A. Adomaviciene, K. J. Smith, H. Garnett, and P. Tammaro, Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes, J Physiol, vol.591, pp.3487-3505, 2013.

J. Aebischer, P. Cassina, B. Otsmane, A. Moumen, D. Seilhean et al., IFNgamma triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1, Cell Death Differ, vol.18, pp.754-768, 2011.

V. Arce, A. Garces, B. De-bovis, P. Filippi, C. Henderson et al., Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique, J Neurosci Res, vol.55, pp.119-126, 1999.

N. Bernard-marissal, A. Moumen, C. Sunyach, C. Pellegrino, K. Dudley et al., Reduced calreticulin levels link endoplasmic reticulum stress and Fastriggered cell death in motoneurons vulnerable to ALS, J Neurosc, vol.32, pp.4901-4912, 2012.

M. Boudes, S. Pieraut, J. Valmier, P. Carroll, and F. Scamps, Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism, J Neurosci Methods, vol.170, pp.204-211, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00257563

M. Boudes, C. Sar, A. Menigoz, C. Hilaire, M. O. Pequignot et al., Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl-current expression in axotomized sensory neurons, J Neurosc, vol.29, pp.10063-10071, 2009.

M. Bowerman, C. Salsac, V. Bernard, C. Soulard, A. Dionne et al., KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects, Neurobiol Dis, vol.106, pp.35-48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759835

M. Bowerman, C. Salsac, E. Coque, E. Eiselt, R. G. Deschaumes et al., Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis, Hum Mol Genet, 2015.

R. M. Brownstone, Beginning at the end: repetitive firing properties in the final common pathway, Prog Neurobiol, vol.78, pp.156-172, 2006.

R. E. Burke, D. N. Levine, P. Tsairis, and F. E. Zajac, Physiological types and histochemical profiles in motor units of the cat gastrocnemius, J Physiol, vol.234, pp.723-748, 1973.

S. Cantor, W. Zhang, N. Delestree, L. Remedio, G. Z. Mentis et al., Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody, 2018.

A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti et al., TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity, Science, vol.322, pp.590-594, 2008.

E. Castoldi, P. W. Collins, P. L. Williamson, and E. M. Bevers, Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome, Blood, vol.117, pp.4399-4400, 2011.

J. Y. Cha, J. Wee, J. Jung, Y. Jang, B. Lee et al., Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia, Proc Natl Acad Sci U S A, vol.112, pp.9722-9727, 2015.

H. Cho, Y. D. Yang, J. Lee, B. Lee, T. Kim et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons, Nat Neurosci, vol.15, pp.1015-1021, 2012.

M. De-carvalho, A. Eisen, C. Krieger, and M. Swash, Motoneuron firing in amyotrophic lateral sclerosis (ALS), Front Hum Neurosci, vol.8, p.719, 2014.

A. S. Deardorff, S. H. Romer, Z. Deng, K. L. Bullinger, P. Nardelli et al., Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons, J Physiol, vol.591, pp.875-897, 2013.

A. S. Deardorff, S. H. Romer, P. M. Sonner, and R. E. Fyffe, Swimming against the tide: investigations of the C-bouton synapse, Front Neural Circuits, vol.8, p.106, 2014.

S. M. Elbasiouny, J. E. Schuster, and C. J. Heckman, Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis, Clin Neurophysiol, vol.121, pp.1669-1679, 2010.

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal-canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, pp.1772-1775, 1994.

B. Gustafsson and M. J. Pinter, An investigation of threshold properties among cat spinal alphamotoneurones, J Physiol, vol.357, pp.453-483, 1984.

G. E. Ha, J. Lee, H. Kwak, K. Song, J. Kwon et al., The Ca2+-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons, Nat Commun, vol.7, p.13791, 2016.

M. Hadzipasic, B. Tahvildari, M. Nagy, M. Bian, A. L. Horwich et al., Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS, Proc Natl Acad Sci U S A, vol.111, pp.16883-16888, 2014.

H. C. Hartzell, K. Yu, Q. Xiao, L. T. Chien, and Z. Qu, Anoctamin/TMEM16 family members are Ca2+-activated Cl-channels, J Physiol, vol.587, pp.2127-2139, 2009.

