, After stirring at -78 °C for 30 min, ethyl formate (4.5 mL, 54.7 mmol) was added. The reaction mixture was stirred at -78 °C for 3 h, then iodine (4.16 g, 16.4 mmol), K2CO3 (3.78 g, 27.3 mmol), and dry EtOH (8 mL) were added. The reaction mixture was allowed to warm up to 25 °C and stirring continued for another 17 h. The reaction was quenched by addition of Na2S2O3, The combined organic fractions were dried over, vol.2, pp.6-9

. Mgso4,

, Synthesis of 2,2'-bipyridine N,N'-dioxides

, )-1-Methoxy-2,2-dimethylpropyl)-2,2'-bipyridine (72). 110 A solution of

, After stirring at 25 °C for 16 h, the reaction was quenched by addition of water (10 mL) and extracted with DCM (3×30 mL). The combined organic fractions were dried over MgSO4, filtered, THF (5 mL)

H. , 400 MHz, CDCl3) ? 8.25 (dd, J = 7.8, 1.1 Hz, 2H, 2×Ar-H), 7.79 (t, J = 7.8 Hz, 2H, 2×Ar-H), vol.7

C. , CDCl3) ? 160.00, 155.24, 136.77, 121.73, 119.17, 93.01, 57.96, 35.70, 26.45. HRMS (ESI) m/z calculated for C22H33N2O2 (M+H) 357.2537, MHz, issue.100

, )-1-methoxy-2,2-dimethylpropyl), p.122

, After stirring at 25 °C for 19 h, the reaction mixture was quenched by addition of NaOH (40% aq. sol., 5 mL) and stirred for 1 h. The phases were separated and the aqueous phase was washed with DCM (3×20 mL). The combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel (gradient 40/1?10/1 CHCl3/Me2CO) and recrystallization from hexanes

H. , 400 MHz, CDCl3) ? 7.47 (dd, J = 7.9, 2.2 Hz, 2H, 2×Ar-H), vol.7

2. Hz, , vol.7

C. , CDCl3) ? 152.01, 143, HRMS (ESI) m/z calculated for C22H32N2O4Na, vol.87

/. Dcm/me2co and . Etoh, 75 mg (28%) of (S,S,aS)-333 and 160 mg (59%) of (S,S,aR)-333 as yellowish solids

H. ,

4. Hz,

C. , HRMS (ESI) m/z calculated for C28H40N2O4Na (M+Na) 491.2880, pp.1066-1067, 1096.

. Hplc:-lux, Columns -Lux Cellulose-1, n-heptane/IPA 99.5/0.5, 1 mL/min, 254 nm, tS,S,aS = 13.2 min

S. and S. ,

H. ,

C. , CDCl3) ? 149.19, 142.30, 142.15, 139.35, 120.73, 82.68, 58.34, 37.23, 32.72, 30.68, 25.89, 24, MHz, vol.86, issue.100, pp.1072-1073, 1102.

, HPLC: Lux Columns -Lux Cellulose-1, n-heptane/IPA 95/5, 1 mL/min

, SR,aRS)-3,3'-bis(1-methoxy-2,2-dimethylpropyl)-6,6, 333B, C28H41N2O4), (RS, vol.7

, Products (rac)-333A and (rac)-333B and as well 50/50 mixture of (rac)-333C and (rac)-333D were prepared via oxidative dimerization approach using racemic alcohol (rac)-298. (rac)-333A: HPLC: Lux Columns -Lux Cellulose-1, p.333

-. Hplc:-lux-columns--lux, Cellulose-1, n-heptane/IPA 95/5, 1 mL/min, 254 nm, tS,S,aR = 4.1 min, tR,R,aS = 5.4 min. All spectral data were in agreement with the chiral product

H. , MHz, CDCl3) ? 7.30 (s, 2H, p.2

C. ,

, 66 (2×C), 83.11, 82.79, 58.61, 57.97, 37.36, 37.12, 32.69, 32.64, 30.89, 30.76, 25.93, 25.92, 25.03, 24.99. IR (drift KBr) ?max 2965, HRMS (ESI) m/z, vol.120, pp.923-924, 0970.

, (rac)-334B), (RS,SR,aRS)-3,3'-6,6'-bis(1-methoxy-2,2-dimethylpropyl)-1,1',3,3'-tetrahydro

, Products (rac)-334A and (rac)-334B and as well 50/50 mixture of (rac)-334C and (rac)-334D were prepared via oxidative dimerization approach using racemic alcohol (rac)-299. (rac)-334A: HPLC: Lux Columns -Lux Cellulose-2

. -334b, IPA 90/10, 1 mL/min, 254 nm, tR,R,aS = 9.7 min, tS,S,aR = 20.5 min. All spectral data were in agreement with, HPLC: Lux Columns -Lux Cellulose-4

H. , 400 MHz, CDCl3) ? 7.37 (s, 2H, p.2

C. , HRMS (ESI) m/z calculated for C26H36N2O6Na (M+Na) 495.2466, found 495.2461. Rf (30/1 DCM/MeOH), HRMS (ESI) m/z, vol.25, pp.967-968, 1024.

, S)-6-(1-Methoxy-2,2-dimethylpropyl)-1,3-dihydrofuro, vol.347, p.5

, After stirring at 25 °C for 1 h, the reaction was quenched by addition of K2CO3 (sat. aq. sol., 6 mL) and stirred for 10 min. The phases were separated and the aqueous phase was washed with DCM (3×20 mL), The combined organic fractions were dried over MgSO4

H. , 28 (s, 1H, Ar-H), 400 MHz, CDCl3) ? 8.17 (s, 1H, Ar-H), vol.7

C. ,

, m/z calculated for C13H19NO3 (M) 237.1365, found 237.1366. Rf (50/1 DCM/MeOH) =

, ,4,6-trimethylbenzyl)oxy)propyl)-1,3-dihydrofuro, pp.2-3

, After stirring at 25 °C for 2 h, the reaction mixture was quenched by addition of K2CO3 (sat. aq. sol., 5 mL) and stirred for 10 min. The phases were separated and the aqueous phase was washed with DCM (3×15 mL). The combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced pressure, MCPBA (140 mg, 0.63 mmol) was added to a cooled

, CHCl3/Me2CO) furnished 146 mg (99%) of title compound as a colorless oil

H. , 36 (s, 1H, Ar-H), 6.83 (s, 2H, 2×Ar-H), 400 MHz, CDCl3) ? 8.20 (s, 1H, Ar-H), vol.7

1. Hz and C. ). , , vol.2

C. ,

, HRMS (CI) m/z calculated for C22H33NO3 (M+H) 356.2226, found 356.2228. Rf (30/1 DCM/MeOH) = 0.29. (aS)-6,6'-Bis((S)-2, vol.68, pp.770-771, 1045.

, A freshly prepared solution of LiTMP (0.46 mmol) in THF (0.9 mL) was dropwise added to a cooled (-73 °C) solution of 351 (150 mg

, After stirring at -73 °C for 16 h, a solution of I2 (119 mg, 0.46 mmol) in of Na2S2O3 (sat. aq. sol., 5 mL) and extracted with DCM

, The combined organic phases were dried over MgSO4, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel

S. and S. , 352 as an amorphous solid and 63 mg (42%) of (S,S,aR)-352 as yellowish crystals, hexanes/EtOAc) furnished 19 mg (13%) of

, 32-5.25 (m, 2H, CH2), 5.21 (s, 2H, 2×CH), vol.5

C. , HRMS (ESI) m/z calculated for C44H57N2O6 (M+H) 709.4211, vol.854, pp.785-786, 0908.

S. and S. ,

H. ,

, 4H, 4×Ar-H), 5.38-5.31 (m, 2H, CH2), vol.5

C. , HRMS (ESI) m/z calculated for C44H56N2O6Na (M+Na) 731, vol.87, pp.785-786, 0908.

=. +301, 6° (CHCl3, c = 0.32)

, Application of bipyridine N,N'-dioxides

A. , 75 mmol) was added to a cooled (-78 °C) solution of benzaldehyde 14 (50 µL, 0.50 mmol), N,N'-dioxide (0.0025 mmol), and (iPr)

, After stirring at -78 °C for 15.5 h, the reaction was quenched by addition of

, 1 mL) and extracted with DCM (3×5 mL). The combined organic fractions were dried over Na2SO4, filtered, and concentrated under reduced pressure. The yield was determined by

H. Analysis, Analytically pure product 161 was obtained by column chromatography on silica gel (gradient 30/1?20/1 hexanes/EtOAc)

H. , 400 MHz, CDCl3) ? 7.40-7.32 (m, 4H, 4×Ar-H), 7.32-7.27 (m, 1H, Ar-H), 5.88-5.75 (m, 1H

C. , CDCl3) ? 143.99, 134.58, 128.53, 127.66, 125.94, 118.53, 73.42, 43.96. Rf (5/1 hexanes/EtOAc) = 0.37. HPLC: Lux Columns -Lux Cellulose-1, n-heptane/IPA 100/1, 1 mL/min, 215 nm, tS = 19.5 min (major), tR = 20.6 min (minor). The recorded values were in agreement with the published data, MHz, issue.100, p.246

, RS)-1-Phenylbut-3-en-1-ol ((rac)-161)

, After stirring at 25 °C for 5 h, the reaction was quenched by addition of water (3 mL) and extracted with DCM (3×10 mL). The combined organic fractions were dried over MgSO4, filtered, and concentrated under reduced pressure. Column chromatography of the residue on silica gel (gradient 30/1?20/1 hexanes/EtOAc), Allylboronic acid pinacol ester (100 µL, 0.52 mmol) and benzaldehyde 14, p.35

. Hplc:-lux, Columns -Lux Cellulose-1, n-heptane/IPA 100/1, 1 mL/min, 215 nm, tS = 19.3 min, tR = 20.3 min. All spectral data were in agreement with the chiral product 161

, °C) suspension of iron(0) (106 mg, 1.9 mmol) in water (3 mL) under Ar atmosphere. The mixture was vigorously stirred at 100 °C until all iron particles were dissolved

, Iron (II) dodecyl sulfate (Fe(DS)2)

F. , g, 2.6 mmol) 25 °C for 1 h. The solution was then cooled down to 0 °C which resulted in formation of suspension that was recrystallized from water and dried under reduced pressure

, Bis(benzonitrile)palladium(II) dichloride (PdCl2(PnCN)2)

. Palladium,

, After cooling down to 25 °C, hexane (8 mL) was added. The mixture was filtered through Celite® and washed with hexane. Filtrate was cooled down to 4 °C, which caused the formation of orange crystals. Crystals were filtered

