Y. Wang, Nanogeochemistry: Nanostructures, Emergent Properties and Their Control on Geochemical Reactions and Mass Transfers, Chem. Geol, pp.378-379, 2014.

E. Mamontov, D. R. Cole, S. Dai, M. D. Pawel, C. D. Liang et al., Dynamics of Water in LiCl and CaCl2 Aqueous Solutions Confined in Silica Matrices: A Backscattering Neutron Spectroscopy Study, Chem. Phys, vol.352, pp.117-124, 2008.

A. G. Stack, A. Fernandez-martinez, L. F. Allard, J. L. Bañuelos, G. Rother et al.,

M. Cole, D. R. Waychunas, and G. A. , Pore-Size-Dependent Calcium Carbonate Precipitation Controlled by Surface Chemistry, Environ. Sci. Technol, vol.48, pp.6177-6183, 2014.

B. Gouze, J. Cambedouzou, S. Parrès-maynadié, and D. Rébiscoul, How Hexagonal Mesoporous Silica Evolves in Water on Short and Long Term: Role of Pore Size and Silica Wall Porosity, Microporous Mesoporous Mater, vol.183, pp.168-176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01998160

D. Rébiscoul, J. Cambedouzou, M. Brossel, M. Baum, and S. Szenknect, Evolution of Silica Walls of Nanopores Filled with Water and Ions, Procedia Earth Planet. Sci, vol.17, pp.88-91, 2017.

P. K. Gupta and M. Meuwly, Dynamics and Vibrational Spectroscopy of Water at Hydroxylated Silica Surfaces. Faraday Discuss, p.329, 2013.

E. Chiavazzo, M. Fasano, P. Asinari, and P. Decuzzi, Scaling Behaviour for the Water Transport in Nanoconfined Geometries, Nat. Commun, vol.5, pp.1-11, 2014.

P. Yuan, F. Annabi-bergaya, Q. Tao, M. Fan, Z. Liu et al., A Combined Study by XRD, FTIR, TG and HRTEM on the Structure of Delaminated FeIntercalated/Pillared Clay, J. Colloid Interface Sci, vol.324, pp.142-149, 2008.

D. Rébiscoul, J. Cambedouzou, I. Briman, M. Cabié, H. Brau et al., Water Dynamics in Nanoporous Alteration Layer Coming from Glass Alteration: An Experimental Approach

, J. Phys. Chem. C, vol.119, pp.15982-15993, 2015.

S. Dourdain, A. Gibaud, A. Delattre, and P. Terech, Extended Surfaces Nanopatterned with Functionalized Cavities for Positioning Nanoparticles, Langmuir, vol.26, pp.7565-7568, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01999340

M. R. Rowles, J. Hanna, K. J. V;-pike, and M. E. Smith, Applied Magnetic Resonance Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers, Appl. Magn. Reson, vol.32, pp.663-689, 2007.

R. M. Kowalczyk, A. M. Gajewicz, and P. J. Mcdonald, The Mechanism of Water-isopropanol Exchange in Cement Pastes Evidenced by NMR Relaxometry, RSC Adv, vol.4, pp.20709-20715, 2014.

M. I. Ojovan and W. E. Lee, New Developments in Glassy Nuclear Wasteforms, 2007.

I. C. Bourg and C. I. Steefel, Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores, J. Phys. Chem. C, vol.116, pp.11556-11564, 2012.

M. Stratmann and M. Rohwerder, Materials Science: A Pore View of Corrosion, Nature, vol.410, pp.420-423, 2001.

J. Weissmüller, R. C. Newman, H. Jin, A. M. Hodge, and J. W. Kysar, Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties, MRS Bull, vol.34, pp.577-586, 2009.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, Evolution of Nanoporosity in Dealloying, Nature, vol.410, pp.450-453, 2001.

P. Ben-ishai, E. Mamontov, J. D. Nickels, and A. P. Sokolov, Influence of Ions on Water Diffusion -a Neutron Scattering Study, J. Phys. Chem. C, p.7724, 2013.

E. Mamontov and D. R. Cole, Quasielastic Neutron Scattering Study of Dynamics of CaCl 2

, Aqueous Solution Confined in Vycor Glass, Phys. Chem. Chem. Phys, vol.8, pp.4908-4914, 2006.

P. Fenter, S. Kerisit, P. Raiteri, and J. D. Gale, Is the Calcite-Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-Ray Reflectivity Data, J. Phys. Chem. C, vol.117, pp.5038-5042, 2013.

P. Fenter and N. C. Sturchio, Mineral-water Interfacial Structures Revealed by Synchrotron XRay Scattering, Prog. Surf. Sci, vol.77, pp.171-258, 2004.

A. A. Skelton, P. Fenter, J. D. Kubicki, D. J. Wesolowski, and P. T. Cummings, Simulations of the Quartz(1011)/Water Interface: A Comparison of Classical Force Fields, Ab Initio Molecular Dynamics, and X-Ray Reflectivity Experiments, J. Phys. Chem. C, vol.115, pp.2076-2088, 2011.

E. T. Nibbering and T. Elsaesser, Ultrafast Vibrational Dynamics of Hydrogen Bonds in the Condensed Phase, Chem. Rev, vol.104, pp.1887-1914, 2004.

J. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions : Modern Aspects, 1998.

P. Atkins and . De-paula, J. Physical Chemistry, 2006.

Y. Marcus, Effect of Ions on the Structure of Water : Structure Making and Breaking Effect of Ions on the Structure of Water : Structure Making and Breaking, vol.109, pp.1346-1370, 2009.

W. Kunz, J. Henle, and B. W. Ninham, Zur Lehre von Der Wirkung Der Salze' (about the Science of the Effect of Salts): Franz Hofmeister's Historical Papers, Curr. Opin. Colloid Interface Sci, vol.9, pp.19-37, 2004.

W. Kunz, Specific Ion Effects in Colloidal and Biological Systems, Curr. Opin. Colloid Interface Sci, vol.15, pp.34-39, 2010.

K. D. Collins and M. W. Washabaugh, The Hofmeister Effect and the Behaviour of Water at Interfaces, Q. Rev. Biophys, vol.18, p.323, 1985.