C. J. Heckman, C. Mottram, K. Quinlan, R. Theiss, and J. Schuster, Motoneuron excitability: the importance of neuromodulatory inputs, Clin Neurophysiol, vol.120, pp.2040-2054, 2009.

L. R. Herron and G. B. Miles, Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis, Neuroscience, vol.226, pp.313-323, 2012.

W. C. Huang, S. Xiao, F. Huang, B. D. Harfe, Y. N. Jan et al., Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons, Neuron, vol.74, pp.179-192, 2012.

A. Jain, G. Z. Huang, and C. S. Woolley, Latent Sex Differences in Molecular Signaling That Underlies Excitatory Synaptic Potentiation in the Hippocampus, J Neurosc, vol.39, pp.1552-1565, 2019.

K. C. Kanning, A. Kaplan, and C. E. Henderson, Motor neuron diversity in development and disease, Annu Rev Neurosci, vol.33, pp.409-440, 2010.

A. Kaplan, K. J. Spiller, C. Towne, K. C. Kanning, G. T. Choe et al., Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration, Neuron, vol.81, pp.333-348, 2014.

K. Kunzelmann, B. Nilius, G. Owsianik, R. Schreiber, J. Ousingsawat et al., Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?, Pflugers Arch, vol.466, pp.407-414, 2014.

F. Leroy, B. Lamotte-d'incamps, R. D. Imhoff-manuel, and D. Zytnicki, Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis, 2014.

B. Liu, J. E. Linley, X. Du, X. Zhang, L. Ooi et al., The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl-channels, J Clin Invest, vol.120, pp.1240-1252, 2010.

M. Manuel and C. J. Heckman, Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?, J Neurosc, vol.31, pp.15188-15194, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02045316

M. L. Martinez-silva, R. D. Imhoff-manuel, A. Sharma, C. J. Heckman, N. A. Shneider et al., Hypoexcitability precedes denervation in the large fastcontracting motor units in two unrelated mouse models of ALS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02011470

P. A. Mccombe and R. D. Henderson, Effects of gender in amyotrophic lateral sclerosis, Gend Med, vol.7, pp.557-570, 2010.

G. B. Miles, R. Hartley, A. J. Todd, and R. M. Brownstone, Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion, Proc Natl Acad Sci U S A, vol.104, pp.2448-2453, 2007.

E. A. Muennich and R. E. Fyffe, Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones, J Physiol, vol.554, pp.673-685, 2004.

D. Muller, P. Cherukuri, K. Henningfeld, C. H. Poh, L. Wittler et al., Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution, Science, vol.343, pp.1264-1266, 2014.

A. Picollo, M. Malvezzi, A. , and A. , TMEM16 proteins: unknown structure and confusing functions, J Mol Biol, vol.427, pp.94-105, 2015.

A. Adomaviciene, K. J. Smith, H. Garnett, and P. Tammaro, Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes, J Physiol, vol.591, pp.3487-505, 2013.

G. M. Alexander, K. L. Erwin, N. Byers, J. S. Deitch, B. J. Augelli et al., Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS, Brain Res Mol Brain Res, vol.130, pp.7-15, 2004.

A. A. Alsultan, R. Waller, P. R. Heath, and J. Kirby, The genetics of amyotrophic lateral sclerosis: current insights, Degener Neurol Neuromuscul Dis, vol.6, pp.49-64, 2016.

C. Alvadia, N. K. Lim, V. Mosina, G. T. Oostergetel, R. Dutzler et al., Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F, 2019.

F. J. Alvarez and R. E. Fyffe, The continuing case for the Renshaw cell, J Physiol, vol.584, pp.31-45, 2007.

A. Amjad, A. Hernandez-clavijo, S. Pifferi, D. K. Maurya, A. Boccaccio et al., Conditional knockout of TMEM16A/anoctamin1 abolishes the calciumactivated chloride current in mouse vomeronasal sensory neurons, J Gen Physiol, vol.145, pp.285-301, 2015.

P. M. Andersen and A. Al-chalabi, Clinical genetics of amyotrophic lateral sclerosis: what do we really know?, Nat Rev Neurol, vol.7, pp.603-618, 2011.

S. Andre, H. Boukhaddaoui, B. Campo, M. Al-jumaily, V. Mayeux et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons, J Neurophysiol, vol.90, pp.3764-73, 2003.

Y. Aoki, R. Manzano, Y. Lee, R. Dafinca, M. Aoki et al., C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia, Brain, vol.140, pp.887-97, 2017.

