. Altarejos-garcía, I. Luis, A. Escuder-bueno, . Serrano-lombillo, and . Manuel-gómez-de-membrillera-ortuño, Methodology for estimating the probability of failure by sliding in concrete gravity dams in the context of risk analysis, Structural Safety, pp.36-37, 2012.

Y. Aoues, Optimisation fiabiliste de la conception et de la maintenance des stuctures, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00726003

Y. Aoues and A. Chateauneuf, Benchmark study of numerical methods for reliability-based design optimization, Structural and multidisciplinary optimization, vol.41, pp.277-294, 2010.

R. Askey, Orthogonal Polynomials and Special Functions, CBMS-NSF Regional Conference Series in Applied Mathematics, p.116, 1975.

R. Askey and &. Wilson, Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, p.68, 1985.

F. Bangert, &. Kuhl, and . Meschke, Chemo-hygro-mechanical modelling and numerical simulation of concrete deterioration caused by alkali-silica reaction, International Journal for Numerical and Analytical Methods in Geomechanics, vol.28, pp.689-714, 2004.

Z. P. Baz?nt and A. Steffens, Mathematical model for kinetics of alkali-silica reaction in concrete, Cement and Concrete Research, vol.30, pp.270-277, 2000.

B. Haha, K. Mohsen, and . Scrivener, Mechanical effects of alkali silica reaction in concrete studied by SEM-image analysis, 2007.

M. Berveiller, Eléments finis stochastiques : approches intrusive et non intrusive pour des analyses de fiabilité, 2005.

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, Methods: Université, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

G. Blatman and B. Sudret, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mécanique, vol.336, pp.518-523, 2008.

G. Blatman and B. Sudret, An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, vol.25, pp.183-197, 2010.

G. Blatman and B. Sudret, Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering & System Safety, vol.95, pp.1216-1229, 2010.

G. Blatman and . Bruno-sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, Journal of Computational Physics, vol.230, pp.2345-2367, 2011.

E. Bourdarot and A. Sellier, A review of continuum damage modelling for dam analysis, European Journal of Environmental and Civil Engineering, vol.14, pp.805-822, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01724663

K. Breitung, Asymptotic Approximations for Multinormal Integrals, Journal of Engineering Mechanics, vol.110, pp.357-366, 1984.

D. Bulteel, C. Garcia-diaz, &. Vernet, and . Zanni, Alkali-silica reaction: A method to quantify the reaction degree, Cement and Concrete Research, vol.32, pp.1199-1206, 2002.

R. Cameron and &. Martin, The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals, Annals of Mathematics, vol.48, pp.385-392, 1947.

F. Campolongo, J. Cariboni, and A. Saltelli, Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment, vol.22, pp.1509-1518, 2007.

B. Capra and &. Bournazel, Modeling of Induced Mechanical Effects of Alkali-Aggregate Reactions, Cement and Concrete Research, vol.28, pp.251-260, 1998.

B. Capra and A. Sellier, Orthotropic modelling of alkali-aggregate reaction in concrete structures: numerical simulations, Mechanics of Materials, vol.35, 2003.

C. Carvajal, Evaluation probabiliste de la sécurité structurale des barragespoids, 2009.

L. Charpin and A. E. , A computational linear elastic fracture mechanicsbased model for alkali-silica reaction, Cement and Concrete Research, vol.42, pp.613-625, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00843899

L. Charpin and A. Ehrlacher, Microporomechanics study of anisotropy of ASR under loading, Cement and Concrete Research, vol.63, pp.143-157, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157339

L. Charpin and A. Ehrlacher, Simplified Model for the Transport of Alkali-Silica Reaction Gel in Concrete Porosity, Journal of Advanced Concrete Technology, vol.12, pp.1-6, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00940139

G. Chastaing, F. Gamboa, and C. Prieur, Generalized Sobol sensitivity indices for dependent variables: numerical methods, Journal of Statistical Computation and Simulation, vol.85, pp.1306-1333, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01980685

A. Chateauneuf and . Younes-aoues, Advances in solution methods for reliability-based design optimization, Structural Design Optimization Considering Uncertainties, pp.251-280, 2008.

. Choi, . Seung-kyum, V. Ramana, . Grandhi, A. Robert et al., Structural reliability under non-Gaussian stochastic behavior, Computers & Structures, vol.82, pp.1113-1121, 2004.

C. Peyrot and I. , Development and validation of a 3D computional tool to describe damage and fracture due to Alcali-Silica Reaction in concrete structures, École nationale supérieure des mines, 2006.

C. Comi, &. Fedele, and . Perego, A chemo-thermo-damage model for the analysis of concrete dams affected by alkali-silica reaction, Mechanics of Materials, vol.41, pp.210-230, 2009.

. Couty, Réflexion sur la réaction alcali-silice: Colloque METL-DRAST sur l'alcaliréaction ESPCI, 1999.

C. Cremona, Structural Performance: Probability-Based Assessment, p.448, 2011.

R. Cropp and &. R. Braddock, The new morris method: An efficient second order screening method, Reliability Engineering and System Safety, vol.78, pp.109-115, 2002.

R. A. Cropp, D. Roger, and . Braddock, The New Morris Method: An efficient secondorder screening method, Reliability Engineering and System Safety, vol.78, pp.77-83, 2002.

C. Curt, M. L. Goc, and L. Torres, Multimodel-Based Diagnosis of Hydraulic Dams, Journal of Computing in Civil Engineering, vol.31, p.4017024, 2017.

C. Curt, L. Peyras, and D. Boissier, A Knowledge Formalization and Aggregation-Based Method for the Assessment of Dam Performance, Computer-Aided Civil and Infrastructure Engineering, vol.25, pp.171-184, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00585649

C. Curt, A. Talon, and G. Mauris, A dam assessment support system based on physical measurements, sensory evaluations and expert judgements, Measurement, vol.44, pp.192-201, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00581096

. De-araújo, . Josémilton, and . Awruch, Probabilistic finite element analysis of concrete gravity dams, Advances in Engineering Software, vol.29, pp.97-104, 1998.

. De-laleu and . Vincent, Journee ACI du 17 mai 1999-Paris Conséquences de la réaction Alcali-Granulats sur les barrages exploited par EDF, Revue Française de Génie Civil, vol.4, pp.577-589, 2000.