, alcynes et de nitriles De nombreuses méthodes existent pour construire le squelette pyridine. Cependant l'une d'entre elles s'est révélée être la plus puissante : la réaction de cocyclotrimérisation métallo-catalysée d'alcynes avec des dérivés nitriles

, Schéma 1. Cocyclotrimérisation métallo-catalysée d'alcynes avec des dérivés nitriles

, Les principaux avantages de cette réaction sont : l'utilisation de "conditions douces

, De plus, dans le cas des substrats non symétriques, la régiosélectivité peut aussi poser problème. Tous ces problèmes peuvent être résolus par (a) un choix méticuleux du catalyseur métallique et du ligand, (b) une connexion entre au moins deux des substrats et (c) une optimisation des conditions réactionnelles, Néanmoins les autres méthodes synthétiques, impliquant trois réactifs, peuvent poser des problèmes de chimiosélectivité

, Les objectifs du sujet

, La conception de nouveaux ligands de type 2,2'-bipyridine est basée sur l'hypothèse que les substituants en position 3 et 3' pourraient affecter la rotation de la liaison C2-C2'. De plus la présence de groupements électrodonneurs sur la pyridine pourrait améliorer les effets chélatant de ces ligands. Tous ces critères ont été réunis afin d'avoir une influence positive sur l, Développer une nouvelle méthodologie de synthèse de 2,2'-bipyridines énantiopures et les utiliser en tant que ligand dans des réactions métallo-catalysées asymétriques

, Synthétiser de nouvelles 2,2'-bipyridines N,N'-dioxydes et tester ces catalyseurs en tant que base de Lewis dans des réactions asymétriques

, Rétrosynthétiquement parlant, les 2,2'-bipyridines N,N'-dioxydes pourraient être obtenues grâce à une réaction d'oxydation des 2,2'-bipyridines chirales (Etape a, Schéma 2), qui pourraient être synthétisées par une dimérisation réductrice de la 2-halogéno-pyridine chirale (Etape b). La chiralité présente sur les 2-halogéno-pyridines sera installée par une modification asymétrique de la chaîne latérale portée par la position 6 de 2-halogéno-pyridines non chirales (e.g. réaction énantiosélective, Etape c). Une réaction de cocyclotrimérisation catalytique, Une séquence réactionnelle similaire a été proposée pour la synthèse de chacun de ces composés, les 2,2'-bipyridines et les 2,2'-bipyridines N,N'-dioxydes

, Schéma 2. Conception rétrosynthétique des composés 2,2'-bipyridines

, La réaction de cocyclotrimérisation des diynes halogénés avec les nitriles n'était pas connue au moment du démarrage de ce travail de thèse. Le troisième but de cette étude a été de développer et étudier cette nouvelle réaction de cyclotrimérisation

D. Résultats,

, diynes halogénés avec des dérivés nitriles La cocyclotrimérisation de l'iododiyne 231a en présence de nitrile portant un substituant électro-attracteur (cyanoformate d'éthyle 179a) permet l'obtention, dans des conditions réactionnelles optimisées (10 mol% of Cp*RuCl(cod

, de deux régioisomères, la 2-iodopyridine 244aa et la 3-iodopyridine 245aa avec 29%

, L'analyse du milieu réactionnel a révélé la formation, à hauteur de 5%, d'un sous-produit 246aa comportant un atome de chlore à la place de l'iode en position 2

, Cocyclotrimérisation du diyne halogéné 231a avec le nitrile 179a sous des conditions réactionnelles optimales

, L'origine de ce composé a été élucidée par la réaction de la 2-iodopyridine 244aa

, a été réalisée afin de suivre la réaction et d'élucider la formation du sous-produit

, Plus tard, il a été révélé expérimentalement que cette réaction se déroule même sur les simples 2-iodopyridines. Néanmoins, les essais pour mettre en place la réaction de façon catalytique ont échoué

, Au regard des dérivés nitriles, seulement ceux L'analogue du ligand de Bolm, la 2,2'-bipyridine 296, a été synthétisé en huit étapes de synthèse avec 16% de rendement global. La séquence réactionnelle consiste en trois étapes clé: (a) cocylotrimérisation du diyne halogéné 278 avec le cyanure de pivaloyle 179b donnant accès aux bromopyridines 288 et 290 avec 56% et 15% de rendement, respectivement (Etape c, Schéma 6); (b) hydrogénation énantiosélective de la cétone 292, L'exemplification de la réaction a ensuite été étudiée avec différents diynes halogénés et dérivés nitriles. La structure des diynes est modifiable en trois positions -le substituant halogéné (vert

, dimérisation réductrice de la 2-bromopyridine 315 en bipyridine 317 (66%, Etape g)

, Schéma 6. Synthèse de la bipyridine 296

, La bipyridine 277 a été synthétisée utilisant la même séquence réactionnelle que pour le composé 261 avec 9% de rendement global (Figure 5). Malheureusement la synthèse de la bipyridine 297 a, elle

, 2'-Bipyridines N,N'-dioxydes ont été préparés par deux approches basés sur des réactions de dimérisation différentes. La première approche utilise une réaction de dimérisation réductrice de 2-halogéno-pyridines en bipyridines. Grâce à cette réaction, Synthèse et application des 2,2'-bipyridines N,N'-dioxydes Les, vol.2

, Synthèse du 2,2'-bipyridine N,N'-dioxyde (S,S,aR)-333 via une dimérisation réductrice

, Le transfert énantiosélectif d'hydrogène a permis de fournir les alcools chiraux 298 et 299 avec 48% et 68% de rendements respectifs en tant que composés optiquement purs après recristallisation (Etape b). Après la protection des groupements hydroxyles (Etape c), les pyridines 344 et 345 ont été oxydées en N-oxydes 346 et 347 avec des rendements quantitatifs (Etape d). La réaction de dimérisation oxydante permet l, La seconde approche basée sur une réaction de dimérisation oxydante de la pyridine-N-oxyde a été utilisée pour la synthèse des dioxydes, vol.333

. Schéma, Synthèses des 2,2'-bipyridines N,N'-dioxydes 333 et 334 via une dimérisation oxydante

N. L'unique-Élément-de-chiralité-centrale-du, N. '-dioxyde, (. , and S. , 125 a aussi été synthétisé par l'approche de dimérisation réductrice tandis que les N,N'-dioxydes (S,S,aS)-352 and (S,S,aR)-352 possédant une chiralité axiale ont été synthétisés par une approche comportant une dimérisation oxydante

N. Les, -dioxydes préparés ont été ensuite examinés en tant qu'organocatalyseurs dans la réaction d'allylation du benzaldéhyde 14 et dans la réaction d'aldolisation de l'acétophénone en présence de l'acétal de cétène de trichlorosilylé 163, Tandis que les meilleurs résultats dans la réaction d'allylation ont été obtenus, p.125

(. 76%, Schéma 11), le meilleur catalyseur dans la réaction d'aldolisation s, vol.12

, Aldolisation de l'acétophénone 162 avec l'acétal de cétène de trichlorosilylé 163 catalysée par le N,N'-dioxyde, Schéma, vol.12, p.334

L. A. Summers and . Bipyridines, Advances in Heterocyclic Chemistry

A. R. Katritzky and . Ed, , vol.35, pp.281-374, 1984.

B. Liu, W. Yu, J. Pei, S. Liu, Y. Lai et al., Design and Synthesis of Bipyridyl-Containing Conjugated Polymers: Effects of Polymer Rigidity on Metal Ion Sensing, Macromolecules, vol.34, pp.7932-7940, 2001.

J. Mathieu, B. Fraisse, D. Lacour, N. Ghermani, F. Montaigne et al., An Original Supramolecular Helicate from a Bipyridine-Bipyrazine Ligand Strand and Ni II by Self-Assembly, Eur. J. Inorg. Chem, pp.133-136, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00133316

U. S. Schubert, J. L. Kersten, A. E. Pemp, C. D. Eisenbach, and G. R. Newkome, A New Generation of 6,6'-Disubstituted 2,2'-Bipyridines: Towards Novel Oligo(bipyridine) Building Blocks for Potential Applications in Materials Science and Supramolecular Chemistry, Eur. J. Org. Chem, pp.2573-2581, 1998.

V. Balzani and A. Juris, Photochemistry and Photophysics of Ru(II)-Polypyridine Complexes in the Bologna Group. From Early Studies to Recent Developments, Coord. Chem. Rev, vol.211, pp.97-115, 2001.

S. Margel, W. Smith, and F. C. Anson, Electrochemistry of 2,2'-Bipyridine Complexes of Cobalt in the Presence of Acrylonitrile, J. Electrochem. Soc, vol.125, pp.241-246, 1978.

A. P. Smith, C. L. Fraser, and . Bipyridine-ligands, In Comprehensive Coordination Chemistry II, pp.1-23, 2003.

C. Fletcher and N. , Chiral 2,2'-Bipyridines: Ligands for Asymmetric Induction, J. Chem. Soc. Perkin, vol.1, pp.1831-1842, 2002.

A. V. Malkov;-ko?ovský and P. , Chiral Bipyridine Derivatives in Asymmetric Catalysis, Curr. Org. Chem, vol.17, pp.1737-1757, 2003.

J. A. Macbride, P. H. Wright, and B. J. Wakefield, Synthesis of 1,6-Diazabiphenylene by Flash Vacuum Pyrolysis of 2,5,9,10-Tetra-azaphenanthrene; NMR Evidence for Rehybridisation in Biphenylenes, Tetrahedron Lett, vol.22, pp.4545-4548, 1981.

S. Ishikawa, T. Hamada, K. Manabe, and S. Kobayashi, New Efficient Method for the Synthesis of Chiral 2,2'-Bipyridyl Ligands, Synthesis, pp.2176-2182, 2005.

T. D. Nelson, R. D. Crouch, and . Cu, Ni, and Pd Mediated Homocoupling Reactions in Biaryl Syntheses: The Ullmann Reaction, pp.265-555, 2004.

F. Kröhnke, W. Zecher, J. Curtze, D. Drechsler, K. Pfleghar et al., Syntheses Using the Michael Adddition of Pyridinium Salts, Angew. Chem. Int. Ed. Engl, vol.1, pp.626-632, 1962.

G. Domínguez and J. Pérez-castells, Recent Advances in [2+2+2] Cycloaddition Reactions, Chem. Soc. Rev, vol.40, pp.3430-3444, 2011.

