, Les figures (A) et (D) totalisent sept et six expériences indépendantes respectivement. Les figures (B) et (C) sont représentatives de quatre et trois expériences indépendantes respectivement, en phase G0/G1 (100K), S (150K) et G2/M (200K) du cycle cellulaire. Les nombres indiqués représentent les proportions de cellules G0/G1, S et G2/M. L'histogramme barre résume la proportion de cellules G2/M au sein de la population DN3b

, Les nombres indiqués représentent les proportions de cellules G0/G1, S et G2/M. L'histogramme barre résume la proportion de cellules G2/M au sein de la population LT CD4 + . (A, C, D) Les données totalisent deux expériences indépendantes. La figure (E) représente une expérience parmi deux et la figure (B) n'est représentative que d'une souris, CD4 + stimulés 48h en présence d'anti-CD28 et anti-CD3. Les droites sur les histogrammes FACS déterminent la population G0/G1 (40K)

. J. References-and-notes-1, J. P. Mandl, N. Monteiro, R. N. Vrisekoop, and . Germain, T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens, Immunity, vol.38, pp.263-274, 2013.

G. Fu, S. Vallée, V. Rybakin, M. V. Mcguire, J. Ampudia et al., Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling, Nat. Immunol, vol.10, pp.848-856, 2009.

A. L. Johnson, L. Aravind, N. Shulzhenko, A. Morgun, S. Choi et al., Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection, Nat. Immunol, vol.10, pp.831-839, 2009.

K. Kakugawa, T. Yasuda, I. Miura, A. Kobayashi, H. Fukiage et al., A novel gene essential for the development of single positive thymocytes, Mol. Cell. Biol, vol.29, pp.5128-5135, 2009.

R. Lesourne, S. Uehara, J. Lee, K. Song, L. Li et al., Themis, a T cell-specific protein important for late thymocyte development, Nat. Immunol, vol.10, pp.840-847, 2009.

M. S. Patrick, H. Oda, K. Hayakawa, Y. Sato, K. Eshima et al., Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.16345-16350, 2009.

W. Paster, C. Brockmeyer, G. Fu, P. C. Simister, B. Wet et al., GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development, J. Immunol, vol.190, pp.3749-3756, 2013.

C. Brockmeyer, W. Paster, D. Pepper, C. P. Tan, D. C. Trudgian et al., T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component, J. Biol. Chem, vol.286, pp.7535-7547, 2011.

R. Lesourne, E. Zvezdova, K. Song, D. El-khoury, S. Uehara et al., Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function, J. Immunol, vol.189, pp.1154-1161, 2012.

G. Fu, J. Casas, S. Rigaud, V. Rybakin, F. Lambolez et al., Themis sets the signal threshold for positive and negative selection in T-cell development, Nature, vol.504, pp.441-445, 2013.

W. Paster, A. M. Bruger, K. Katsch, C. Grégoire, R. Roncagalli et al., SHP1 complex promotes T-cell survival, EMBO J, vol.34, pp.393-409, 2015.

K. G. Johnson, F. G. Leroy, L. K. Borysiewicz, and R. J. Matthews, TCR signaling thresholds regulating T cell development and activation are dependent upon SHP-1, J. Immunol, vol.162, pp.3802-3813, 1999.

D. R. Plas, C. B. Williams, G. J. Kersh, L. S. White, J. M. White et al., Cutting edge: The tyrosine phosphatase SHP-1 regulates thymocyte positive selection, J. Immunol, vol.162, pp.5680-5684, 1999.

J. Zhang, A. Somani, D. Yuen, Y. Yang, P. E. Love et al., Involvement of the SHP-1 tyrosine phosphatase in regulation of T cell selection, J. Immunol, vol.163, pp.3012-3021, 1999.

C. C. Fowler, L. I. Pao, J. N. Blattman, and P. D. Greenberg, SHP-1 in T cells limits the production of CD8 effector cells without impacting the formation of long-lived central memory cells, J. Immunol, vol.185, pp.3256-3267, 2010.

A. E. Moran, K. L. Holzapfel, Y. Xing, N. R. Cunningham, J. S. Maltzman et al., T cell receptor signal strength in T reg and iNKT cell development demonstrated by a novel fluorescent reporter mouse, J. Exp. Med, vol.208, pp.1279-1289, 2011.

R. M. Siegel, M. Katsumata, T. Miyashita, D. C. Louie, M. I. Greene et al., Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice, Proc. Natl. Acad. Sci. U.S.A, vol.89, pp.7003-7007, 1992.

O. Williams, T. Norton, M. Halligey, D. Kioussis, and H. J. Brady, The action of Bax and bcl-2 on T cell selection, J. Exp. Med, vol.188, pp.1125-1133, 1998.

L. F. Reynolds, L. A. Smyth, T. Norton, N. Freshney, J. Downward et al., Vav1 transduces T cell receptor signals to the activation of phospholipase C-g1 via phosphoinositide 3-kinase-dependent and -independent pathways, J. Exp. Med, vol.195, pp.1103-1114, 2002.

A. Saveliev, L. Vanes, O. Ksionda, J. Rapley, S. J. Smerdon et al., Function of the nucleotide exchange activity of vav1 in T cell development and activation, Sci. Signal, vol.2, p.83, 2009.

J. Wu, D. G. Motto, G. A. Koretzky, and A. Weiss, Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation, Immunity, vol.4, pp.593-602, 1996.

B. Aghazadeh, W. E. Lowry, X. Huang, and M. K. Rosen, Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation, Cell, vol.102, pp.625-633, 2000.

S. P. Hehner, T. G. Hofmann, O. Dienz, W. Dröge, and M. L. Schmitz, Tyrosine-phosphorylated Vav1 as a point of integration for T-cell receptor-and CD28-mediated activation of JNK, p38, and interleukin-2 transcription, J. Biol. Chem, vol.275, pp.18160-18171, 2000.

K. V. Salojin, J. Zhang, and T. L. Delovitch, TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1-/PAK-1/p38 MAPK signaling pathway, J. Immunol, vol.163, pp.844-853, 1999.

M. Deckert, S. Tartare-deckert, C. Couture, T. Mustelin, and A. Altman, Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product, Immunity, vol.5, pp.591-604, 1996.

M. Nishida, K. Nagata, Y. Hachimori, M. Horiuchi, K. Ogura et al., Novel recognition mode between Vav and Grb2 SH3 domains, EMBO J, vol.20, pp.2995-3007, 2001.

Z. Ye and D. Baltimore, Binding of Vav to Grb2 through dimerization of Src homology 3 domains, Proc. Natl. Acad. Sci. U.S.A, vol.91, pp.12629-12633, 1994.

W. Zhang, R. P. Trible, M. Zhu, S. K. Liu, C. J. Mcglade et al., Association of Grb2, Gads, and phospholipase C-g1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling, J. Biol. Chem, vol.275, pp.23355-23361, 2000.

N. Fang and G. A. Koretzky, SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity, J. Biol. Chem, vol.274, pp.16206-16212, 1999.

H. Asada, N. Ishii, Y. Sasaki, K. Endo, H. Kasai et al., A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT, J. Exp. Med, vol.189, pp.1383-1390, 1999.

S. K. Liu, N. Fang, G. A. Koretzky, and C. J. Mcglade, The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors, Curr. Biol, vol.9, pp.67-75, 1999.

H. S. Azzam, A. Grinberg, K. Lui, H. Shen, E. W. Shores et al., CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity, J. Exp. Med, vol.188, pp.2301-2311, 1998.

Q. Gong, A. M. Cheng, A. M. Akk, J. Alberola-ila, G. Gong et al., Disruption of T cell signaling networks and development by Grb2 haploid insufficiency, Nat. Immunol, vol.2, pp.29-36, 2001.

I. K. Jang, J. Zhang, Y. J. Chiang, H. K. Kole, D. G. Cronshaw et al., Grb2 functions at the top of the T-cell antigen receptor-induced tyrosine kinase cascade to control thymic selection, Proc. Natl. Acad. Sci. U.S.A, vol.107, pp.10620-10625, 2010.

K. Pfrepper, A. Marie-cardine, L. Simeoni, Y. Kuramitsu, A. Leo et al., Structural and functional dissection of the cytoplasmic domain of the transmembrane adaptor protein SIT (SHP2-interacting transmembrane adaptor protein), Eur. J. Immunol, vol.31, pp.1825-1836, 2001.

L. Simeoni, V. Posevitz, U. Kölsch, I. Meinert, E. Bruyns et al., The transmembrane adapter protein SIT regulates thymic development and peripheral T-cell functions, Mol. Cell. Biol, vol.25, pp.7557-7568, 2005.

A. K. Chakraborty, J. Das, J. Zikherman, M. Yang, C. C. Govern et al., Molecular origin and functional consequences of digital signaling and hysteresis during Ras activation in lymphocytes, Sci. Signal, vol.2, p.2, 2009.

J. Das, M. Ho, J. Zikherman, C. Govern, M. Yang et al., Digital signaling and hysteresis characterize ras activation in lymphoid cells, Cell, vol.136, pp.337-351, 2009.

O. Ksionda, A. Saveliev, R. Köchl, J. Rapley, M. Faroudi et al., Mechanism and function of Vav1 localisation in TCR signalling, J. Cell Sci, vol.125, pp.5302-5314, 2012.

N. Bisson, D. A. James, G. Ivosev, S. A. Tate, R. Bonner et al., Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor, Nat. Biotechnol, vol.29, pp.653-658, 2011.

K. Neumann, T. Oellerich, H. Urlaub, and J. Wienands, The B-lymphoid Grb2 interaction code, Immunol. Rev, vol.232, pp.135-149, 2009.

M. Naramura, H. K. Kole, R. Hu, and H. Gu, Altered thymic positive selection and intracellular signals in Cbl-deficient mice, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.15547-15552, 1998.

E. Naik, J. D. Webster, J. Devoss, J. Liu, R. Suriben et al., Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X, J. Exp. Med, vol.211, pp.1947-1955, 2014.

S. S. Kholmanskikh, H. B. Koeller, A. Wynshaw-boris, T. Gomez, P. C. Letourneau et al., Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility, Nat. Neurosci, vol.9, pp.50-57, 2005.

C. Pedros, G. Gaud, I. Bernard, S. Kassem, M. Chabod et al., An epistatic interaction between Themis1 and Vav1 modulates regulatory T cell function and inflammatory bowel disease development, J. Immunol, vol.195, pp.1608-1616, 2015.

S. Hwang, K. Song, R. Lesourne, J. Lee, J. Pinkhasov et al., Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease, J. Exp. Med, vol.209, pp.1781-1795, 2012.

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.473, pp.337-342, 2011.

U. Koch and F. Radtke, Mechanisms of T cell development and transformation, Annu. Rev. Cell Dev. Biol, vol.27, pp.539-562, 2011.

I. Aifantis, M. Mandal, K. Sawai, A. Ferrando, and T. Vilimas, Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor, Immunol. Rev, vol.209, pp.159-169, 2006.

T. K. Starr, S. C. Jameson, and K. A. Hogquist, Positive and negative selection of T cells, Annu. Rev. Immunol, vol.21, pp.139-176, 2003.

K. A. Hogquist and S. C. Jameson, The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function, Nat. Immunol, vol.15, pp.815-823, 2014.

R. J. Brownlie and R. Zamoyska, T cell receptor signalling networks: branched, diversified and bounded, Nat. Rev. Immunol, vol.13, pp.257-269, 2013.

L. I. Pao, K. Badour, K. A. Siminovitch, and B. G. Neel, Nonreceptor protein-tyrosine phosphatases in immune cell signaling, Annu. Rev. Immunol, vol.25, pp.473-523, 2007.

R. Lesourne, Themis, a T cell-specific protein important for late thymocyte development, Nat. Immunol, vol.10, pp.840-847, 2009.

G. Fu, Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling, Nat. Immunol, vol.10, pp.848-856, 2009.

A. L. Johnson, Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection, Nat. Immunol, vol.10, pp.831-839, 2009.

K. Kakugawa, A novel gene essential for the development of single positive thymocytes, Mol. Cell. Biol, vol.29, pp.5128-5135, 2009.

M. S. Patrick, Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes, Proc. Natl. Acad. Sci. USA, vol.106, pp.16345-16350, 2009.

W. Paster, GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development, J. Immunol, vol.190, pp.3749-3756, 2013.

R. Lesourne, Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function, J. Immunol, vol.189, pp.1154-1161, 2012.

E. Zvezdova, Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability, Sci. Signal, vol.9, p.51, 2016.

W. Paster, A THEMIS:SHP1 complex promotes T-cell survival, EMBO J, vol.34, pp.393-409, 2015.

G. Fu, Themis sets the signal threshold for positive and negative selection in T-cell development, Nature, vol.504, pp.441-445, 2013.

N. R. Gascoigne and O. Acuto, THEMIS: a critical TCR signal regulator for ligand discrimination, Curr. Opin. Immunol, vol.33, pp.86-92, 2015.

T. Okada, Differential function of Themis CABIT domains during T cell development, PLoS One, vol.9, p.89115, 2014.

G. M. Davey, Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells, J. Exp. Med, vol.188, pp.1867-1874, 1998.

E. Zvezdova, In vivo functional mapping of the conserved protein domains within murine Themis1, Immunol. Cell Biol, vol.92, pp.721-728, 2014.

R. Cibotti, J. A. Punt, K. S. Dash, S. O. Sharrow, and A. Singer, Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals, Immunity, vol.6, pp.245-255, 1997.

M. K. Pathak and T. Yi, Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines, J. Immunol, vol.167, pp.3391-3397, 2001.

P. P. Lee, A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival, Immunity, vol.15, pp.763-774, 2001.

G. Huyer, Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate, J. Biol. Chem, vol.272, pp.843-851, 1997.

R. Karisch and B. G. Neel, Methods to monitor classical protein-tyrosine phosphatase oxidation, FEBS J, vol.280, pp.459-475, 2013.

R. D. Michalek, The requirement of reversible cysteine sulfenic acid formation for T cell activation and function, J. Immunol, vol.179, pp.6456-6467, 2007.

D. K. Singh, The strength of receptor signaling is centrally controlled through a cooperative loop between Ca 2+ and an oxidant signal, Cell, vol.121, pp.281-293, 2005.

M. Capasso, HVCN1 modulates BCR signal strength via regulation of BCRdependent generation of reactive oxygen species, Nat. Immunol, vol.11, pp.265-272, 2010.

U. Lorenz, SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels, Immunol. Rev, vol.228, pp.342-359, 2009.

T. Ozawa, K. Nakata, K. Mizuno, and H. Yakura, Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells, Int. Immunol, vol.19, pp.1049-1061, 2007.

S. Devadas, L. Zaritskaya, S. G. Rhee, L. Oberley, and M. S. Williams, Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression, J. Exp. Med, vol.195, pp.59-70, 2002.

M. Los, IL-2 gene expression and NF-B activation through CD28 requires reactive oxygen production by 5-lipoxygenase, EMBO J, vol.14, pp.3731-3740, 1995.

S. H. Jackson, S. Devadas, J. Kwon, L. A. Pinto, and M. S. Williams, T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation, Nat. Immunol, vol.5, pp.818-827, 2004.

G. Pani, R. Colavitti, S. Borrello, and T. Galeotti, Endogenous oxygen radicals modulate protein tyrosine phosphorylation and JNK-1 activation in lectin-stimulated thymocytes, Biochem. J, vol.347, pp.173-181, 2000.

D. R. Plas, Direct regulation of ZAP-70 by SHP-1 in T cell antigen receptor signaling, Science, vol.272, pp.1173-1176, 1996.

B. Halliwell, Cell culture, oxidative stress, and antioxidants: avoiding pitfalls, Biomed. J, vol.37, pp.99-105, 2014.

I. Stefanova, TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways, Nat. Immunol, vol.4, pp.248-254, 2003.

J. N. Andersen, Structural and evolutionary relationships among protein tyrosine phosphatase domains, Mol. Cell. Biol, vol.21, pp.7117-7136, 2001.

J. J. Tanner, Z. D. Parsons, A. H. Cummings, H. Zhou, and K. S. Gates, Redox regulation of protein tyrosine phosphatases: structural and chemical aspects, Antioxid. Redox Signal, vol.15, pp.77-97, 2011.

M. J. Pregel and A. C. Storer, Active site titration of the tyrosine phosphatases SHP-1 and PTP1B using aromatic disulfides. Reaction with the essential cysteine residue in the active site, J. Biol. Chem, vol.272, pp.23552-23558, 1997.

C. Y. Chen, D. Willard, and J. Rudolph, Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines, Biochemistry, vol.48, pp.1399-1409, 2009.

J. E. Smith-garvin, G. A. Koretzky, and M. S. Jordan, T cell activation, Annu. Rev. Immunol, vol.27, pp.591-619, 2009.

S. Bunda, Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis, Nat. Commun, vol.6, p.8859, 2015.

X. Fang, Shp2 activates Fyn and Ras to regulate RBL-2H3 mast cell activation following FcepsilonRI aggregation, PLoS One, vol.7, p.40566, 2012.