T. Araki and C. A. Terzuolo, Membrane currents in spinal motoneurons associated with the action potential and synaptic activity, J Neurophysiol, vol.25, pp.772-89, 1962.

J. Arreola, T. Begenisich, K. Nehrke, H. V. Nguyen, K. Park et al., Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl-channel gene, J Physiol, vol.545, pp.207-223, 2002.

U. Arvidsson, J. Svedlund, P. A. Lagerback, and S. Cullheim, An ultrastructural study of the synaptology of gamma-motoneurones during the postnatal development in the cat, Brain Res, vol.465, pp.303-315, 1987.

E. F. Barrett, J. N. Barrett, and W. E. Crill, Voltage-sensitive outward currents in cat motoneurones, J Physiol, vol.304, pp.251-76, 1980.

J. N. Barrett and W. E. Crill, Voltage clamp of cat motoneurone somata: properties of the fast inward current, J Physiol, vol.304, pp.231-280, 1980.

L. Beliez, G. Barriere, S. S. Bertrand, and J. R. Cazalets, Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord, Front Neural Circuits, vol.8, p.99, 2014.

Y. Ben-ari, J. L. Gaiarsa, R. Tyzio, and R. Khazipov, GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol Rev, vol.87, pp.1215-84, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483857

D. J. Bennett, H. Hultborn, B. Fedirchuk, and M. Gorassini, Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats, Journal of Neurophysiology, vol.80, pp.2023-2060, 1998.

G. Bensimon, L. Lacomblez, and V. Meininger, A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group, N Engl J Med, vol.330, pp.585-91, 1994.

N. Bernard-marissal, A. Moumen, C. Sunyach, C. Pellegrino, K. Dudley et al., Reduced calreticulin levels link endoplasmic reticulum stress and Fastriggered cell death in motoneurons vulnerable to ALS, J Neurosci, vol.32, pp.4901-4913, 2012.

J. J. Bernstein and M. E. Bernstein, Ventral horn synaptology in the rat', Journal of Neurocytology, vol.5, pp.109-132, 1976.

S. S. Bertrand and J. R. Cazalets, Cholinergic partition cells and lamina x neurons induce a muscarinic-dependent short-term potentiation of commissural glutamatergic inputs in lumbar motoneurons, Front Neural Circuits, vol.5, p.15, 2011.

A. Bjorklund and G. Skagerberg, Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing, Brain Res, vol.177, pp.170-175, 1979.

P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, Cation-chloride cotransporters and neuronal function, Neuron, vol.61, pp.820-858, 2009.

I. P. Blair, K. L. Williams, S. T. Warraich, J. C. Durnall, A. D. Thoeng et al., FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis, J Neurol Neurosurg Psychiatry, vol.81, pp.639-684, 2010.

H. Blasco, A. M. Guennoc, C. Veyrat-durebex, P. H. Gordon, C. R. Andres et al., Amyotrophic lateral sclerosis: a hormonal condition?, Amyotroph Lateral Scler, vol.13, pp.585-593, 2012.

A. M. Blokhuis, E. J. Groen, M. Koppers, L. H. Van-den, R. J. Berg et al., Protein aggregation in amyotrophic lateral sclerosis, Acta Neuropathol, vol.125, pp.777-94, 2013.

D. Bodian, Electron microscopy: two major synaptic types on spinal motoneurons, Science, vol.151, pp.1093-94, 1966.

, Origin of specific synaptic types in the motoneuron neuropil of the monkey, The Journal of Comparative Neurology, vol.159, pp.225-268, 1975.

V. Bolduc, G. Marlow, K. M. Boycott, K. Saleki, H. Inoue et al., Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies, Am J Hum Genet, vol.86, pp.213-234, 2010.

T. Bonifacino, L. Musazzi, M. Milanese, M. Seguini, A. Marte et al., Altered mechanisms underlying the abnormal glutamate release in amyotrophic lateral sclerosis at a pre-symptomatic stage of the disease, Neurobiol Dis, vol.95, pp.122-155, 2016.

C. Bories, J. Amendola, B. Lamotte-d'incamps, and J. Durand, Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis, Eur J Neurosci, vol.25, pp.451-460, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173820

J. Borowska, C. T. Jones, H. Zhang, J. Blacklaws, M. Goulding et al., Functional subpopulations of V3 interneurons in the mature mouse spinal cord, J Neurosci, vol.33, pp.18553-65, 2013.