B. Kolp, D. Abeln, H. Stoeckli-evans, and A. Von-zelewsky, Platinum(II) Compounds with Enantiomerically Pure Bis(pinene)-Fused Bipyridine Ligands ? Diimine-Dichloro Complexes and Their Substitution Reactions, Eur. J. Inorg. Chem, pp.1207-1220, 2001.

R. Hrdina, M. Dra?ínský, I. Valterová, J. Hoda?ová, I. Císa?ová et al., New Pathway to C2-Symmetric Atropoisomeric Bipyridine N,N'-Dioxides and Solvent Effect in Enantioselective Allylation of Aldehydes, Adv. Synth. Catal, vol.350, pp.1449-1456, 2008.

H. Nishiyama, S. Yamaguchi, S. Park, and K. Itoh, New Chiral Bis(oxazolinyl)bipyridine Ligand (Bipymox): Enantioselection in the Asymmetric Hydrosilylation of Ketones, Tetrahedron Asymmetry, vol.4, pp.143-150, 1993.

C. Bolm, M. Zehnder, and D. Bur, Optically Active Bipyridines in Asymmetric Catalysis, Angew. Chem. Int. Ed. Engl, vol.29, pp.205-207, 1990.

C. Bolm, M. Ewald, M. Felder, and G. Schlingloff, Enantioselective Synthesis of Optically Active Pyridine Derivatives and C2-Symmetric 2,2'-Bipyridines, Chem. Ber, vol.125, pp.1169-1190, 1992.

S. Kobayashi, T. Endo, T. Yoshino, U. Schneider, and M. Ueno, Allylation Reactions of Aldehydes with Allylboronates in Aqueous Media: Unique Reactivity and Selectivity That Are Only Observed in the Presence of Water, Chem. -Asian J, vol.8, pp.2033-2045, 2013.

M. Kokubo, T. Naito, and S. Kobayashi, Chiral Zinc(II) and Copper(II)-Catalyzed Asymmetric Ring-Opening Reactions of meso-Epoxides with Aniline and Indole Derivatives, Tetrahedron, vol.66, pp.1111-1118, 2010.

B. Plancq, M. Lafantaisie, S. Companys, C. Maroun, and T. Ollevier, Highly Enantioselective Iron(II)-Catalyzed Opening Reaction of Aromatic meso-Epoxides with Indoles, Org. Biomol. Chem, vol.11, pp.7463-7466, 2013.

T. Ollevier and B. Plancq, Highly Enantioselective Mukaiyama Aldol Reaction in Aqueous Conditions Using a Chiral Iron(II) Bipyridine Catalyst, Chem. Commun, vol.48, pp.2289-2291, 2012.

B. Plancq and T. Ollevier, Iron(II)-Catalyzed Enantioselective meso-Epoxide-Opening with Anilines, Chem. Commun, vol.48, pp.3806-3808, 2012.

M. Kokubo, T. Naito, and S. Kobayashi, Metal-Controlled Reversal of Enantioselectivity in Catalyzed Asymmetric Ring-Opening Reactions of meso-Epoxides in Water, Chem. Lett, vol.38, pp.904-905, 2009.

S. Kobayashi, T. Ogino, H. Shimizu, S. Ishikawa, T. Hamada et al., Bismuth Triflate?Chiral Bipyridine Complexes as Water-Compatible Chiral Lewis Acids, Org. Lett, vol.7, pp.4729-4731, 2005.

M. V. Nandakumar, A. Tschöp, H. Krautscheid, and C. Schneider, Indium-BipyridineCatalyzed, Enantioselective Thiolysis of meso-Epoxides, Chem. Commun, pp.2756-2758, 2007.

A. Tschöp, A. Marx, A. R. Sreekanth, and C. Schneider, Scandium-Bipyridine-Catalyzed, Enantioselective Alcoholysis of meso-Epoxides, Eur. J. Org. Chem, pp.2318-2327, 2007.

R. A. Sheldon, I. W. Arends, and U. Hanefeld, Introduction: Green Chemistry and Catalysis. In Green Chemistry and Catalysis, pp.1-47, 2007.

K. S. Egorova, V. P. Ananikov, F. Cu, . Pd, R. Pt et al., Which Metals Are Green for Catalysis? Comparison of the Toxicities of Ni, Angew. Chem. Int. Ed, vol.55, pp.12150-12162, 2016.

C. Jiménez-gonzález, A. D. Curzons, D. J. Constable, and V. L. Cunningham, Cradleto-Gate Life Cycle Inventory and Assessment of Pharmaceutical Compounds, Int. J. Life Cycle Assess, vol.9, pp.114-121, 2004.

D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. Mcelroy et al., CHEM21 Selection Guide of Classical-and Less Classical-Solvents, Green Chem, vol.18, pp.288-296, 2015.

B. H. Lipshutz, F. Gallou, and S. Handa, Evolution of Solvents in Organic Chemistry, ACS Sustain. Chem. Eng, vol.4, pp.5838-5849, 2016.

G. L. Sorella, G. Strukul, and A. Scarso, Recent Advances in Catalysis in Micellar Media, Green Chem, vol.17, pp.644-683, 2015.

S. Kobayashi, S. Nagayama, and T. Busujima, Lewis Acid Catalysts Stable in Water. Correlation between Catalytic Activity in Water and Hydrolysis Constants and Exchange Rate Constants for Substitution of Inner-Sphere Water Ligands, J. Am. Chem. Soc, vol.120, pp.8287-8288, 1998.

C. Bolm, G. Schlingloff, and K. Harms, Catalyzed Enantioselective Alkylation of Aldehydes, Chem. Ber, vol.125, pp.1191-1203, 1992.

S. Kobayashi, T. Endo, U. Schneider, and M. Ueno, Aldehyde Allylation with Allylboronates Providing ?-Addition Products, Chem. Commun, vol.46, pp.1260-1262, 2010.

S. Kobayashi, T. Endo, and M. Ueno, Chiral Zinc-Catalyzed Asymmetric ?-Alkylallylation and ?-Chloroallylation of Aldehydes, Angew. Chem. Int. Ed, vol.50, pp.12262-12265, 2011.

C. Bolm and M. Ewald, Optically Active Bipyridines in Nickel Catalyzed Enantioselective Conjugate Addition to Enones, Tetrahedron Lett, vol.31, pp.5011-5012, 1990.

C. Bolm, M. Ewald, and M. Felder, Catalytic Enantioselective Conjugate Addition of Dialkylzinc Compounds to Chalcones, Chem. Ber, vol.125, pp.1205-1215, 1992.

C. Ogawa, K. Kizu, H. Shimizu, M. Takeuchi, and S. Kobayashi, Chiral Scandium Catalysts for Enantioselective Michael Reactions of ?-Ketoesters, Chem. -Asian J, vol.1, pp.121-124, 2006.

S. Bonollo, D. Lanari, F. Pizzo, and L. Vaccaro, Sc(III)-Catalyzed Enantioselective Addition of Thiols to ?,?-Unsaturated Ketones in Neutral Water, Org. Lett, vol.13, pp.2150-2152, 2011.

M. Ueno, T. Kitanosono, M. Sakai, and S. Kobayashi, Chiral Sc-Catalyzed Asymmetric Michael Reactions of Thiols with Enones in Water, Org. Biomol. Chem, vol.9, pp.3619-3621, 2011.

S. Lauzon, H. Keipour, V. Gandon, T. Ollevier, I. Asymmetric-fe et al.,

, Michael Addition Reaction to ?,?-Unsaturated Oxazolidin-2-one Derivatives, Org. Lett, vol.19, pp.6324-6327, 2017.

S. Kobayashi, P. Xu, T. Endo, M. Ueno, and T. Kitanosono, Chiral Copper(II)-Catalyzed Enantioselective Boron Conjugate Additions to ?,?-Unsaturated Carbonyl Compounds in Water, Angew. Chem. Int. Ed, vol.51, pp.12763-12766, 2012.

L. Zhu, T. Kitanosono, P. Xu, S. Kobayashi, and . Cu, II)-Based Strategy for Catalytic Enantioselective ?-Borylation of ?,?-Unsaturated Acceptors, Chem. Commun, vol.51, pp.11685-11688, 2015.

T. Kitanosono and S. Kobayashi, Asymmetric Boron Conjugate Additions to Enones in Water Catalyzed by Copper(0), Asian J. Org. Chem, vol.2, pp.961-966, 2013.

T. Kitanosono, P. Xu, S. Isshiki, L. Zhu, and S. Kobayashi, Cu(II)-Catalyzed Asymmetric Boron Conjugate Addition to ?,?-Unsaturated Imines in Water, Chem. Commun, vol.50, pp.9336-9339, 2014.

L. Zhu, T. Kitanosono, P. Xu, S. Kobayashi, and . Cu, Catalyzed Enantioselective ?-Borylation of ?,?-Unsaturated Nitriles in Water, Beilstein J. Org. Chem, vol.11, 2007.

T. Kitanosono, P. Xu, and S. Kobayashi, Heterogeneous and Homogeneous Chiral Cu(II) Catalysis in Water: Enantioselective Boron Conjugate Additions to Dienones and Dienoesters, Chem. Commun, vol.49, pp.8184-8186, 2013.

S. C. Bergmeier, The Synthesis of Vicinal Amino Alcohols, Tetrahedron, vol.56, pp.2561-2576, 2000.

T. Kitanosono, T. Ollevier, and S. Kobayashi, Iron-and Bismuth-Catalyzed Asymmetric Mukaiyama Aldol Reactions in Aqueous Media, Chem. -Asian J, vol.8, pp.3051-3062, 2013.

E. Mai, C. Schneider, and . Catalytic, Enantioselective Synthesis of Boc-Protected 1,2-Amino Alcohols through Aminolysis of meso-Epoxides with Benzophenone Imine, ARKIVOC, pp.216-222, 2008.

T. P. Singh and O. M. Singh, Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini Rev. Med. Chem, vol.18, pp.9-25, 2018.

C. Schneider, A. R. Sreekanth, and E. Mai, Scandium-Bipyridine-Catalyzed Enantioselective Addition of Alcohols and Amines to meso-Epoxides, Angew. Chem. Int. Ed, vol.43, pp.5691-5694, 2004.

E. Mai and C. Schneider, Scandium-Bipyridine-Catalyzed Enantioselective Aminolysis of meso-Epoxides, Chem. -Eur. J, vol.13, pp.2729-2741, 2007.

S. Azoulay, K. Manabe, and S. Kobayashi, Catalytic Asymmetric Ring Opening of mesoEpoxides with Aromatic Amines in Water, Org. Lett, vol.7, pp.4593-4595, 2005.