E. Y. Moon, Y. H. Han, D. S. Lee, Y. M. Han, and D. Y. Yu, Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxII-null thymus, Eur. J. Immunol, vol.34, pp.2119-2128, 2004.

R. Jin, Trx1/TrxR1 system regulates post-selected DP thymocytes survival by modulating ASK1-JNK/p38 MAPK activities, Immunol. Cell Biol, vol.93, pp.744-752, 2015.

L. Simeoni and I. Bogeski, Redox regulation of T-cell receptor signaling, Biol. Chem, vol.396, pp.555-568, 2015.

A. Garreau, G. Blaize, J. Argenty, N. Rouquié, A. Tourdès et al., Grb2-Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection, J Immunol, vol.3, pp.2758-2766, 2017.

, stimulé des thymocytes issus de souris déficientes en USP9X ou en THEMIS1 avec des anticorps anti-CD3 et anti-CD4 pendant 1 ou 3 minutes. J'ai analysé par westernblot, la phosphorylation de SHP-1 et ZAP-70. Il s'agit de la figure 3F de l'article. D'autres expériences consistant à analyser la signalisation suite au traitement des thymocytes avec l'inhibiteur de déubiquitine enzyme PR619 ont aussi été réalisées mais n

A. C. Carpenter and R. Bosselut, Decision checkpoints in the thymus, Nat. Immunol, vol.11, pp.666-673, 2010.

T. K. Starr, S. C. Jameson, and K. A. Hogquist, Positive and negative selection of T cells, Annu. Rev. Immunol, vol.21, pp.139-176, 2003.

K. A. Hogquist and S. C. Jameson, The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function, Nat. Immunol, vol.15, pp.815-823, 2014.

R. W. Wilkinson, G. Anderson, J. J. Owen, and E. J. Jenkinson, Positive selection of thymocytes involves sustained interactions with the thymic microenvironment, J. Immunol, vol.155, pp.5234-5240, 1995.

S. Mariathasan, A. Zakarian, D. Bouchard, A. M. Michie, J. C. Zúñiga-pfl?-ucker et al., Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection, J. Immunol, vol.167, pp.4966-4973, 2001.

J. O. Ross, H. J. Melichar, B. B. Au-yeung, P. Herzmark, A. Weiss et al., Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns, Proc. Natl. Acad. Sci. USA, vol.111, pp.2550-2558, 2014.

M. A. Daniels, E. Teixeiro, J. Gill, B. Hausmann, D. Roubaty et al., Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling, Nature, vol.444, pp.724-729, 2006.

B. B. Au-yeung, H. J. Melichar, J. O. Ross, D. A. Cheng, J. Zikherman et al., Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development, Nat. Immunol, vol.15, pp.687-694, 2014.

E. Brugnera, A. Bhandoola, R. Cibotti, Q. Yu, T. I. Guinter et al., Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells, Immunity, vol.13, pp.59-71, 2000.

I. L. Dzhagalov, K. G. Chen, P. Herzmark, and E. A. Robey, Elimination of self-reactive T cells in the thymus: a timeline for negative selection, PLoS Biol, vol.11, p.1001566, 2013.

O. Acuto, V. D. Bartolo, and F. Michel, Tailoring T-cell receptor signals by proximal negative feedback mechanisms, Nat. Rev. Immunol, vol.8, pp.699-712, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00369557

B. Malissen, C. Grégoire, M. Malissen, and R. Roncagalli, Integrative biology of T cell activation, Nat. Immunol, vol.15, pp.790-797, 2014.

A. Kosugi, J. Sakakura, K. Yasuda, M. Ogata, and T. Hamaoka, Involvement of SHP-1 tyrosine phosphatase in TCR-mediated signaling pathways in lipid rafts, Immunity, vol.14, pp.669-680, 2001.

U. Lorenz, SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels, Immunol. Rev, vol.228, pp.342-359, 2009.

I. Stefanová, B. Hemmer, M. Vergelli, R. Martin, W. E. Biddison et al., TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways, Nat. Immunol, vol.4, pp.248-254, 2003.

G. Fu, S. Vallée, V. Rybakin, M. V. Mcguire, J. Ampudia et al., Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling, Nat. Immunol, vol.10, pp.848-856, 2009.

A. L. Johnson, L. Aravind, N. Shulzhenko, A. Morgun, S. Y. Choi et al., Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection, Nat. Immunol, vol.10, pp.831-839, 2009.

R. Lesourne, S. Uehara, J. Lee, K. D. Song, L. Li et al., Themis, a T cell-specific protein important for late thymocyte development, Nat. Immunol, vol.10, pp.840-847, 2009.

M. S. Patrick, H. Oda, K. Hayakawa, Y. Sato, K. Eshima et al., Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes, Proc. Natl. Acad. Sci. USA, vol.106, pp.16345-16350, 2009.

R. Lesourne, E. Zvezdova, K. D. Song, D. El-khoury, S. Uehara et al., Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function, J. Immunol, vol.189, pp.1154-1161, 2012.

W. Paster, C. Brockmeyer, G. Fu, P. C. Simister, B. Wet et al., GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development, J. Immunol, vol.190, pp.3749-3756, 2013.

S. Choi, C. Warzecha, E. Zvezdova, J. Lee, J. Argenty et al., THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1, Nat. Immunol, vol.18, pp.433-441, 2017.

Q. Gong, A. M. Cheng, A. M. Akk, J. Alberola-ila, G. Gong et al., Disruption of T cell signaling networks and development by Grb2 haploid insufficiency, Nat. Immunol, vol.2, pp.29-36, 2001.

S. Stegeman, L. A. Jolly, S. Premarathne, J. Gecz, L. J. Richards et al., Loss of Usp9x disrupts cortical architecture, hippocampal development and TGFb-mediated axonogenesis, PLoS One, vol.8, p.68287, 2013.

D. Théard, F. Labarrade, M. Partisani, J. Milanini, H. Sakagami et al., USP9x-mediated deubiquitination of EFA6 regulates de novo tight junction assembly, EMBO J, vol.29, pp.1499-1509, 2010.

D. Komander, M. J. Clague, and S. Urbé, Breaking the chains: structure and function of the deubiquitinases, Nat. Rev. Mol. Cell Biol, vol.10, pp.550-563, 2009.

E. Zvezdova, J. Mikolajczak, A. Garreau, M. Marcellin, L. Rigal et al., Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability, Sci. Signal, vol.9, p.51, 2016.

X. Tian, N. S. Isamiddinova, R. J. Peroutka, S. J. Goldenberg, M. R. Mattern et al., Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format, Assay Drug Dev. Technol, vol.9, pp.165-173, 2011.

J. Shi and H. T. Petrie, Activation kinetics and off-target effects of thymus-initiated cre transgenes, PLoS One, vol.7, p.46590, 2012.

E. Naik and V. M. Dixit, Usp9X is required for lymphocyte activation and homeostasis through its control of ZAP70 ubiquitination and PKCb kinase activity, J. Immunol, vol.196, pp.3438-3451, 2016.

I. K. Jang, J. Zhang, Y. J. Chiang, H. K. Kole, D. G. Cronshaw et al., Grb2 functions at the top of the T-cell antigen receptor-induced tyrosine kinase cascade to control thymic selection, Proc. Natl. Acad. Sci. USA, vol.107, pp.10620-10625, 2010.

C. M. Pickart, Targeting of substrates to the 26S proteasome, FASEB J, vol.11, pp.1055-1066, 1997.

N. D. Udeshi, T. Svinkina, P. Mertins, E. Kuhn, D. R. Mani et al., Refined preparation and use of anti-diglycine remnant (K-?-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments, Mol. Cell. Proteomics, vol.12, pp.825-831, 2013.

E. Naik, J. D. Webster, J. Devoss, J. Liu, R. Suriben et al., Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X, J. Exp. Med, vol.211, pp.1947-1955, 2014.

X. Liu and R. Bosselut, Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo, Nat. Immunol, vol.5, pp.280-288, 2004.

T. L. Stephen, A. Tikhonova, J. M. Riberdy, and T. M. Laufer, The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla, J. Immunol, vol.183, pp.5554-5562, 2009.

J. Li, R. Reantragoon, L. Kostenko, A. J. Corbett, G. Varigos et al., The frequency of mucosal--associated invariant T cells is selectively increased in dermatitis herpetiformis, Australas J Dermatol, vol.58, pp.200-204, 2017.

H. Tsuda, M. Sakai, T. Michimata, K. Tanebe, S. Hayakawa et al., Characterization of NKT cells in human peripheral blood and decidual lymphocytes, Am J Reprod Immunol, vol.45, pp.295-302, 2001.

K. P. Kearse, J. L. Roberts, and A. Singer, TCR alpha--CD3 delta epsilon association is the initial step in alpha beta dimer formation in murine T cells and is limiting in immature CD4+ CD8+ thymocytes, Immunity, vol.2, pp.391-399, 1995.

J. J. Sussman, J. S. Bonifacino, -. Lippincott, J. Schwartz, A. M. Weissman et al., Failure to synthesize the T cell CD3--zeta chain: structure and function of a partial T cell receptor complex, Cell, vol.52, pp.85-95, 1988.

L. Bolliger and B. Johansson, Identification and functional characterization of the zeta--chain dimerization motif for TCR surface expression, J Immunol, vol.163, pp.3867-3876, 1999.

M. E. Call, J. Pyrdol, M. Wiedmann, and K. W. Wucherpfennig, The organizing principle in the formation of the T cell receptor--CD3 complex, Cell, vol.111, pp.967-979, 2002.

P. Cosson, S. P. Lankford, J. S. Bonifacino, and R. D. Klausner, Membrane protein association by potential intramembrane charge pairs, Nature, vol.351, pp.414-416, 1991.

N. Soetandyo, Q. Wang, Y. Ye, and L. Li, Role of intramembrane charged residues in the quality control of unassembled T--cell receptor alpha--chains at the endoplasmic reticulum, J Cell Sci, vol.123, pp.1031-1038, 2010.

A. Alcover, R. A. Mariuzza, M. Ermonval, and O. Acuto, Lysine 271 in the transmembrane domain of the T--cell antigen receptor beta chain is necessary for its assembly with the CD3 complex but not for alpha/beta dimerization, J Biol Chem, vol.265, pp.4131-4135, 1990.

Z. G. Li, W. P. Wu, and N. Manolios, Structural mutations in the constant region of the T--cell antigen receptor (TCR)beta chain and their effect on TCR alpha and beta chain interaction, Immunology, vol.88, pp.524-530, 1996.

B. A. Fields and R. A. Mariuzza, Structure and function of the T--cell receptor: insights from X--ray crystallography, Immunol Today, vol.17, pp.330-336, 1996.

K. C. Garcia, M. Degano, R. L. Stanfield, A. Brunmark, M. R. Jackson et al., An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR--MHC complex, Science, vol.274, pp.209-219, 1996.

A. M. Wegener, X. Hou, J. Dietrich, and C. Geisler, Distinct domains of the CD3--gamma chain are involved in surface expression and function of the T cell antigen receptor, J Biol Chem, vol.270, pp.4675-4680, 1995.

L. Bolliger, B. Johansson, and E. Palmer, The short extracellular domain of the T cell receptor zeta chain is involved in assembly and signal transduction, Mol Immunol, vol.34, pp.819-827, 1997.

B. Johansson, E. Palmer, and L. Bolliger, The extracellular domain of the zeta--chain is essential for TCR function, J Immunol, vol.162, pp.878-885, 1999.

B. T. Bäckström, B. Rubin, A. Peter, G. Tiefenthaler, and E. Palmer, T cell receptor alpha--chain tail is required for protein kinase C--mediated down--regulation, but not for signaling, Eur J Immunol, vol.27, pp.1433-1441, 1997.

M. Reth, Antigen receptor tail clue, Nature, vol.338, pp.383-384, 1989.

B. A. Irving and A. Weiss, The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor--associated signal transduction pathways, Cell, vol.64, pp.891-901, 1991.

F. Letourneur and R. D. Klausner, Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon, Science, vol.255, pp.79-82, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00314007

D. B. Straus and A. Weiss, The CD3 chains of the T cell antigen receptor associate with the ZAP--70 tyrosine kinase and are tyrosine phosphorylated after receptor stimulation, J Exp Med, vol.178, pp.1523-1530, 1993.

M. L. Bettini, P. C. Chou, C. S. Guy, T. Lee, K. M. Vignali et al., Cutting Edge: CD3 ITAM Diversity Is Required for Optimal TCR Signaling and Thymocyte Development, J Immunol, vol.199, pp.1555-1560, 2017.

R. Sunder--plassmann, F. Lialios, M. Madsen, S. Koyasu, and E. L. Reinherz, Functional analysis of immunoreceptor tyrosine--based activation motif (ITAM)--mediated signal transduction: the two YxxL segments within a single CD3zeta--ITAM are functionally distinct, Eur J Immunol, vol.27, pp.2001-2009, 1997.

P. Mombaerts, J. Iacomini, R. S. Johnson, K. Herrup, S. Tonegawa et al., RAG--1--deficient mice have no mature B and T lymphocytes, Cell, vol.68, pp.869-877, 1992.

D. G. Schatz and P. C. Swanson, V(D)J recombination: mechanisms of initiation, Annu Rev Genet, vol.45, pp.167-202, 2011.

B. P. Sleckman, C. G. Bardon, R. Ferrini, L. Davidson, and F. W. Alt, Function of the TCR alpha enhancer in alphabeta and gammadelta T cells, Immunity, vol.7, pp.505-515, 1997.

G. Bouvier, F. Watrin, M. Naspetti, C. Verthuy, P. Naquet et al., Deletion of the mouse T--cell receptor beta gene enhancer blocks alphabeta T--cell development, Proc Natl Acad Sci, pp.7877-7881, 1996.

J. C. Bories, J. Demengeot, L. Davidson, and F. W. Alt, Gene--targeted deletion and replacement mutations of the T--cell receptor beta--chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility, Proc Natl Acad Sci, pp.7871-7876, 1996.

R. J. Monroe, K. J. Seidl, F. Gaertner, S. Han, F. Chen et al., RAG2:GFP knockin mice reveal novel aspects of RAG2 expression in primary and peripheral lymphoid tissues, Immunity, vol.11, pp.201-212, 1999.

J. P. Roose, M. Diehn, M. G. Tomlinson, J. Lin, A. A. Alizadeh et al., T cell receptor--independent basal signaling via Erk and Abl kinases suppresses RAG gene expression, PLoS Biol, vol.1, p.53, 2003.

A. K. Patra, T. Drewes, S. Engelmann, S. Chuvpilo, H. Kishi et al., PKB rescues calcineurin/NFAT--induced arrest of Rag expression and pre--T cell differentiation, J Immunol, vol.177, pp.4567-4576, 2006.

J. Chao, G. Rothschild, and U. Basu, Ubiquitination events that regulate recombination of immunoglobulin Loci gene segments, Front Immunol, vol.5, 2014.

Y. Liu, R. Subrahmanyam, T. Chakraborty, R. Sen, and S. Desiderio, A plant homeodomain in RAG--2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen--receptor--gene rearrangement, Immunity, vol.27, pp.561-571, 2007.

A. G. Matthews, A. J. Kuo, S. Ramón--maiques, S. Han, K. S. Champagne et al., RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination, Nature, vol.450, pp.1106-1110, 2007.

K. S. Hathcock, L. Farrington, I. Ivanova, F. Livak, R. Selimyan et al., The requirement for pre--TCR during thymic differentiation enforces a developmental pause that is essential for V--DJ? rearrangement, PLoS One, vol.6, p.20639, 2011.

P. J. Maddon, S. M. Molineaux, D. E. Maddon, K. A. Zimmerman, M. Godfrey et al., Structure and expression of the human and mouse T4 genes, Proc Natl Acad Sci U S A, vol.84, pp.9155-9159, 1987.

A. M. Norment and D. R. Littman, A second subunit of CD8 is expressed in human T cells, EMBO J, vol.7, pp.3433-3439, 1988.

L. Shiue, S. D. Gorman, and J. R. Parnes, A second chain of human CD8 is expressed on peripheral blood lymphocytes, J Exp Med, vol.168, pp.1993-2005, 1988.

C. Doyle and J. L. Strominger, Interaction between CD4 and class II MHC molecules mediates cell adhesion, Nature, vol.330, pp.256-259, 1987.

A. M. Norment, R. D. Salter, P. Parham, V. H. Engelhard, and D. R. Littman, Cell--cell adhesion mediated by CD8 and MHC class I molecules, Nature, vol.336, pp.79-81, 1988.

Y. Rosenstein, S. Ratnofsky, S. J. Burakoff, and S. H. Herrmann, Direct evidence for binding of CD8 to HLA class I antigens, J Exp Med, vol.169, pp.149-160, 1989.