. De-larrard and . François, Structures granulaires et formulation des bétons, 2000.

D. Glasser, L. , and &. Kataoka, The chemistry of 'alkali-aggregate' reaction, Cement and Concrete Research, vol.11, pp.1-9, 1981.

N. Devictor, Fiabilité et mécanique méthodes FORM/SORM et couplages avec des codes d'éléments finis par des surfaces de réponse adaptatives, 1996.

S. Diamond and &. Thaulow, A study of expansion due to alkali -silica reaction as conditioned by the grain size of the reactive aggregate, Cement and Concrete Research, vol.4, pp.591-607, 1974.

O. Ditlevsen and &. Madsen, Structural Reliability Methods, p.384, 1996.

T. P. Dolen, Materials properties model of aging concrete, 2005.

R. Dron, &. Brivot, and . Chaussadent, The mechanism of the alkali-silica reaction, BULLETIN DES LABORATOIRES DES PONTS ET CHAUSSEES, 1998.

R. Dron and . Françoise-brivot, Thermodynamic and kinetic approach to the alkalisilica reaction. Part 1: Concepts, Cement and Concrete Research, vol.22, pp.941-948, 1992.

R. Dron and F. Brivot, Thermodynamic and kinetic approach to the alkalisilica reaction. Part 2: Experiment, Cement and Concrete Research, vol.23, pp.93-103, 1993.

C. Dunant, Experimental and modelling study of the alkali-silica-reaction in concrete, 2009.

C. F. Dunant, . Karen, and . Scrivener, Micro-mechanical modelling of alkali-silicareaction-induced degradation using the AMIE framework, Cement and Concrete Research, vol.40, pp.517-525, 2010.

C. F. Dunant, L. Karen, and . Scrivener, Effects of uniaxial stress on alkali-silica reaction induced expansion of concrete, Cement and Concrete Research, vol.42, pp.567-576, 2012.

F. Duprat, Fiabilité des structures. Toulouse. Fiabilité résiduelle des ouvrages en béton par réaction alcali-granulat Application au barrage de Song Loulou, 2013.

F. Duprat, F. Schoefs, and B. Sudret, Surfaces de réponse physiques et polynomiales, Fiabilité des ouvrages: Sûreté, variabilité, maintenance, sécurité, 2011.

F. Duprat and A. Sellier, The projection gradient algorithm with error control for structural reliability, Engineering Structures, vol.32, pp.3725-3733, 2010.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals of Statistics, vol.32, pp.407-499, 2004.

P. Erbisti, Design of hydraulic gates, 2014.

R. Esposito and &. Hendriks, Literature review of modelling approaches for ASR in concrete: a new perspective, European Journal of Environmental and Civil Engineering, pp.1-21, 2017.

E. M. Fairbairn, L. Fernando, L. E. Ribeiro, . Lopes, D. Romildo et al., Modelling the structural behaviour of a dam affected by alkalisilica reaction, Communications in Numerical Methods in Engineering, vol.22, pp.1-12, 2006.

N. Fajraoui, Analyse de sensibilité globale et polynômes de chaos pour l'estimation des paramètres : application aux transferts en milieu poreux, 2014.

M. Farage, J. Alves, and &. E-m-r-fairbairn, Macroscopic model of concrete subjected to alkali-aggregate reaction, Cement and Concrete Research, vol.34, pp.495-505, 2004.

P. Fasseu, &. Mahut, and . Lcpc, Aide à la gestion des ouvrages atteints de réactions de gonflement interne, Guide Technique des LPC, 2003.

. Fournier, M. Benoit, K. J. Bérubé, M. Folliard, and . Thomas, Report on the Diagnosis, Prognosis, and Mitigation of Alkali-Silica Reaction (ASR) in Transportation Structures, 2010.

Y. Furusawa, H. Ohga, and &. Uomoto, An Analytical Study Concerning Prediction of Concrete Expansion due to Alkali-Silica Reaction, 1994.

X. Gao, M. Cyr, S. Multon, and &. Sellier, A comparison of methods for chemical assessment of reactive silica in concrete aggregates by selective dissolution, Cement and Concrete Composites, vol.37, pp.82-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01724654

X. Gao and . Xiao, Contribution to the requalification of ASR-damaged structures: Assessment of the ASR advancement in aggregates, 2010.

X. Gao, M. Xiao, and . Cyr, A three-step method for the recovery of aggregates from concrete, Construction and Building Materials, vol.45, pp.262-269, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01724655

X. Gao, S. Xiao, M. Multon, and . Cyr, Alkali-silica reaction (ASR) expansion: Pessimum effect versus scale effect, Cement and Concrete Research, vol.44, pp.25-33, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01724652

E. Garcia-diaz, . Riche, &. Bulteel, and . Vernet, Mechanism of damage for the alkali-silica reaction, Cement and Concrete Research, vol.36, pp.395-400, 2006.

B. Gautam, . Prasad, K. Daman, . Panesar, A. Shamim et al., Effect of Multiaxial Stresses on Alkali-Silica Reaction Damage of Concrete, ACI Materials Journal, vol.114, 2017.

B. Gautam, . Prasad, K. Daman, . Panesar, A. Shamim et al., Multiaxial Expansion-Stress Relationship for Alkali Silica Reaction-Affected Concrete, ACI Materials Journal, vol.114, 2017.

N. Gayton, Dimensionnement semi-probabiliste des coques minces de révolution susceptibles d'instabilités géométriques, 2002.

R. Ghanem, Ingredients for a general purpose stochastic finite elements implementation, Computer Methods in Applied Mechanics and Engineering, vol.168, pp.106-112, 1999.

R. G. Ghanem, M. Robert, and . Kruger, Numerical solution of spectral stochastic finite element systems, Computer Methods in Applied Mechanics and Engineering, vol.129, pp.289-303, 1996.

R. G. Ghanem and . Spanos, Stochastic Finite Elements: A Spectral Approach, Revised Edition, p.240, 2012.

G. Giaccio, J. Zerbino, &. Ponce, and . Batic, Mechanical behavior of concretes damaged by alkali-silica reaction, Cement and Concrete Research, vol.38, pp.993-1004, 2008.