S. Bonollo, F. Fringuelli, F. Pizzo, and L. Vaccaro, Zn(II)-Catalyzed Desymmetrization of meso-Epoxides by Aromatic Amines in Water, Synlett, pp.1574-1578, 2008.

S. Bonollo, F. Fringuelli, F. Pizzo, and L. Vaccaro, Zr(DS)4 as an Efficient Catalyst for the Aminolysis of Epoxides in Water, Synlett, pp.2683-2686, 2007.

E. Mai and C. Schneider, Indium-Bipyridine Catalyzed, Enantioselective Aminolysis of meso-Epoxides, Synlett, pp.2136-2138, 2007.

M. Boudou, C. Ogawa, and S. Kobayashi, Chiral Scandium-Catalysed Enantioselective Ring-Opening of meso-Epoxides with N-Heterocycle, Alcohol and Thiol Derivatives in Water, Adv. Synth. Catal, vol.348, pp.2585-2589, 2006.

C. Ogawa, N. Wang, and S. Kobayashi, Chiral Scandium-Catalyzed Highly Stereoselective Ring-Opening of meso-Epoxides with Thiols, Chem. Lett, vol.36, pp.34-35, 2007.

A. Tschöp, M. V. Nandakumar, O. Pavlyuk, and C. Schneider, Scandium-BipyridineCatalyzed, Enantioselective Selenol Addition to Aromatic meso-Epoxides, Tetrahedron Lett, vol.49, pp.1030-1033, 2008.

M. Lafantaisie, A. Mirabaud, B. Plancq, and T. Ollevier, Iron(II)-Derived Lewis Acid/Surfactant Combined Catalysis for the Enantioselective Mukaiyama Aldol Reaction in Pure Water, ChemCatChem, vol.6, pp.2244-2247, 2014.

W. M. Sameera, M. Hatanaka, T. Kitanosono, S. Kobayashi, and K. Morokuma, The Mechanism of Iron(II)-Catalyzed Asymmetric Mukaiyama Aldol Reaction in Aqueous Media: Density Functional Theory and Artificial Force-Induced Reaction Study, J. Am. Chem. Soc, vol.137, pp.11085-11094, 2015.

D. R. Hodgson and J. M. Sanderson, The Synthesis of Peptides and Proteins Containing Non-Natural Amino Acids, Chem. Soc. Rev, vol.33, pp.422-430, 2004.

A. J. De-graaf, M. Kooijman, W. E. Hennink, and E. Mastrobattista, Nonnatural Amino Acids for Site-Specific Protein Conjugation, Bioconjug. Chem, vol.20, pp.1281-1295, 2009.

S. Ghosh, M. V. Nandakumar, H. Krautscheid, and C. Schneider, Copper-BipyridineCatalyzed Enantioselective ?-Amination of ?-Keto Esters, Tetrahedron Lett, vol.51, pp.1860-1862, 2010.

T. Kitanosono, M. Miyo, and S. Kobayashi, Surfactant-Aided Chiral Palladium(II) Catalysis Exerted Exclusively in Water for the C-H Functionalization of Indoles, ACS Sustain. Chem. Eng, vol.4, pp.6101-6106, 2016.

W. Zhou, L. Xu, L. Li, L. Yang, and C. Xia, Enantioselective Michael-Type Friedel-Crafts Reactions of Indoles to Enones Catalyzed by a Chiral Camphor-Based Brønsted Acid, Eur. J. Org. Chem, pp.5225-5227, 2006.

M. Li, V. Carreras, A. Jalba, and T. Ollevier, Asymmetric Diels-Alder Reaction of ?,?-Unsaturated Oxazolidin-2-one Derivatives Catalyzed by a Chiral Fe(III)-Bipyridine Diol Complex, Org. Lett, vol.20, pp.995-998, 2018.

W. Lee, C. Yeung, K. Sham, W. Wong, and H. Kwong, Chiral CopperBipyridine Complexes: Synthesis, Characterization and Mechanistic Studies on Asymmetric Cyclopropanation, Polyhedron, vol.30, pp.178-186, 2011.

S. Ishikawa, T. Hamada, K. Manabe, and S. Kobayashi, Catalytic Asymmetric Hydroxymethylation of Silicon Enolates Using an Aqueous Solution of Formaldehyde with a Chiral Scandium Complex, J. Am. Chem. Soc, vol.126, pp.12236-12237, 2004.

M. Kokubo, C. Ogawa, S. Kobayashi, and . Lewis, Acid Catalysis in Water with a Hydrophilic Substrate: Scandium-Catalyzed Hydroxymethylation with Aqueous Formaldehyde in Water, Angew. Chem. Int. Ed, vol.47, pp.6909-6911, 2008.

F. Rahm, A. Fischer, and C. Moberg, Pyridyl Phosphinites and Pyridyl Phosphites from Chiral Pyridyl Alcohols -A Modular Approach, Eur. J. Org. Chem, pp.4205-4215, 2003.

H. Kwong and W. Lee, New Chiral 2,2'-Bipyridine Diols as Catalysts for Enantioselective Addition of Diethylzinc to Benzaldehyde, Tetrahedron Asymmetry, vol.10, pp.3791-3801, 1999.

H. Huang, H. Chen, X. Hu, C. Bai, and Z. Zheng, Structural Probing of D-Fructose Derived Ligands for Asymmetric Addition of Diethylzinc to Aldehydes, Tetrahedron Asymmetry, vol.14, pp.297-304, 2003.

R. Lin and C. Chen, 5-trien-8-ols as Enantioselective Catalysts in the Addition of Diethylzinc to Substituted Benzaldehydes, J. Mol. Catal. Chem, vol.3, issue.2, pp.89-98, 2006.

H. Kwong, K. Lau, W. Lee, and W. Wong, Chiral Zinc(II) Bipyridine Complex. Crystal Structure and Catalytic Activity in Asymmetric Allylation Reaction, New J. Chem, vol.23, pp.629-632, 1999.

M. P. Lyle, N. D. Draper, and P. D. Wilson, Enantioselective Friedel?Crafts Alkylation Reactions Catalyzed by a Chiral Nonracemic C2-Symmetric 2,2'-Bipyridyl Copper(II) Complex, Org. Lett, vol.7, pp.901-904, 2005.

R. Boyd, D. D. Sharma, N. Sbircea, L. Murphy, D. ;. Malone et al., Chemoenzymatic Synthesis of Chiral 2,2'-Bipyridine Ligands and Their N-Oxide Derivatives: Applications in the Asymmetric Aminolysis of Epoxides and Asymmetric Allylation of Aldehydes, Org. Biomol. Chem, vol.8, pp.1081-1090, 2010.

R. Boyd, D. D. Sharma, N. Sbircea, L. Murphy, D. Belhocine et al., Azaarene cis-Dihydrodiol-Derived 2,2'-Bipyridine Ligands for Asymmetric Allylic Oxidation and Cyclopropanation, Chem. Commun, pp.5535-5537, 2008.

M. P. Lyle and P. D. Wilson, Synthesis of a New Chiral Nonracemic C2-Symmetric 2,2'-Bipyridyl Ligand and Its Application in Copper(I)-Catalyzed Enantioselective Cyclopropanation Reactions, Org. Lett, vol.6, pp.855-857, 2004.

A. Bouet, B. Heller, C. Papamicaël, G. Dupas, S. Oudeyer et al., Preparation of New Axially Chiral Bridged 2,2'-Bipyridines and Pyridyl Monooxazolines (Pymox), Org. Biomol. Chem, vol.5, pp.1397-1404, 2007.

M. P. Lyle, N. D. Draper, and P. D. Wilson, Synthesis and Evaluation of New Chiral Nonracemic C2-Symmetric and Unsymmetric 2,2'-Bipyridyl Ligands, Org. Biomol. Chem, vol.4, pp.877-885, 2006.

M. Kokubo and S. Kobayashi, Nazarov-Type Reactions in Water, Chem. -Asian J, vol.4, pp.526-528, 2009.

M. Tsuji, R. Sakai, T. Satoh, H. Kaga, and T. Kakuchi, Enantiomer-Selective Radical Cyclopolymerization of rac-2,4-Pentanediyl Dimethacrylate Using ATRP Initiating System with Chiral Amine Ligand, Macromolecules, vol.35, pp.8255-8257, 2002.

M. Tsuji, R. Sakai, T. Satoh, H. Kaga, and T. Kakuchi, Enantiomer-Selective Radical Polymerization of rac-2,4-Pentanediyl Dimethacrylate by 2, vol.2

/. Azobisisobutyronitrile and . Copper, II) Trifluoromethanesulfonate/Chiral Diamine as Asymmetric Reverse Atom Transfer Radical Polymerization Initiating System, Polym. J, vol.35, pp.84-87, 2003.

W. Lee, H. Kwong, H. Chan, W. Choi, and L. Ng, Chiral BipyridineCopper(I) Complex-Catalyzed Enantioselective Allylic Oxidation of Cyclic Alkenes, Tetrahedron Asymmetry, vol.12, pp.1007-1013, 2001.

M. P. Lyle and P. D. Wilson, Asymmetric Allylic Oxidation Reactions Catalyzed by a Chiral Nonracemic and C2-Symmetric 2,2'-Bipyridyl Copper(I) Complex, Org. Biomol. Chem, vol.4, pp.41-43, 2006.

R. E. Lowenthal, A. Abiko, and S. Masamune, Asymmetric Catalytic Cyclopropanation of Olefins: Bis-Oxazoline Copper Complexes, Tetrahedron Lett, vol.31, pp.6005-6008, 1990.

D. A. Evans, K. A. Woerpel, M. M. Hinman, and M. M. Faul, Bis(oxazolines) as Chiral Ligands in Metal-Catalyzed Asymmetric Reactions. Catalytic, Asymmetric Cyclopropanation of Olefins, J. Am. Chem. Soc, vol.113, pp.726-728, 1991.

E. J. Corey, N. Imai, and H. Y. Zhang, Designed Catalyst for Enantioselective Diels-Alder Addition from a C2-Symmetric Chiral Bis(oxazoline)-Iron(III) Complex, J. Am. Chem. Soc, vol.113, pp.728-729, 1991.

G. Desimoni, G. Faita, and K. A. Jørgensen, C2-Symmetric Chiral Bis(oxazoline) Ligands in Asymmetric Catalysis, Chem. Rev, vol.106, pp.3561-3651, 2006.