R. König, L. Y. Huang, and R. N. Germain, MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8, Nature, vol.356, pp.796-798, 1992.

T. A. Potter, T. V. Rajan, R. F. Dick, and J. A. Bluestone, Substitution at residue 227 of H--2 class I molecules abrogates recognition by CD8--dependent, but not CD8--independent, cytotoxic T lymphocytes, Nature, vol.337, pp.73-75, 1989.

R. D. Salter, R. J. Benjamin, P. K. Wesley, S. E. Buxton, T. P. Garrett et al., A binding site for the T--cell co--receptor CD8 on the alpha 3 domain of HLA--A2, Nature, vol.345, pp.41-46, 1990.

L. Wooldridge, H. A. Van-den-berg, M. Glick, E. Gostick, B. Laugel et al., Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor--antigen complexes at the cell surface, J Biol Chem, vol.280, pp.27491-27501, 2005.

K. C. Garcia, C. A. Scott, A. Brunmark, F. R. Carbone, P. A. Peterson et al., CD8 enhances formation of stable T--cell receptor/MHC class I molecule complexes, Nature, vol.384, pp.577-581, 1996.

J. B. Huppa, M. Axmann, M. A. Mörtelmaier, B. F. Lillemeier, E. W. Newell et al., TCR--peptide--MHC interactions in situ show accelerated kinetics and increased affinity, Nature, vol.463, pp.963-967, 2010.

A. Veillette, M. A. Bookman, E. M. Horak, and J. B. Bolen, The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine--protein kinase p56lck, Cell, vol.55, pp.301-308, 1988.

M. Iwashima, B. A. Irving, N. S. Van-oers, A. C. Chan, and A. Weiss, Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases, Science, vol.263, pp.1136-1139, 1994.

M. N. Artyomov, M. Lis, S. Devadas, M. M. Davis, and A. K. Chakraborty, CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery, Proc Natl Acad Sci U S A, vol.107, pp.16916-16921, 2010.

N. Jiang, J. Huang, L. J. Edwards, B. Liu, Y. Zhang et al., Two--stage cooperative T cell receptor--peptide major histocompatibility complex--CD8 trimolecular interactions amplify antigen discrimination, Immunity, vol.34, pp.13-23, 2011.

J. Casas, J. Brzostek, V. I. Zarnitsyna, J. S. Hong, Q. Wei et al., Ligand--engaged TCR is triggered by Lck not associated with CD8 coreceptor, Nat Commun, vol.5, p.5624, 2014.

D. Gil, W. W. Schamel, M. Montoya, -. Sánchez, F. Madrid et al., Recruitment of Nck by CD3 epsilon reveals a ligand--induced conformational change essential for T cell receptor signaling and synapse formation, Cell, vol.109, pp.901-912, 2002.

D. Gil, A. G. Schrum, B. Alarcón, and E. Palmer, T cell receptor engagement by peptide--MHC ligands induces a conformational change in the CD3 complex of thymocytes, J Exp Med, vol.201, pp.517-522, 2005.

C. J. De-la, T. Kruger, C. A. Parks, R. L. Silge, N. S. Van-oers et al., Basal and antigen--induced exposure of the proline--rich sequence in CD3?, J Immunol, vol.186, pp.2282-2290, 2011.

S. Minguet, M. Swamy, B. Alarcón, I. F. Luescher, and W. W. Schamel, Full activation of the T cell receptor requires both clustering and conformational changes at CD3, Immunity, vol.26, pp.43-54, 2007.

N. S. Van-oers, N. Killeen, and A. Weiss, Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP--70 in murine thymocytes, J Exp Med, vol.183, pp.1053-1062, 1996.

A. C. Chan, M. Iwashima, C. W. Turck, and A. Weiss, ZAP--70: a 70 kd protein--tyrosine kinase that associates with the TCR zeta chain, Cell, vol.71, pp.649-662, 1992.

W. Zhang, -. Sloan, J. Lancaster, J. Kitchen, R. P. Trible et al., LAT: the ZAP--70 tyrosine kinase substrate that links T cell receptor to cellular activation, Cell, vol.92, pp.83-92, 1998.

P. E. Paz, S. Wang, H. Clarke, X. Lu, D. Stokoe et al., Mapping the Zap--70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells, Biochem J, vol.356, pp.461-471, 2001.

N. Abraham and A. Veillette, Activation of p56lck through mutation of a regulatory carboxy--terminal tyrosine residue requires intact sites of autophosphorylation and myristylation, Mol Cell Biol, vol.10, pp.5197-5206, 1990.

L. A. Paige, M. J. Nadler, M. L. Harrison, J. M. Cassady, and R. L. Geahlen, Reversible palmitoylation of the protein--tyrosine kinase p56lck, J Biol Chem, vol.268, pp.8669-8674, 1993.

D. B. Straus, A. C. Chan, B. Patai, and A. Weiss, SH2 domain function is essential for the role of the Lck tyrosine kinase in T cell receptor signal transduction, J Biol Chem, vol.271, pp.9976-9981, 1996.

L. Caron, N. Abraham, T. Pawson, and A. Veillette, Structural requirements for enhancement of T--cell responsiveness by the lymphocyte--specific tyrosine protein kinase p56lck, Mol Cell Biol, vol.12, pp.2720-2729, 1992.

M. F. Denny, H. C. Kaufman, A. C. Chan, and D. B. Straus, The lck SH3 domain is required for activation of the mitogen--activated protein kinase pathway but not the initiation of T--cell antigen receptor signaling, J Biol Chem, vol.274, pp.5146-5152, 1999.

A. S. Shaw, K. E. Amrein, C. Hammond, D. F. Stern, B. M. Sefton et al., The lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino--terminal domain, Cell, vol.59, pp.627-636, 1989.

J. M. Turner, M. H. Brodsky, B. A. Irving, S. D. Levin, R. M. Perlmutter et al., Interaction of the unique N--terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs, Cell, vol.60, pp.755-765, 1990.

H. L. Ostergaard, D. A. Shackelford, T. R. Hurley, P. Johnson, R. Hyman et al., Expression of CD45 alters phosphorylation of the lck--encoded tyrosine protein kinase in murine lymphoma T--cell lines, Proc Natl Acad Sci U S A, vol.86, pp.8959-8963, 1989.

K. E. Amrein and B. M. Sefton, Mutation of a site of tyrosine phosphorylation in the lymphocyte--specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts, Proc Natl Acad Sci U S A, vol.85, pp.4247-4251, 1988.

W. Xu, S. C. Harrison, and M. J. Eck, Three--dimensional structure of the tyrosine kinase c--Src, Nature, vol.385, pp.595-602, 1997.

F. Sicheri, I. Moarefi, and J. Kuriyan, Crystal structure of the Src family tyrosine kinase Hck, Nature, vol.385, pp.602-609, 1997.

W. Xu, A. Doshi, M. Lei, M. J. Eck, and S. C. Harrison, Crystal structures of c--Src reveal features of its autoinhibitory mechanism, Mol Cell, vol.3, pp.629-638, 1999.

J. S. Hardwick and B. M. Sefton, Activation of the Lck tyrosine protein kinase by hydrogen peroxide requires the phosphorylation of Tyr--394, Proc Natl Acad Sci, vol.92, pp.4527-4531, 1995.

K. Nika, C. Soldani, M. Salek, W. Paster, A. Gray et al., Constitutively active Lck kinase in T cells drives antigen receptor signal transduction, Immunity, vol.32, pp.766-777, 2010.

A. C. Chan, B. A. Irving, J. D. Fraser, and A. Weiss, The zeta chain is associated with a tyrosine kinase and upon T--cell antigen receptor stimulation associates with ZAP--70, a 70--kDa tyrosine phosphoprotein, Proc Natl Acad Sci U S A, vol.88, pp.9166-9170, 1991.

R. L. Wange, S. N. Malek, S. Desiderio, and L. E. Samelson, Tandem SH2 domains of ZAP--70 bind to T cell antigen receptor zeta and CD3 epsilon from activated Jurkat T cells, J Biol Chem, vol.268, pp.19797-19801, 1993.

J. D. Watts, M. Affolter, D. L. Krebs, R. L. Wange, L. E. Samelson et al., Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP--70, J Biol Chem, vol.269, pp.29520-29529, 1994.

B. L. Williams, B. J. Irvin, S. L. Sutor, C. C. Chini, E. Yacyshyn et al., Phosphorylation of Tyr319 in ZAP--70 is required for T--cell antigen receptor--dependent phospholipase C--gamma1 and Ras activation, EMBO J, vol.18, pp.1832-1844, 1999.

A. C. Chan, M. Dalton, R. Johnson, G. H. Kong, T. Wang et al., Activation of ZAP--70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function, EMBO J, vol.14, pp.2499-2508, 1995.

L. Grazioli, V. Germain, A. Weiss, and O. Acuto, Anti--peptide antibodies detect conformational changes of the inter--SH2 domain of ZAP--70 due to binding to the zeta chain and to intramolecular interactions, J Biol Chem, vol.273, pp.8916-8921, 1998.

M. H. Hatada, X. Lu, E. R. Laird, J. Green, J. P. Morgenstern et al., Molecular basis for interaction of the protein tyrosine kinase ZAP--70 with the T--cell receptor, Nature, vol.377, pp.32-38, 1995.

R. H. Folmer, S. Geschwindner, and Y. Xue, Crystal structure and NMR studies of the apo SH2 domains of ZAP--70: two bikes rather than a tandem, Biochemistry, vol.41, pp.14176-14184, 2002.

J. Wu, Q. Zhao, T. Kurosaki, and A. Weiss, The Vav binding site (Y315) in ZAP--70 is critical for antigen receptor--mediated signal transduction, J Exp Med, vol.185, pp.1877-1882, 1997.

D. Bartolo, V. Mège, D. Germain, V. Pelosi, M. Dufour et al., Tyrosine 319, a newly identified phosphorylation site of ZAP--70, plays a critical role in T cell antigen receptor signaling, J Biol Chem, vol.274, pp.6285-6294, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00138130

T. Brdicka, T. A. Kadlecek, J. P. Roose, A. W. Pastuszak, and A. Weiss, Intramolecular regulatory switch in ZAP--70: analogy with receptor tyrosine kinases, Mol Cell Biol, vol.25, pp.4924-4933, 2005.

W. Zhang, R. P. Trible, M. Zhu, S. K. Liu, C. J. Mcglade et al., Association of Grb2, Gads, and phospholipase C--gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor--mediated signaling, J Biol Chem, vol.275, pp.23355-23361, 2000.

J. Lin and A. Weiss, Identification of the minimal tyrosine residues required for linker for activation of T cell function, J Biol Chem, vol.276, pp.29588-29595, 2001.

M. S. Patrick, H. Oda, K. Hayakawa, Y. Sato, K. Eshima et al., Gasp, a Grb2--associating protein, is critical for positive selection of thymocytes, Proc Natl Acad Sci U S A, vol.106, pp.16345-16350, 2009.

W. Paster, C. Brockmeyer, G. Fu, P. C. Simister, B. De-wet et al., GRB2--mediated recruitment of THEMIS to LAT is essential for thymocyte development, J Immunol, vol.190, pp.3749-3756, 2013.

S. K. Liu, N. Fang, G. A. Koretzky, and C. J. Mcglade, The hematopoietic--specific adaptor protein gads functions in T--cell signaling via interactions with the SLP--76 and LAT adaptors, Curr Biol, vol.9, pp.67-75, 1999.

J. Bubeck-wardenburg, C. Fu, J. K. Jackman, H. Flotow, S. E. Wilkinson et al., Phosphorylation of SLP--76 by the ZAP--70 protein--tyrosine kinase is required for T--cell receptor function, J Biol Chem, vol.271, pp.19641-19644, 1996.

S. C. Bunnell, M. Diehn, M. B. Yaffe, P. R. Findell, L. C. Cantley et al., Biochemical interactions integrating Itk with the T cell receptor--initiated signaling cascade, J Biol Chem, vol.275, pp.2219-2230, 2000.

K. Q. Liu, S. C. Bunnell, C. B. Gurniak, and L. J. Berg, T cell receptor--initiated calcium release is uncoupled from capacitative calcium entry in Itk--deficient T cells, J Exp Med, vol.187, pp.1721-1727, 1998.

L. Wunderlich, A. Faragó, J. Downward, and L. Buday, Association of Nck with tyrosine--phosphorylated SLP--76 in activated T lymphocytes, Eur J Immunol, vol.29, pp.1068-1075, 1999.

M. Raab, A. J. Da-silva, P. R. Findell, and C. E. Rudd, Regulation of Vav--SLP--76 binding by ZAP--70 and its relevance to TCR zeta/CD3 induction of interleukin--2, Immunity, vol.6, pp.155-164, 1997.

A. J. Da-silva, Z. Li, C. De-vera, E. Canto, P. Findell et al., Cloning of a novel T--cell protein FYB that binds FYN and SH2--domain--containing leukocyte protein 76 and modulates interleukin 2 production, Proc Natl Acad Sci U S A, vol.94, pp.7493-7498, 1997.

H. Wang, F. E. Mccann, J. D. Gordan, X. Wu, M. Raab et al., ADAP--SLP--76 binding differentially regulates supramolecular activation cluster (SMAC) formation relative to T cell--APC conjugation, J Exp Med, vol.200, pp.1063-1074, 2004.

A. Weiss, G. Koretzky, R. C. Schatzman, and T. Kadlecek, Functional activation of the T--cell antigen receptor induces tyrosine phosphorylation of phospholipase C--gamma 1, Proc Natl Acad Sci U S A, vol.88, pp.5484-5488, 1991.

S. G. Rhee, Regulation of phosphoinositide--specific phospholipase C, Annu Rev Biochem, vol.70, pp.281-312, 2001.

R. S. Lewis, Calcium signaling mechanisms in T lymphocytes, Annu Rev Immunol, vol.19, pp.497-521, 2001.

P. J. Shaw, B. Qu, M. Hoth, and S. Feske, Molecular regulation of CRAC channels and their role in lymphocyte function, Cell Mol Life Sci, vol.70, pp.2637-2656, 2013.

S. Baksh and S. J. Burakoff, The role of calcineurin in lymphocyte activation, Semin Immunol, vol.12, pp.405-415, 2000.

M. Savignac, B. Pintado, A. Gutierrez--adan, M. Palczewska, B. Mellström et al., Transcriptional repressor DREAM regulates T--lymphocyte proliferation and cytokine gene expression, EMBO J, vol.24, pp.3555-3564, 2005.

J. P. Roose, M. Mollenauer, V. A. Gupta, J. Stone, and A. Weiss, A diacylglycerol--protein kinase C--RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells, Mol Cell Biol, vol.25, pp.4426-4441, 2005.

J. C. Houtman, H. Yamaguchi, -. Barda, M. Saad, A. Braiman et al., Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1, Nat Struct Mol Biol, vol.13, pp.798-805, 2006.

M. Rincón, MAP--kinase signaling pathways in T cells, Curr Opin Immunol, vol.13, pp.339-345, 2001.

W. Yu, W. J. Fantl, G. Harrowe, and L. T. Williams, Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK, Curr Biol, vol.8, pp.56-64, 1998.

A. Nguyen, W. R. Burack, J. L. Stock, R. Kortum, O. V. Chaika et al., Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen--activated protein kinase activation in vivo, Mol Cell Biol, vol.22, pp.3035-3045, 2002.

M. N. Laurent, D. M. Ramirez, and J. Alberola--ila, Kinase suppressor of Ras couples Ras to the ERK cascade during T cell development, J Immunol, vol.173, pp.986-992, 2004.

S. A. Matheny, C. Chen, R. L. Kortum, G. L. Razidlo, R. E. Lewis et al., Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP, Nature, vol.427, pp.256-260, 2004.

C. Chen, R. E. Lewis, and M. A. White, IMP modulates KSR1--dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds, J Biol Chem, vol.283, pp.12789-12796, 2008.

S. A. Matheny and M. A. White, Signaling threshold regulation by the Ras effector IMP, J Biol Chem, vol.284, pp.11007-11011, 2009.

S. Gerondakis, T. S. Fulford, N. L. Messina, and R. J. Grumont, NF--?B control of T cell development, Nat Immunol, vol.15, pp.15-25, 2014.

M. Thome, BCL--10 and MALT1 in lymphocyte development and activation, Nat Rev Immunol, vol.1, pp.348-359, 2004.

E. M. Genot, C. Arrieumerlou, G. Ku, B. M. Burgering, A. Weiss et al., The T--cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositide 3--kinase, Mol Cell Biol, vol.20, pp.5469-5478, 2000.

R. Chen, O. Kim, J. Yang, K. Sato, K. M. Eisenmann et al., Regulation of Akt/PKB activation by tyrosine phosphorylation, J Biol Chem, vol.276, pp.31858-31862, 2001.