A. Giorla, Modelling of alkali-silica reaction under multi-axial load, 2013.

. Glasser and L. S. Dent, Osmotic pressure and the swelling of gels, Cement and Concrete Research, vol.9, pp.515-517, 1979.

B. Godart and &. Roux, Alcali-réaction dans les structures en béton Mécanisme, pathologie et prévention, 2008.

S. Goto, M. Della, and . Roy, Diffusion of ions through hardened cement pastes, Cement and Concrete Research, vol.11, pp.751-757, 1981.

E. Grimal, A. Sellier, S. Multon, Y. L. Pape, and &. E. Bourdarot, Concrete modelling for expertise of structures affected by alkali aggregate reaction, Cement and Concrete Research, vol.40, pp.502-507, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01724666

T. Guillemot, &. Lino, and . Nzalli, Diagnostic et mise en sécurité du barrage de, 2013.

W. C. Hanson, Studies Relating To the Mechanism by Which the Alkali-Aggregate Reaction Produces expansion in concrete, ACI Journal Proceedings, vol.40, 1944.

M. Hariri-ardebili, F. Amin, and . Pourkamali-anaraki, Simplified reliability analysis of multi hazard risk in gravity dams via machine learning techniques, Archives of Civil and Mechanical Engineering, vol.18, pp.592-610, 2018.

M. Hariri-ardebili, F. Amin, and . Pourkamali-anaraki, Support vector machine based reliability analysis of concrete dams, Soil Dynamics and Earthquake Engineering, vol.104, pp.276-295, 2018.

A. M. Hasofer and N. C. Lind, An Exact and Invariant First Order Reliability Format, Journal of Engineering Mechanics, vol.100, 1974.

M. F. Herrador, F. Martínez-abella, and R. Del-hoyo-fernández-gago, Mechanical behavior model for ASR-affected dam concrete under service load: formulation and verification, Materials and Structures, vol.42, pp.201-212, 2009.

D. W. Hobbs and &. Gutteridge, Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction, Magazine of Concrete Research, vol.31, pp.235-242, 1979.

M. Hohenbichler and . Ruediger-rackwitz, Improvement of second-order reliability estimates by importance sampling, Journal of Engineering Mechanics, vol.114, pp.2195-2199, 1988.

H. Hong, S. Zhou, &. Zhang, and . Ye, Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components, Reliability Engineering & System Safety, vol.121, pp.276-288, 2014.

M. Huang and &. S-pietruszczak, Modeling of Thermomechanical Effects of Alkali-Silica Reaction, Journal of Engineering Mechanics, vol.125, issue.476, p.4, 1999.

S. Huang and S. Mahadevan, Collocation-based stochastic finite element analysis for random field problems, Probabilistic Engineering Mechanics, vol.22, pp.194-205, 2007.

T. Ichikawa, Alkali-silica reaction, pessimum effects and pozzolanic effect, Cement and Concrete Research, vol.39, pp.716-726, 2009.

T. Ichikawa and . Masazumi-miura, Modified model of alkali-silica reaction, Cement and Concrete Research, vol.37, pp.1291-1297, 2007.

. Icold-cigb, Alcali-réaction dans les barrages en béton -Aperçu général et recommandations, 1991.

B. Iooss and A. Saltelli, Introduction to Sensitivity Analysis, Handbook of Uncertainty Quantification, 2017.

I. Isl, Etudes de sécurité de l'aménagement hydroélectrique de Songloulou au Cameroun, 2011.

. Isukapalli and S. Sastry, Uncertainty Analysis of Transport-transformation Models, p.396, 1999.

V. Jensen, Reclassification of alkali aggregate reaction, 2012.

J. Jeon and J. Lee, Development of dam safety management system, Advances in Engineering Software, vol.40, pp.554-563, 2009.

W. Jin, C. Meyer, and S. Baxter, Glascrete"-Concrete with Glass Aggregate, ACI Materials Journal, vol.97, 2000.

T. N. Jones, A new interpretation of alkali-silica reaction and expansion mechanism in concrete, Chemistry, pp.40-44, 1988.

M. Kalantarnia, Reliability Analysis of Spillway Gate Systems, 2013.

M. Kartal, A. Emre, . Bayraktar, . Hasan-basri, and . Ba?a?a, Nonlinear finite element reliability analysis of Concrete-Faced Rockfill (CFR) dams under static effects, Applied Mathematical Modelling, vol.36, pp.5229-5248, 2012.

M. Kawamura and . Kazuma-iwahori, ASR gel composition and expansive pressure in mortars under restraint, Cement and Concrete Composites, vol.26, pp.47-56, 2004.

T. Kim, J. Olek, and . Hyungu-jeong, Alkali-silica reaction: Kinetics of chemistry of pore solution and calcium hydroxide content in cementitious system, Cement and Concrete Research, vol.71, pp.36-45, 2015.

D. King and &. Perera, Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield -A case study, Journal of Hydrology, vol.477, pp.17-32, 2013.

R. Koekoek, A. Peter, . Lesky, F. René, and . Swarttouw, Hypergeometric Orthogonal Polynomials, Hypergeometric Orthogonal Polynomials and Their q-Analogues, 2010.

R. Koekoek, F. René, and . Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, 1996.

K. Konakli and . Bruno-sudret, Reliability analysis of high-dimensional models using low-rank tensor approximations, Probabilistic Engineering Mechanics, vol.46, pp.18-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428991

S. Kucherenko and . Bertrand-iooss, Derivative-Based Global Sensitivity Measures, Handbook of Uncertainty Quantification, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01079358

C. Larive, . Toutlemonde, . Joly, . Laplaud, . Derkx et al., Structural effects of ASR in France on real and laboratory structures, 2000.

C. Larive, Apports combinés de l'expérimentation et de la modélisation à la compréhension de l'alcali-réaction et de ses effets mécaniques, Ecole Nationale des Ponts et Chaussées, 1997.

L. Ma?tre, P. Olivier, T. Matthew, . Reagan, N. Habib et al., A Stochastic Projection Method for Fluid Flow: II. Random Process, Journal of Computational Physics, vol.181, pp.9-44, 2002.