K. D. Collins, Charge Density-Dependent Strength of Hydration and Biological Structure, Biophys. J, vol.72, pp.65-76, 1997.

A. W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, Negligible Effects o Ions on the Hydrogen-Bond Structure in Liquid Water. Science, vol.301, p.347, 2003.

G. E. Walrafen, Raman Spectral Studies of the Effects of Perchlorate Ion on Water Structure, J. Chem. Phys, vol.52, pp.4176-4198, 1970.

Q. Sun, Vibrational Spectroscopy Raman Spectroscopic Study of the Effects of Dissolved NaCl on Water Structure, Vib. Spectrosc, vol.62, pp.110-114, 2012.

R. Li, Z. Jiang, F. Chen, H. Yang, and Y. Guan, Hydrogen Bonded Structure of Water and Aqueous Solutions of Sodium Halides: A Raman Spectroscopic Study, J. Mol. Struct, vol.707, pp.83-88, 2004.

R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, Perturbation of Water Structure Due to Monovalent Ions in Solution, Phys. Chem. Chem. Phys, vol.9, p.2959, 2007.

F. Bruni, S. Imberti, R. Mancinelli, and M. A. Ricci, Aqueous Solutions of Divalent Chlorides: Ions Hydration Shell and Water Structure, J. Chem. Phys, vol.136, p.64520, 2012.

D. H. Dagade and S. S. Barge, Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts, ChemPhysChem, vol.17, pp.902-912, 2016.

M. F. Kropman and H. J. Bakker, Effect of Ions on the Vibrational Relaxation of Liquid Water, J. Am. Chem. Soc, vol.126, pp.9135-9141, 2004.

M. F. Kropman, H. Nienhuys, and H. J. Bakker, Real-Time Measurement of the Orientational Dynamics of Aqueous Solvation Shells in Bulk Liquid Water, Phys. Rev. Lett, vol.88, pp.77601-77605, 2002.

M. F. Kropman and H. J. Bakker, Vibrational Relaxation of Liquid Water in Ionic Solvation Shells, Chem. Phys. Lett, vol.370, pp.741-746, 2003.

C. Ting, G. Hefter, and R. Buchner, Dielectric Spectroscopy of Aqueous Solutions of KCl and CsCl, J. Phys. Chem. A, vol.107, pp.4025-4031, 2003.

B. Hribar, T. Noel, ?. Southall, and . Vlachy,

K. A. Dill, *. , and §. , How Ions Affect the Structure of Water, 2002.

H. J. Bakker, Structural Dynamics of Aqueous Salt Solutions, Chem. Rev, vol.108, pp.1456-1473, 2008.

D. W. Mccall and D. C. Douglass, Effect of Ions on the Self-Diffusion of Water. I. Concentration Dependence, J. Phys. Chem, vol.69, 1965.

L. Endom, H. G. Hertz, B. Thül, and M. D. Zeidler, Microdynamic Model of Electrolyte Solutions as Derived from Nuclear Magnetic Relaxation and Self-Diffusion Data, Berichte der Bunsengesellschaft für Phys. Chemie, vol.71, pp.1008-1031, 1967.

K. R. Harris, R. Mills, P. J. Back, and D. S. Webster, An Improved NMR Spin-Echo Apparatus for the Measurement of Self-Diffusion Coefficients: The Diffusion of Water in Aqueous Electrolyte Solutions, J. Magn. Reson, vol.29, pp.473-482, 1978.

N. A. Hewish, J. E. Enderby, and W. S. Howells, The Dynamics of Water Molecules in Ionic Solution, J. Phys. C Solid State Phys, vol.16, pp.1777-1791, 1983.

R. Buchner and G. Hefter, Interactions and Dynamics in Electrolyte Solutions by Dielectric Spectroscopy, Phys. Chem. Chem. Phys, p.8984, 2009.

S. T. Post and . Van-der,

H. J. Bakker, The Combined Effect of Cations and Anions on the Dynamics of Water, Phys. Chem. Chem. Phys, vol.14, pp.6280-6288, 2012.

E. R. Nightingale, Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions, J. Phys. Chem, vol.63, pp.1381-1387, 1959.

P. Jollivet, S. Gin, and S. Schumacher, Forward Dissolution Rate of Silicate Glasses of Nuclear Interest in Clay-Equilibrated Groundwater, Chem. Geol, pp.207-217, 2012.

H. Ohtaki and T. Radnai, Structure and Dynamics of Hydrated Ions, Chem. Rev, vol.93, pp.1157-1204, 1993.

D. W. Mccall and D. C. Douglass, Effect of Ions on the Self-Diffusion of Water. I. Concentration Dependence, J. Phys. Chem, 1965.

K. Harris, R. Mills, P. Back, and D. Webster, An Improved NMR Spin-Echo Apparatus for the Measurement of Self-Diffusion Coefficients: The Diffusion of Water in Aqueous Electrolyte Solutions, J. Magn. Reson, vol.29, pp.473-482, 1978.

N. A. Hewish, J. E. Enderby, and W. S. Howells, The Dynamics of Water Molecules in Ionic Solution, J. Phys. C Solid State Phys, vol.16, pp.1777-1791, 1983.

P. Fenter and N. C. Sturchio, Mineral-Water Interfacial Structures Revealed by Synchrotron XRay Scattering, Prog. Surf. Sci, vol.77, pp.171-258, 2005.

D. L. Chapman and . Li, A Contribution to the Theory of Electrocapillarity, Philos. Mag. J. Sci, vol.25, pp.475-481, 1913.

O. Stern, Zur Theorie Der Elektrolytischen Doppelschicht. Zeitschrift für Elektrochemie und Angew. Phys. Chemie 1924, vol.30, pp.508-516

D. F. Evans and H. Wennerstro?m, The Colloidal Domain : Where Physics, Biology, and Technology Meet, 1999.

Q. Du, E. Freysz, and Y. R. Shen, Surface Vibrational Spectroscopic Studies of Hydrogen Bonding and Hydrophobicity. Science (80-. ), vol.264, pp.826-828, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01549890

Q. Du, E. Freysz, and Y. R. Shen, Vibrational Spectra of Water Molecules at Quartz/Water Interfaces, Phys. Rev. Lett, vol.72, pp.238-241, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01549891

V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, Vibrational Spectra of Water at Water/?-Quartz (0 0 0 1) Interface, Chem. Phys. Lett, vol.386, pp.144-148, 2004.