L. Xue, H. Nolla, A. Suzuki, T. W. Mak, and A. Winoto, Normal development is an integral part of tumorigenesis in T cell--specific PTEN--deficient mice, Proc Natl Acad Sci U S A, vol.105, pp.2022-2027, 2008.

H. Huang and D. J. Tindall, Dynamic FoxO transcription factors, J Cell Sci, vol.120, pp.2479-2487, 2007.

M. M. Juntilla and G. A. Koretzky, Critical roles of the PI3K/Akt signaling pathway in T cell development, Immunol Lett, vol.116, pp.104-110, 2008.

D. J. Lenschow, T. L. Walunas, and J. A. Bluestone, CD28/B7 system of T cell costimulation, Annu Rev Immunol, vol.14, pp.233-258, 1996.

N. Beyersdorf, T. Kerkau, and T. Hünig, CD28 co--stimulation in T--cell homeostasis: a recent perspective, Immunotargets Ther, vol.4, pp.111-122, 2015.

K. C. Howland, L. J. Ausubel, C. A. London, and A. K. Abbas, The roles of CD28 and CD40 ligand in T cell activation and tolerance, J Immunol, vol.164, pp.4465-4470, 2000.

P. J. Lucas, I. Negishi, K. Nakayama, L. E. Fields, and D. Y. Loh, Naive CD28--deficient T cells can initiate but not sustain an in vitro antigen--specific immune response, J Immunol, vol.154, pp.5757-5768, 1995.

Y. Miyahira, M. Katae, S. Kobayashi, T. Takeuchi, Y. Fukuchi et al., Critical contribution of CD28--CD80/CD86 costimulatory pathway to protection from Trypanosoma cruzi infection, Infect Immun, vol.71, pp.3131-3137, 2003.

P. G. Andres, K. C. Howland, A. Nirula, L. P. Kane, L. Barron et al., Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation, Nat Immunol, vol.5, pp.435-442, 2004.

M. Gunzer, A. Schäfer, S. Borgmann, S. Grabbe, K. S. Zänker et al., Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential, Immunity, vol.13, pp.323-332, 2000.

K. H. Lee, A. D. Holdorf, M. L. Dustin, A. C. Chan, P. M. Allen et al., T cell receptor signaling precedes immunological synapse formation, Science, vol.295, pp.1539-1542, 2002.

M. L. Dustin, S. K. Bromley, Z. Kan, D. A. Peterson, and E. R. Unanue, Antigen receptor engagement delivers a stop signal to migrating T lymphocytes, Proc Natl Acad Sci U S A, vol.94, pp.3909-3913, 1997.

A. Kupfer and S. J. Singer, The specific interaction of helper T cells and antigen--presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose, J Exp Med, vol.170, pp.1697-1713, 1989.

S. Stoll, J. Delon, T. M. Brotz, and R. N. Germain, Dynamic imaging of T cell--dendritic cell interactions in lymph nodes, Science, vol.296, pp.1873-1876, 2002.

A. Kupfer, S. L. Swain, C. A. Janeway, and S. J. Singer, The specific direct interaction of helper T cells and antigen--presenting B cells, Proc Natl Acad Sci U S A, vol.83, pp.6080-6083, 1986.

H. Kupfer, C. R. Monks, and A. Kupfer, Small splenic B cells that bind to antigen--specific T helper (Th) cells and face the site of cytokine production in the Th cells selectively proliferate: immunofluorescence microscopic studies of Th--B antigen--presenting cell interactions, J Exp Med, vol.179, pp.1507-1515, 1994.

W. J. Poo, L. Conrad, and C. A. Janeway, Receptor--directed focusing of lymphokine release by helper T cells, Nature, vol.332, pp.378-380, 1988.

M. L. Dustin and K. Choudhuri, Signaling and Polarized Communication Across the T Cell Immunological Synapse, Annu Rev Cell Dev Biol, vol.32, pp.303-325, 2016.

C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, Three--dimensional segregation of supramolecular activation clusters in T cells, Nature, vol.395, pp.82-86, 1998.

M. A. Musci, -. Hendricks, L. R. Taylor, D. G. Motto, M. Paskind et al., Molecular cloning of SLAP--130, an SLP--76--associated substrate of the T cell antigen receptor--stimulated protein tyrosine kinases, J Biol Chem, vol.272, pp.11674-11677, 1997.

J. Liu, H. Kang, M. Raab, A. J. Da-silva, S. K. Kraeft et al., FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55--related protein in T cells, Proc Natl Acad Sci U S A, vol.95, pp.8779-8784, 1998.

A. Marie--cardine, -. Hendricks, L. R. Taylor, N. J. Boerth, H. Zhao et al., Molecular interaction between the Fyn--associated protein SKAP55 and the SLP--76--associated phosphoprotein SLAP--130, J Biol Chem, vol.273, pp.25789-25795, 1998.

K. Katagiri, M. Imamura, and T. Kinashi, Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion, Nat Immunol, vol.7, pp.919-928, 2006.

E. K. Griffiths, C. Krawczyk, Y. Y. Kong, M. Raab, S. J. Hyduk et al., Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap, Science, vol.293, pp.2260-2263, 2001.

E. J. Peterson, M. L. Woods, S. A. Dmowski, G. Derimanov, M. S. Jordan et al., Coupling of the TCR to integrin activation by Slap--130/Fyb, Science, vol.293, pp.2263-2265, 2001.

M. H. Pauker, B. Reicher, S. Fried, O. Perl, and M. Barda--saad, Functional cooperation between the proteins Nck and ADAP is fundamental for actin reorganization, Mol Cell Biol, vol.31, pp.2653-2666, 2011.

R. Zeng, J. L. Cannon, R. T. Abraham, M. Way, D. D. Billadeau et al., SLP--76 coordinates Nck--dependent Wiskott--Aldrich syndrome protein recruitment with Vav--1/Cdc42--dependent Wiskott--Aldrich syndrome protein activation at the T cell--APC contact site, J Immunol, vol.171, pp.1360-1368, 2003.

P. Crespo, K. E. Schuebel, A. A. Ostrom, J. S. Gutkind, and X. R. Bustelo, Phosphotyrosine--dependent activation of Rac--1 GDP/GTP exchange by the vav proto--oncogene product, Nature, vol.385, pp.169-172, 1997.

A. Y. Pollitt and R. H. Insall, WASP and SCAR/WAVE proteins: the drivers of actin assembly, J Cell Sci, vol.122, pp.2575-2578, 2009.

M. Symons, J. M. Derry, B. Karlak, S. Jiang, V. Lemahieu et al., Wiskott--Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization, Cell, vol.84, pp.723-734, 1996.

P. Aspenström, U. Lindberg, and A. Hall, Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott--Aldrich syndrome, Curr Biol, vol.6, pp.70-75, 1996.

S. Valitutti, M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia, Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton, J Exp Med, vol.181, pp.577-584, 1995.

J. Delon, N. Bercovici, R. Liblau, and A. Trautmann, Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response, Eur J Immunol, vol.28, pp.716-729, 1998.

T. Ilani, -. Vasiliver, G. Shamis, S. Vardhana, A. Bretscher et al., T cell antigen receptor signaling and immunological synapse stability require myosin IIA, Nat Immunol, vol.10, pp.531-539, 2009.

J. Yi, X. S. Wu, T. Crites, and J. A. Hammer, Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells, Mol Biol Cell, vol.23, pp.834-852, 2012.

Y. Yu, N. C. Fay, A. A. Smoligovets, H. J. Wu, and J. T. Groves, Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation, PLoS One, vol.7, p.30704, 2012.

S. Kumari, S. Vardhana, M. Cammer, S. Curado, L. Santos et al., T Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse, Front Immunol, vol.3, p.230, 2012.

A. Bretscher, K. Edwards, and R. G. Fehon, ERM proteins and merlin: integrators at the cell cortex, Nat Rev Mol Cell Biol, vol.3, pp.586-599, 2002.

S. Faure, -. Salazar, L. I. Semichon, M. Tybulewicz, V. L. Bismuth et al., ERM proteins regulate cytoskeleton relaxation promoting T cell--APC conjugation, Nat Immunol, vol.5, pp.272-279, 2004.

A. Kupfer, S. L. Swain, and S. J. Singer, The specific direct interaction of helper T cells and antigen--presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane--associated cytoskeleton inside the bound helper T cells, J Exp Med, vol.165, pp.1565-1580, 1987.

B. Geiger, D. Rosen, and G. Berke, Spatial relationships of microtubule--organizing centers and the contact area of cytotoxic T lymphocytes and target cells, J Cell Biol, vol.95, pp.137-143, 1982.

A. Kupfer and G. Dennert, Reorientation of the microtubule--organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells, J Immunol, vol.133, pp.2762-2766, 1984.

H. Ueda, J. Zhou, J. Xie, and M. M. Davis, Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion, J Immunol, vol.195, pp.4117-4125, 2015.

J. Combs, S. J. Kim, S. Tan, L. A. Ligon, E. L. Holzbaur et al., Recruitment of dynein to the Jurkat immunological synapse, Proc Natl Acad Sci U S A, vol.103, pp.14883-14888, 2006.

A. Hashimoto--tane, T. Yokosuka, -. Sakata, K. Sogawa, M. Sakuma et al., Dynein--driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation, Immunity, vol.34, pp.919-931, 2011.

N. B. Martín--cófreces, -. Robles, J. Valero, J. R. Cabrero, M. Mittelbrunn et al., MTOC translocation modulates IS formation and controls sustained T cell signaling, J Cell Biol, vol.182, pp.951-962, 2008.

J. Yi, X. Wu, A. H. Chung, J. K. Chen, T. M. Kapoor et al., Centrosome repositioning in T cells is biphasic and driven by microtubule end--on capture--shrinkage, J Cell Biol, vol.202, pp.779-792, 2013.

M. Kurowska, N. Goudin, N. T. Nehme, M. Court, J. Garin et al., Terminal transport of lytic granules to the immune synapse is mediated by the kinesin--1/Slp3/Rab27a complex, Blood, vol.119, pp.3879-3889, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02084704

R. L. Lamason, A. Kupfer, and J. L. Pomerantz, The dynamic distribution of CARD11 at the immunological synapse is regulated by the inhibitory kinesin GAKIN, Mol Cell, vol.40, pp.798-809, 2010.

K. H. Lee, A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri et al., The immunological synapse balances T cell receptor signaling and degradation, Science, vol.302, pp.1218-1222, 2003.

F. Finetti, S. R. Paccani, M. G. Riparbelli, E. Giacomello, G. Perinetti et al., Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse, Nat Cell Biol, vol.11, pp.1332-1339, 2009.

J. T. Orozco, K. P. Wedaman, D. Signor, H. Brown, L. Rose et al., Movement of motor and cargo along cilia, Nature, vol.398, p.674, 1999.

F. Finetti, L. Patrussi, G. Masi, A. Onnis, D. Galgano et al., Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system, J Cell Sci, vol.127, pp.1924-1937, 2014.

D. Galgano, A. Onnis, E. Pappalardo, F. Galvagni, O. Acuto et al., The T cell IFT20 interactome reveals new players in immune synapse assembly, J Cell Sci, vol.130, pp.1110-1121, 2017.

D. G. Osborne and S. A. Wetzel, Trogocytosis results in sustained intracellular signaling in CD4(+) T cells, J Immunol, vol.189, pp.4728-4739, 2012.

P. Larghi, D. J. Williamson, J. M. Carpier, S. Dogniaux, K. Chemin et al., VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR--activation sites, Nat Immunol, vol.14, pp.723-731, 2013.

J. Zhu, H. Yamane, and W. E. Paul, Differentiation of effector CD4 T cell populations (*), Annu Rev Immunol, vol.28, pp.445-489, 2010.

S. Z. Josefowicz, L. F. Lu, and A. Y. Rudensky, Regulatory T cells: mechanisms of differentiation and function, Annu Rev Immunol, vol.30, pp.531-564, 2012.

B. J. Johnson, E. O. Costelloe, D. R. Fitzpatrick, J. B. Haanen, T. N. Schumacher et al., Single--cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus--infected mice, Proc Natl Acad Sci U S A, vol.100, pp.2657-2662, 2003.

A. Ratner and W. R. Clark, Role of TNF--alpha in CD8+ cytotoxic T lymphocyte--mediated lysis, J Immunol, vol.150, pp.4303-4314, 1993.

A. Prévost--blondel, R. E. Rosenthal, F. M. Pircher, and H. , Crucial role of TNF--alpha in CD8 T cell--mediated elimination of 3LL--A9 Lewis lung carcinoma cells in vivo, J Immunol, vol.164, pp.3645-3651, 2000.

M. A. Brehm, K. A. Daniels, and R. M. Welsh, Rapid production of TNF--alpha following TCR engagement of naive CD8 T cells, J Immunol, vol.175, pp.5043-5049, 2005.

H. Cheroutre and M. M. Husain, CD4 CTL: living up to the challenge, Semin Immunol, vol.25, pp.273-281, 2013.

Y. Tian, A. Sette, and D. Weiskopf, Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection, Front Immunol, vol.7, p.531, 2016.

A. Takeuchi and T. Saito, CD4 CTL, a Cytotoxic Subset of CD4, Front Immunol, vol.8, p.194, 2017.

V. Rodrigues, -. Cordeiro, A. Silva, M. Laforge, A. Ouaissi et al., Impairment of T cell function in parasitic infections, PLoS Negl Trop Dis, vol.8, p.2567, 2014.

J. T. Chang, E. J. Wherry, and A. W. Goldrath, Molecular regulation of effector and memory T cell differentiation, Nat Immunol, vol.15, pp.1104-1115, 2014.

P. J. Metz, J. Arsenio, B. Kakaradov, S. H. Kim, K. A. Remedios et al., Regulation of asymmetric division and CD8+ T lymphocyte fate specification by protein kinase C? and protein kinase C?/?, J Immunol, vol.194, pp.2249-2259, 2015.

J. Arsenio, P. J. Metz, and J. T. Chang, Asymmetric Cell Division in T Lymphocyte Fate Diversification, Trends Immunol, vol.36, pp.670-683, 2015.

S. J. Bray, Notch signalling in context, Nat Rev Mol Cell Biol, vol.17, pp.722-735, 2016.

J. C. Boisset and C. Robin, On the origin of hematopoietic stem cells: progress and controversy, Stem Cell Res, vol.8, pp.1-13, 2012.

Q. He, S. Gao, J. Lv, W. Li, and F. Liu, BLOS2 maintains hematopoietic stem cells in the fetal liver via repressing Notch signaling, Exp Hematol, vol.51, pp.1-6, 2017.

S. H. Orkin and L. I. Zon, Hematopoiesis: an evolving paradigm for stem cell biology, Cell, vol.132, pp.631-644, 2008.

Y. Zhang, S. Gao, J. Xia, and F. Liu, Hematopoietic Hierarchy -- An Updated Roadmap, Trends Cell Biol, 2018.

C. Gomes, A. Hara, T. Lim, V. Y. Herndler, -. Brandstetter et al., Hematopoietic Stem Cell Niches Produce Lineage--Instructive Signals to Control Multipotent Progenitor Differentiation, Immunity, vol.45, pp.1219-1231, 2016.

V. W. Yu, B. Saez, C. Cook, S. Lotinun, A. Pardo--saganta et al., Specific bone cells produce DLL4 to generate thymus--seeding progenitors from bone marrow, J Exp Med, vol.212, pp.759-774, 2015.

M. Ghaedi, C. A. Steer, -. Martinez, I. Gonzalez, T. Halim et al., Common--Lymphoid--Progenitor--Independent Pathways of Innate and T Lymphocyte Development, Cell Rep, vol.15, pp.471-480, 2016.

M. A. Yui, N. Feng, and E. V. Rothenberg, Fine--scale staging of T cell lineage commitment in adult mouse thymus, J Immunol, vol.185, pp.284-293, 2010.

A. Dar, A. Schajnovitz, K. Lapid, A. Kalinkovich, T. Itkin et al., Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4--dependent SDF--1 release from bone marrow stromal cells, Leukemia, vol.25, pp.1286-1296, 2011.

P. E. Love and A. Bhandoola, Signal integration and crosstalk during thymocyte migration and emigration, Nat Rev Immunol, vol.11, pp.469-477, 2011.

M. L. Scimone, I. Aifantis, I. Apostolou, V. Boehmer, H. et al., A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus, Proc Natl Acad Sci U S A, vol.103, pp.7006-7011, 2006.

D. A. Zlotoff, S. L. Zhang, D. Obaldia, M. E. Hess, P. R. Todd et al., Delivery of progenitors to the thymus limits T--lineage reconstitution after bone marrow transplantation, Blood, vol.118, pp.1962-1970, 2011.

K. Gossens, S. Naus, S. Y. Corbel, S. Lin, F. M. Rossi et al., Thymic progenitor homing and lymphocyte homeostasis are linked via S1P--controlled expression of thymic P--selectin/CCL25, J Exp Med, vol.206, pp.761-778, 2009.