L. Roux, A. Massieu, and &. Godart, Evolution under stress of a concrete affected by aarapplication to the feasilbility of strengthening a bridge by prestressing, Proceedings of the 9th International Conference on Alkal-Aggregate Reaction, vol.108, pp.599-606, 1992.

R. Lebrun, Contributions à la modélisation de la dépendance stochastique, 2013.

R. Lebrun and A. Dutfoy, A generalization of the Nataf transformation to distributions with elliptical copula, Probabilistic Engineering Mechanics, vol.24, pp.172-178, 2009.

A. Leemann and &. Lura, E-modulus of the alkali-silica-reaction product determined by micro-indentation, Construction and Building Materials, vol.44, pp.221-227, 2013.

P. Léger, &. Côté, and . Tinawi, Finite element analysis of concrete swelling due to alkaliaggregate reactions in dams, Computers & Structures, vol.60, issue.95, pp.440-448, 1996.

M. Lemaire, A. Chateauneuf, and J. Mitteau, Fiabilité des structures: Couplage mécano-fiabiliste statique, 2005.

J. Lewin, Hydraulic gates and valves: in free surface flow and submerged outlets, 2001.

K. Li, Modélisation chimico-mécanique du comportement des béetons affectés par la réeaction d'alcali-silice et expertise numéerique des ouvrages d'art déegradés, pp.1-219, 2002.

J. Liaudat, I. Carol, M. Carlos, . López, E. Victor et al., ASR expansions in concrete under triaxial confinement, 2017.

J. Lombardi, &. Massard, and . Perruchot, Mesure expérimentale de la cinétique de formation d'un gel silicocalcique, produit de la réaction alcalis-silice, Cement and Concrete Research, vol.27, pp.128-130, 1997.

M. Lourakis, A brief description of the Levenberg-Marquardt algorithm implemented by levmar, Foundation of Research and Technology, vol.4, p.6, 2005.

C. V. Mai and B. Sudret, Surrogate models for oscillatory systems using sparse polynomial chaos expansions and stochastic time warping, vol.5, pp.540-571, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01421106

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, pp.431-441, 1963.

H. G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.1295-1331, 2005.

J. Mazars, Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure, 1984.

R. E. Melchers, Search-based importance sampling, Structural Safety, vol.9, pp.90003-90011, 1990.

B. Mills-bria, . Nuss, C. Dixon, . Powell, &. Harris et al., State-of-practice for the nonlinear structural analysis of dams at the bureau of reclamation, 2006.

M. Shali and . Soheil, Contribution à l'étude de la redondance dans les ponts: analyse des mécanismes de défaillance par surfaces de réponse, École nationale des ponts et chaussées, 2007.

M. Shali and . Soheil, Contribution a? l'etude de la redondance dans les ponts: analyse des me?anismes de defaillance par surfaces de re?onse, École nationale des ponts et chaussées, 2007.

A. M. Molinaro, R. Simon, M. Ruth, and . Pfeiffer, Prediction error estimation: a comparison of resampling methods, Bioinformatics, vol.21, pp.3301-3307, 2005.

J. Moon, S. Speziale, C. Meral, B. Kalkan, S. M. Clark et al., Determination of the elastic properties of amorphous materials: Case study of alkali-silica reaction gel, Cement and Concrete Research, vol.54, pp.55-60, 2013.

P. Morenon, Modélisation des réactions de gonflement interne des bétons avec prise en compte des couplages poro-mécaniques et chimiques, 2017.

P. Morenon, S. Multon, A. Sellier, and E. Grimal, Impact of stresses and restraints on ASR expansion, Construction and Building Materials, vol.140, pp.58-74, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01724648

M. D. Morris, Factorial Sampling Plans for Preliminary Computational Experiments, Technometrics, vol.33, p.161, 1991.

S. Multon, . Cyr, . Sellier, &. Leklou, and . Petit, Coupled effects of aggregate size and alkali content on ASR expansion, Cement and Concrete Research, vol.38, pp.350-359, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01006003

S. Multon, Évaluation Expérimentale Et Théorique Des Effets Mécaniques De L'Alcali-Réaction Sur Des Structures Modèles, 2003.

S. Multon, J. Seignol, and E. Bourdarot, Alain Jeanpierre, & François Toutlemonde, Revue Européenne de Génie Civil, vol.9, pp.1219-1247, 2005.

S. Multon and A. Sellier, Multi-scale analysis of alkali-silica reaction (ASR): Impact of alkali leaching on scale effects affecting expansion tests, Cement and Concrete Research, vol.81, pp.122-133, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01708236

S. Multon, A. Sellier, and M. Cyr, Chemo-mechanical modeling for prediction of alkali silica reaction (ASR) expansion, Cement and Concrete Research, vol.39, pp.490-500, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01724667

S. Multon and . François-toutlemonde, Effect of applied stresses on alkali-silica reaction-induced expansions, Cement and Concrete Research, vol.36, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01727410

W. R. Myers, Response Surface Methodology, Encyclopedia of Biopharmaceutical Statistics, 2013.

R. Naar, Modelling of the mechanical behavior of concrete using a coupled multi-physics approach (chemical-mechanical coupling): application to alkali-silica reaction, Modelling of the mechanical behavior of concrete using a coupled multi-physics approach (chemica, 2009.

A. Nataf, Détermination des distributions dont les marges sont données, Comptes rendus de l'académie des sciences, vol.225, pp.42-43, 1962.

V. Ngo and . Duc, Contribution à l'approche probabiliste de la durabilité des structures en béton soumise à la carbonatation, 2015.

, Algorithmes probabilistes appliqués à la durabilité et à la mécanique des ouvrages de Génie Civil

X. Nguyen, F. Son, and . Duprat, An adaptive response surface method based on double weighted regression, Probabilistic Engineering Mechanics, vol.31, 2007.

X. Nguyen, A. Son, and . Sellier, Adaptive response surface method based on a double weighted regression technique, Probabilistic Engineering Mechanics, vol.24, pp.135-143, 2009.

A. Nielsen, &. Gottfredsen, and . Thøgersen, Development of stresses in concrete structures with alkali-silica reactions, Materials and Structures, vol.26, pp.152-158, 1993.