V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, New Information on Water Interfacial Structure Revealed by Phase-Sensitive Surface Spectroscopy, Phys. Rev. Lett, vol.94, pp.46102-46106, 2005.

R. K. Iler, The Chemistry of Silica -Solubility, Polymerization, Colloid and Surface Properties

Z. Yang, Q. Li, and K. C. Chou, Structures of Water Molecules at the Interfaces of Aqueous Salt Solutions and Silica: Cation Effects, J. Phys. Chem. C, vol.113, pp.8201-8205, 2009.

M. S. Azam, C. N. Weeraman, and J. M. Gibbs-davis, Specific Cation Effects on the Bimodal Acid-Base Behavior of the Silica/Water Interface, J. Phys. Chem. Lett, vol.2012, issue.10, pp.1269-1274

M. S. Azam, A. Darlington, and J. M. Gibbs-davis, The Influence of Concentration on Specific Ion Effects at the Silica/Water Interface, J. Phys. Condens. Matter, vol.26, pp.2441071-2441081, 2014.

K. C. Jena, P. A. Covert, and D. K. Hore, The Effect of Salt on the Water Structure at a Charged Solid Surface: Differentiating Second-and Third-Order Nonlinear Contributions, J. Phys. Chem. Lett, vol.2, pp.1056-1061, 2011.

P. A. Covert, K. C. Jena, and D. K. Hore, Throwing Salt into the Mix: Altering Interfacial Water Structure by Electrolyte Addition, J. Phys. Chem. Lett, vol.5, pp.143-148, 2014.

S. Pezzotti, D. R. Galimberti, Y. Shen, and M. Gaigeot, Structural Definition of BIL and DL: A New Universal Methodology to Rationalize Non-Linear $\chi^{(2)}(\omega)$ SFG Signals at Charged Interfaces, Including $\chi^{(3)}(\omega)$ Contributions, Phys. Chem. Chem. Phys, vol.20, pp.5190-5199, 2018.

J. J. Magda, M. Tirrell, and H. T. Davis, Molecular Dynamics of Narrow, Liquid-Filled Pores, J. Chem. Phys, vol.83, pp.1888-1901, 1985.

N. Aggarwal, J. Sood, and K. Tankeshwar, Related Content Dynamical Model for Restricted Diffusion in Nano-Channels, Nanotechnology, vol.18, pp.3357001-3357007, 2007.

R. Qiao and N. R. Aluru, Multiscale Modeling of Electroosmotic Flow: Effects of Discrete Ion, Enhanced Viscosity, and Surface Friction, J. Chem. Phys, vol.118, pp.4692-4701, 2003.

M. Jensen, O. G. Mouritsen, and G. H. Peters, The Hydrophobic Effect: Molecular Dynamics Simulations of Water Confined between Extended Hydrophobic and Hydrophilic Surfaces, J. Chem. Phys, vol.120, pp.9729-9744, 2004.

S. H. Lee and P. J. Rossky, A Comparison of the Structure and Dynamics of Liquid Water at Hydrophobic and Hydrophilic Surfaces-a Molecular Dynamics Simulation Study Comparison of Simple Potential Functions for Simulating Liquid Water A General Purpose Model for the Condensed Phases of Water: TIP4P/ A Comparison of the Structure and Dynamics of Liquid Water at Hydrophobic and Hydrophilic Surfaces-a Molecular Dynamics Simulation Study, J. Chem. Phys, vol.100, pp.3334-3345, 1994.

J. B. Freund, Multiscale Modeling of Electroosmotic Flow: Effects of Discrete Ion, Enhanced Viscosity, and Surface Friction, J. Chem. Phys, vol.116, pp.2194-2200, 2002.

J. Lyklema, S. Rovillard, and J. De-coninck, Letters Electrokinetics: The Properties of the Stagnant Layer Unraveled, Langmuir, vol.14, pp.5660-5663, 1998.

D. Kim and E. Darve, Molecular Dynamics Simulation of Electro-Osmotic Flows in Rough Wall Nanochannels, Phys. Rev. E, vol.73, p.51203, 2006.

G. Allaire, J. Dufrêche, A. Mikeli?, and A. Piatnitski, Asymptotic Analysis of the PoissonBoltzmann Equation Describing Electrokinetics in Porous Media, Nonlinearity, vol.26, pp.881-910, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00863403

K. Bohinc, J. Gimsa, V. Kralj-igli?, T. Slivnik, and A. Igli?, Excluded Volume Driven Counterion Condensation inside Nanotubes in a Concave Electrical Double Layer Model, Bioelectrochemistry, vol.67, pp.91-99, 2005.

B. Prelot, S. Lantenois, C. Chorro, M. Charbonnel, J. Zajac et al., Effect of Nanoscale Pore Space Confinement on Cadmium Adsorption from Aqueous Solution onto Ordered Mesoporous Silica: A Combined Adsorption and Flow Calorimetry Study, J. Phys. Chem. C, vol.115, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00622270

R. Defay and I. Prigogine, Surface Tension of Regular Solutions, Trans. Faraday Soc, vol.46, pp.199-210, 1950.

G. H. Findenegg, S. Jähnert, D. Akcakayiran, and A. Schreiber, Freezing and Melting of Water Confined in Silica Nanopores, ChemPhysChem, vol.9, pp.2651-2659, 2008.

C. Alba-simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins et al., Effects of Confinement on Freezing and Melting, J. Phys. Condens. Matter, vol.18, pp.15-68, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00102544

E. W. Hansen, R. Schmidt, M. Stoecker, and D. Akporiaye, Water-Saturated Mesoporous MCM-41 Systems Characterized by 1H NMR Spin-Lattice Relaxation Times, J. Phys. Chem, vol.99, pp.4148-4154, 1995.