C. Schwärzler, S. Oliferenko, and U. Günthert, Variant isoforms of CD44 are required in early thymocyte development, Eur J Immunol, vol.31, pp.2997-3005, 2001.

J. B. Tan, I. Visan, J. S. Yuan, and C. J. Guidos, Requirement for Notch1 signals at sequential early stages of intrathymic T cell development, Nat Immunol, vol.6, pp.671-679, 2005.

F. Radtke, A. Wilson, G. Stark, M. Bauer, J. Van-meerwijk et al., Deficient T cell fate specification in mice with an induced inactivation of Notch1, Immunity, vol.10, pp.547-558, 1999.

O. L. Francis, K. K. Chaudhry, T. Lamprecht, and J. M. Klco, Impact of Notch disruption on myeloid development, Blood Cancer J, vol.7, p.598, 2017.

T. M. Schmitt, M. Ciofani, H. T. Petrie, and J. C. Zúñiga--pflücker, Maintenance of T cell specification and differentiation requires recurrent notch receptor--ligand interactions, J Exp Med, vol.200, pp.469-479, 2004.

C. B. Franco, -. Scripture, D. D. Adams, I. Proekt, T. Taghon et al., Notch/Delta signaling constrains reengineering of pro--T cells by PU.1, Proc Natl Acad Sci U S A, vol.103, pp.11993-11998, 2006.

D. Real, M. M. Rothenberg, and E. V. , Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3, Development, vol.140, pp.1207-1219, 2013.

A. Champhekar, S. S. Damle, G. Freedman, S. Carotta, S. L. Nutt et al., Regulation of early T--lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1, Genes Dev, vol.29, pp.832-848, 2015.

J. M. Lefebvre, M. C. Haks, M. O. Carleton, M. Rhodes, G. Sinnathamby et al., Enforced expression of Spi--B reverses T lineage commitment and blocks beta--selection, J Immunol, vol.174, pp.6184-6194, 2005.

C. V. Laiosa, M. Stadtfeld, H. Xie, L. De-andres--aguayo, and T. Graf, Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors, Immunity, vol.25, pp.731-744, 2006.

W. Longabaugh, W. Zeng, J. A. Zhang, H. Hosokawa, C. S. Jansen et al., Bcl11b and combinatorial resolution of cell fate in the T--cell gene regulatory network, Proc Natl Acad Sci U S A, vol.114, pp.5800-5807, 2017.

J. L. Johnson, G. Georgakilas, J. Petrovic, M. Kurachi, S. Cai et al., Lineage--Determining Transcription Factor TCF--1 Initiates the Epigenetic Identity of T Cells, Immunity, vol.48, pp.243-257, 2018.

L. Li, M. Leid, and E. V. Rothenberg, An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b, Science, vol.329, pp.89-93, 2010.

K. Hozumi, N. Negishi, I. Tsuchiya, N. Abe, K. Hirano et al., Notch signaling is necessary for GATA3 function in the initiation of T cell development, Eur J Immunol, vol.38, pp.977-985, 2008.

I. Van-de-walle, A. C. Dolens, K. Durinck, D. Mulder, K. Van-loocke et al., GATA3 induces human T--cell commitment by restraining Notch activity and repressing NK--cell fate, Nat Commun, vol.7, p.11171, 2016.

J. Wojciechowski, A. Lai, M. Kondo, and Y. Zhuang, E2A and HEB are required to block thymocyte proliferation prior to pre--TCR expression, J Immunol, vol.178, pp.5717-5726, 2007.

D. S. Franklin, V. L. Godfrey, H. Lee, G. I. Kovalev, R. Schoonhoven et al., CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis, Genes Dev, vol.12, pp.2899-2911, 1998.

T. Tsukiyama, N. Ishida, M. Shirane, Y. A. Minamishima, S. Hatakeyama et al., Down--regulation of p27Kip1 expression is required for development and function of T cells, J Immunol, vol.166, pp.304-312, 2001.

C. J. Guidos, C. J. Williams, G. E. Wu, C. J. Paige, and J. S. Danska, Development of CD4+CD8+ thymocytes in RAG--deficient mice through a T cell receptor beta chain--independent pathway, J Exp Med, vol.181, pp.1187-1195, 1995.

R. A. Diamond, S. B. Ward, K. Owada--makabe, H. Wang, and E. V. Rothenberg, Different developmental arrest points in RAG--2 --/-- and SCID thymocytes on two genetic backgrounds: developmental choices and cell death mechanisms before TCR gene rearrangement, J Immunol, vol.158, pp.4052-4064, 1997.

M. K. Anderson, A. H. Weiss, G. Hernandez--hoyos, C. J. Dionne, and E. V. Rothenberg, Constitutive expression of PU.1 in fetal hematopoietic progenitors blocks T cell development at the pro--T cell stage, Immunity, vol.16, pp.285-296, 2002.

V. L. Ha, A. Luong, F. Li, D. Casero, J. Malvar et al., The T--ALL related gene BCL11B regulates the initial stages of human T--cell differentiation, Leukemia, vol.31, pp.2503-2514, 2017.

S. Yu, D. M. Zhao, R. Jothi, and H. H. Xue, Critical requirement of GABPalpha for normal T cell development, J Biol Chem, vol.285, pp.10179-10188, 2010.

L. Li, E. Salido, Y. Zhou, S. Bhattacharyya, S. M. Yannone et al., Targeted disruption of the Artemis murine counterpart results in SCID and defective V(D)J recombination that is partially corrected with bone marrow transplantation, J Immunol, vol.174, pp.2420-2428, 2005.

Y. Gao, D. O. Ferguson, W. Xie, J. P. Manis, J. Sekiguchi et al., Interplay of p53 and DNA--repair protein XRCC4 in tumorigenesis, genomic stability and development, Nature, vol.404, pp.897-900, 2000.

H. Ouyang, A. Nussenzweig, A. Kurimasa, V. C. Soares, X. Li et al., Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination In vivo, J Exp Med, vol.186, pp.921-929, 1997.

C. C. Tydell, -. David, E. S. Fung, J. E. Moore, L. Rowen et al., Molecular dissection of prethymic progenitor entry into the T lymphocyte developmental pathway, J Immunol, vol.179, pp.421-438, 2007.

L. Li, J. A. Zhang, M. Dose, H. Y. Kueh, R. Mosadeghi et al., A far downstream enhancer for murine Bcl11b controls its T--cell specific expression, Blood, vol.122, pp.902-911, 2013.

H. Y. Kueh, M. A. Yui, K. K. Ng, S. S. Pease, J. A. Zhang et al., Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment, Nat Immunol, vol.17, pp.956-965, 2016.

J. Y. Zhao, O. Osipovich, O. I. Koues, K. Majumder, and E. M. Oltz, Activation of Mouse, J Immunol, vol.199, pp.1131-1141, 2017.

W. Y. Kim, M. Sieweke, E. Ogawa, H. J. Wee, U. Englmeier et al., Mutual activation of Ets--1 and AML1 DNA binding by direct interaction of their autoinhibitory domains, EMBO J, vol.18, pp.1609-1620, 1999.

W. Seo, S. Muroi, K. Akiyama, and I. Taniuchi, Distinct requirement of Runx complexes for TCR? enhancer activation at distinct developmental stages, Sci Rep, vol.7, p.41351, 2017.

X. Wang, G. Xiao, Y. Zhang, X. Wen, X. Gao et al., Regulation of Tcrb recombination ordering by c--Fos--dependent RAG deposition, Nat Immunol, vol.9, pp.794-801, 2008.

H. J. Fehling, A. Krotkova, C. Saint--ruf, V. Boehmer, and H. , Crucial role of the pre--T--cell receptor alpha gene in development of alpha beta but not gamma delta T cells, Nature, vol.375, pp.795-798, 1995.

B. Reizis and P. Leder, Direct induction of T lymphocyte--specific gene expression by the mammalian Notch signaling pathway, Genes Dev, vol.16, pp.295-300, 2002.

A. Takeuchi, S. Yamasaki, K. Takase, F. Nakatsu, H. Arase et al., E2A and HEB activate the pre--TCR alpha promoter during immature T cell development, J Immunol, vol.167, pp.2157-2163, 2001.

H. J. Fehling, C. Laplace, M. G. Mattei, C. Saint--ruf, V. Boehmer et al., Genomic structure and chromosomal location of the mouse pre--T--cell receptor alpha gene, Immunogenetics, vol.42, pp.275-281, 1995.

D. Porto, P. Bruno, L. Mattei, M. G. , V. Boehmer et al., Cloning and comparative analysis of the human pre--T--cell receptor alpha--chain gene, Proc Natl Acad Sci U S A, vol.92, pp.12105-12109, 1995.

M. Malissen, A. Gillet, L. Ardouin, G. Bouvier, J. Trucy et al., Altered T cell development in mice with a targeted mutation of the CD3--epsilon gene, EMBO J, vol.14, pp.4641-4653, 1995.

S. J. Anderson, S. D. Levin, and R. M. Perlmutter, Protein tyrosine kinase p56lck controls allelic exclusion of T--cell receptor beta--chain genes, Nature, vol.365, pp.552-554, 1993.

T. Groves, P. Smiley, M. P. Cooke, K. Forbush, R. M. Perlmutter et al., Fyn can partially substitute for Lck in T lymphocyte development, Immunity, vol.5, pp.417-428, 1996.

Y. J. Chiang and R. J. Hodes, T--cell development is regulated by the coordinated function of proximal and distal Lck promoters active at different developmental stages, Eur J Immunol, vol.46, pp.2401-2408, 2016.

S. Shen, M. Zhu, J. Lau, C. M. Zhang, and W. , The essential role of LAT in thymocyte development during transition from the double--positive to single--positive stage, J Immunol, vol.182, pp.5596-5604, 2009.

-. Nuñez, S. Aguado, E. Richelme, S. Chetaille, B. Mura et al., LAT regulates gammadelta T cell homeostasis and differentiation, Nat Immunol, vol.4, pp.999-1008, 2003.

A. M. Cheng, I. Negishi, S. J. Anderson, A. C. Chan, J. Bolen et al., The Syk and ZAP--70 SH2--containing tyrosine kinases are implicated in pre--T cell receptor signaling, Proc Natl Acad Sci U S A, vol.94, pp.9797-9801, 1997.

D. Radtke, S. M. Lacher, N. Szumilas, L. Sandrock, J. Ackermann et al., Grb2 Is Important for T Cell Development, Th Cell Differentiation, and Induction of Experimental Autoimmune Encephalomyelitis, J Immunol, vol.196, pp.2995-3005, 2016.

K. Fujikawa, A. V. Miletic, F. W. Alt, R. Faccio, T. Brown et al., Vav1/2/3--null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells, J Exp Med, vol.198, pp.1595-1608, 2003.

L. Kumar, V. Pivniouk, M. A. De-la-fuente, D. Laouini, and R. S. Geha, Differential role of SLP--76 domains in T cell development and function, Proc Natl Acad Sci U S A, vol.99, pp.884-889, 2002.

G. Fu, M. Yu, Y. Chen, Y. Zheng, W. Zhu et al., Phospholipase C?1 is required for pre--TCR signal transduction and pre--T cell development, Eur J Immunol, vol.47, pp.74-83, 2017.

I. Aifantis, F. Gounari, L. Scorrano, C. Borowski, V. Boehmer et al., Constitutive pre--TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF--kappaB and NFAT, Nat Immunol, vol.2, pp.403-409, 2001.

B. A. Irving, F. W. Alt, and N. Killeen, Thymocyte development in the absence of pre--T cell receptor extracellular immunoglobulin domains, Science, vol.280, pp.905-908, 1998.

S. Yamasaki, E. Ishikawa, M. Sakuma, K. Ogata, -. Sakata et al., Mechanistic basis of pre--T cell receptor--mediated autonomous signaling critical for thymocyte development, Nat Immunol, vol.7, pp.67-75, 2006.

R. J. Mallis, K. Bai, H. Arthanari, R. E. Hussey, M. Handley et al., Pre--TCR ligand binding impacts thymocyte development before ??TCR expression, Proc Natl Acad Sci U S A, vol.112, pp.8373-8378, 2015.

R. J. Mallis, H. Arthanari, M. J. Lang, E. L. Reinherz, and G. Wagner, NMR--directed design of pre--TCR? and pMHC molecules implies a distinct geometry for pre--TCR relative to ??TCR recognition of pMHC, J Biol Chem, vol.293, pp.754-766, 2018.

M. N. Navarro, G. Nusspaumer, P. Fuentes, S. González--garcía, J. Alcain et al., Identification of CMS as a cytosolic adaptor of the human pTalpha chain involved in pre--TCR function, Blood, vol.110, pp.4331-4340, 2007.

M. Panigada, S. Porcellini, E. Barbier, S. Hoeflinger, P. A. Cazenave et al., Constitutive endocytosis and degradation of the pre--T cell receptor, J Exp Med, vol.195, pp.1585-1597, 2002.

Y. R. Carrasco, A. R. Ramiro, C. Trigueros, V. G. De-yébenes, M. García--peydró et al., An endoplasmic reticulum retention function for the cytoplasmic tail of the human pre--T cell receptor (TCR) alpha chain: potential role in the regulation of cell surface pre--TCR expression levels, J Exp Med, vol.193, pp.1045-1058, 2001.

Y. R. Carrasco, M. N. Navarro, and M. L. Toribio, A role for the cytoplasmic tail of the pre--T cell receptor (TCR) alpha chain in promoting constitutive internalization and degradation of the pre--TCR, J Biol Chem, vol.278, pp.14507-14513, 2003.

C. Y. Huang and O. Kanagawa, Impact of early expression of TCR alpha chain on thymocyte development, Eur J Immunol, vol.34, pp.1532-1541, 2004.

C. Borowski, X. Li, I. Aifantis, F. Gounari, V. Boehmer et al., Pre--TCRalpha and TCRalpha are not interchangeable partners of TCRbeta during T lymphocyte development, J Exp Med, vol.199, pp.607-615, 2004.

C. Trigueros, K. Hozumi, -. Silva, B. Santos, L. Bruno et al., Pre--TCR signaling regulates IL--7 receptor alpha expression promoting thymocyte survival at the transition from the double--negative to double--positive stage, Eur J Immunol, vol.33, pp.1968-1977, 2003.

I. Dzhagalov, A. Dunkle, and Y. W. He, The anti--apoptotic Bcl--2 family member Mcl--1 promotes T lymphocyte survival at multiple stages, J Immunol, vol.181, pp.521-528, 2008.

A. K. Patra, A. Avots, R. P. Zahedi, T. Schüler, A. Sickmann et al., An alternative NFAT--activation pathway mediated by IL--7 is critical for early thymocyte development, Nat Immunol, vol.14, pp.127-135, 2013.

A. Boudil, I. R. Matei, H. Y. Shih, G. Bogdanoski, J. S. Yuan et al., IL--7 coordinates proliferation, differentiation and Tcra recombination during thymocyte ?--selection, Nat Immunol, vol.16, pp.397-405, 2015.

M. Mandal, C. Borowski, T. Palomero, A. A. Ferrando, P. Oberdoerffer et al., The BCL2A1 gene as a pre--T cell receptor--induced regulator of thymocyte survival, J Exp Med, vol.201, pp.603-614, 2005.

M. Mandal, K. M. Crusio, F. Meng, S. Liu, M. Kinsella et al., Regulation of lymphocyte progenitor survival by the proapoptotic activities of Bim and Bid, Proc Natl Acad Sci U S A, vol.105, pp.20840-20845, 2008.

C. Mao, E. G. Tili, M. Dose, M. C. Haks, S. E. Bear et al., Unequal contribution of Akt isoforms in the double--negative to double--positive thymocyte transition, J Immunol, vol.178, pp.5443-5453, 2007.

M. Ciofani and J. C. Zúñiga--pflücker, Notch promotes survival of pre--T cells at the beta--selection checkpoint by regulating cellular metabolism, Nat Immunol, vol.6, pp.881-888, 2005.

P. Brekelmans, P. Van-soest, P. J. Leenen, and W. Van-ewijk, Inhibition of proliferation and differentiation during early T cell development by anti--transferrin receptor antibody, Eur J Immunol, vol.24, pp.2896-2902, 1994.

P. C. Trampont, L. Zhang, A. J. Giles, S. F. Walk, J. J. Gu et al., ShcA regulates thymocyte proliferation through specific transcription factors and a c--Abl--dependent signaling axis, Mol Cell Biol, vol.35, pp.1462-1476, 2015.

C. V. Dang, MYC on the path to cancer. Cell, vol.149, pp.22-35, 2012.

N. C. Douglas, H. Jacobs, A. L. Bothwell, and A. C. Hayday, Defining the specific physiological requirements for c--Myc in T cell development, Nat Immunol, vol.2, pp.307-315, 2001.