G. C. Hargaden and P. J. Guiry, Recent Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis, Chem. Rev, vol.109, pp.2505-2550, 2009.

G. Yang and W. Zhang, Renaissance of Pyridine-Oxazolines as Chiral Ligands for Asymmetric Catalysis, Chem. Soc. Rev, vol.47, pp.1783-1810, 2018.

H. Nishiyama, S. Park, M. Haga, K. Aoki, and K. Itoh, Ruthenium(II)Cl2-Bis(oxazolinyl)bipyridine Complex. Its Structure and Reactivity, Chem. Lett, vol.23, pp.1111-1114, 1994.

C. Qian and L. Wang, Asymmetric Hetero-Diels-Alder Reaction of Glyoxylate Esters and Danishefsky's Diene Catalyzed by Chiral Bis(oxazoline)-Lanthanide Complexes, Tetrahedron Lett, vol.41, pp.2203-2206, 2000.

A. Jalba, N. Régnier, and T. Ollevier, Enantioselective Aromatic Sulfide Oxidation and Tandem Kinetic Resolution Using Aqueous H2O2 and Chiral IronBis(oxazolinyl)bipyridine Catalysts, Eur. J. Org. Chem, pp.1628-1637, 2017.

P. Ko?ovský and A. V. Malkov, From Transition Metals to Organocatalysis, Russ. Chem. Bull, vol.53, pp.1806-1812, 2004.

M. Nakajima, Chiral N-Oxides as Catalysts or Ligands in Enantioselective Reactions, J. Synth. Org. Chem, vol.61, pp.1081-1087, 2003.

P. Koukal, J. Ul?, D. Ne?as, and M. Kotora, Pyridine N-Oxides and Derivatives Thereof in Organocatalysis, In Heterocyclic N-Oxides

O. V. Larionov and . Ed, Topics in Heterocyclic Chemistry

C. Springer, , pp.29-58, 2017.

Y. Shaker, Recent Trends in Chemistry of Pyridine N-Oxides, ARKIVOC, pp.242-268, 2001.

D. H. Barton, N. Ozbalik, and B. Vacher, An Unusual Reaction between the Esters of N-Hydroxy-2-thiopyridone and Activated Azo Compounds, Tetrahedron, issue.24, pp.7385-7392, 1988.

A. W. Chucholowski and S. Uhlendorf, Base Catalyzed Rearrangement of 5-Cyanomethyl-2-isoxazolines; Novel Pathway for the Formation of 2-Aminopyridine NOxides, Tetrahedron Lett, vol.31, pp.1949-1952, 1990.

R. Nesi, D. Giomi, S. Papaleo, and S. Turchi, Polyfunctionalized 3-Nitropyridine Derivatives by [4 + 2] Cycloadditions of 4-Nitro-3-phenylisoxazole-5-carboxylates with Enamines: Applications and Limits, J. Org. Chem, vol.57, pp.3713-3716, 1992.

T. Shimada, A. Kina, S. Ikeda, and T. Hayashi, A Novel Axially Chiral 2,2'-Bipyridine N,N'-Dioxide. Its Preparation and Use for Asymmetric Allylation of Aldehydes with Allyl(trichloro)silane as a Highly Efficient Catalyst, Org. Lett, vol.4, pp.2799-2801, 2002.

M. Fujii and A. Honda, Axially Chiral Heteroaromatics. Preparation of Optically Active 1,1'-Biisoquinoline N,N'-Dioxide, J. Heterocycl. Chem, vol.29, pp.931-933, 1992.

Y. Deng, W. Pan, Y. Pei, J. Li, B. Bai et al., Addition of Aldehydes with Allyltrichlorosilane Catalyzed by Chiral Bis-N-O Secondary Amides, Tetrahedron, vol.69, pp.10431-10437, 2013.

S. E. Denmark and Y. Fan, Preparation of Chiral Bipyridine Bis-N-Oxides by Oxidative Dimerization of Chiral Pyridine N-Oxides, Tetrahedron Asymmetry, vol.17, pp.687-707, 2006.

J. Ul?, D. Ne?as, P. Koukal, V. Havlí?ek, Z. To?ner et al., Chiral Unsymmetrically Substituted Bipyridine N,N'-Dioxides as Catalysts for Allylation of Aldehydes, Eur. J. Org. Chem, pp.5109-5116, 2018.

P. S. O'hora, C. A. Incerti-pradillos, M. A. Kabeshov, S. A. Shipilovskikh, A. E. Rubtsov et al., Catalytic Asymmetric Crotylation of Aldehydes: Application in Total Synthesis of (?)-Elisabethadione, Chem. -Eur. J, vol.21, pp.4551-4555, 2015.

G. Chelucci, G. Murineddu, and G. A. Pinna, Chiral Pyridine N-Oxides: Useful Ligands for Asymmetric Catalysis, Tetrahedron Asymmetry, vol.15, pp.1373-1389, 2004.

A. V. Malkov and P. Ko?ovský, Chiral N-Oxides in Asymmetric Catalysis, Eur. J. Org. Chem, pp.29-36, 2007.

S. E. Denmark and J. Fu, Catalytic Enantioselective Addition of Allylic Organometallic Reagents to Aldehydes and Ketones, Chem. Rev, vol.103, pp.2763-2794, 2003.

S. Kobayashi and K. Nishio, Facile and Highly Stereoselective Allylation of Aldehydes Using Allyltrichlorosilanes in DMF, Tetrahedron Lett, vol.34, pp.3453-3456, 1993.

S. E. Denmark, D. M. Coe, N. E. Pratt, and B. D. Griedel, Asymmetric Allylation of Aldehydes with Chiral Lewis Bases, J. Org. Chem, vol.59, pp.6161-6163, 1994.

A. V. Malkov and P. Ko?ovský, Lewis Base-Catalyzed Reactions of SiX3-Based Reagents with C=O, C=N (N??*)

E. Vedejs and S. E. Denmark, , pp.1011-1038, 2016.

R. Hrdina, F. Opekar, J. Roithová, and M. Kotora, Neutral and Ionic Reaction Mechanisms for the Allylation of Aldehydes by Bipyridine N,N'-Dioxides, Chem. Commun, pp.2314-2316, 2009.

L. Duchá?ková, A. Kadl?íková, M. Kotora, and J. Roithová, Oxygen Superbases as Polar Binding Pockets in Nonpolar Solvents, J. Am. Chem. Soc, vol.132, pp.12660-12667, 2010.

M. Nakajima, M. Saito, M. Shiro, and S. Hashimoto, S)-3,3'-Dimethyl-2,2'-biquinoline N,N'-Dioxide as an Efficient Catalyst for Enantioselective Addition of Allyltrichlorosilanes to Aldehydes, J. Am. Chem. Soc, vol.120, pp.6419-6420, 1998.

R. Hrdina, A. Kadl?íková, I. Valterová, J. Hoda?ová, and M. Kotora, An Easy Route to Atropoisomeric Bipyridine N,N'-Dioxides and Allylation of Aldehydes, Tetrahedron Asymmetry, vol.17, pp.3185-3191, 2006.

R. Hrdina, I. Valterová, J. Hoda?ová, I. Císa?ová, and M. Kotora, A Simple Approach to Unsymmetric Atropoisomeric Bipyridine N,N'-Dioxides and Their Application in Enantioselective Allylation of Aldehydes, Adv. Synth. Catal, vol.349, pp.822-826, 2007.

R. Hrdina, M. Dra?ínský, I. Valterová, J. Hoda?ová, I. Císa?ová et al., New Pathway to C2-Symmetric Atropoisomeric Bipyridine N,N'-Dioxides and Solvent Effect in Enantioselective Allylation of Aldehydes, Adv. Synth. Catal, vol.350, pp.1449-1456, 2008.

B. Bai, L. Shen, H. Zhu, N. Biscarboline, and N. Derivatives, Highly Enantioselective Addition of Allyltrichlorosilane to Aldehydes, Adv. Synth. Catal, vol.354, pp.354-358, 2012.

A. V. Malkov, M. Orsini, D. Pernazza, K. W. Muir, V. Langer et al., Chiral 2,2'-Bipyridine-Type N-Monoxides as Organocatalysts in the Enantioselective Allylation of Aldehydes with Allyltrichlorosilane, Org. Lett, vol.4, pp.1047-1049, 2002.

A. V. Malkov, M. Bell, M. Orsini, D. Pernazza, A. Massa et al., New Lewis-Basic N-Oxides as Chiral Organocatalysts in Asymmetric Allylation of Aldehydes, J. Org. Chem, vol.68, pp.9659-9668, 2003.

A. Kadl?íková, R. Hrdina, I. Valterová, and M. Kotora, Simple and Fast Synthesis of New Axially Chiral Bipyridine N,N'-Dioxides for Highly Enantioselective Allylation of Aldehydes, Adv. Synth. Catal, vol.351, pp.1279-1283, 2009.

S. E. Denmark, Y. Fan, and . Catalytic, Enantioselective Aldol Additions to Ketones, J. Am. Chem. Soc, vol.124, pp.4233-4235, 2002.

S. E. Denmark, Y. Fan, and M. D. Eastgate, Lewis Base Catalyzed, Enantioselective Aldol Addition of Methyl Trichlorosilyl Ketene Acetal to Ketones, J. Org. Chem, vol.70, pp.5235-5248, 2005.

W. Ramsay, On Picoline and Its Derivatives, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.1876, pp.269-281

B. Heller and M. Hapke, The Fascinating Construction of Pyridine Ring Systems by Transition Metal-Catalysed [2 + 2 + 2] Cycloaddition Reactions, Chem. Soc. Rev, vol.36, pp.1085-1094, 2007.

P. Turek and M. Kotora, Synthesis of Pyridines by [2+2+2]-Cyclotrimerization of Alkynes with Nitriles, Targets in Heterocyclic Systems

O. A. Attanasi and D. Spinelli, , vol.13, pp.175-202, 2010.

J. A. Varela and C. Saá, Construction of Pyridine Rings by Metal-Mediated [2 + 2 + 2] Cycloaddition, Chem. Rev, vol.103, pp.3787-3802, 2003.

D. L. Broere and E. Ruijter, Recent Advances in Transition-Metal-Catalyzed [2+2+2]-Cyclo(co)trimerization Reactions, Synthesis, vol.44, pp.2639-2672, 2012.

G. Dazinger, M. Torres-rodrigues, K. Kirchner, M. J. Calhorda, and P. J. Costa, Formation of Pyridine from Acetylenes and Nitriles Catalyzed by RuCpCl, CoCp, and RhCp Derivatives -A Computational Mechanistic Study, J. Organomet. Chem, vol.691, pp.4434-4445, 2006.