D. Akporiaye, E. W. Hansen, R. Schmidt, and M. Stocker, Water-Saturated Mesoporous MCM-41 Systems Characterized by 'H NMR, J. Phys. Chem, vol.98, pp.1926-1928, 1994.

K. Overloop and L. Vangerven, Freezing Phenomena in Adsorbed Water as Studied by NMR

, J. Magn. Reson. Ser. A, vol.101, pp.179-187, 1993.

A. Korpa and R. Trettin, The Influence of Different Drying Methods on Cement Paste Microstructures as Reflected by Gas Adsorption: Comparison between Freeze-Drying (FDrying), D-Drying, P-Drying and Oven-Drying Methods, Cem. Concr. Res. Res, vol.36, pp.634-649, 2006.

A. Pajzderska, M. A. Gonzalez, J. Mielcarek, and J. ;-w??sicki, Water Behavior in MCM-41 as a Function of Pore Filling and Temperature Studied by NMR and Molecular Dynamics Simulations, J. Phys. Chem. C, vol.118, pp.23701-23710, 2014.

S. Stapf and R. Kimmich, Molecular Dynamics in Confined Monomolecular Layers. A Fieldcycling Nuclear Magnetic Resonance Relaxometry Study of Liquids in Porous Glass, J. Chem. Phys, vol.103, pp.2247-2250, 1995.

A. Schreiber, I. Ketelsen, and G. H. Findenegg, Melting and Freezing of Water in Ordered Mesoporous Silica Materials, Phys. Chem. Chem. Phys, vol.3, pp.1185-1195, 2001.

G. H. Findenegg, S. Jähnert, D. Akcakayiran, and A. Schreiber, Freezing and Melting of Water Confined in Silica Nanopores, ChemPhysChem, vol.9, pp.2651-2659, 2008.

H. K. Christenson, Confinement Effects on Freezing and Melting, J. Phys. Condens. Matter, vol.13, pp.95-133, 2001.

K. Morishige, K. Nobuoka, and . X-ray, Diffraction Studies of Freezing and Melting of Water Confined in a Mesoporous Adsorbent (MCM-41), J. Chem. Phys, vol.107, pp.6965-6969, 1997.

K. Morishige and H. Iwasaki, X-Ray Study of Freezing and Melting of Water Confined within SBA-15, Langmuir, vol.19, pp.2808-2811, 2003.

J. Jelassi, T. Grosz, I. Bako, M. Bellissent-funel, J. C. Dore et al., Structural Studies of Water in Hydrophilic and Hydrophobic Mesoporous Silicas: An x-Ray and Neutron Diffraction Study at 297 K, J. Chem. Phys, p.64509, 2011.

P. Gallo, M. Rapinesi, and M. Rovere, Confined Water in the Low Hydration Regime, J. Chem. Phys, vol.117, pp.369-375, 2002.

P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, and . X-ray, Diffraction Study of Water Confined in Mesoporous MCM-41 Materials over a Temperature Range of 223 -298 K, J. Phys. Chem. B, vol.104, pp.5498-5504, 2000.

K. Morishige and K. Kawano, Freezing and Melting of Water in a Single Cylindrical Pore: The Pore-Size Dependence of Freezing and Melting Behavior, J. Chem. Phys, vol.110, pp.4867-4872, 1999.

B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg et al., Hydrogen Bonding of Water Confined in Mesoporous Silica MCM-41 and SBA-15 Studied by 1H Solid-State NMR, Chem. -A Eur. J, vol.10, pp.5689-5696, 2004.

M. Sattig, S. Reutter, F. Fujara, M. Werner, G. Buntkowsky et al., NMR Studies on the Temperature-Dependent Dynamics of Confined Water, Phys. Chem. Chem. Phys, vol.16, pp.19229-19240, 2014.

J. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, D. Lairez et al., Dependence of Water Dynamics upon Confinement Size, J. Phys. Chem. B, vol.105, pp.430-435, 2001.

L. Caër, S. Pin, S. Esnouf, S. Raffy, Q. Renault et al., A Trapped Water Network in Nanoporous Material: The Role of Interfaces, Phys. Chem. Chem. Phys, p.13, 2011.

X. F. Huang, Q. Wang, X. X. Liu, S. H. Yang, C. X. Li et al., Vibrational Dynamics of Water within Mesoporous Materials at Different Hydration Levels during Adsorption and Desorption Processes, J. Phys. Chem. C, vol.113, pp.18768-18771, 2009.

L. Zhang, S. Singh, C. Tian, Y. R. Shen, Y. Wu et al., Nanoporous Silica-Water Interfaces Studied by Sum-Frequency Vibrational Spectroscopy Phase Reference in Phase-Sensitive Sum-Frequency Vibrational Spectroscopy 2D

, Heterodyne-Detected Sum Frequency Generation Study on the Ultrafast Vibrational Dynamics of H, J. Chem. Phys, vol.130, pp.1547021-1547031, 2009.

V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, New Information on Water Interfacial Structure Revealed by Phase-Sensitive Surface Spectroscopy, Phys. Rev. Lett, vol.94, pp.2-5, 2005.

J. Banys, M. Kinka, J. Macutkevic, G. Völkel, W. Böhlmann et al., Broadband Dielectric Spectroscopy of Water Confined in MCM, p.41

, Molecular Sieve Materials -Low-Temperature Freezing Phenomena, J. Phys. Condens. Matter, vol.17, pp.2843-2857, 2005.

K. Martynas, B. Juras, M. Jan, P. Andreas, B. Winfried et al., Dielectric Response of Water Confined in MCM-41 Molecular Sieve Material. Phys. Status Solidi, vol.242, pp.100-102, 2005.

Y. Ryabov, A. Gutina, V. Arkhipov, and Y. Feldman, Dielectric Relaxation of Water Absorbed in Porous Glass, J. Phys. Chem. B, vol.105, pp.1845-1850, 2001.

J. Teixeira, M. Bellissent-funel, S. H. Chen, and A. J. Dianoux, Experimental Determination of the Nature of Diffusive Motions of Water Molecules at Low Temperatures, Phys. Rev. A, vol.31, pp.1913-1917, 1985.