M. Dose, I. Khan, Z. Guo, D. Kovalovsky, A. Krueger et al., c--Myc mediates pre--TCR--induced proliferation but not developmental progression, Blood, vol.108, pp.2669-2677, 2006.

K. Pham, R. Shimoni, M. Charnley, M. J. Ludford--menting, E. D. Hawkins et al., Asymmetric cell division during T cell development controls downstream fate, J Cell Biol, vol.210, pp.933-950, 2015.

I. Aifantis, V. I. Pivniouk, F. Gärtner, J. Feinberg, W. Swat et al., Allelic exclusion of the T cell receptor beta locus requires the SH2 domain--containing leukocyte protein (SLP)--76 adaptor protein, J Exp Med, vol.190, pp.1093-1102, 1999.

J. Xiong, M. A. Armato, and T. M. Yankee, Immature single--positive CD8+ thymocytes represent the transition from Notch--dependent to Notch--independent T--cell development, Int Immunol, vol.23, pp.55-64, 2011.

A. Galy, S. Verma, A. Bárcena, and H. Spits, Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development, J Exp Med, vol.178, pp.391-401, 1993.

N. Harker, A. Garefalaki, U. Menzel, E. Ktistaki, T. Naito et al., Pre--TCR signaling and CD8 gene bivalent chromatin resolution during thymocyte development, J Immunol, vol.186, pp.6368-6377, 2011.

I. Bilic, C. Koesters, B. Unger, M. Sekimata, A. Hertweck et al., Negative regulation of CD8 expression via Cd8 enhancer--mediated recruitment of the zinc finger protein MAZR, Nat Immunol, vol.7, pp.392-400, 2006.

N. Harker, T. Naito, M. Cortes, A. Hostert, S. Hirschberg et al., The CD8alpha gene locus is regulated by the Ikaros family of proteins, Mol Cell, vol.10, pp.1403-1415, 2002.

C. J. Williams, T. Naito, P. G. Arco, J. R. Seavitt, S. M. Cashman et al., The chromatin remodeler Mi--2beta is required for CD4 expression and T cell development, Immunity, vol.20, pp.719-733, 2004.

B. Del-blanco, A. García--mariscal, D. L. Wiest, and C. Hernández--munain, Tcra enhancer activation by inducible transcription factors downstream of pre--TCR signaling, J Immunol, vol.188, pp.3278-3293, 2012.

B. Collins, E. T. Clambey, -. Scott, J. Browne, J. White et al., Ikaros promotes rearrangement of TCR ? genes in an Ikaros null thymoma cell line, Eur J Immunol, vol.43, pp.521-532, 2013.

B. Del-blanco, Ú. Angulo, M. S. Krangel, and C. Hernández--munain, T--cell receptor ? enhancer is inactivated in ?? T lymphocytes, Proc Natl Acad Sci U S A, vol.112, pp.1744-1753, 2015.

S. Trop, M. Rhodes, D. L. Wiest, P. Hugo, and J. C. Zúñiga--pflücker, Competitive displacement of pT alpha by TCR--alpha during TCR assembly prevents surface coexpression of pre--TCR and alpha beta TCR, J Immunol, vol.165, pp.5566-5572, 2000.

S. Chari and S. Winandy, Ikaros regulates Notch target gene expression in developing thymocytes, J Immunol, vol.181, pp.6265-6274, 2008.

M. Merkenschlager, D. Graf, M. Lovatt, U. Bommhardt, R. Zamoyska et al., How many thymocytes audition for selection?, J Exp Med, vol.186, pp.1149-1158, 1997.

J. S. Blum, P. A. Wearsch, and P. Cresswell, Pathways of antigen processing, Annu Rev Immunol, vol.31, pp.443-473, 2013.

S. Murata, Y. Takahama, and K. Tanaka, Thymoproteasome: probable role in generating positively selecting peptides, Curr Opin Immunol, vol.20, pp.192-196, 2008.

K. Honey, T. Nakagawa, C. Peters, and A. Rudensky, Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands, J Exp Med, vol.195, pp.1349-1358, 2002.

J. Gommeaux, C. Grégoire, P. Nguessan, M. Richelme, M. Malissen et al., Thymus--specific serine protease regulates positive selection of a subset of CD4+ thymocytes, Eur J Immunol, vol.39, pp.956-964, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408418

G. P. Linette, M. J. Grusby, S. M. Hedrick, T. H. Hansen, L. H. Glimcher et al., Bcl--2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points, Immunity, vol.1, pp.197-205, 1994.

J. Yuan, R. B. Crittenden, and T. P. Bender, 2010. c--Myb promotes the survival of CD4+CD8+ double--positive thymocytes through upregulation of Bcl--xL, J Immunol, vol.184, pp.2793-2804
URL : https://hal.archives-ouvertes.fr/hal-01199394

D. A. Grillot, R. Merino, and G. Núñez, Bcl--XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice, J Exp Med, vol.182, pp.1973-1983, 1995.

A. Ma, J. C. Pena, B. Chang, E. Margosian, L. Davidson et al., Bclx regulates the survival of double--positive thymocytes, Proc Natl Acad Sci U S A, vol.92, pp.4763-4767, 1995.

N. C. Moore, G. Anderson, G. T. Williams, J. J. Owen, and E. J. Jenkinson, Developmental regulation of bcl--2 expression in the thymus, Immunology, vol.81, pp.115-119, 1994.

J. P. Lauritsen, S. Kurella, S. Y. Lee, J. M. Lefebvre, M. Rhodes et al., Egr2 is required for Bcl--2 induction during positive selection, J Immunol, vol.181, pp.7778-7785, 2008.

V. J. Lawson, W. K. , and M. D. , Early growth response 2 regulates the survival of thymocytes during positive selection, Eur J Immunol, vol.40, pp.232-241, 2010.

X. Wang, Y. Zhang, G. Xiao, X. Gao, and X. Liu, c--Fos enhances the survival of thymocytes during positive selection by upregulating Bcl--2, Cell Res, vol.19, pp.340-347, 2009.

Q. N. Hu and T. A. Baldwin, Differential roles for Bim and Nur77 in thymocyte clonal deletion induced by ubiquitous self--antigen, J Immunol, vol.194, pp.2643-2653, 2015.

A. Singer, S. Adoro, and J. H. Park, Lineage fate and intense debate: myths, models and mechanisms of CD4--versus CD8--lineage choice, Nat Rev Immunol, vol.8, pp.788-801, 2008.

R. N. Germain, T--cell development and the CD4--CD8 lineage decision, Nat Rev Immunol, vol.2, pp.309-322, 2002.

U. Bommhardt, M. A. Basson, U. Krummrei, and R. Zamoyska, Activation of the extracellular signal--related kinase/mitogen--activated protein kinase pathway discriminates CD4 versus CD8 lineage commitment in the thymus, J Immunol, vol.163, pp.715-722, 1999.

U. Bommhardt, M. S. Cole, J. Y. Tso, and R. Zamoyska, Signals through CD8 or CD4 can induce commitment to the CD4 lineage in the thymus, Eur J Immunol, vol.27, pp.1152-1163, 1997.

N. R. Gascoigne, CD8+ thymocyte differentiation: T cell two--step, Nat Immunol, vol.11, pp.189-190, 2010.

J. H. Park, S. Adoro, T. Guinter, B. Erman, A. S. Alag et al., Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic--lineage T cells, Nat Immunol, vol.11, pp.257-264, 2010.

T. Barthlott, H. Kohler, H. Pircher, and K. Eichmann, Differentiation of CD4(high)CD8(low) coreceptor--skewed thymocytes into mature CD8 single--positive cells independent of MHC class I recognition, Eur J Immunol, vol.27, pp.2024-2032, 1997.

Y. K. Lieu, A. Kumar, A. G. Pajerowski, T. J. Rogers, and E. P. Reddy, Requirement of c--myb in T cell development and in mature T cell function, Proc Natl Acad Sci U S A, vol.101, pp.14853-14858, 2004.

L. Wang, K. F. Wildt, J. Zhu, X. Zhang, L. Feigenbaum et al., Distinct functions for the transcription factors GATA--3 and ThPOK during intrathymic differentiation of CD4(+) T cells, Nat Immunol, vol.9, pp.1122-1130, 2008.

P. Aliahmad, A. Kadavallore, B. De-la-torre, D. Kappes, and J. Kaye, TOX is required for development of the CD4 T cell lineage gene program, J Immunol, vol.187, pp.5931-5940, 2011.

I. Taniuchi, M. Osato, T. Egawa, M. J. Sunshine, S. C. Bae et al., Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development, Cell, vol.111, pp.621-633, 2002.

T. Sato, S. Ohno, T. Hayashi, C. Sato, K. Kohu et al., Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes, Immunity, vol.22, pp.317-328, 2005.

X. He, K. Park, H. Wang, Y. Zhang, X. Hua et al., CD4--CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription--factor locus, Immunity, vol.28, pp.346-358, 2008.

M. A. Luckey, M. Y. Kimura, A. T. Waickman, L. Feigenbaum, A. Singer et al., The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling, Nat Immunol, vol.15, pp.638-645, 2014.

X. He, V. P. Dave, Y. Zhang, X. Hua, N. E. Xu et al., The zinc finger transcription factor Th--POK regulates CD4 versus CD8 T--cell lineage commitment, Nature, vol.433, pp.826-833, 2005.

X. Yin, E. Ladi, S. W. Chan, O. Li, N. Killeen et al., CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision, J Immunol, vol.179, pp.7358-7364, 2007.

T. Ueno, F. Saito, D. H. Gray, S. Kuse, K. Hieshima et al., CCR7 signals are essential for cortex--medulla migration of developing thymocytes, J Exp Med, vol.200, pp.493-505, 2004.

J. Kwan and N. Killeen, CCR7 directs the migration of thymocytes into the thymic medulla, J Immunol, vol.172, pp.3999-4007, 2004.

E. Lkhagvasuren, M. Sakata, I. Ohigashi, and Y. Takahama, Lymphotoxin ? receptor regulates the development of CCL21--expressing subset of postnatal medullary thymic epithelial cells, J Immunol, vol.190, pp.5110-5117, 2013.

M. S. Anderson, E. S. Venanzi, L. Klein, Z. Chen, S. P. Berzins et al., Projection of an immunological self shadow within the thymus by the aire protein, Science, vol.298, pp.1395-1401, 2002.

H. Takaba, Y. Morishita, Y. Tomofuji, L. Danks, T. Nitta et al., Fezf2 Orchestrates a Thymic Program of Self--Antigen Expression for Immune Tolerance, Cell, vol.163, pp.975-987, 2015.

M. Irla, G. Hollander, and W. Reith, Control of central self--tolerance induction by autoreactive CD4+ thymocytes, Trends Immunol, vol.31, pp.71-79, 2010.

K. Nagamine, P. Peterson, H. S. Scott, J. Kudoh, S. Minoshima et al., Positional cloning of the APECED gene, Nat Genet, vol.17, pp.393-398, 1997.

S. N. Sansom, -. Shikama, N. -dorn, S. Zhanybekova, G. Nusspaumer et al., Population and single--cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self--antigen expression in thymic epithelia, Genome Res, vol.24, pp.1918-1931, 2014.

C. Ohnmacht, A. Pullner, S. B. King, I. Drexler, S. Meier et al., Constitutive ablation of dendritic cells breaks self--tolerance of CD4 T cells and results in spontaneous fatal autoimmunity, J Exp Med, vol.206, pp.549-559, 2009.

H. Hadeiba, K. Lahl, A. Edalati, C. Oderup, A. Habtezion et al., Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance, Immunity, vol.36, pp.438-450, 2012.

O. Cédile, M. Løbner, -. Toft, H. -hansen, I. Frank et al., Thymic CCL2 influences induction of T--cell tolerance, J Autoimmun, vol.55, pp.73-85, 2014.

N. Lopes, J. Charaix, O. Cédile, A. Sergé, and M. Irla, Lymphotoxin ? fine--tunes T cell clonal deletion by regulating thymic entry of antigen--presenting cells, Nat Commun, vol.9, p.1262, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02118045

M. S. Fassett, W. Jiang, D. 'alise, A. M. Mathis, D. Benoist et al., Nuclear receptor Nr4a1 modulates both regulatory T--cell (Treg) differentiation and clonal deletion, Proc Natl Acad Sci U S A, vol.109, pp.3891-3896, 2012.

Q. N. Hu, A. Suen, L. M. Henao-caviedes, and T. A. Baldwin, Nur77 Regulates Nondeletional Mechanisms of Tolerance in T Cells, J Immunol, vol.199, pp.3147-3157, 2017.

A. Y. Suen and T. A. Baldwin, Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue--restricted antigens, Proc Natl Acad Sci U S A, vol.109, pp.893-898, 2012.

J. Wang, N. He, N. Zhang, D. Quan, S. Zhang et al., NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection, Nat Commun, vol.8, p.959, 2017.

M. O. Li and A. Y. Rudensky, T cell receptor signalling in the control of regulatory T cell differentiation and function, Nat Rev Immunol, vol.16, pp.220-233, 2016.

S. Malchow, D. S. Leventhal, V. Lee, S. Nishi, N. D. Socci et al., Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage, Immunity, vol.44, pp.1102-1113, 2016.

C. Apert, P. Romagnoli, and J. Van-meerwijk, IL--2 and IL--15 dependent thymic development of Foxp3--expressing regulatory T lymphocytes, Protein Cell, vol.9, pp.322-332, 2018.

M. A. Zachariah and J. G. Cyster, Neural crest--derived pericytes promote egress of mature thymocytes at the corticomedullary junction, Science, vol.328, pp.1129-1135, 2010.

C. M. Carlson, B. T. Endrizzi, J. Wu, X. Ding, M. A. Weinreich et al., Kruppel--like factor 2 regulates thymocyte and T--cell migration, Nature, vol.442, pp.299-302, 2006.

M. L. Allende, J. L. Dreier, S. Mandala, and R. L. Proia, Expression of the sphingosine 1--phosphate receptor, S1P1, on T--cells controls thymic emigration, J Biol Chem, vol.279, pp.15396-15401, 2004.

A. L. Johnson, L. Aravind, N. Shulzhenko, A. Morgun, S. Y. Choi et al., Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection, Nat Immunol, vol.10, pp.831-839, 2009.

G. Fu, S. Vallée, V. Rybakin, M. V. Mcguire, J. Ampudia et al., Themis controls thymocyte selection through regulation of T cell antigen receptor--mediated signaling, Nat Immunol, vol.10, pp.848-856, 2009.

R. Lesourne, S. Uehara, J. Lee, K. D. Song, L. Li et al., Themis, a T cell--specific protein important for late thymocyte development, Nat Immunol, vol.10, pp.840-847, 2009.

K. Kakugawa, T. Yasuda, I. Miura, A. Kobayashi, H. Fukiage et al., A novel gene essential for the development of single positive thymocytes, Mol Cell Biol, vol.29, pp.5128-5135, 2009.

F. Duguet, -. Locard, M. Marcellin, M. Chaoui, K. Bernard et al., Proteomic Analysis of Regulatory T Cells Reveals the Importance of Themis1 in the Control of Their Suppressive Function, Mol Cell Proteomics, vol.16, pp.1416-1432, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01595559

C. Pedros, G. Gaud, I. Bernard, S. Kassem, M. Chabod et al., An Epistatic Interaction between Themis1 and Vav1 Modulates Regulatory T Cell Function and Inflammatory Bowel Disease Development, J Immunol, vol.195, pp.1608-1616, 2015.

R. Lesourne, E. Zvezdova, K. D. Song, -. El, D. Khoury et al., Interchangeability of Themis1 and Themis2 in thymocyte development reveals two related proteins with conserved molecular function, J Immunol, vol.189, pp.1154-1161, 2012.

D. Cheng, M. Deobagkar--lele, E. Zvezdova, S. Choi, S. Uehara et al., Themis2 lowers the threshold for B cell activation during positive selection, Nat Immunol, 2016.

C. Brockmeyer, W. Paster, D. Pepper, C. P. Tan, D. C. Trudgian et al., T cell receptor (TCR)--induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component, J Biol Chem, vol.286, pp.7535-7547, 2011.

G. Fu, J. Casas, S. Rigaud, V. Rybakin, F. Lambolez et al., Themis sets the signal threshold for positive and negative selection in T--cell development, Nature, vol.504, pp.441-445, 2013.

E. Zvezdova, J. Mikolajczak, A. Garreau, M. Marcellin, L. Rigal et al., Themis1 enhances T cell receptor signaling during thymocyte development by promoting Vav1 activity and Grb2 stability, Sci Signal, vol.9, p.51, 2016.

D. R. Plas, C. B. Williams, G. J. Kersh, L. S. White, J. M. White et al., Cutting edge: the tyrosine phosphatase SHP--1 regulates thymocyte positive selection, J Immunol, vol.162, pp.5680-5684, 1999.