J. Ollivier and A. Vichot, La durabilité des bétons: bases scientifiques pour la formulation de bétons durables dans leur environnement, 2008.

F. D. , Béton-Dispositions pour prévenir les phénomènes d'alcali-réaction. Association Française de Normalisation (AFNOR), pp.18-464, 2014.

J. W. Pan, Y. Feng, J. Wang, Q. Sun, C. Zhang et al., Modeling of alkali-silica reaction in concrete: a review, Frontiers of Structural and Civil Engineering, vol.6, pp.1-18, 2012.

R. C. Patev, C. Putcha, D. Stuart, and . Foltz, Methodology for risk analysis of dam gates and associated operating equipment using fault tree analysis, 2005.

A. Perruchot, P. Massard, and J. Lombardi, Composition et volume molaire apparent des gels Ca Si, une approche expérimentale, Comptes Rendus Geoscience, vol.335, pp.951-958, 2003.

F. Pesavento, D. Gawin, M. Wyrzykowski, A. Bernhard, L. Schrefler et al., Modeling alkali-silica reaction in non-isothermal, partially saturated cement based materials, Computer Methods in Applied Mechanics and Engineering, vol.225, pp.95-115, 2012.

J. W. Phair, N. Sergey, . Tkachev, H. Murli, . Manghnani et al., Elastic and structural properties of alkaline-calcium silica hydrogels, Journal of Materials Research, vol.20, pp.344-349, 2005.

J. Ponce and &. Batic, Different manifestations of the alkali-silica reaction in concrete according to the reaction kinetics of the reactive aggregate, Cement and Concrete Research, vol.36, pp.1148-1156, 2006.

A. B. Poole, Alkali-silica reactivity mechanisms of gel formation and expansion, 1992.

S. Poyet, A. Sellier, B. Capra, G. Foray, J. M. Torrenti et al., Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size distribution, Materials and Structures/Materiaux et Constructions, vol.40, pp.229-239, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434194

S. Poyet, Etude de la degradation des ouvrages en beton atteints par la reaction alcali-silice -approche experimentale et modelisation numerique des degradations dans un environnement hydro-chemo-mecanique variable, 2003.
URL : https://hal.archives-ouvertes.fr/tel-00006479

M. Prezzi, P. J. Monteiro, and . Garrison-sposito, Alkali-Silica Reaction, Part I: Use of the Double-Layer Theory to Explain the Behavior of Reaction-Product Gels, ACI Materials Journal, vol.94, 1997.

C. Prieur and S. Tarantola, Variance-Based Sensitivity Analysis: Theory and Estimation Algorithms, Handbook of Uncertainty Quantification, 2017.

R. Rackwitz, Reliability analysis-a review and some perspectives, Structural Safety, vol.23, pp.365-395, 2001.

R. E. Melchers and A. T. Beck, Structural Reliability Analysis and Prediction, Third Edition, 2018.

M. Rosenblatt, Remarks on a multivariate transformation, The annals of mathematical statistics, vol.23, pp.470-472, 1952.

N. Roussouly, Approche probabiliste pour la justification par analyse des structures spatiales, 2011.

M. Ruano, . Ribes, &. Seco, and . Ferrer, An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors, Environmental Modelling & Software, vol.37, pp.103-109, 2012.

R. Y. Rubinstein, P. Dirk, and . Kroese, Simulation and the Monte Carlo Method, p.401, 2011.

A. Saltelli, . Ratto, . Andres, . Campolongo, . Cariboni et al., Global {S}ensitivity {S}nalysis. {T}he {P}rimer, 2008.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice: a Guide to Assessing Scientific Models, Journal of Chemical Information and Modeling, vol.53, p.232, 2004.

L. Sanchez, B. Fournier, M. Jolin, and &. Bastien, Evaluation of the stiffness damage test (SDT) as a tool for assessing damage in concrete due to ASR: test loading and output responses for concretes incorporating fine or coarse reactive aggregates, Cement and concrete research, vol.56, pp.213-229, 2014.

L. Sanchez, S. Multon, M. Sellier, B. Cyr, &. Fournier et al., Comparative study of a chemo-mechanical modeling for alkali silica reaction (ASR) with experimental evidences, Construction and Building Materials, vol.72, pp.301-315, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01724650

V. Saouma, Numerical Modeling of AAR, p.326, 2014.

. Saouma, . Victor, and . Luigi-perotti, Constitutive Model for Alkali-Aggregate Reactions, ACI Materials Journal, vol.103, 2006.

C. K. Sehgal, Design guidelines for spillway gates, Journal of Hydraulic Engineering, vol.122, pp.155-165, 1996.

A. Sellier, &. Bournazel, and . Mébarki, Une modélisation de la réaction alcalis-granulat intégrant une description des phénomènes aléatoires locaux, Materials and Structures, vol.28, pp.373-383, 1995.

A. Sellier, Modélisation probabiliste du comportement de matériaux et de structures en génie civil. Cachan, Ecole normale supérieure, 1995.

A. Sellier, E. Bourdarot, S. Multon, and M. Cyr, Combination of Structural Monitoring and Laboratory Tests for Assessment of AlkaliAggregate Reaction Swelling: Application to Gate Structure Dam, ACI Materials Journal, vol.106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02087641

A. Sellier and . Bruno-capra, Modélisation physico-chimique de la réaction alcaligranulat: apport au calcul des structures dégradées, Revue Française de Génie Civil, vol.1, pp.445-481, 1997.

A. Sellier and E. Grimal, Swelling Concrete in Dams and Hydraulic Structures: DSC 2017, p.380, 2017.

A. Sellier, S. Multon, L. Buffo-lacarrière, T. Vidal, and X. Bourbon, Concrete creep modelling for structural applications: nonlinearity, multi-axiality, hydration, temperature and drying effects, Cement and Concrete Research, vol.79, pp.301-315, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01714901

Z. Shi and C. Gu, Multiple failure modes analysis of the dam system by means of line sampling simulation, Optik-International Journal for Light and Electron Optics, vol.127, pp.4710-4715, 2016.

J. Shin, N. Y. Ho, L. J. Jee, &. Struble, and . Kirkpatrick, Modeling AlkaliSilica Reaction Using Image Analysis and Finite Element Analysis, Advanced Materials Research, 2011.