L. Orian, J. N. Van-stralen, and F. M. Bickelhaupt, Cyclotrimerization Reactions Catalyzed by Rhodium(I) Half-Sandwich Complexes: A Mechanistic Density Functional Study, Organometallics, vol.26, pp.3816-3830, 2007.

Y. Yamamoto, Syntheses of Heterocycles via Alkyne Cycloadditions Catalyzed by Cyclopentadienylruthenium-Type Complexes, Heterocycles, vol.87, pp.2459-2493, 2013.

E. R. Gesing, U. Groth, and K. P. Vollhardt, Iron-Catalyzed Cocyclization of Adiponitriles with Nitriles: A New Synthesis of Fused 1,2,4-Triazines, Synthesis, pp.351-353, 1984.

Y. Yamamoto, K. Kinpara, T. Saigoku, H. Takagishi, S. Okuda et al., Cp*RuCl-Catalyzed [2 + 2 + 2] Cycloadditions of ?,?-Diynes with ElectronDeficient Carbon?Heteroatom Multiple Bonds Leading to Heterocycles, J. Am. Chem. Soc, vol.127, pp.605-613, 2005.

D. D. Young, J. A. Teske, and A. Deiters, Open-Vessel Microwave-Mediated [2+2+2]-Cyclotrimerization Reactions, Synthesis, pp.3785-3790, 2009.

J. A. Varela, L. Castedo, M. Maestro, J. Mahía, and C. Saá, Regiocontrolled One-Step Synthesis of 3,3'-Disubstituted 2,2'-Bipyridine Ligands by Cobalt(I)-Catalyzed Cyclotrimerization, Chem. -Eur. J, vol.7, pp.5203-5213, 2001.

N. Weding and M. Hapke, Preparation and Synthetic Applications of Alkene Complexes of Group 9 Transition Metals in [2+2+2] Cycloaddition Reactions, Chem. Soc. Rev, vol.40, pp.4525-4538, 2011.

M. R. Shaaban, R. El-sayed, and A. H. Elwahy, Construction of Fused Heterocycles by Metal-Mediated [2+2+2] Cyclotrimerization of Alkynes and/or Nitriles, Tetrahedron, vol.67, pp.6095-6130, 2011.

T. Takahashi, F. Tsai, Y. Li, H. Wang, Y. Kondo et al., Selective Preparation of Pyridines, Pyridones, and Iminopyridines from Two Different Alkynes via Azazirconacycles, J. Am. Chem. Soc, vol.124, pp.5059-5067, 2002.

J. E. Hill, G. Balaich, P. E. Fanwick, and I. P. Rothwell, The Chemistry of Titanacyclopentadiene Rings Supported by 2,6-Diphenylphenoxide Ligation: Stoichiometric and Catalytic Reactivity, Organometallics, vol.12, pp.2911-2924, 1993.

Y. Sugiyama and S. Okamoto, Regioselective Syntheses of Substituted Pyridines and 2,2'-Bipyridines by Cobalt-Catalyzed [2+2+2] Cycloaddition of ?,?-Diynes with Nitriles, Synthesis, pp.2247-2254, 2011.

K. Tanaka, Rhodium-Catalyzed [2+2+2] Cycloaddition for the Synthesis of Substituted Pyridines, Pyridones, and Thiopyranimines, Heterocycles, vol.85, pp.1017-1043, 2012.

T. Hashimoto, S. Ishii, R. Yano, H. Miura, K. Sakata et al., IridiumCatalyzed [2+2+2] Cycloaddition of ?,?-Diynes with Cyanamides, Adv. Synth. Catal, vol.357, pp.3901-3916, 2015.

A. Thakur and J. Louie, Advances in Nickel-Catalyzed Cycloaddition Reactions To Construct Carbocycles and Heterocycles, Acc. Chem. Res, vol.48, pp.2354-2365, 2015.

S. P. Mulcahy and J. G. Varelas, Three-Step Synthesis of an Annulated ?-Carboline via Palladium Catalysis, Tetrahedron Lett, vol.54, pp.6599-6601, 2013.

C. Wang, X. Li, F. Wu, and B. Wan, A Simple and Highly Efficient Iron Catalyst for a [2+2+2] Cycloaddition to Form Pyridines, Angew. Chem. Int. Ed, vol.50, pp.7162-7166, 2011.

Y. Chen, P. Sharma, and R. Liu, Sulfonamide-Directed Gold-Catalyzed [2+2+2]-Cycloadditions of Nitriles with Two Discrete Ynamides to Construct 2,4-Diaminopyridine Cores, Chem. Commun, vol.52, pp.3187-3190, 2016.

Y. Satoh and Y. Obora, Low-Valent Niobium-Catalyzed Intermolecular [2 + 2 + 2] Cycloaddition of Tert-Butylacetylene and Arylnitriles to Form 2,3,6-Trisubstituted Pyridine Derivatives, J. Org. Chem, vol.78, pp.7771-7776, 2013.

K. Takai, M. Yamada, and K. Utimoto, Selective Cyclotrimerization of Acetylenes via Tantalum-Alkyne Complexes, Chem. Lett, vol.24, pp.851-852, 1995.

T. S. Piper, F. A. Cotton, and G. Wilkinson, Cyclopentadienyl-Carbon Monoxide and Related Compounds of Some Transitional Metals, J. Inorg. Nucl. Chem, vol.1, pp.165-174, 1955.

C. A. Parnell, K. Peter, and C. Vollhardt, The Cobalt Way to Vitamin B6: Regioselective Construction of the Tetrasubstituted Pyridine Nucleus by Cobalt-Catalyzed AlkyneNitrile Cooligomerizations, Tetrahedron, vol.41, pp.5791-5796, 1985.

C. Saá, D. D. Crotts, G. Hsu, and K. P. Vollhardt, A Cobalt-Catalyzed Entry Into the Ergot Alkaloids: Total Syntheses of (±)-Lysergene and (±)-LSD, Synlett, pp.487-489, 1994.

A. Mciver, D. D. Young, and A. Deiters, A General Approach to Triphenylenes and Azatriphenylenes: Total Synthesis of Dehydrotylophorine and Tylophorine, Chem. Commun, pp.4750-4752, 2008.

C. Yuan, C. Chang, A. Axelrod, and D. Siegel, Synthesis of (+)-Complanadine A, an Inducer of Neurotrophic Factor Excretion, J. Am. Chem. Soc, vol.132, pp.5924-5925, 2010.

C. Yuan, C. Chang, and D. Siegel, Syntheses of (+)-Complanadine A and Lycodine Derivatives by Regioselective [2 + 2 + 2] Cycloadditions, J. Org. Chem, vol.78, pp.5647-5668, 2013.

P. L. Pauson, Dicarbonyl(cyclopentadienyl)cobalt(I). In Encyclopedia of Reagents for Organic Synthesis

L. A. Paquette, , 2001.

A. Geny, N. Agenet, L. Iannazzo, M. Malacria, C. Aubert et al., Air-Stable (C5H5)Co Catalysts for [2+2+2] Cycloadditions, Angew. Chem. Int. Ed, vol.48, pp.1810-1813, 2009.

I. Thiel, A. Spannenberg, and M. Hapke, Synthesis of Air-Stable and Recyclable CpCo I -Complexes, ChemCatChem, vol.5, pp.2865-2868, 2013.

H. Bönnemann, W. Brijoux, R. Brinkmann, W. Meurers, R. Mynott et al., A Correlation between 13 C and 59 Co NMR Data and the Catalytic Activity of Organocobalt Complexes in the Synthesis of Pyridine Derivatives, J. Organomet. Chem, vol.272, pp.231-249, 1984.

A. W. Fatland and B. E. Eaton, Cobalt-Catalyzed Alkyne?Nitrile Cyclotrimerization To Form Pyridines in Aqueous Solution, Org. Lett, vol.2, pp.3131-3133, 2000.

M. Hapke, K. Kral, C. Fischer, A. Spannenberg, A. Gutnov et al., Asymmetric Synthesis of Axially Chiral 1-Aryl-5,6,7,8-tetrahydroquinolines by Cobalt-Catalyzed [2 + 2 + 2] Cycloaddition Reaction of 1-Aryl-1,7-octadiynes and Nitriles, J. Org. Chem, vol.75, pp.3993-4003, 2010.

Y. Yamamoto and . Chloro,

L. A. Paquette, , 2009.

Y. Yamamoto, S. Okuda, and K. Itoh, Ruthenium(II)-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Electron-Deficient Nitriles, Chem. Commun, pp.1102-1103, 2001.

L. Adriaenssens, L. Severa, J. Vávra, T. ?álová, J. Hývl et al., Bio-and Air-Tolerant Carbon-Carbon Bond Formations via Organometallic Ruthenium Catalysis, Collect. Czechoslov. Chem. Commun, vol.74, pp.1023-1034, 2009.

F. Xu, C. Wang, X. Li, and B. Wan, Ruthenium-Catalyzed [2+2+2] Cycloaddition of Diynes with Nitriles in Pure Water, ChemSusChem, vol.5, pp.854-857, 2012.

H. Chowdhury, A. Goswami, and . Quick, Access to 1-(2-Pyridyl)indoles via Solvent-Free Ruthenium(II)-Catalyzed Chemo-and Regioselective [2+2+2] Cycloaddition of ?,?-Diynes and N-Cyanoindoles, Adv. Synth. Catal, vol.359, pp.314-322, 2017.

D. Bhatt, N. Patel, H. Chowdhury, P. V. Bharatam, and A. Goswami, AdditiveControlled Switchable Selectivity from Cyanobenzenes to 2-Alkynylpyridines: Ruthenium(II)-Catalyzed [2+2+2] Cycloadditions of Diynes and Alkynylnitriles, Adv. Synth. Catal, vol.360, pp.1876-1882, 2018.

P. Cioni, P. Diversi, G. Ingrosso, A. Lucherini, and P. Ronca, Rhodium-Catalyzed Synthesis of Pyridines from Alkynes and Nitriles, J. Mol. Catal, vol.40, pp.337-357, 1987.

K. Tanaka, N. Suzuki, and G. Nishida, Cationic Rhodium(I)/Modified-BINAP Catalyzed [2+2+2] Cycloaddition of Alkynes with Nitriles, Eur. J. Org. Chem, pp.3917-3922, 2006.

Y. Komine, A. Kamisawa, and K. Tanaka, Flexible Synthesis of Fused Benzofuran Derivatives by Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition with Phenol-Linked 1,6-Diynes, Org. Lett, vol.11, pp.2361-2364, 2009.