S. Choi, C. Warzecha, E. Zvezdova, J. Lee, J. Argenty et al., THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP--1, Nat Immunol, 2017.

A. Garreau, G. Blaize, J. Argenty, N. Rouquié, A. Tourdès et al., Grb2--Mediated Recruitment of USP9X to LAT Enhances Themis Stability following Thymic Selection, J Immunol, vol.199, pp.2758-2766, 2017.

O. Reiner, R. Carrozzo, Y. Shen, M. Wehnert, F. Faustinella et al., Isolation of a Miller--Dieker lissencephaly gene containing G protein beta--subunit--like repeats, Nature, vol.364, pp.717-721, 1993.

X. Xiang, A. H. Osmani, S. A. Osmani, M. Xin, and N. R. Morris, NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS--1 gene required for neuronal migration, Mol Biol Cell, vol.6, pp.297-310, 1995.

D. A. Willins, B. Liu, X. Xiang, and N. R. Morris, Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans, Mol Gen Genet, vol.255, pp.194-200, 1997.

D. L. Bruno, B. M. Anderlid, A. Lindstrand, C. Van-ravenswaaij--arts, D. Ganesamoorthy et al., Further molecular and clinical delineation of co--locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes, J Med Genet, vol.47, pp.299-311, 2010.

S. Classen, T. Goecke, M. Drechsler, B. Betz, N. Nickel et al., A novel inverted 17p13.3 microduplication disrupting PAFAH1B1 (LIS1) in a girl with syndromic lissencephaly, Am J Med Genet A, vol.161, pp.1453-1458, 2013.

K. Avela, K. Aktan--collan, N. Horelli--kuitunen, S. Knuutila, and M. Somer, A microduplication on chromosome 17p13.1p13.3 including the PAFAH1B1 (LIS1) gene, Am J Med Genet A, vol.155, pp.875-879, 2011.

W. Bi, T. Sapir, O. A. Shchelochkov, F. Zhang, M. A. Withers et al., Increased LIS1 expression affects human and mouse brain development, Nat Genet, vol.41, pp.168-177, 2009.

Y. Saillour, N. Carion, C. Quelin, P. L. Leger, N. Boddaert et al., LIS1--related isolated lissencephaly: spectrum of mutations and relationships with malformation severity, Arch Neurol, vol.66, pp.1007-1015, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01104698

M. C. De-wit, J. De-rijk--van-andel, D. J. Halley, P. J. Poddighe, W. F. Arts et al., Long--term follow--up of type 1 lissencephaly: survival is related to neuroimaging abnormalities, Dev Med Child Neurol, vol.53, pp.417-421, 2011.

M. Philbert, C. Maillard, M. Cavallin, A. Goldenberg, C. Masson et al., A novel recurrent LIS1 splice site mutation in classic lissencephaly, Am J Med Genet A, vol.173, pp.561-564, 2017.

K. Poirier, N. Lebrun, L. Broix, G. Tian, Y. Saillour et al., Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly, vol.45, pp.639-647, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00838073

C. Hoff, P. Seranski, J. Mollenhauer, B. Korn, T. Detzel et al., Physical and transcriptional mapping of the 17p13.3 region that is frequently deleted in human cancer, Genomics, vol.70, pp.26-33, 2000.

N. J. Phillips, M. R. Ziegler, D. M. Radford, K. L. Fair, T. Steinbrueck et al., Allelic deletion on chromosome 17p13.3 in early ovarian cancer, Cancer Res, vol.56, pp.606-611, 1996.

C. Sarkar, P. Chattopadhyay, A. M. Ralte, A. K. Mahapatra, and S. Sinha, Loss of heterozygosity of a locus in the chromosomal region 17p13.3 is associated with increased cell proliferation in astrocytic tumors, Cancer Genet Cytogenet, vol.144, pp.156-164, 2003.

A. Koch, J. Tonn, J. A. Kraus, N. Sorensen, N. S. Albrecht et al., Molecular analysis of the lissencephaly gene 1 (LIS--1) in medulloblastomas, Neuropathol Appl Neurobiol, vol.22, pp.233-242, 1996.

Z. Xing, X. Tang, Y. Gao, L. Da, H. Song et al., The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function, Biochem Biophys Res Commun, vol.409, pp.193-199, 2011.

S. Cao, X. Lu, L. Wang, X. Qian, J. G. Ma et al., The functional polymorphisms of LIS1 are associated with acute myeloid leukemia risk in a Han Chinese population, Leuk Res, vol.54, pp.7-11, 2017.

M. B. Krawinkel, M. Ernst, A. Feller, H. D. Flad, H. K. Mueller--hermelink et al., Lissencephaly, abnormal lymph nodes, and T--cell deficiency in one patient, Am J Med Genet, vol.33, pp.436-443, 1989.

C. Ahn and N. R. Morris, Nudf, a fungal homolog of the human LIS1 protein, functions as a dimer in vivo, J Biol Chem, vol.276, pp.9903-9909, 2001.

A. Cahana, T. Escamez, R. S. Nowakowski, N. L. Hayes, M. Giacobini et al., Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization, Proc Natl Acad Sci U S A, vol.98, pp.6429-6434, 2001.

O. Reiner, I. Bar--am, T. Sapir, O. Shmueli, R. Carrozzo et al., LIS2, gene and pseudogene, homologous to LIS1 (lissencephaly 1), located on the short and long arms of chromosome 2, Genomics, vol.30, pp.251-256, 1995.

C. Tarricone, F. Perrina, S. Monzani, L. Massimiliano, M. H. Kim et al., Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF--acetylhydrolase, Neuron, vol.44, pp.809-821, 2004.

Y. Feng, E. C. Olson, P. T. Stukenberg, L. A. Flanagan, M. W. Kirschner et al., LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome, Neuron, vol.28, pp.665-679, 2000.

S. M. Markus, K. M. Plevock, B. J. St-germain, J. J. Punch, C. W. Meaden et al., Quantitative analysis of Pac1/LIS1--mediated dynein targeting: Implications for regulation of dynein activity in budding yeast, Cytoskeleton (Hoboken), vol.68, pp.157-174, 2011.

X. Gao, Z. Chen, J. Zhang, X. Li, G. Chen et al., OsLIS--L1 encoding a lissencephaly type--1--like protein with WD40 repeats is required for plant height and male gametophyte formation in rice, Planta, vol.235, pp.713-727, 2012.

K. Pa?gan and Z. Bartuzi, Platelet activating factor in allergies, Int J Immunopathol Pharmacol, vol.28, pp.584-589, 2015.

J. W. Hammond, S. M. Lu, and H. A. Gelbard, Platelet Activating Factor Enhances Synaptic Vesicle Exocytosis Via PKC, Elevated Intracellular Calcium, and Modulation of Synapsin 1 Dynamics and Phosphorylation, Front Cell Neurosci, vol.9, p.505, 2015.

H. Manya, J. Aoki, H. Kato, J. Ishii, S. Hino et al., Biochemical characterization of various catalytic complexes of the brain platelet--activating factor acetylhydrolase, J Biol Chem, vol.274, pp.31827-31832, 1999.

M. A. Dewitt, C. A. Cypranowska, F. B. Cleary, V. Belyy, and A. Yildiz, The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release, Nat Struct Mol Biol, vol.22, pp.73-80, 2015.

M. A. Cianfrocco, M. E. Desantis, A. E. Leschziner, and S. L. Reck--peterson, Mechanism and regulation of cytoplasmic dynein, Annu Rev Cell Dev Biol, vol.31, pp.83-108, 2015.

W. B. Redwine, M. E. Desantis, I. Hollyer, Z. M. Htet, P. T. Tran et al., Reck--Peterson SL. 2017. The human cytoplasmic dynein interactome reveals novel activators of motility

J. B. Gama, C. Pereira, P. A. Simões, R. Celestino, R. M. Reis et al., Molecular mechanism of dynein recruitment to kinetochores by the Rod--Zw10--Zwilch complex and Spindly, J Cell Biol, vol.216, pp.943-960, 2017.

C. M. Schroeder and R. D. Vale, Assembly and activation of dynein--dynactin by the cargo adaptor protein Hook3, J Cell Biol, vol.214, pp.309-318, 2016.

C. P. Horgan, S. R. Hanscom, R. S. Jolly, C. E. Futter, and M. W. Mccaffrey, Rab11--FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal--recycling compartment, J Cell Sci, vol.123, pp.181-191, 2010.

H. Ham, W. Huynh, R. A. Schoon, R. D. Vale, and D. D. Billadeau, HkRP3 is a microtubule--binding protein regulating lytic granule clustering and NK cell killing, J Immunol, vol.194, pp.3984-3996, 2015.

O. Loss and F. A. Stephenson, Developmental changes in trak--mediated mitochondrial transport in neurons, Mol Cell Neurosci, vol.80, pp.134-147, 2017.

T. E. Sladewski, N. Billington, M. Y. Ali, C. S. Bookwalter, H. Lu et al., Recruitment of two dyneins to an mRNA--dependent Bicaudal D, 2018.

S. Wang, S. A. Ketcham, A. Schön, B. Goodman, Y. Wang et al., Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis, Mol Biol Cell, vol.24, pp.3522-3533, 2013.

J. Huang, A. J. Roberts, A. E. Leschziner, -. Reck, and S. L. -peterson, Lis1 acts as a "clutch" between the ATPase and microtubule--binding domains of the dynein motor, Cell, vol.150, pp.975-986, 2012.

M. J. Egan, K. Tan, -. Reck, and S. L. -peterson, Lis1 is an initiation factor for dynein--driven organelle transport, J Cell Biol, vol.197, pp.971-982, 2012.

R. J. Mckenney, S. J. Weil, J. Scherer, and R. B. Vallee, Mutually exclusive cytoplasmic dynein regulation by NudE--Lis1 and dynactin, J Biol Chem, vol.286, pp.39615-39622, 2011.

J. H. Lenz, I. Schuchardt, A. Straube, and G. Steinberg, A dynein loading zone for retrograde endosome motility at microtubule plus--ends, EMBO J, vol.25, pp.2275-2286, 2006.

V. P. Efimov, J. Zhang, and X. Xiang, CLIP--170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans, Mol Biol Cell, vol.17, pp.2021-2034, 2006.

F. M. Coquelle, M. Caspi, F. P. Cordelières, J. P. Dompierre, D. L. Dujardin et al., LIS1, CLIP--170's key to the dynein/dynactin pathway, Mol Cell Biol, vol.22, pp.3089-3102, 2002.

S. S. Kholmanskikh, H. B. Koeller, -. Wynshaw, A. Boris, T. Gomez et al., Calcium--dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility, Nat Neurosci, vol.9, pp.50-57, 2006.

C. Y. Tai, D. L. Dujardin, N. E. Faulkner, and R. B. Vallee, Role of dynein, dynactin, and CLIP--170 interactions in LIS1 kinetochore function, J Cell Biol, vol.156, pp.959-968, 2002.

N. E. Faulkner, D. L. Dujardin, C. Y. Tai, K. T. Vaughan, C. B. O'connell et al., A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function, Nat Cell Biol, vol.2, pp.784-791, 2000.

X. Xiang, LIS1 at the microtubule plus end and its role in dynein--mediated nuclear migration, J Cell Biol, vol.160, pp.289-290, 2003.

E. Klinman and E. L. Holzbaur, Stress--Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein, Cell Rep, vol.12, pp.462-473, 2015.

J. Y. Yi, -. Ori, K. M. Mckenney, R. J. Mckenney, M. Vershinin et al., High--resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high--load axonal transport, J Cell Biol, vol.195, pp.193-201, 2011.

B. J. Reddy, M. Mattson, C. L. Wynne, O. Vadpey, A. Durra et al., Load--induced enhancement of Dynein force production by LIS1--NudE in vivo and in vitro, Nat Commun, vol.7, p.12259, 2016.

M. E. Desantis, M. A. Cianfrocco, Z. M. Htet, P. T. Tran, -. Reck et al., Lis1 Has Two Opposing Modes of Regulating Cytoplasmic Dynein, Cell, vol.170, pp.1197-1208, 1112.

S. Hirotsune, M. W. Fleck, M. J. Gambello, G. J. Bix, A. Chen et al., Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality, Nat Genet, vol.19, pp.333-339, 1998.

T. Escamez, O. Bahamonde, R. Tabares--seisdedos, E. Vieta, S. Martinez et al., Developmental dynamics of PAFAH1B subunits during mouse brain development, J Comp Neurol, vol.520, pp.3877-3894, 2012.

K. I. Katayama, K. Hayashi, S. Inoue, K. Sakaguchi, and K. Nakajima, Enhanced expression of Pafah1b1 causes over--migration of cerebral cortical neurons into the marginal zone, Brain Struct Funct, vol.222, pp.4283-4291, 2017.

G. W. Jheng, S. S. Hur, C. M. Chang, C. C. Wu, J. S. Cheng et al., Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration, Biochem Biophys Res Commun, vol.497, pp.869-875, 2018.

R. Mayor and S. Etienne--manneville, The front and rear of collective cell migration, Nat Rev Mol Cell Biol, vol.17, pp.97-109, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-02059080

S. S. Kholmanskikh, J. S. Dobrin, -. Wynshaw, A. Boris, P. C. Letourneau et al., Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1--deficient neurons, J Neurosci, vol.23, pp.8673-8681, 2003.

S. Chen, S. Kaneko, X. Ma, X. Chen, Y. T. Ip et al., Lissencephaly--1 controls germline stem cell self--renewal through modulating bone morphogenetic protein signaling and niche adhesion, Proc Natl Acad Sci U S A, vol.107, pp.19939-19944, 2010.

S. Hebbar, A. M. Guillotte, M. T. Mesngon, Q. Zhou, -. Wynshaw et al., Genetic enhancement of the Lis1+/--phenotype by a heterozygous mutation in the adenomatous polyposis coli gene, Dev Neurosci, vol.30, pp.157-170, 2008.

N. Preitner, J. Quan, D. W. Nowakowski, M. L. Hancock, J. Shi et al., APC is an RNA--binding protein, and its interactome provides a link to neural development and microtubule assembly, Cell, vol.158, pp.368-382, 2014.

M. A. Juanes, H. Bouguenina, J. A. Eskin, R. Jaiswal, A. Badache et al., Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule--induced focal adhesion turnover, J Cell Biol, vol.216, pp.2859-2875, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01765363

D. M. Graham, T. Andersen, L. Sharek, G. Uzer, K. Rothenberg et al., Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction, J Cell Biol, vol.217, pp.895-914, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02063856

A. Fruleux and R. J. Hawkins, Physical role for the nucleus in cell migration, J Phys Condens Matter, vol.28, p.363002, 2016.

S. Yadav, S. Puri, and A. D. Linstedt, A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing, Mol Biol Cell, vol.20, pp.1728-1736, 2009.

T. Tanaka, F. F. Serneo, C. Higgins, M. J. Gambello, -. Wynshaw et al., Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration, J Cell Biol, vol.165, pp.709-721, 2004.

H. Umeshima, T. Hirano, and M. Kengaku, Microtubule--based nuclear movement occurs independently of centrosome positioning in migrating neurons, Proc Natl Acad Sci U S A, vol.104, pp.16182-16187, 2007.

M. Rehberg, J. Kleylein--sohn, J. Faix, T. H. Ho, I. Schulz et al., Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics, Mol Biol Cell, vol.16, pp.2759-2771, 2005.

D. L. Dujardin, L. E. Barnhart, S. A. Stehman, E. R. Gomes, G. G. Gundersen et al., A role for cytoplasmic dynein and LIS1 in directed cell movement, J Cell Biol, vol.163, pp.1205-1211, 2003.

C. Swanton, Cell--cycle targeted therapies, Lancet Oncol, vol.5, pp.27-36, 2004.

E. A. Nigg and A. J. Holland, Once and only once: mechanisms of centriole duplication and their deregulation in disease, Nat Rev Mol Cell Biol, vol.19, pp.297-312, 2018.

F. G. Agircan, E. Schiebel, and B. R. Mardin, Separate to operate: control of centrosome positioning and separation, Philos Trans R Soc Lond B Biol Sci, p.369, 2014.

A. Musacchio, The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics, Curr Biol, vol.25, pp.1002-1018, 2015.

M. A. Jordan, D. Thrower, and W. L. , Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis, J Cell Sci, vol.102, pp.401-416, 1992.

J. W. Tsai, Y. Chen, A. R. Kriegstein, and R. B. Vallee, LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages, J Cell Biol, vol.170, pp.935-945, 2005.

Z. Liu, R. Steward, and L. Luo, Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport, Nat Cell Biol, vol.2, pp.776-783, 2000.

A. Cahana, X. L. Jin, O. Reiner, -. Wynshaw, A. Boris et al., A study of the nature of embryonic lethality in LIS1--/-- mice, Mol Reprod Dev, vol.66, pp.134-142, 2003.