S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori et al., Neutron Scattering Study on Dynamics of Water Molecules in MCM-41, J. Phys. Chem. B, vol.103, pp.5814-5819, 1999.

N. C. Osti, A. Coté, E. Mamontov, A. Ramirez-cuesta, D. J. Wesolowski et al., Characteristic Features of Water Dynamics in Restricted Geometries Investigated with QuasiElastic Neutron Scattering, Chem. Phys, vol.2016, pp.465-466

M. Bellissent-funel, S. H. Chen, and J. Zanotti, Single-Particle Dynamics of Water Molecules in Confined Space, Phys. Rev. E, vol.51, pp.4558-4569, 1995.

J. Zanotti, M. Bellissent-funel, and S. Chen, Relaxational Dynamics of Supercooled Water in Porous Glass, Phys. Rev. E, vol.59, pp.3084-3093, 1999.

M. C. Bellissent-funel, S. H. Chen, and J. M. Zanotti, Single-Particle Dynamics of Water in Confined Space, Phys. Rev. E, vol.51, pp.4558-4569, 1995.

S. Takahara, S. Kittaka, T. Mori, Y. Kuroda, and T. Yamaguchi, Bellissent-Funel, M. C. Neutron Scattering Study on Dynamics of Water Molecules Confined in MCM-41, vol.11, pp.479-483, 2005.

S. Mitra, I. T. Mukhopadhyay, and S. I. , Dynamics of Water in Confined Space ( Porous Alumina ): QENS Study, p.8455, 2001.

E. Mamontov, C. J. Burnham, S. H. Chen, A. P. Moravsky, C. K. Loong et al., Dynamics of Water Confined in Single-and Double-Wall Carbon Nanotubes, J. Chem. Phys, p.124, 2006.

I. M. Briman, D. Rébiscoul, O. Diat, J. Zanotti, P. Jollivet et al., Impact of Pore Size and Pore Surface Composition on the Dynamics of Confined Water in Highly Ordered Porous Silica, J. Phys. Chem. C, vol.116, pp.7021-7028, 2012.

J. Korb, Multiscale Nuclear Magnetic Relaxation Dispersion of Complex Liquids in Bulk and Confinement, Prog. Nucl. Magn. Reson. Spectrosc, vol.104, pp.12-55, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01661978

R. Kimmich, S. Stapf, A. I. Maklakov, V. D. Skirda, and E. V. Khozina, Self-Diffusion in Fluids in Porous Glass: Confinement by Pores and Liquid Adsorption Layers, Magn. Reson. Imaging, vol.14, pp.793-797, 1996.

P. Gallo, M. Rovere, and S. Chen, Anomalous Dynamics of Water Confined in MCM-41 at Different Hydrations Anomalous Dynamics of Water Confined in MCM-41 at Different Hydrations, J. Phys. Condens. Matter, vol.22, pp.284102-284110, 2010.

E. Mamontov and D. R. Cole, Quasielastic Neutron Scattering Study of Dynamics of CaCl2

, Aqueous Solution Confined in Vycor Glass, Phys. Chem. Chem. Phys, vol.8, pp.4908-4914, 2006.

E. Ruiz-agudo, M. Urosevic, C. Putnis, C. V;-rodríguez-navarro, C. Cardell et al., Ion-Specific Effects on the Kinetics of Mineral Dissolution, Chem. Geol, vol.281, pp.364-371, 2011.

E. Ruiz-agudo, M. Kowacz, C. V. Putnis, and A. Putnis, The Role of Background Electrolytes on the Kinetics and Mechanism of Calcite Dissolution, Geochim. Cosmochim. Acta, vol.74, pp.1256-1267, 2010.

M. Kowacz and A. Putnis, The Effect of Specific Background Electrolytes on Water Structure and Solute Hydration: Consequences for Crystal Dissolution and Growth, Geochim. Cosmochim. Acta, vol.72, pp.4476-4487, 2008.

P. M. Dove and D. A. Crerar, Kinetics of Quartz Dissolution in Electrolyte Solutions Using a Hydrothermal Mixed Flow Reactor, Geochim. Cosmochim. Acta, vol.54, pp.955-969, 1990.

P. M. Dove and S. F. Elston, Dissolution Kinetics of Quartz in Sodium Chloride Solutions: Analysis of Existing Data and a Rate Model for 25°C, Geochim. Cosmochim. Acta, vol.56, pp.4147-4156, 1992.

P. M. Dove and C. J. Nix, The Influence of the Alkaline Earth Cations, Magnesium, Calcium, and Barium on the Dissolution Kinetics of Quartz, Geochim. Cosmochim. Acta, vol.61, pp.3329-3340, 1997.

P. Jollivet, S. Gin, and S. Schumacher, Forward Dissolution Rate of Silicate Glasses of Nuclear Interest in Clay-Equilibrated Groundwater, Chem. Geol, pp.207-217, 2012.

S. Dewan, M. S. Yeganeh, and E. Borguet, Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity, J. Phys. Chem. Lett, 1977.

A. F. Wallace, G. V. Gibbs, and P. M. Dove, Influence of Ion-Associated Water on the Hydrolysis of Si-O Bonded Interactions, J. Phys. Chem. A, vol.114, pp.2534-2542, 2010.

S. El-mourabit, M. Guillot, G. Toquer, J. Cambedouzou, F. Goettmann et al., Stability of Mesoporous Silica under Acidic Conditions, pp.10916-10924, 2012.

N. R. Tas, J. Haneveld, H. V. Jansen, and M. Elwenspoek, Van Den Berg, A. Capillary Filling Speed of Water in Nanochannels, Appl. Phys. Lett, vol.85, pp.3274-3276, 2004.

A. Hibara, T. Saito, H. Kim, M. Tokeshi, T. Ooi et al., Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by TimeResolved Fluorescence Measurements, Anal. Chem, vol.74, pp.6170-6176, 2002.

J. Haneveld, N. R. Tas, N. Brunets, H. V. Jansen, and M. Elwenspoek, Capillary Filling of Sub-10 Nm Nanochannels, J. Appl. Phys, p.104, 2008.