G. Nishida, N. Suzuki, K. Noguchi, and K. Tanaka, Enantioselective Synthesis of Tetraortho-substituted Axially Chiral Biaryls through Rhodium-Catalyzed Double [2 + 2 + 2] Cycloaddition, Org. Lett, vol.8, pp.3489-3492, 2006.

T. Shibata, T. Uchiyama, and K. Endo, Enantioselective Synthesis of Chiral Tripodal Cage Compounds by [2 + 2 + 2] Cycloaddition of Branched Triynes, Org. Lett, vol.11, pp.3906-3908, 2009.

T. Shibata, M. Miyoshi, T. Uchiyama, K. Endo, N. Miura et al., Enantioselective Synthesis of Tripodal Cyclophanes and Pyridinophanes by Intramolecular [2+2+2] Cycloaddition, Tetrahedron, vol.68, pp.2679-2686, 2012.

S. Okamoto, Synthesis of 2,2'-Bipyridines by Transition Metal-Catalyzed Alkyne/Nitrile [2 + 2 + 2] Cycloaddition Reactions, Heterocycles, vol.85, pp.1579-1602, 2012.

P. Garcia, Y. Evanno, P. George, M. Sevrin, G. Ricci et al., Regioselective Cobalt-Catalyzed Formation of Bicyclic 3-and 4-Aminopyridines, Org. Lett, vol.13, pp.2030-2033, 2011.

H. Bönnemann and R. Brinkmann, Eine Kobalt-Katalysierte Einstufen-Synthese von Dipyridinen, Synthesis, pp.600-602, 1975.

C. Botteghi, G. Caccia, G. Chelucci, and F. Soccolini, Optically Active Nitrogen Ligands. Synthesis of Two Optically Active Monoalkyl-Substituted 2-(2'-Pyridyl)pyridines, J. Org. Chem, vol.4, pp.4290-4293, 1984.

C. Botteghi, C. Chelucci, G. Chessa, G. Delogu, S. Gladiali et al., Optically Active Nitrogen Ligans: Enantioface-Discriminating Transfer Hydrogenation of Acetophenone Catalyzed by Rhodium(I) Complexes with Chiral 2-(2'-Pyridyl)pyridines, J. Organomet. Chem, vol.304, pp.217-225, 1986.

C. Botteghi, A. Schionato, G. Chelucci, H. Brunner, A. Kürzinger et al., ]2 und Optisch Aktiven Stickstoff-Liganden, Enantioselektive Hydrosilylierung von Ketonen mit, vol.370, pp.17-31, 1989.

A. Goswami, K. Ohtaki, K. Kase, T. Ito, and S. Okamoto, Synthesis of Substituted 2,2'-Bipyridines and 2,2':6',2''-Terpyridines by Cobalt-Catalyzed Cycloaddition Reactions of Nitriles and ?,?-Diynes with Exclusive Regioselectivity, Adv. Synth. Catal, vol.350, pp.143-152, 2008.

F. Nissen and H. Detert, Total Synthesis of Lavendamycin by a [2+2+2] Cycloaddition, Eur. J. Org. Chem, pp.2845-2853, 2011.

L. Garcia, A. Pla-quintana, A. Roglans, and T. Parella, Microwave-Enhanced RhodiumCatalyzed [2+2+2] Cycloaddition Reactions To Afford Highly Functionalized Pyridines and Bipyridines, Eur. J. Org. Chem, pp.3407-3415, 2010.

J. A. Varela, L. Castedo, and C. Saá, One-Step Synthesis of Symmetrical 3,3'-Substituted 2,2'-Bipyridine Ligands by Cobalt(I)-Catalyzed [2 + 2 + 2] Cycloadditions, J. Am. Chem. Soc, vol.120, pp.12147-12148, 1998.

Y. Yamamoto, K. Kinpara, R. Ogawa, H. Nishiyama, and K. Itoh, Ruthenium-Catalyzed Cycloaddition of 1,6-Diynes and Nitriles under Mild Conditions: Role of the Coordinating Group of Nitriles, Chem. -Eur. J, vol.12, pp.5618-5631, 2006.

F. Ye, M. Haddad, V. Ratovelomanana-vidal, V. Michelet, and . Ruthenium-catalyzed, Cycloaddition Reaction Forming 2-Aminopyridine Derivatives from ?,?-Diynes and Cyanamides, Org. Lett, vol.19, pp.1104-1107, 2017.

F. Ye, F. Boukattaya, M. Haddad, V. Ratovelomanana-vidal, and V. Michelet, Synthesis of 2-Aminopyridines via Ruthenium-Catalyzed [2+2+2] Cycloaddition of 1,6-and 1,7-Diynes with Cyanamides: Scope and Limitations, New J. Chem, vol.42, pp.3222-3235, 2018.

L. Iannazzo, N. Kotera, M. Malacria, C. Aubert, and V. Gandon, Co(I)-versus Ru(II)-Catalyzed [2+2+2] Cycloadditions Involving Alkynyl Halides, J. Organomet. Chem, vol.696, pp.3906-3908, 2011.

Y. Yamamoto, T. Hashimoto, K. Hattori, M. Kikuchi, and H. Nishiyama, Synthesis of Spirocyclic C-Arylribosides via Cyclotrimerization, Org. Lett, vol.8, pp.3565-3568, 2006.

S. Melnes, A. Bayer, and O. R. Gautun, Cyclotrimerization of Unsymmetrically BromoSubstituted Diynes: Toward the Synthesis of Potential Selective Inhibitors of Tyrosine Kinase 2, Tetrahedron, vol.68, pp.8463-8471, 2012.

H. Kuniyasu, A. Sanagawa, T. Nakajima, T. Iwasaki, N. Kambe et al., Halogen Exchange by Reaction of CpRu(Cl)(PPh3)2 with MeC(O)X (X = Br, I) and Its Mechanistic Study, J. Organomet. Chem, vol.769, pp.34-37, 2014.

E. Shirakawa, Y. Imazaki, and T. Hayashi, Ruthenium-Catalyzed Transformation of Alkenyl Triflates to Alkenyl Halides, Chem. Commun, pp.5088-5090, 2009.

Y. Imazaki, E. Shirakawa, R. Ueno, and T. Hayashi, Ruthenium-Catalyzed Transformation of Aryl and Alkenyl Triflates to Halides, J. Am. Chem. Soc, vol.134, pp.14760-14763, 2012.

R. D. Froese, G. T. Whiteker, T. H. Peterson, D. J. Arriola, J. M. Renga et al., Computational and Experimental Studies of Regioselective SNAr Halide Exchange (Halex) Reactions of Pentachloropyridine, J. Org. Chem, vol.81, pp.10672-10682, 2016.

Y. Garcia, F. Schoenebeck, C. Y. Legault, C. A. Merlic, and K. N. Houk, Theoretical Bond Dissociation Energies of Halo-Heterocycles: Trends and Relationships to Regioselectivity in Palladium-Catalyzed Cross-Coupling Reactions, J. Am. Chem. Soc, vol.131, pp.6632-6639, 2009.

S. Vice, T. Bara, A. Bauer, C. A. Evans, J. Ford et al., Concise Formation of 4-Benzyl Piperidines and Related Derivatives Using a Suzuki Protocol, J. Org. Chem, vol.66, pp.2487-2492, 2001.

Y. Yamamoto, R. Ogawa, and K. Itoh, Significant Chemo-and Regioselectivies in the Ru(II)-Catalyzed [2 + 2 + 2] Cycloaddition of 1,6-Diynes with Dicyanides, J. Am. Chem. Soc, vol.123, pp.6189-6190, 2001.

E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, and N. A. Meanwell, Applications of Fluorine in Medicinal Chemistry, J. Med. Chem, vol.58, pp.8315-8359, 2015.

N. Miyaura and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev, vol.95, pp.2457-2483, 1995.

H. L. Wong, Y. Tian, and K. S. Chan, Electronically Controlled Asymmetric Cyclopropanation Catalyzed by a New Type of Chiral 2,2'-Bipyridine, Tetrahedron Lett, vol.41, pp.7723-7726, 2000.

L. Liao, X. Kong, and X. Duan, Reductive Couplings of 2-Halopyridines without External Ligand: Phosphine-Free Nickel-Catalyzed Synthesis of Symmetrical and Unsymmetrical 2,2'-Bipyridines, J. Org. Chem, vol.79, pp.777-782, 2014.

D. M. Schultz, J. W. Sawicki, and T. P. Yoon, An Improved Procedure for the Preparation of Ru(Bpz)3(PF6)2 via a High-Yielding Synthesis of 2,2'-Bipyrazine, Beilstein J. Org. Chem, vol.11, pp.61-65, 2015.

C. Barolo, J. Yum, E. Artuso, N. Barbero, D. Di-censo et al., A Simple Synthetic Route to Obtain Pure Trans-Ruthenium(II) Complexes for Dye-Sensitized Solar Cell Applications, ChemSusChem, vol.6, pp.2170-2180, 2013.

D. C. Batesky, M. J. Goldfogel, and D. J. Weix, Removal of Triphenylphosphine Oxide by Precipitation with Zinc Chloride in Polar Solvents, J. Org. Chem, vol.82, pp.9931-9936, 2017.

S. A. Macgregor, Transition Metal-Mediated P-C/X Exchange at Bound Phosphine Ligands (X = Aryl, Alkyl, NR2, OR and F): Scope and Mechanisms, Chem. Soc. Rev, vol.36, pp.67-76, 2006.

W. Theilacker and H. Böhm, Optically Active 2,2?-Dimethylbiphenyl, the Simplest Atropisomeric Hydrocarbon, Angew. Chem. Int. Ed. Engl, vol.6, pp.251-251, 1967.

I. F. Lutsenko, Y. I. Baukov, G. S. Burlachenko, and B. N. Khasapov, The Synthesis and the Rearrangement of O-Silyl-O-Alkyl Keteneacetals into Esters of Silylacetic Acid, J. Organomet. Chem, vol.5, pp.20-28, 1966.

S. E. Denmark and Y. Fan, Methyl Trichlorosilyl Ketene Acetal. In Encyclopedia of Reagents for Organic Synthesis

L. A. Paquette, , 2008.

E. Matou?ová, R. Gyepes, I. Císa?ová, and M. Kotora, 2+2+2]-Cyclotrimerization of 1-Cyclopropyl-1,6-diynes with Alkynes: Formation of Cyclopropylarenes, Adv. Synth. Catal, vol.358, pp.254-267, 2016.

