (DM-CCG 2001), vol.AA, pp.43-58, 2001.

K. Reidemeister, Elementare Begründung der Knotentheorie, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol.5, issue.1, pp.24-32, 1927.

N. Reshetikhin, Lectures on the integrability of the six-vertex model. Exact methods in low-dimensional statistical physics and quantum computing, pp.197-266, 2010.

R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review. Probability Surveys, p.11, 2014.

C. Richard, M. Höffe, J. Hermisson, and M. Baake, Random tilings: concepts and examples, Journal of Physics A: Mathematical and General, vol.31, issue.30, p.6385, 1998.

E. Saias, Sur l'utilisation de l'identité de Buchstab, Sémi-naire de Théorie des Nombres de, pp.217-245, 1991.

E. Saias, Applications des entiers à diviseurs denses, Acta Arithmetica, vol.83, issue.3, pp.225-240, 1998.

E. Saias, Etude du graphe divisoriel 3. Rendiconti del Circolo Matematico di Palermo, vol.52, pp.481-488, 2003.

B. D. Saunders and H. Schneider, Flows on graphs applied to diagonal similarity and diagonal equivalence for matrices, Discrete Mathematics, vol.24, issue.2, pp.205-220, 1978.

T. C. Schelling, Dynamic models of segregation, J. Math. Sociol, vol.1, issue.2, pp.143-186, 1971.

O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel Journal of Mathematics, vol.118, issue.1, pp.221-288, 2000.

S. Sheffield, Gaussian free fields for mathematicians. Probability theory and related fields, vol.139, pp.521-541, 2007.

J. C. Slater, Theory of the Transition in KH2PO4, The Journal of Chemical Physics, vol.9, issue.1, pp.16-33, 1941.

S. Smirnov, Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, Comptes Rendus de l'Académie des Sciences-Series IMathematics, vol.333, issue.3, pp.239-244, 2001.

S. Smirnov, Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model, Ann. of Math, vol.172, issue.2, pp.1435-1467, 2010.

S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Mathematical Research Letters, vol.8, pp.729-744, 2001.

K. Sogo, M. Uchinami, Y. Akutsu, and M. Wadati, Classification of Exactly Solvable Two-Component Models, Progress of Theoretical Physics, vol.68, pp.508-526, 1982.

D. E. Speyer, Perfect matchings and the octahedron recurrence, Journal of Algebraic Combinatorics, vol.25, issue.3, pp.309-348, 2007.

H. Spohn, Large Scale Dynamics of Interacting Particles. Texts and monographs in physics, 1991.

B. Sutherland, Exact solution of a two-dimensional model for hydrogen-bonded crystals, Phys. Rev. Lett, vol.19, pp.103-104, 1967.

B. Sutherland, Two-Dimensional Hydrogen Bonded Crystals without the Ice Rule, Journal of Mathematical Physics, vol.11, issue.11, pp.3183-3186, 1970.

H. N. Temperley, Enumeration of graphs on a large periodic lattice, Combinatorics (Proc. British Combinatorial Conf., Univ. Coll. Wales, Aberystwyth, 1973), pp.155-159, 1974.

H. N. Temperley and M. E. Fisher, Dimer problem in statistical mechanics-an exact result. The Philosophical Magazine: A, Journal of Theoretical Experimental and Applied Physics, vol.6, issue.68, pp.1061-1063, 1961.

G. Tesler, Matchings in Graphs on Non-orientable Surfaces, Journal of Combinatorial Theory, Series B, vol.78, issue.2, pp.198-231, 2000.

W. P. Thurston, Conway's tiling groups, Amer. Math. Monthly, vol.97, issue.8, pp.757-773, 1990.

W. T. Tutte, A census of planar maps, Canadian Journal of Mathematics, vol.15, pp.249-271, 1963.

W. T. Tutte, How to draw a graph, Proc. London Math. Soc, vol.13, issue.3, pp.743-767, 1963.

L. G. Valiant, Holographic algorithms, 45th Annual IEEE Symposium on Foundations of Computer Science, pp.306-315, 2004.

B. L. Van-der-waerden, Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen, Zeitschrift für Physik, vol.118, issue.7, pp.473-488, 1941.

R. S. Vieira, Solving and classifying the solutions of the Yang-Baxter equation through a differential approach. Two-state systems, Journal of High Energy Physics, issue.10, p.110, 2018.

G. H. Wannier, The statistical problem in cooperative phenomena, Reviews of Modern Physics, vol.17, issue.1, p.50, 1945.

S. O. Warnaar and B. Nienhuis, Solvable lattice models labelled by Dynkin diagrams, Journal of Physics A: Mathematical and General, vol.26, issue.10, p.2301, 1993.

F. J. Wegner, Duality relation between the Ashkin-Teller and the eight-vertex model, Journal of Physics C: Solid State Physics, vol.5, issue.11, p.131, 1972.

W. Werner, Random Planar Curves and Schramm-Loewner Evolutions, Lectures on probability theory and statistics, pp.107-195, 2004.

F. W. Wu, Ising model with four-spin interactions, Phys. Rev. B, vol.4, pp.2312-2314, 1971.

F. Y. Wu, Exact Solution of a Model of an Antiferroelectric Transition, Phys. Rev, vol.183, pp.604-607, 1969.

F. Y. Wu and K. Y. Lin, Staggered ice-rule vertex model-The Pfaffian solution, Phys. Rev. B, vol.12, pp.419-428, 1975.

X. Xu, S. Sahni, and N. S. Rao, On basic properties of localization using distance-difference measurements, 11th International Conference on Information Fusion, pp.1-8, 2008.

M. Yamazaki, Cluster-enriched Yang-Baxter equation from SUSY gauge theories, Letters in Mathematical Physics, vol.108, issue.4, pp.1137-1146, 2018.

A. B. Zamolodchikov, Z4-symmetric factorizeds-matrix in two space-time dimensions, Communications in Mathematical Physics, vol.69, issue.2, pp.165-178, 1979.