M. J. Bedzyk, G. M. Bommarito, M. Caffrey, and T. L. Penner, Diffuse-Double Layer at a Membrane-Aqueous Interface Measured with x-Ray Standing Waves, Science, pp.52-56, 1990.

A. Guinier, P. Lorrain, D. S. Lorrain, J. Gillis, and . X-ray, Crystals, Imperfect Crystals, and Amorphous Bodies, 1962.

S. Hocine, R. Hartkamp, B. Siboulet, M. Duvail, B. Coasne et al., How Ion Condensation Occurs at a Charged Surface: A Molecular Dynamics Investigation of the Stern Layer for Water?Silica Interfaces, J. Phys. Chem. C, vol.120, pp.963-973, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000098

C. D. Lorenz, P. S. Crozier, J. A. Anderson, and A. Travesset, Molecular Dynamics of Ionic Transport and Electrokinetic Effects in Realistic Silica Channels, J. Phys. Chem. C, vol.112, pp.10222-10232, 2008.

S. Bogusz, T. E. Cheatham, and B. R. Brooks, Removal of Pressure and Free Energy Artifacts in Charged Periodic Systems via Net Charge Corrections to the Ewald Potential, J. Chem. Phys, vol.108, pp.7070-7084, 1998.

J. S. Hub, B. L. De-groot, H. Grubmüller, and G. Groenhof, Quantifying Artifacts in Ewald Simulations of Inhomogeneous Systems with a Net Charge, J. Chem. Theory Comput, vol.10, pp.381-390, 2014.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The Missing Term in Effective Pair Potentials, J. Phys. Chem, issue.24, pp.6269-6271, 1987.

*. Boda, D. Henderson, D. Plaschko, ?. , P. Ronald-fawcett et al., Monte Carlo and Density Functional Theory Study of the Electrical Double Layer: The Dependence of the

, Charge/Voltage Relation on the Diameter of the Ions, Mol. Simul, vol.30, pp.137-141, 2004.

J. Puibasset, R. J. Pellenq, and .. , Grand Canonical Monte Carlo Simulation Study of Water Structure on Hydrophilic Mesoporous and Plane Silica Substrates, J. Chem. Phys, vol.119, issue.17, pp.9226-9232, 2003.

P. A. Bonnaud, B. Coasne, and R. J. Pellenq, Molecular Simulation of Water Confined in Nanoporous Silica, J. Phys. Condens. Matter, issue.28, p.284110, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526002

P. M. Dove, The Dissolution Kinetics of Quartz in Aqueous Mixed Cation Solutions, Geochim. Cosmochim. Acta, vol.63, pp.3715-3727, 1999.

W. Stumm, Chemistry of the Solid-Water Interface: Processes at the Mineral-Water and Particle-Water Interface in Natural Systems, 1992.

A. Putnis, Transient Porosity Resulting from Fluid-Mineral Interaction and Its Consequences, Rev. Mineral. Geochemistry, vol.80, pp.1-23, 2015.

F. Nindiyasari, L. Fernández-díaz, E. Griesshaber, J. M. Astilleros, N. Sánchez-pastor et al., Influence of Gelatin Hydrogel Porosity on the Crystallization of CaCO3, Cryst. Growth Des, vol.14, pp.1531-1542, 2014.

A. Putnis, M. Prieto, and L. Fernandez-diaz, Fluid Supersaturation and Crystallization in Porous Media, Geol. Mag, vol.132, pp.1-13, 1995.

S. Emmanuel, J. J. Ague, and O. Walderhaug, Interfacial Energy Effects and the Evolution of Pore Size Distributions during Quartz Precipitation in Sandstone, Geochim. Cosmochim. Acta, vol.74, pp.3539-3552, 2010.

S. Emmanuel and B. Berkowitz, Effects of Pore-Size Controlled Solubility on Reactive Transport in Heterogeneous Rock, Geophys. Res. Lett, p.6404, 2007.

L. Rijniers, P. C. Magusin, H. Huinink, L. Pel, and K. Kopinga, Sodium NMR Relaxation in Porous Materials, J. Magn. Reson, vol.167, pp.25-30, 2004.

L. A. Rijniers, H. P. Huinink, L. Pel, and K. Kopinga, Experimental Evidence of Crystallization Pressure inside Porous Media, Phys. Rev. Lett, vol.94, issue.4, p.75503, 2005.

A. G. Stack, A. Fernandez-martinez, L. F. Allard, J. J. Ban, G. Rother et al., Pore-Size-Dependent Calcium Carbonate Precipitation Controlled by Surface Chemistry, Enviromental Sci. &Technology, vol.48, pp.6177-6183, 2014.

M. Zeng, Y. Kim, C. Anduix-canto, C. Frontera, D. Laundy et al., Confinement Generates Single-Crystal Aragonite Rods at Room Temperature, Proc. Natl. Acad. Sci. U. S. A, vol.115, pp.7670-7675, 2018.

D. Rébiscoul, V. Tormos, N. Godon, J. Mestre, M. Cabie et al., Reactive Transport Processes Occurring during Nuclear Glass Alteration in Presence of Magnetite, Appl. Geochemistry, vol.58, pp.26-37, 2015.

P. Dillmann, S. Gin, D. Neff, L. Gentaz, and D. Rebiscoul, Effect of Natural and Synthetic Iron Corrosion Products on Silicate Glass Alteration Processes, Geochim. Cosmochim. Acta, vol.172, pp.287-305, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01228556

A. Michelin, E. Burger, D. Rebiscoul, D. Neff, F. Bruguier et al., Silicate Glass Alteration Enhanced by Iron: Origin and Long-Term Implications, Environ. Sci. Technol, vol.47, issue.2, pp.750-756, 2013.

C. Mansas, J. Delaye, T. Charpentier, F. Bruguier, O. Bouty et al., Drivers of Water Transport in Glass: Chemical or Topological Effect of the Glass Network?, J. Phys. Chem. C, vol.121, pp.16201-16215, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01533180

H. Aréna, N. Godon, D. Rébiscoul, R. Podor, E. Garcès et al., Impact of Zn, Mg, Ni and Co Elements on Glass Alteration: Additive Effects, J. Nucl. Mater, vol.470, pp.55-67, 2016.