I. Sims, B. Alan, and . Poole, Alkali-Aggregate Reaction in Concrete: A World Review, 2017.

I. Sobol and . Gresham, On an alternative global sensitivity estimators, Proceedings of SAMO, pp.40-42, 1995.

S. Sprung, Influences on the alkali-aggregate reaction in concrete, 1975.

M. Stone, Cross-validatory choice and assessment of statistical predictions, Journal of the royal statistical society. Series B (Methodological, pp.111-147, 1974.

L. J. Struble and S. D. , Swelling Properties of Synthetic Alkali Silica Gels, Journal of the American Ceramic Society, vol.64, pp.652-655, 1981.

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineering & System Safety, vol.93, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

A. Suwito, Y. Jin, C. Xi, and . Meyer, A Mathematical Model for the Pessimum Size Effect of ASR in Concrete, Concrete Science and Engineering, vol.4, pp.23-34, 2002.

R. Swamy, The Alkali-Silica Reaction in Concrete, p.353, 2002.

M. A. Tatang, W. Pan, . Ronald-g-prinn, J. Gregory, and . Mcrae, An efficient method for parametric uncertainty analysis of numerical geophysical models, Journal of Geophysical Research: Atmospheres, vol.102, pp.21925-21932, 1997.

H. Taylor, Cement chemistry, 1997.

M. Thomas, &. Fournier, and . Folliard, Alkali-Aggregate Reactivity (AAR) Facts Book, 2013.

M. Thomas, K. J. Fournier, Y. A. Folliard, and . Resendez, FHWA-HIF-12-046 Alkali-Silica Reactivity Surveying and Tracking Guidelines, 2012.

G. A. Thompson, . Charlwood, &. Steele, and . Curtis, Mactaquac generating station intake and spillway remedial measures, 1994.

F. Ulm, . Coussy, &. Kefei, and . Larive, Thermo-Chemo-Mechanics of ASR Expansion in Concrete Structures, Journal of Engineering Mechanics, vol.126, pp.233-242, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00586622

D. Wald and . Michael, ASR expansion behavior in reinforced concrete: experimentation and numerical modeling for practical application, 2017.

H. Wang and &. Gillott, Mechanism of alkali-silica reaction and the significance of calcium hydroxide, Cement and Concrete Research, vol.21, issue.91, p.90115, 1991.

M. Westberg, Reliability-based assessment of concrete dam stability, 2010.

W. Wilde and M. Fredrik-johansson, System reliability of concrete dams with respect to foundation stability: application to a spillway, Journal of Geotechnical and Geoenvironmental Engineering, vol.139, pp.308-319, 2012.

N. Wiener, The Homogeneous Chaos, American Journal of Mathematics, vol.60, p.897, 1938.

B. J. Wigum and L. Pedersen, State-of-the art report: Key parameters influencing the alkali aggregate reaction, 2006.

D. Xiu and G. E. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty, International Journal of Heat and Mass Transfer, vol.46, pp.4681-4693, 2003.

C. Zhang, A. Wang, and M. Tang, Influence of aggregate size and aggregate size grading on ASR expansion, Cement and Concrete Research, vol.29, pp.1393-1396, 1999.

, Annexe B Résultats complémentaires des analyses de sensibilités

. Volume, . De, . En, . Du, and . .. Vg(t),

G. Volumique, . Fonction, and . .. Temps-?v(t),

. Divers and . .. %?vmax,

. Temps-pour-atteindre, . Pourcentages, . Gonflement, and . .. T%?vmax,

B. 3. De-sensibilite-a-la, . Variable, and . .. Song-loulou,

. Volume, . De, . En, . Du, and . .. Vg(t),

G. Volumique, . Fonction, and . .. Temps-?v(t),

. Divers and . .. %?vmax,

. Temps-pour-atteindre, . Pourcentages, . Gonflement, and . .. T%?vmax, , vol.212, pp.9379715464-02

, 9215756466E-05, vol.6, pp.929934263-929934266

, 5462113460E-05 -1,1697536944E-02 -1,1381937699E,8610560103E-05, vol.2, pp.136523511-136523513

C. Tableau, 8 : Coefficients du modèle de substitution de calcul de ?V(t) en conditions accélérées (4/4) 166 5

, 5866069972E-05, vol.5, p.9614759969

D. 1. Neuf, . De, . De, and . De, , p.226

D. 2. Neuf, . De, . De, . Poids, . Nous et al.,

L. Memes and . .. Que-precedemment,

, D.1. Neuf exemples détaillés de détermination de fonctions poids de, 2006.

, = ?10, = ?30, =2] MPa se trouvant à l'intérieur 1, Exemple, vol.1, issue.1, pp.1917721726-1917721730

, .73205?1)(1.73205?7), vol.2, pp.6182740666-05

, .73205?0)(1.73205?2)(1.73205?5) 144 -4,3259135190E-04 (1.73205?4)(1.73205?5)(1.73205?6) 108 -1,4607466685E-04 (1.73205?0)(1.73205?4)(1.73205?5) 145 3,8974994188E-04 (1.73205?4)(1.73205?5)(1.73205?7) 109 3,8113074320E-05 (1.73205?0)(1.73205?5)(1.73205?6) 146 2,6693568208E-04 (1.73205?4)(1.73205?5)(1.73205?8) 110 -3,2917219111E-05 (1.73205?0)(1.73205?5)(1.73205?7) 147 -1,0340505804E-04 (1.73205?5)(1.73205?6)(1.73205?7) 111 -1, 9764273556E-04 (1.73205?3)(1.73205?6)(1.73205?7) 106 -8,3451155467E-05 (1.73205?0)(1.73205?1)(1.73205?5) 143 7,5947719550E-05 (1.73205?3)(1.73205?6)(1.73205?13), vol.107, pp.9366095983-05