J. Yingling, Y. H. Youn, D. Darling, -. Toyo, K. Oka et al., Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division, Cell, vol.132, pp.474-486, 2008.

B. Zimdahl, T. Ito, A. Blevins, J. Bajaj, T. Konuma et al., Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia, Nat Genet, vol.46, pp.245-252, 2014.

M. M. Cockell, K. Baumer, and P. Gönczy, lis--1 is required for dynein--dependent cell division processes in C. elegans embryos, J Cell Sci, vol.117, pp.4571-4582, 2004.

C. Arquint and E. A. Nigg, The PLK4--STIL--SAS--6 module at the core of centriole duplication, Biochem Soc Trans, vol.44, pp.1253-1263, 2016.

M. Karki, N. Keyhaninejad, and C. B. Shuster, Precocious centriole disengagement and centrosome fragmentation induced by mitotic delay, Nat Commun, vol.8, p.15803, 2017.

H. Izumi, Y. Matsumoto, T. Ikeuchi, H. Saya, T. Kajii et al., BubR1 localizes to centrosomes and suppresses centrosome amplification via regulating Plk1 activity in interphase cells, Oncogene, vol.28, pp.2806-2820, 2009.

M. R. Cosenza and A. Krämer, Centrosome amplification, chromosomal instability and cancer: mechanistic, clinical and therapeutic issues, Chromosome Res, vol.24, pp.105-126, 2016.

J. Kim, K. Lee, and K. Rhee, PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit, Nat Commun, vol.6, p.10076, 2015.

H. M. Moon, Y. H. Youn, H. Pemble, J. Yingling, T. Wittmann et al., LIS1 controls mitosis and mitotic spindle organization via the LIS1--NDEL1--dynein complex, Hum Mol Genet, vol.23, pp.449-466, 2014.

S. R. Sharif, A. Islam, and I. S. Moon, Complex and Regulates Cell Division, Mol Cells, vol.39, pp.669-679, 2016.

T. Mchugh and J. P. Welburn, Dynein at kinetochores: Making the connection, J Cell Biol, vol.216, pp.855-857, 2017.

J. C. Gatlin, A. Matov, A. C. Groen, D. J. Needleman, T. J. Maresca et al., Spindle fusion requires dynein--mediated sliding of oppositely oriented microtubules, Curr Biol, vol.19, pp.287-296, 2009.

S. Florian and T. U. Mayer, The functional antagonism between Eg5 and dynein in spindle bipolarization is not compatible with a simple push--pull model, Cell Rep, vol.1, pp.408-416, 2012.

N. P. Ferenz, R. Paul, C. Fagerstrom, A. Mogilner, and P. Wadsworth, Dynein antagonizes eg5 by crosslinking and sliding antiparallel microtubules, Curr Biol, vol.19, pp.1833-1838, 2009.

M. E. Tanenbaum, L. Mac?rek, N. Galjart, and R. H. Medema, Dynein, Lis1 and CLIP--170 counteract Eg5--dependent centrosome separation during bipolar spindle assembly, EMBO J, vol.27, pp.3235-3245, 2008.

M. A. Vergnolle and S. S. Taylor, Cenp--F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes, Curr Biol, vol.17, pp.1173-1179, 2007.

E. R. Griffis, N. Stuurman, and R. D. Vale, Spindly, a novel protein essential for silencing the spindle assembly checkpoint, recruits dynein to the kinetochore, J Cell Biol, vol.177, pp.1005-1015, 2007.

A. Vagnoni, P. C. Hoffmann, and S. L. Bullock, Reducing Lissencephaly--1 levels augments mitochondrial transport and has a protective effect in adult Drosophila neurons, J Cell Sci, vol.129, pp.178-190, 2016.

C. Y. Shao, J. Zhu, Y. J. Xie, Z. Wang, Y. N. Wang et al., Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport, Traffic, vol.14, pp.785-797, 2013.

J. P. Pandey and D. S. Smith, A Cdk5--dependent switch regulates Lis1/Ndel1/dynein--driven organelle transport in adult axons, J Neurosci, vol.31, pp.17207-17219, 2011.

C. E. Holt and S. L. Bullock, Subcellular mRNA localization in animal cells and why it matters, Science, vol.326, pp.1212-1216, 2009.

C. I. Dix, H. C. Soundararajan, N. S. Dzhindzhev, F. Begum, B. Suter et al., Lissencephaly--1 promotes the recruitment of dynein and dynactin to transported mRNAs, J Cell Biol, vol.202, pp.479-494, 2013.

M. Yamada, S. Toba, Y. Yoshida, K. Haratani, D. Mori et al., LIS1 and NDEL1 coordinate the plus--end--directed transport of cytoplasmic dynein, EMBO J, vol.27, pp.2471-2483, 2008.

A. A. Lanctot, C. Y. Peng, A. S. Pawlisz, M. Joksimovic, and Y. Feng, Spatially dependent dynamic MAPK modulation by the Nde1--Lis1--Brap complex patterns mammalian CNS, Dev Cell, vol.25, pp.241-255, 2013.

C. Plestant and A. E. , Scaling the MAPK signaling threshold during CNS patterning, Dev Cell, vol.25, pp.221-222, 2013.

L. Liu, J. Lu, X. Li, A. Wu, Q. Wu et al., The LIS1/NDE1 Complex Is Essential for FGF Signaling by Regulating FGF Receptor Intracellular Trafficking, Cell Rep, vol.22, pp.3277-3291, 2018.

D. L. Silver, -. Watkins, . De, K. C. Schreck, T. J. Pierfelice et al., The exon junction complex component Magoh controls brain size by regulating neural stem cell division, Nat Neurosci, vol.13, pp.551-558, 2010.

Y. Huang, J. Jiang, G. Zheng, J. Chen, H. Lu et al., miR--139--5p modulates cortical neuronal migration by targeting Lis1 in a rat model of focal cortical dysplasia, Int J Mol Med, vol.33, pp.1407-1414, 2014.

T. Sapir, A. Cahana, R. Seger, S. Nekhai, and O. Reiner, LIS1 is a microtubule--associated phosphoprotein, Eur J Biochem, vol.265, pp.181-188, 1999.

N. J. Bradshaw, D. C. Soares, B. C. Carlyle, F. Ogawa, -. Davidson et al., PKA phosphorylation of NDE1 is DISC1/PDE4 dependent and modulates its interaction with LIS1 and NDEL1, J Neurosci, vol.31, pp.9043-9054, 2011.

S. Hebbar, M. T. Mesngon, A. M. Guillotte, B. Desai, R. Ayala et al., Lis1 and Ndel1 influence the timing of nuclear envelope breakdown in neural stem cells, J Cell Biol, vol.182, pp.1063-1071, 2008.

A. Alonso, S. Silva, M. Rahman, P. B. Meluh, J. Keeling et al., The yeast homologue of the microtubule--associated protein Lis1 interacts with the sumoylation machinery and a SUMO--targeted ubiquitin ligase, Mol Biol Cell, vol.23, pp.4552-4566, 2012.

N. Yamaguchi, H. Koizumi, J. Aoki, Y. Natori, K. Nishikawa et al., Type I platelet--activating factor acetylhydrolase catalytic subunits over--expression induces pleiomorphic nuclei and centrosome amplification, Genes Cells, vol.12, pp.1153-1161, 2007.

A. H. Assadi, G. Zhang, U. Beffert, R. S. Mcneil, A. L. Renfro et al., Interaction of reelin signaling and Lis1 in brain development, Nat Genet, vol.35, pp.270-276, 2003.

J. P. Aumais, J. R. Tunstead, R. S. Mcneil, B. T. Schaar, S. K. Mcconnell et al., NudC associates with Lis1 and the dynein motor at the leading pole of neurons, J Neurosci, vol.21, p.187, 2001.

X. J. Zhu, X. Liu, J. Q. Cai, Y. , Y. Y. Zhou et al., The L279P mutation of nuclear distribution gene C (NudC) influences its chaperone activity and lissencephaly protein 1 (LIS1) stability, J Biol Chem, vol.285, pp.29903-29910, 2010.

J. Zhang, S. Li, R. Fischer, and X. Xiang, Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent, Mol Biol Cell, vol.14, pp.1479-1488, 2003.

S. M. Morris, U. Albrecht, O. Reiner, G. Eichele, Y. et al., The lissencephaly gene product Lis1, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Curr Biol, vol.8, pp.603-606, 1998.

M. Yamada, S. Toba, T. Takitoh, Y. Yoshida, D. Mori et al., mNUDC is required for plus--end--directed transport of cytoplasmic dynein and dynactins by kinesin--1, EMBO J, vol.29, pp.517-531, 2010.

M. Yamada, K. Kumamoto, S. Mikuni, Y. Arai, M. Kinjo et al., Rab6a releases LIS1 from a dynein idling complex and activates dynein for retrograde movement, Nat Commun, vol.4, p.2033, 2013.

P. Sitaram, M. A. Anderson, J. N. Jodoin, E. Lee, and L. A. Lee, Regulation of dynein localization and centrosome positioning by Lis--1 and asunder during Drosophila spermatogenesis, Development, vol.139, pp.2945-2954, 2012.

J. M. Villarin, E. P. Mccurdy, J. C. Martínez, and U. Hengst, Local synthesis of dynein cofactors matches retrograde transport to acutely changing demands, Nat Commun, vol.7, p.13865, 2016.

X. Chen, J. Zhang, J. Zhao, H. Liu, X. Sun et al., Lis1 is required for the expansion of hematopoietic stem cells in the fetal liver, Cell Res, vol.24, pp.1013-1016, 2014.

J. Chen, Z. Cai, L. Zhang, Y. Yin, X. Chen et al., Lis1 Regulates Germinal Center B Cell Antigen Acquisition and Affinity Maturation, J Immunol, vol.198, pp.4304-4311, 2017.

S. M. Ngoi, J. M. Lopez, and J. T. Chang, The Microtubule--Associated Protein Lis1 Regulates T Lymphocyte Homeostasis and Differentiation, J Immunol, vol.196, pp.4237-4245, 2016.

S. Nath, L. Christian, S. Y. Tan, K. S. Ehrlich, L. I. Poenie et al., Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion, J Immunol, vol.197, pp.2090-2101, 2016.

T. Zhumabekov, P. Corbella, M. Tolaini, and D. Kioussis, Improved version of a human CD2 minigene based vector for T cell--specific expression in transgenic mice, J Immunol Methods, vol.185, pp.133-140, 1995.

J. De-boer, A. Williams, G. Skavdis, N. Harker, M. Coles et al., Transgenic mice with hematopoietic and lymphoid specific expression of Cre, Eur J Immunol, vol.33, pp.314-325, 2003.

D. R. Shimshek, J. Kim, M. R. Hübner, D. J. Spergel, F. Buchholz et al., Codon--improved Cre recombinase (iCre) expression in the mouse, Genesis, vol.32, pp.19-26, 2002.

S. Sawada, J. D. Scarborough, N. Killeen, and D. R. Littman, A lineage--specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development, Cell, vol.77, pp.917-929, 1994.

X. Zhang, X. Dong, H. Wang, J. Li, B. Yang et al., FADD regulates thymocyte development at the ?--selection checkpoint by modulating Notch signaling, Cell Death Dis, vol.5, p.1273, 2014.

M. S. Levine, B. Bakker, B. Boeckx, J. Moyett, J. Lu et al., Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals, Dev Cell, vol.40, pp.313-322, 2017.

E. H. Hinchcliffe, Centrosomes and the art of mitotic spindle maintenance, Int Rev Cell Mol Biol, vol.313, pp.179-217, 2014.

P. T. Conduit, A. Wainman, and J. W. Raff, Centrosome function and assembly in animal cells, Nat Rev Mol Cell Biol, vol.16, pp.611-624, 2015.

J. S. Lanni and T. Jacks, Characterization of the p53--dependent postmitotic checkpoint following spindle disruption, Mol Cell Biol, vol.18, pp.1055-1064, 1998.

C. De-la-calle, P. E. Joubert, H. K. Law, M. Hasan, and M. L. Albert, Simultaneous assessment of autophagy and apoptosis using multispectral imaging cytometry, Autophagy, vol.7, pp.1045-1051, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01402064

C. I. Lau, A. Barbarulo, A. Solanki, J. I. Saldaña, and T. Crompton, The kinesin motor protein Kif7 is required for T--cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus, Oncotarget, vol.8, pp.24163-24176, 2017.

P. C. Trampont, A. C. Tosello--trampont, Y. Shen, A. K. Duley, A. E. Sutherland et al., CXCR4 acts as a costimulator during thymic beta--selection, Nat Immunol, vol.11, pp.162-170, 2010.

T. Nishino, R. Matsunaga, and H. Konishi, Functional relationship between CABIT, SAM and 14--3--3 binding domains of GAREM1 that play a role in its subcellular localization, Biochem Biophys Res Commun, vol.464, pp.616-621, 2015.

S. Taya, T. Shinoda, D. Tsuboi, J. Asaki, K. Nagai et al., DISC1 regulates the transport of the NUDEL/LIS1/14--3--3epsilon complex through kinesin--1, J Neurosci, vol.27, pp.15-26, 2007.

A. Wynshaw--boris, Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development, Clin Genet, vol.72, pp.296-304, 2007.

O. Reiner, LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules, Scientifica (Cairo), p.393975, 2013.

O. Reiner, S. Sapoznik, and T. Sapir, Lissencephaly 1 linking to multiple diseases: mental retardation, neurodegeneration, schizophrenia, male sterility, and more, Neuromolecular Med, vol.8, pp.547-565, 2006.

R. Basu and M. Huse, Mechanical Communication at the Immunological Synapse, Trends Cell Biol, vol.27, pp.241-254, 2017.

J. Delon, The immunological synapse, Curr Biol, vol.10, p.214, 2000.

N. Bahi--buisson and R. Guerrini, Diffuse malformations of cortical development, Handb Clin Neurol, vol.111, pp.653-665, 2013.

J. N. Jodoin, M. Shboul, P. Sitaram, -. Zein, H. Sabatto et al., Human Asunder promotes dynein recruitment and centrosomal tethering to the nucleus at mitotic entry, Mol Biol Cell, vol.23, pp.4713-4724, 2012.

F. Uhlmann, F. Lottspeich, and K. Nasmyth, Sister--chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1, Nature, vol.400, pp.37-42, 1999.

M. Yanagida, Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin, Genes Cells, vol.5, pp.1-8, 2000.

S. Leidel, M. Delattre, L. Cerutti, K. Baumer, and P. Gönczy, SAS--6 defines a protein family required for centrosome duplication in C. elegans and in human cells, Nat Cell Biol, vol.7, pp.115-125, 2005.

N. Peel, N. R. Stevens, R. Basto, and J. W. Raff, Overexpressing centriole--replication proteins in vivo induces centriole overduplication and de novo formation, Curr Biol, vol.17, pp.834-843, 2007.

G. Marteil, A. Guerrero, A. F. Vieira, B. P. De-almeida, P. Machado et al.,

M. Dias, Over--elongation of centrioles in cancer promotes centriole amplification and chromosome missegregation, Nat Commun, vol.9, p.1258, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01939139

S. Malik, H. Saito, M. Takaoka, Y. Miki, and A. Nakanishi, BRCA2 mediates centrosome cohesion via an interaction with cytoplasmic dynein, Cell Cycle, vol.15, pp.2145-2156, 2016.

A. Tutt, A. Gabriel, D. Bertwistle, F. Connor, H. Paterson et al., Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification, Curr Biol, vol.9, pp.1107-1110, 1999.

T. E. Meigs and D. D. Kaplan, Isolation of centrosomes from cultured Mammalian cells, CSH Protoc, 2008.

C. P. Gully, -. Velazquez, G. Torres, J. H. Shin, E. Fuentes--mattei et al., Aurora B kinase phosphorylates and instigates degradation of p53, Proc Natl Acad Sci U S A, vol.109, pp.1513-1522, 2012.

X. Liu, H. Zheng, X. Li, S. Wang, H. J. Meyerson et al., Gain--of--function mutations of Ptpn11 (Shp2) cause aberrant mitosis and increase susceptibility to DNA damage--induced malignancies, Proc Natl Acad Sci U S A, vol.113, pp.984-989, 2016.

M. Sankar, K. Tanaka, T. S. Kumaravel, M. Arif, T. Shintani et al., Identification of a commonly deleted region at 17p13.3 in leukemia and lymphoma associated with 17p abnormality, Leukemia, vol.12, pp.510-516, 1998.

M. Kobayashi, A. Kawashima, M. Mai, and A. Ooi, Analysis of chromosome 17p13 (p53 locus) alterations in gastric carcinoma cells by dual--color fluorescence in situ hybridization, Am J Pathol, vol.149, pp.1575-1584, 1996.

M. Olivier, M. Hollstein, and P. Hainaut, TP53 mutations in human cancers: origins, consequences, and clinical use, Cold Spring Harb Perspect Biol, vol.2, p.1008, 2010.