D. A. Bosco, G. Morfini, N. M. Karabacak, Y. Song, F. Gros-louis et al., Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS, Nat Neurosci, vol.13, pp.1396-403, 2010.

M. Boudes, S. Pieraut, J. Valmier, P. Carroll, and F. Scamps, Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism, J Neurosci Methods, vol.170, pp.204-215, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00257563

M. Boudes, C. Sar, A. Menigoz, C. Hilaire, M. O. Pequignot et al., Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl-current expression in axotomized sensory neurons, J Neurosci, vol.29, pp.10063-71, 2009.

M. Boudes and F. Scamps, Calcium-activated chloride current expression in axotomized sensory neurons: what for?, Front Mol Neurosci, vol.5, p.35, 2012.

M. H. Brooke and K. K. Kaiser, Muscle fiber types: how many and what kind?, Arch Neurol, vol.23, pp.369-79, 1970.

M. B. Brooks, J. L. Catalfamo, R. Macnguyen, D. Tim, S. Fancher et al., A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling, J Thromb Haemost, vol.13, pp.2240-52, 2015.

T. G. Brown, The Intrinsic Factors in the Act of Progression in the Mammal, Proceedings of the Royal Society London, vol.84, pp.308-319, 1911.

L. I. Bruijn, M. W. Becher, M. K. Lee, K. L. Anderson, N. A. Jenkins et al., ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions, Neuron, vol.18, pp.327-365, 1997.

J. D. Brunner, N. K. Lim, S. Schenck, A. Duerst, and R. Dutzler, X-ray structure of a calciumactivated TMEM16 lipid scramblase, Nature, vol.516, pp.207-219, 2014.

J. T. Buchanan and S. Grillner, Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord, Science, vol.236, pp.312-316, 1987.

R. E. Burke, Motor units in cat muscles: anatomical considerations in relation to motor unit types, Adv Neurol, vol.36, pp.31-45, 1982.

R. E. Burke, D. N. Levine, P. Tsairis, and F. E. Zajac, Physiological types and histochemical profiles in motor units of the cat gastrocnemius, J Physiol, vol.234, pp.723-771

R. E. Burke, D. N. Levine, and F. E. Zajac, Mammalian motor units: physiologicalhistochemical correlation in three types in cat gastrocnemius, Science, vol.174, pp.709-721

R. E. Burke and P. Tsairis, Anatomy and innervation ratios in motor units of cat gastrocnemius, J Physiol, vol.234, pp.749-65, 1973.

D. C. Button, K. Gardiner, T. Marqueste, and P. F. Gardiner, Frequency-current relationships of rat hindlimb alpha-motoneurones, J Physiol, vol.573, pp.663-77, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00198368

W. Camu, J. Khoris, B. Moulard, F. Salachas, V. Briolotti et al., Genetics of familial ALS and consequences for diagnosis, J Neurol Sci, vol.165, issue.1, pp.21-27, 1999.

S. Cantor, W. Zhang, N. Delestree, L. Remedio, G. Z. Mentis et al., Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody, 2018.

A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti et al., TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity, Science, vol.322, pp.590-94, 2008.

C. Catela, M. M. Shin, and J. S. Dasen, Assembly and function of spinal circuits for motor control, Annu Rev Cell Dev Biol, vol.31, pp.669-98, 2015.

J. Celichowski and H. Drzymala-celichowska, The number of motor units in the medial gastrocnemius muscle of male and female rats, J Physiol Pharmacol, vol.58, pp.821-829, 2007.

J. Celichowski and H. Drzymala, Differences between properties of male and female motor units in the rat medial gastrocnemius muscle, J Physiol Pharmacol, vol.57, pp.83-93, 2006.

J. Y. Cha, J. Wee, J. Jung, Y. Jang, B. Lee et al., Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia, Proc Natl Acad Sci U S A, vol.112, pp.9722-9729, 2015.

Q. Chang and L. J. Martin, Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis, Neurobiol Dis, vol.174, pp.78-95, 2009.

J. M. Charcot and A. Joffroy, Deux cas d'atrophie musculaire progressive avec lésions de la substance grise et des faisceaux antérolatéraux de la moelle épinière', Archives de physiologie normale et pathologique, vol.2, pp.744-60, 1869.