, + 26.1184?8 5 60, vol.5

, 73205?0)(1.73205?4) 62 -1, pp.3620343955-05

, 5099164423E-05 (1.73205?1)(1.73205?4), vol.63

, 3931135779E-05 (1.73205?1)(1.73205?8), vol.64, pp.8305831479-06

, 73205?2)(1.73205?4) 65 6, pp.5504388050-06

, 8207841840E-05 (1.73205?2)(1.73205?5), vol.66

, 9323070279E-04 (1.73205?3)(1.73205?4), vol.67, pp.30-31

, 73205?3)(-1.11803 + 3.3541?5 8585860739E-05 (1.73205?3)(1.73205?6) 69 -2, 8634739241E-05 (1.73205?3)(1.73205?5) 68, vol.2, pp.7875529324-05

, 6082284369E-05 (1.73205?3)(1.73205?7) 70, vol.8, pp.1783736203-1783736209

, .73205?3)(1.73205?8) 71 -1, pp.3726628660-04

, .73205?4)(1.73205?5) 73, vol.8, pp.8371816692-06

E. Tableau, Coefficients du modèle de substitution du déplacement au point d'auscultation (6/7) 0 5,1380543843E+00, vol.9, pp.37-40

, 3288148141E-03 (1.73205?5)(1.73205?7), vol.3, pp.2562526343-02

, 1.11803 + 3.3541?0 2 )(1.73205?2) 10, vol.46, pp.6004879569-03

, 1099181361E-02 (1.73205?0)(1.73205?2), vol.57

, 1.73205?3) 60 -5,1445371524E-03 (1.73205?0)(1.73205?4)(1.73205?7) 24 -1

, .73205?3)(1.73205?5) 70, vol.2, pp.5701726203-02

E. , Coefficients du model de substitution du déplacement maximal de la console 42 -8, pp.73205-73218

, ,73205?2)(1,73205?3) 5 -3,9176038032E-03 1,73205?4 44 -3,4820922335E-04 (1,73205?2)(1,73205?4) 6 -4, vol.8, pp.73205-73210

, 2236093849E-04 (1,73205?2)(1,73205?6) 8 -4,3257695544E-03 1,73205?7 47 1, pp.73205-73212

, 8632938111E-05 (1,73205?2)(1,73205?12) 11 -3,4790197749E-05 1,73205?11 50 -8,4657934068E-05, vol.3, pp.73205-73218

, ,73205?3)(1,73205?5) 14 -6,0824306644E-05 -1,11803 + 3,3541?0 2 53 1, vol.8, pp.73205-73212

, ,73205?4)(1,73205?6) 21 5,5115011511E-04 -1,11803 + 3, 8761865351E-04 (1,73205?4)(1,73205?5) 20 8,6552953317E-05 -1,11803 + 3,3541?6, vol.3, pp.5131315334-04, 11803.

, 8335080688E-05 (1,73205?0)(1,73205?2) 66, vol.8, pp.73205-73213

, ,73205?5)(1,73205?9) 29 -7,0091137476E-05 (1,73205?0)(1,73205?4) 68 -8,6455743044E-05 (1,73205?5)(1,73205?12) 30 -2,1242992183E-04 (1,73205?0)(1,73205?5) 69 -1, vol.9, pp.73205-73218

, ,73205?6)(1,73205?9) 33 -1,5415373300E-04 (1,73205?1)(1,73205?2) 72 8,6260604898E-05 (1,73205?6)(1,73205?12) 34 -5,6430482227E-04 (1,73205?1)(1,73205?3) 73 1,9638899641E-04 (1,73205?6)(1,73205?13) 35 -2,3405880896E-04 (1,73205?1)(1,73205?4) 74 -7,4436197507E-05 (1,73205?7)(1,73205?12) 36 -2,6366954166E-04 (1,73205?1)(1,73205?5) 75 -1, 3462145630E-05 (1,73205?0)(1,73205?8) 71, vol.3, pp.73205-73214

E. Tableau, Coefficients du, vol.12, pp.73205-73209, 11803.

, ,73205?5) 118 6,2040420014E-05 (1,73205?1)(1,73205?2)(1,73205?5) 80 -5,1824455853E-05 (-1,11803 + 3,3541?1 2 )(1,73205?6) 119 -5, vol.7, pp.73205-73211, 11803.

, 11803 + 3,3541?4 2 ) 129 1,1607484060E-04 (1,73205?1)(1,73205?5)(1,73205?8) 91 -8, pp.73205-73207

, ,73205?5) 131 -2,9335150615E-04 (1,73205?2)(1,73205?3)(1,73205?5) 93 -6, vol.3, pp.73205-73210, 11803.

, 11803 + 3,3541?5 2 ) 136 1,4013160386E-04 (1,73205?2)(1,73205?5)(1,73205?7) 98 -2,2768389426E-04 (1,73205?3)(-1,11803 + 3,3541?5 2 ) 137 -1, vol.2, pp.73205-73214

, 11803 + 3,3541?5 2 ) 138 -1,7318752710E-05 (1,73205?2)(1,73205?5)(1,73205?12) 100 -1,3258639206E-04 (-1,11803 + 3, vol.5, pp.73205-73218

, ,73205?4)(-1,11803 + 3,3541?6 2 ) 142 -5, 3922002351E-05 (1,73205?3)(1,73205?4, vol.5, pp.73205-73212

, 6400554370E-05 (1,73205?3)(1,73205?4, vol.5, pp.73205-73213, 11803.

, 5486610813E-05 (1,73205?3)(1,73205?5, vol.3, pp.73205-73213, 11803.

, ,73205?4)(-1,11803 + 3,3541?8 2 ) 148 5, vol.9, pp.73205-73218

, ,73205?4)(1,73205?5)(1,73205?7) 112 3,7162336888E-05 (1,73205?0)(1,73205?2)(1,73205?5) 151 2,2144707198E-04 (1,73205?4)(1,73205?5)(1,73205?8) 113 -1,1959361116E-04 (1,73205?0)(1,73205?4)(1,73205?5) 152 -8,3988515528E-05 (1,73205?5)(1,73205?6)(1,73205?7) 114 2,9928227052E-05 (1,73205?0)(1,73205?5)(1,73205?6) 153 4,0420127199E-05 (1,73205?5)(1,73205?7)(1,73205?8) 115 -2,5353417574E-05 (1,73205?0)(1,73205?5)(1,73205?7) 154 1,0379723094E-05 (1,73205?6)(1,73205?7)(1,73205?9) 116 -1, 6076134160E-04 (1,73205?4)(1,73205?5)(1,73205?6) 111 -6,9241396981E-05 (1,73205?0)(1,73205?1)(1,73205?5) 150, vol.3, pp.61438-61446, 2007542872-04-01.