J. Rouquerol, D. Avnir, C. W. Fairbridge, and . Everett,

J. H. Haynes, N. Pernicone, J. D. Ramsay, and K. S. Unger, Recommendations for the Characterization of Porous Solids, Pure Appl. Chem, vol.66, pp.1739-1758, 1994.

D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc, vol.120, pp.6024-6036, 1998.

H. Chen and Y. Wang, Preparation of MCM-41 with High Thermal Stability and Complementary Textural Porosity, Ceram. Int, vol.28, pp.541-547, 2002.

I. Ichinose, H. Senzu, and T. Kunitake, Stepwise Adsorption of Metal Alkoxides on Hydrolyzed Surfaces : A Surface Sol-Gel Process, Chem. Lett, vol.25, pp.831-832, 1996.

C. Gallé, Effect of Drying on Cement-Based Materials Pore Structure as Identified by Mercury Intrusion Porosimetry A Comparative Study between Oven-, Vacuum-, and FreezeDrying, Cem. Concr. Res. Res, vol.31, pp.1467-1477, 2001.

R. T. Azuah, L. R. Kneller, Y. Qiu, P. L. Tregenna-piggott, C. M. Brown et al., A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data, J. Res. Natl. Inst. Stand. Technol, vol.114, pp.341-358, 2009.

D. Rébiscoul, F. Bruguier, V. Magnin, and S. Gin, Impact of Soda-Lime Borosilicate Glass Composition on Water Penetration and Water Structure at the First Time of Alteration, J. Non. Cryst. Solids, vol.358, pp.2951-2960, 2012.

M. Templin and A. Franck,

H. Leist, Y. Zhang, R. Ulrich, V. Schadler, and U. Wiesner, Organically Modified Aluminosilicate Mesostructures from Block Copolymer Phases, vol.278, pp.1795-1798, 1997.

N. A. Melosh, P. Lipic, F. S. Bates, F. Wudl, G. D. Stucky et al., Molecular and Mesoscopic Structures of Transparent Block Copolymer?Silica Monoliths, Macromolecules, vol.32, pp.4332-4342, 1999.

G. Limousin, J. Gaudet, L. Charlet, S. Szenknect, V. Barthès et al., Sorption Isotherms: A Review on Physical Bases, Modeling and Measurement. Appl. Geochemistry, vol.22, pp.249-275, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00199618

P. M. Dove, N. Han, A. F. Wallace, and J. J. De-yoreo, Kinetics of Amorphous Silica Dissolution and the Paradox of the Silica Polymorphs, Proc. Natl. Acad. Sci, vol.105, pp.9903-9908, 2008.

C. Brinker,

G. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing

J. B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, and P. Roy, Signatures of the Hydrogen Bonding in the Infrared Bands of Water, J. Chem. Phys, vol.122, pp.184509-224511, 2005.

V. Crupi, F. Longo, D. Majolino, and V. Venuti, Dependence of Vibrational Dynamics of Water in Ion-Exchanged Zeolites A: A Detailed Fourier Transform Infrared Attenuated Total Reflection Study, J. Chem. Phys, p.123, 2005.

G. H. Findenegg, S. Jähnert, D. Akcakayiran, and A. Schreiber, Freezing and Melting of Water Confined in Silica Nanopores, ChemPhysChem, vol.9, pp.2651-2659, 2008.

S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, and T. Yamaguchi, Enthalpy and Interfacial Free Energy Changes of Water Capillary Condensed in Mesoporous Silica, MCM-41 and SBA-15, Phys. Chem. Chem. Phys, pp.3223-3231, 2006.

R. Denoyel and R. J. Pellenq, Simple Phenomenological Models for Phase Transitions in a Confined Geometry. 1: Melting and Solidification in a Cylindrical Pore, Langmuir, vol.18, pp.2710-2716, 2002.

S. Jähnert, F. Vaca-chávez, G. E. Schaumann, A. Schreiber, M. Schönhoff et al., Melting and Freezing of Water in Cylindrical Silica Nanopores, Phys. Chem. Chem. Phys, vol.39, pp.6039-6051, 2008.

D. H. Dagade and S. S. Barge, Hydrogen Bonding in Liquid Water and in the Hydration Shell of Salts, ChemPhysChem, vol.17, pp.902-912, 2016.

Y. Chen, H. I. Okur, N. Gomopoulos, C. Macias-romero, P. S. Cremer et al., Electrolytes Induce Long-Range Orientational Order and Free Energy Changes in the H-Bond Network of Bulk Water

. Adv, , vol.2, pp.1-8, 2016.

B. Hribar, N. T. Southall, V. Vlachy, and K. A. Dill, How Ions Affect the Structure of Water, J. Am. Chem. Soc, vol.124, pp.12302-12311, 2002.

F. Mallamace, M. Broccio, C. Corsaro, A. Faraone, D. Majolino et al., Evidence of the Existence of the Low-Density Liquid Phase in Supercooled, Confined Water, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.424-428, 2007.

V. Crupi, S. Interdonato, F. Longo, D. Majolino, P. Migliardo et al., A New Insight on the Hydrogen Bonding Structures of Nanoconfined Water: A Raman Study, J. Raman Spectrosc, vol.39, pp.244-249, 2008.

M. Rovere and P. Gallo, Effects of Confinement on Static and Dynamical Properties of Water, Eur. Phys. J. E, vol.12, pp.77-81, 2003.

P. Gallo, M. A. Ricci, and M. Rovere, Layer Analysis of the Structure of Water Confined in Vycor Glass, J. Chem. Phys, vol.116, pp.342-346, 2002.

B. Marc, Quasielastic Neutron Scatering

A. Hilger, , 1988.

J. Teixeira, M. C. Bellissent-funel, S. H. Chen, and A. J. Dianoux, Experimental Determination of the Nature of Diffusive Motions of Water Molecules at Low Temperatures, Phys. Rev. A, vol.31, pp.1913-1917, 1985.