E. Bedná?ová, M. Dra?ínský, ?. Malatinec, I. Císa?ová, F. Lamaty et al., Synthesis of a Bolm's 2,2?-Bipyridine Ligand Analogue and Its Applications, Adv. Synth. Catal, vol.360, pp.2869-2878, 2018.

H. Chang, M. Jeganmohan, and C. Cheng, Cobalt-Catalyzed Intramolecular [2 + 2 + 2] Cocyclotrimerization of Nitrilediynes: An Efficient Route to Tetra-and Pentacyclic Pyridine Derivatives, Org. Lett, vol.9, pp.505-508, 2007.

B. M. Trost and M. T. Rudd, Ruthenium-Catalyzed Cycloisomerizations of Diynols, J. Am. Chem. Soc, vol.127, pp.4763-4776, 2005.

Y. Yamamoto, K. Hattori, and H. Nishiyama, Synthesis of Bicyclic p-Diiodobenzenes via Silver-Catalyzed Csp-H Iodination and Ruthenium-Catalyzed Cycloaddition, J. Am. Chem. Soc, vol.128, pp.8336-8340, 2006.

R. E. Maleczka, L. R. Terrell, D. H. Clark, S. L. Whitehead, W. P. Gallagher et al., Application of Fluoride-Catalyzed Silane Reductions of Tin Halides to the in situ Preparation of Vinylstannanes, J. Org. Chem, vol.64, pp.5958-5965, 1999.

S. Nicolai, R. Sedigh-zadeh, and J. Waser, Pd(0)-Catalyzed Alkene Oxy-and Aminoalkynylation with Aliphatic Bromoacetylenes, J. Org. Chem, vol.78, pp.3783-3801, 2013.

R. E. Geiger, M. Lalonde, H. Stoller, and K. Schleich, Kobalt-Katalysiert Cycloadditionen von Alkinen und Nitrilen zu Pyridinen: ein Neuer Zugang zu Pyridoxin (Vitamin B6), Helv. Chim. Acta, vol.67, pp.1274-1282, 1984.

D. Llerena, O. Buisine, C. Aubert, and M. Malacria, Synthesis of Variously Substituted Allenediynes and Their Cobalt(I)-Mediated [2+2+2] Cycloaddition Reactions, Tetrahedron, vol.54, pp.9373-9392, 1998.

T. Shimamoto, M. Chimori, H. Sogawa, and K. Yamamoto, Cationic PalladiumCatalyzed Hydrosilylative Cross-Coupling of Alkynes with Alkenes, J. Am. Chem. Soc, vol.127, pp.16410-16411, 2005.

N. Sperber and R. Fricano, The Reaction of Tributylacetyl Chloride and Anhydrous Cuprous Cyanide, J. Am. Chem. Soc, vol.72, pp.2792-2793, 1950.

S. Lundgren, E. Wingstrand, and C. Moberg, Lewis Acid-Lewis Base-Catalysed Enantioselective Addition of ?-Ketonitriles to Aldehydes, Adv. Synth. Catal, vol.349, pp.364-372, 2007.

G. Urgoitia, R. Sanmartin, M. T. Herrero, and E. Domínguez, An Outstanding Catalyst for the Oxygen-Mediated Oxidation of Arylcarbinols, Arylmethylene and Arylacetylene Compounds, Chem. Commun, vol.51, pp.4799-4802, 2015.

S. Wang, X. Li, H. Liu, L. Xu, J. Zhuang et al., Organocatalytic Enantioselective Direct Additions of Aldehydes to 4-Vinylpyridines and ElectronDeficient Vinylarenes and Their Synthetic Applications, J. Am. Chem. Soc, vol.137, pp.2303-2310, 2015.

S. Ushijima, K. Moriyama, and H. Togo, Facile Preparation of Aromatic Esters from Aromatic Bromides with Ethyl Formate or DMF and Molecular Iodine via Aryllithium, Tetrahedron, vol.68, pp.4701-4709, 2012.

V. Declerck, E. Colacino, X. Bantreil, J. Martinez, F. Lamaty et al., Ethylene Glycol) as Reaction Medium for Mild Mizoroki-Heck Reaction in a Ball-Mill, Chem. Commun, vol.48, pp.11778-11780, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00784597

G. Chelucci, D. Addis, and S. Baldino, A New Approach to the 1,10-Phenanthroline Core, Tetrahedron Lett, vol.48, pp.3359-3362, 2007.

C. M. Conifer, D. J. Law, G. J. Sunley, A. Haynes, J. R. Wells et al., Dicarbonylrhodium(I) Complexes of Bipyridine Ligands with Proximate H-Bonding Substituents and Their Application in Methyl Acetate Carbonylation, Eur. J. Inorg. Chem, pp.3511-3522, 2011.

M. Schlosser and C. Bobbio, Creating Structural Manifolds from a Common Precursor: Basicity Gradient-Driven Isomerization of Halopyridines, Eur. J. Org. Chem, pp.4174-4180, 2002.

C. Aranda, A. Cornejo, J. M. Fraile, E. García-verdugo, M. J. Gil et al., Efficient Enhancement of CopperPyridineoxazoline Catalysts through Immobilization and Process Design, Green Chem, vol.13, pp.983-990, 2011.

Y. Fukudome, H. Naito, T. Hata, and H. Urabe, Copper-Catalyzed 1,2-Double Amination of 1-Halo-1-alkynes. Concise Synthesis of Protected Tetrahydropyrazines and Related Heterocyclic Compounds, J. Am. Chem. Soc, vol.130, pp.1820-1821, 2008.

B. Manteau, P. Genix, L. Brelot, J. Vors, S. Pazenok et al., A General Approach to (Trifluoromethoxy)pyridines: First X-Ray Structure Determinations and Quantum Chemistry Studies, Eur. J. Org. Chem, pp.6043-6066, 2010.

E. J. Corey, S. Shibata, and R. K. Bakshi, An Efficient and Catalytically Enantioselective Route to (S)-(-)-Phenyloxirane, J. Org. Chem, vol.53, pp.2861-2863, 1988.

A. Gomtsyan, R. G. Schmidt, E. K. Bayburt, G. A. Gfesser, E. A. Voight et al., Synthesis and Pharmacology of (Pyridin-2-yl)methanol Derivatives as Novel and Selective Transient Receptor Potential Vanilloid 3 Antagonists, J. Med. Chem, vol.59, pp.4926-4947, 2016.

J. Uenishi, S. Aburatani, and T. Takami, Stereocomplexity and Stereoselective Synthesis of Triamine Molecules Bearing Four Chiral Carbon Centers: Stereodifferentiated Preparation of All 10 Stereoisomers of 2,6-Bis[1-(1-phenylethylamino)ethyl]pyridines, J. Org. Chem, vol.72, pp.132-138, 2007.

U. S. Schubert, C. Eschbaumer, and M. Heller, Stille-Type Cross-Coupling An Efficient Way to Various Symmetrically and Unsymmetrically Substituted Methyl-Bipyridines: Toward New ATRP Catalysts, Org. Lett, vol.2, pp.3373-3376, 2000.

F. Malmedy and T. Wirth, Stereoselective Ketone Rearrangements with Hypervalent Iodine Reagents, Chem. -Eur. J, vol.22, pp.16072-16077, 2016.

S. M. Nicolle, W. Lewis, C. J. Hayes, and C. J. Moody, Stereoselective Synthesis of Highly Substituted Tetrahydrofurans through Diverted Carbene O-H Insertion Reaction, Angew. Chem. Int. Ed, vol.54, pp.8485-8489, 2015.

I. Geibel and J. Christoffers, Synthesis of 1,4-Diketones from ?-Oxo Esters and Enol Acetates by Cerium-Catalyzed Oxidative Umpolung Reaction, Eur. J. Org. Chem, pp.918-920, 2016.

D. Wu and D. F. O'shea, Synthesis and Properties of BF2-3,3'-Dimethyldiarylazadipyrromethene Near-Infrared Fluorophores, Org. Lett, vol.15, pp.3392-3395, 2013.

Y. Onishi, Y. Yoneda, Y. Nishimoto, M. Yasuda, and A. Baba, InCl3/Me3SiCl-Catalyzed Direct Michael Addition of Enol Acetates to ?,?-Unsaturated Ketones, Org. Lett, vol.14, pp.5788-5791, 2012.

W. Yu, Y. Tsoi, Z. Zhou, and A. S. Chan, Palladium-Catalyzed Cross Coupling Reaction of Benzyl Bromides with Diazoesters for Stereoselective Synthesis of (E)-?,?-Diarylacrylates, Org. Lett, vol.11, pp.469-472, 2009.

P. Dey, M. Koli, D. Goswami, A. Sharma, and S. Chattopadhyay, Bmim][Br] as an Inexpensive and Efficient Medium for the Barbier-Type Allylation Reaction Using a Catalytic Amount of Indium: Mechanistic Studies, Eur. J. Org. Chem, pp.1333-1341, 2018.

M. Seredyuk, A. B. Gaspar, M. C. Muñoz, M. Verdaguer, F. Villain et al., Cooperative Spin-Crossover Behaviour in Polymeric 1D Fe II Coordination Compounds: [{Fe(Tba)3}X2]·nH2O, Eur. J. Inorg. Chem, pp.4481-4491, 2007.

B. Milani, A. Marson, E. Zangrando, G. Mestroni, J. M. Ernsting et al., New Monocationic Methylpalladium(II) Compounds with Several Bidentate NitrogenDonor Ligands: Synthesis, Characterisation and Reactivity with CO, Inorganica Chim. Acta, vol.327, pp.188-201, 2002.

E. Bedná?ová, E. Colacino, F. Lamaty, and M. Kotora, A Ruthenium ComplexCatalyzed Cyclotrimerization of Halodiynes with Nitriles. Synthesis of 2-and 3-Halopyridines, Adv. Synth. Catal, vol.358, pp.1916-1923, 2016.

E. Bedná?ová, M. Dra?ínský, ?. Malatinec, I. Císa?ová, F. Lamaty et al., Synthesis of a Bolm's 2,2?-Bipyridine Ligand Analogue and Its Applications, Adv. Synth. Catal, vol.360, pp.2869-2878, 2018.

E. Bedná?ová, D. Ne?as, I. Císa?ová, M. Du?ek, F. Lamaty et al., Synthesis of New Bipyridine N,N'-Dioxides and Their Application in Asymmetric Allylation of Benzaldehyde and Aldol Addition to Acetophenone, Monatsh. Chem, 2018.