G. Charlesworth, V. Plagnol, K. M. Holmstrom, J. Bras, U. M. Sheerin et al.,

. Wood, Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis, Am J Hum Genet, vol.91, pp.1041-50, 2012.

A. Y. Chiu, P. Zhai, M. C. Canto, T. M. Peters, Y. W. Kwon et al., Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis, Mol Cell Neurosci, vol.6, pp.349-62, 1995.

L. H. Comley, J. Nijssen, J. Frost-nylen, and E. Hedlund, Cross-disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology, J Comp Neurol, vol.524, pp.1424-1466, 2016.

M. Connaughton, J. V. Priestley, M. V. Sofroniew, F. Eckenstein, and A. C. Cuello, Inputs to motoneurones in the hypoglossal nucleus of the rat: Light and electron microscopic immunocytochemistry for choline acetyltransferase, substance P and enkephalins using monoclonal antibodies, Neuroscience, vol.17, pp.205-229, 1986.

S. Conradi, Ultrastructure and distribution of neuronal and glial elements on the surface of the proximal part of a motoneuron dendrite, as analyzed by serial sections, Acta Physiol Scand Suppl, vol.332, pp.49-64, 1969.

S. Conradi, J. O. Kellerth, and C. H. Berthold, Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. II. A method for the description of architecture and synaptology of the cell body and proximal dendritic segments, J Comp Neurol, vol.184, pp.741-54, 1979.

S. Conradi and S. Skoglund, Observations on the ultrastruture and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the cat during postnatal development, Acta Physiol Scand Suppl, vol.333, pp.5-52, 1969.

B. A. Conway, H. Hultborn, O. Kiehn, and I. Mintz, Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat, The Journal Of Physiology, vol.405, pp.369-84, 1988.

J. S. Coombs, D. R. Curtis, and J. C. Eccles, The generation of impulses in motoneurones, J Physiol, vol.139, pp.232-281, 1957.

J. S. Coombs, J. C. Eccles, and P. Fatt, The electrical properties of the motoneurone membrane, J Physiol, vol.130, pp.291-325, 1955.

R. Couteaux and M. Pecot-dechavassine, Ultrastructural and cytochemical data on the mechanism of acetylcholine release in synaptic transmission, Arch Ital Biol, vol.111, pp.231-62, 1973.

C. Crone, H. Hultborn, O. Kiehn, L. Mazieres, and H. Wigström, Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat, The Journal Of Physiology, vol.405, pp.321-364, 1988.

S. A. Crone, G. Zhong, R. Harris-warrick, and K. Sharma, In mice lacking V2a interneurons, gait depends on speed of locomotion, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.29, pp.7098-109, 2009.

S. Cronin, O. Hardiman, and B. J. Traynor, Ethnic variation in the incidence of ALS: a systematic review, Neurology, vol.68, pp.1002-1009, 2007.

N. L. Cross, Initiation of the activation potential by an increase in intracellular calcium in eggs of the frog, Rana pipiens, Dev Biol, vol.85, pp.380-384, 1981.

S. Cullheim, J. W. Fleshman, L. L. Glenn, and R. E. Burke, Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons, J Comp Neurol, vol.255, pp.68-81, 1987.

S. Cullheim and J. O. Kellerth, A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles, J Physiol, vol.281, pp.285-99, 1978.

M. C. Dal-canto and M. E. Gurney, A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis, Acta Neuropathol, vol.93, pp.537-50, 1997.

A. S. Deardorff, S. H. Romer, Z. Deng, K. L. Bullinger, P. Nardelli et al., Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons, J Physiol, vol.591, pp.875-97, 2013.

A. S. Deardorff, S. H. Romer, P. M. Sonner, and R. E. Fyffe, Swimming against the tide: investigations of the C-bouton synapse, Front Neural Circuits, vol.8, p.106, 2014.

S. Deforges, J. Branchu, O. Biondi, C. Grondard, C. Pariset et al., Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis, J Physiol, vol.587, pp.3561-72, 2009.

M. Dejesus-hernandez, I. R. Mackenzie, B. F. Boeve, A. L. Boxer, M. Baker et al., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS', Neuron, vol.72, pp.245-56, 2011.

N. Delestree, M. Manuel, C. Iglesias, S. M. Elbasiouny, C. J. Heckman et al., Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis, J Physiol, vol.592, pp.1687-703, 2014.