V. F. Sears, Cold Neutron Scattering by Molecular Liquids: III. Methane, Can. J. Phys, vol.45, pp.237-254, 1967.

F. Volino and A. J. Dianoux, Neutron Incoherent Scattering Law for Diffusion in a Potential of Spherical Symmetry: General Formalism and Application to Diffusion inside a Sphere, Mol. Phys, vol.41, pp.271-279, 1980.

K. S. Singwi and A. Sjölander, Diffusive Motions in Water and Cold Neutron Scattering, Phys. Rev, vol.119, pp.863-871, 1960.

S. Takahara;-naoya, A. Sumiyama, S. Kittaka, T. Yamaguchi, and M. Bellissent-funel, Neutron Scattering Study on Dynamics of Water Molecules in MCM-41. 2. Determination of Translational Diffusion Coefficient, J. Phys. Chem. B, vol.109, pp.11231-11239, 2005.

J. Qvist, H. Schober, and B. Halle, Structural Dynamics of Supercooled Water from Quasielastic Neutron Scattering and Molecular Simulations, J. Chem. Phys, vol.134, pp.144508-144520, 2011.

J. Zanotti, M. Bellissent-funel, and S. Chen, Relaxational Dynamics of Supercooled Water in Porous Glass, Phys. Rev, vol.59, pp.3084-3093, 1999.

P. Smirnov, T. Yamaguchi, S. Kittaka, S. Takahara, and Y. Kuroda, Ray Diffraction Study of Water Confined in Mesoporous MCM-41 Materials over a Temperature Range, pp.223-298

K. , J. Phys. Chem. B, vol.104, pp.5498-5504, 2000.

D. Argyris, D. R. Cole, and A. Striolo, Ion-Specific Effects under Confinement: The Role of Interfacial Water, Am. Chem. Soc. Nano, vol.4, pp.2035-2042, 2010.

D. C. Grahame, The Electrical Double Layer and the Theory of Electrocapillarity, Chem. Rev, vol.41, pp.441-501, 1947.

J. O. Bockris, M. A. Devanathan, and K. Müller, On the Structure of Charged Interfaces, Electrochemistry, pp.832-863, 1965.

A. M. Darlington, T. A. Jarisz, E. L. Dewalt-kerian, S. Roy, S. Kim et al., Separating the PH-Dependent Behavior of Water in the Stern and Diffuse Layers with Varying Salt Concentration, J. Phys. Chem. C, vol.121, pp.20229-20241, 2017.

E. L. Dewalt-kerian, S. Kim, M. S. Azam, H. Zeng, Q. Liu et al., PH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer, J. Phys. Chem. Lett, vol.8, pp.2855-2861, 2017.

K. C. Jena, P. A. Covert, and D. K. Hore, The Effect of Salt on the Water Structure at a Charged Solid Surface: Differentiating Second-and Third-Order Nonlinear Contributions, J. Phys. Chem. Lett, vol.2, pp.1056-1061, 2011.

K. D. Collins and M. W. Washabaugh, The Hofmeister Effect and the Behaviour of Water at Interfaces, Q. Rev. Biophys, vol.18, pp.323-422, 1985.

J. Cambedouzou and O. Diat, Quantitative Small-Angle Scattering on Mesoporous Silica Powders: From Morphological Features to Specific Surface Estimation, J. Appl. Crystallogr, vol.45, pp.662-673, 2012.

B. Busson, J. Doucet, and . Iucr, Distribution and Interference Functions for Two-Dimensional Hexagonal Paracrystals, Acta Crystallogr. Sect. A Found. Crystallogr, vol.56, pp.68-72, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02111143

S. Lowell, Characterization of Porous Solids and Powders : Surface Area, Pore Size

C. P. Guthrie and E. J. Reardon, Metastability of MCM-41 and Al-MCM-41, J. Phys. Chem. A, vol.112, pp.3386-3390, 2008.

H. Aréna, D. Rébiscoul, R. Podor, E. Garcès, M. Cabie et al., Impact of Fe, Mg and Ca Elements on Glass Alteration: Interconnected Processes, Geochim. Cosmochim. Acta, vol.239, pp.420-445, 2018.

H. Aréna, N. Godon, D. Rébiscoul, P. Frugier, R. Podor et al., Impact of Iron and Magnesium on Glass Alteration: Characterization of the Secondary Phases and Determination of Their Solubility Constants, vol.82, p.119, 2017.

, Dans certains cas, le remplissage incomplet des nanocanaux peut s'expliquer par une diminution de la dynamique de l'eau associée à l'atteinte de la saturation vis-à-vis des sels XCl2 dans la couche interfaciale. La possible précipitation de phases XCl2 pourrait permettre d'expliquer le bouchage de certains nanocanaux. Par la suite, les propriétés de l'eau dans des nanoconfinement concave de silice tels que les cylindres ont également été étudiées. La structure de l'eau en présence d'ions et sa dynamique à l'échelle de la picoseconde caractérisées respectivement par FTIR-ATR et diffusion quasi élastique des neutrons, ont été analysées. Les résultats suggèrent que les propriétés structurales et dynamiques de l'eau sont fortement influencées par la taille du confinement, Les résultats obtenus indiquent que la cinétique de remplissage des nanocanaux dépend de la taille du confinement, de la nature des ions et de la solubilité des sels associés aux électrolytes

. Enfin, MCM-41), une dynamique de l'eau lente à une échelle picoseconde conduit probablement à une sursaturation des ions dans la couche interfaciale et donc à une reprécipitation des sels XCl2 et / ou de la silice plus stable. Dans ce cas, l'évolution du MCM-41 est induite par un processus de dissolution-recondensation / précipitation. Dans les plus grands mésopores du SBA-15, en raison de la microporosité dans la paroi des pores, le processus d'altération est différent. Dès le début, une couche d'altération se forme et la taille des pores augmente jusqu'à saturation de la silice. Par la suite, un processus de recondensation / précipitation similaire à celui observé dans la MCM-41 se produit dans la microporosité, nous avons déterminé l'évolution des deux silices mésoporeuses dans des solutions électrolytiques par diffusion des rayons X aux petits angles. Pour une taille de pore de 3 nm et des murs de pores denses