, ,73205?3)(1,73205?4)(1,73205?6) 23 5,2150536120E-05 (1,73205?3)(1,73205?6) 60 2,3605601919E-05 (1,73205?3)(1,73205?4)(1,73205?7) 24 -4,0280825369E-05 (1,73205?3)(1,73205?7) 61 1,0431458132E-04 (1,73205?3)(1,73205?4)(1,73205?8) 25 -1,0175855590E-04 (1,73205?3)(1,73205?8) 62 5,4951794576E-05 (1,73205?3)(1,73205?5)(1,73205?8) 26 3,2425424321E-05 (1,73205?3)(1,73205?9) 63 -3,4099330239E-05 (1,73205?3)(1,73205?6)(1,73205?8) 27 9, 0024558964E-05 (1,73205?1)(1,73205?4)(1,73205?8) 20 1,7174689359E-05 (1,73205?0)(1,73205?4) 57 -1,1572954961E-05 (1,73205?2)(1,73205?4)(1,73205?8) 21 -1,4028393318E-04 (1,73205?3)(1,73205?4) 58 5,2081261567E-05 (1,73205?3)(1,73205?4)(1,73205?5), pp.3330154739-05

E. Tableau, 14 : Coefficients du modèle de substitution du déplacement maximal de la console, vol.1, pp.4403520327-02

, 2832863658E-03 (-1.11803 + 3.3541?2 2 )(1.73205?8) 10, vol.2, pp.56995219-56995220

, 8212708411E-03 -3.96863?5 + 6.61438?5 3 45 6, pp.17-26

, 2096953523E-03 (1.73205?4)(1.73205?5)(1.73205?7) 26 -2,6862647128E-02 (1.73205?4)(1.73205?8) 5 4,0079716488E-01 1.73205?4 27 -2,6510395847E-02 (1.73205?5)(1.73205?8) 6 7, vol.2, pp.55-64

, .73205?1)(1.73205?3)(1.73205?5) 17 -1, pp.39-40

, ,73205?4)(1,73205?9) 5 -2,2041334059E-04 1,73205?4 41 -5,2314371847E-05 (1,73205?5)(1,73205?6) 6 -2, 73205?5, vol.5, issue.1, pp.73205-73212

, 9947737050E-05 (1,73205?5)(1,73205?9) 8 -2, vol.3, pp.73205-73212

, 8495858322E-05, pp.73205-73216

, 3151396957E-05 (1,73205?9)(1,73205?12) 13 -1,6267050572E-04 1,73205?13 49, vol.3, pp.73205-73218

, 8011424834E-05 (1,73205?11, vol.6, pp.73205-73218, 11803.

, 5919674141E-05 (1,73205?12, vol.2, pp.73205-73218, 11803.

, 6717134304E-05 (1,73205?0)(1,73205?5), vol.57, pp.3541-3546, 11803.

, 5467787694E-06 (1,73205?1)(1,73205?2) 58, vol.3, pp.3541-3546, 11803.

, 5183875647E-05 (1,73205?1)(1,73205?3) 59 1,4216108046E-05 (1,73205?3, vol.3, pp.3541-3548, 11803.

, 6769114711E-05 (1,73205?1)(1,73205?6) 60 -1,2881676660E-05 (1,73205?1)(1,73205?3, pp.73205-73210

, 1,73205?4)(1,73205?5) 26 -1,2345113406E-05 (1,73205?1)(1,73205?9) 62 1,2089240004E-05 (1,73205?2)(1,73205?5)(1,73205?7) 27 -3,5310625434E-05 (1,73205?2)(1,73205?3) 63 -2,5221046581E-05 (1,73205?3)(1,73205?4)(1,73205?5) 28 -1,5036602289E-05 (1,73205?2)(1,73205?4) 64 -1,6825867528E-05 (1,73205?3)(1,73205?4)(1,73205?6) 29 -4, 8081318970E-05 (1,73205?1)(1,73205?7) 61, vol.2, pp.73205-73207

, ,73205?3)(1,73205?4) 67 -1,7747383368E-05 (1,73205?3)(1,73205?5)(1,73205?9) 32 -1,0082789068E-04 (1,73205?3)(1,73205?5) 68 -2, 1879170882E-05 (1,73205?3)(1,73205?5)(1,73205?8), pp.73205-73212

, 1,73205?6) 69 1,3597728325E-05 (1,73205?3)(1,73205?6)(1,73205?9) 34 -1,2416049290E-04 (1,73205?3)(1,73205?7) 70 -1, pp.73205-73211

, ,73205?3)(1,73205?6) 22 -1,4736492093E-05 (1,73205?3)(1,73205?8) 23 1,0488607374E-05 (1,73205?4)(1,73205?5) 24 -7,8583016559E-06 (1,73205?4)(1,73205?6) 25 6,6741255960E-06 (1,73205?4)(1,73205?7) 26 2,2069235163E-05 (1,73205?4)(1,73205?8) 27 -4,2723417009E-06 (1,73205?4)(1,73205?11) 28 1,2378225093E-05 (1,73205?5)(1,73205?8) 29 -7,6202817141E-06 (1,73205?6)(1,73205?8) 30 6,6385310740E-06 (1,73205?7)(1,73205?8) 31 -2,0887284372E-05 (1,73205?9)(1,73205?11) 32 -1,7360498215E-05 (1,73205?9)(1,73205?12) 33 1,4147855663E-05 (1,73205?9)(1,73205?13) 34 3, 7245712847E-05 (1,73205?3)(1,73205?9) 71 2,1107095444E-05 (1,73205?4)(1,73205?5)(1,73205?7) 18 -4,5710781013E-06 (1,73205?2)(1,73205?5) 19 -1,4238685373E-05 (1,73205?3)(1,73205?4) 20 -6,9498654253E-06 (1,73205?3)(1,73205?5) 21 5, vol.5, pp.125-133

, ,73205?4)(1,73205?8) 40 4,1506164134E-06 (1,73205?3)(1,73205?5)(1,73205?8) 41 -6, vol.9, pp.73205-73213