Z. Deng and R. E. Fyffe, Expression of P2X7 receptor immunoreactivity in distinct subsets of synaptic terminals in the ventral horn of rat lumbar spinal cord, Brain Res, vol.1020, pp.53-61, 2004.

J. C. Desport, F. Torny, M. Lacoste, P. M. Preux, and P. Couratier, Hypermetabolism in ALS: correlations with clinical and paraclinical parameters, Neurodegener Dis, vol.2, pp.202-209, 2005.

C. Desseille, S. Deforges, O. Biondi, L. Houdebine, D. D'amico et al., Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral-Sclerosis Mice, Front Mol Neurosci, vol.10, p.332, 2017.

A. C. Devlin, K. Burr, S. Borooah, J. D. Foster, E. M. Cleary et al., Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability, Nat Commun, vol.6, p.5999, 2015.

G. Dobrowolny, E. Lepore, M. Martini, L. Barberi, A. Nunn et al., Metabolic Changes Associated With Muscle Expression of SOD1(G93A), Front Physiol, vol.9, p.831, 2018.

A. G. Douglas, Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction, Noncoding RNA Res, vol.3, pp.178-87, 2018.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biol, vol.9, p.66, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

A. Duflocq, B. L. Bras, E. Bullier, F. Couraud, and M. Davenne, Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments, Mol Cell Neurosci, vol.39, pp.180-92, 2008.

S. S. Dukkipati, T. L. Garrett, and S. M. Elbasiouny, The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis, J Physiol, vol.596, pp.1723-1768, 2018.

L. Dupuis, P. F. Pradat, A. C. Ludolph, and J. P. Loeffler, Energy metabolism in amyotrophic lateral sclerosis, Lancet Neurol, vol.10, pp.75-82, 2011.

J. Eccles, P. Fatt, and K. Koketsu, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, The Journal Of Physiology, vol.126, pp.524-62, 1954.

J. C. Eccles, Trophic interactions in the mammalian central nervous system, Annals of the New York Academy of Sciences, vol.228, pp.406-429, 1974.

J. Eggermont, Calcium-activated chloride channels: (un)known, (un)loved?, Proc Am Thorac Soc, vol.1, pp.22-29, 2004.

S. Elkabes and A. B. Nicot, Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations, Exp Neurol, vol.259, pp.28-37, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02163172

A. Enjin, K. E. Leao, S. Mikulovic, P. Le-merre, W. G. Tourtellotte et al., Sensorimotor function is modulated by the serotonin receptor 1d, a novel marker for gamma motor neurons, Mol Cell Neurosci, vol.49, pp.322-354, 2012.

A. Enjin, N. Rabe, S. T. Nakanishi, A. Vallstedt, H. Gezelius et al., Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells, J Comp Neurol, vol.518, pp.2284-304, 2010.

M. G. Evans, L. Lagostena, P. Darbon, and F. Mammano, Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea, Cell Calcium, vol.28, pp.195-203, 2000.

B. Fakler and J. P. Adelman, Control of K(Ca) channels by calcium nano/microdomains, Neuron, vol.59, pp.873-81, 2008.

G. Fallah, T. Romer, S. Detro-dassen, U. Braam, F. Markwardt et al., TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels, Mol Cell Proteomics, vol.10, pp.110-004697, 2011.

M. A. Farg, V. Sundaramoorthy, J. M. Sultana, S. Yang, R. A. Atkinson et al., C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking, Hum Mol Genet, vol.23, pp.3579-95, 2014.

A. Filezac-de-l'etang, N. Maharjan, M. Brana, C. Ruegsegger, R. Rehmann et al., Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS, Nat Neurosci, vol.18, pp.227-265, 2015.

L. R. Fischer, D. G. Culver, P. Tennant, A. A. Davis, M. Wang et al., Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man, Exp Neurol, vol.185, pp.232-272, 2004.

B. R. Foerster, M. G. Pomper, B. C. Callaghan, M. Petrou, R. A. Edden et al., An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy, JAMA Neurol, vol.70, pp.1009-1025, 2013.

D. Frey, C. Schneider, L. Xu, J. Borg, W. Spooren et al., Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases, J Neurosci, vol.20, pp.2534-2576, 2000.

A. Friese, J. A. Kaltschmidt, D. R. Ladle, M. Sigrist, T. M. Jessell et al., Gamma and alpha motor neurons distinguished by expression of transcription factor Err3, Proc Natl Acad Sci U S A, vol.106, pp.13588-93, 2009.

S. Frings, D. Reuter, and S. J. Kleene, Neuronal Ca2+ -activated Cl-channels--homing in on an elusive channel species, Prog Neurobiol, vol.60, pp.247-89, 2000.

X. Gallart-palau, O. Tarabal, A. Casanovas, J. Sabado, F. J. Correa et al., Neuregulin-1 is concentrated in the postsynaptic subsurface cistern of C-bouton inputs to alpha-motoneurons and altered during motoneuron diseases, FASEB J, vol.28, pp.3618-3650, 2014.

P. F. Gardiner, Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius, J Neurophysiol, vol.69, pp.1160-70, 1993.

I. Gijselinck, K. Sleegers, S. Engelborghs, W. Robberecht, J. J. Martin et al., Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS, Neurobiol Aging, vol.30, pp.1329-1360, 2009.

M. Gizzi, A. Dirocco, M. Sivak, and B. Cohen, Ocular motor function in motor neuron disease, Neurology, vol.42, pp.1037-1083, 1992.

M. Goulding and S. L. Pfaff, Development of circuits that generate simple rhythmic behaviors in vertebrates, Curr Opin Neurobiol, vol.15, pp.14-20, 2005.

M. Goulding, G. Lanuza, T. Sapir, and S. Narayan, The formation of sensorimotor circuits, Current Opinion in Neurobiology, vol.12, pp.508-523, 2002.

L. Grant, S. Slapnick, H. Kennedy, and C. Hackney, Ryanodine receptor localisation in the mammalian cochlea: an ultrastructural study, Hear Res, vol.219, pp.101-110, 2006.

S. Grillner, Locomotion in vertebrates: central mechanisms and reflex interaction, Physiol Rev, vol.55, pp.247-304, 1975.

A. Gritli-linde, F. Vaziri, J. R. Sani, K. Rock, D. Hallberg et al., Expression patterns of the Tmem16 gene family during cephalic development in the mouse, Gene Expr Patterns, vol.9, pp.178-91, 2009.

C. Grondard, O. Biondi, C. Pariset, P. Lopes, S. Deforges et al., Exercise-induced modulation of calcineurin activity parallels the time course of myofibre transitions, J Cell Physiol, vol.214, pp.126-161, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00306044

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, pp.1772-1777, 1994.

B. Gustafsson and M. J. Pinter, An investigation of threshold properties among cat spinal alpha-motoneurones, J Physiol, vol.357, pp.453-83, 1984.

S. Gyobu, K. Ishihara, J. Suzuki, K. Segawa, and S. Nagata, Characterization of the scrambling domain of the TMEM16 family, Proc Natl Acad Sci U S A, vol.114, pp.6274-79, 2017.

G. E. Ha, J. Lee, H. Kwak, K. Song, J. Kwon et al., The Ca(2+)-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons, Nat Commun, vol.7, p.13791, 2016.

A. R. Haeusler, C. J. Donnelly, and J. D. Rothstein, The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease, Nat Rev Neurosci, vol.17, pp.383-95, 2016.

J. E. Hamos and J. S. King, The synaptic organization of the motor nucleus of the trigeminal nerve in the opossum, Journal of Comparative Neurology, vol.194, pp.441-63, 1980.

S. B. Hansen, Lipid agonism: The PIP2 paradigm of ligand-gated ion channels, Biochim Biophys Acta, vol.1851, pp.620-628, 2015.

J. J. Harris, R. Jolivet, and D. Attwell, Synaptic energy use and supply, Neuron, vol.75, pp.762-77, 2012.

C. Hartzell, I. Putzier, and J. Arreola, Calcium-activated chloride channels, Annu Rev Physiol, vol.67, pp.719-58, 2005.

H. Hayashi, M. Suga, M. Satake, and T. Tsubaki, Reduced glycine receptor in the spinal cord in amyotrophic lateral sclerosis, Ann Neurol, vol.9, pp.292-296, 1981.

T. Hayashi and T. P. Su, Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival, Cell, vol.131, pp.596-610, 2007.

C. J. Heckman, C. Mottram, K. Quinlan, R. Theiss, and J. Schuster, Motoneuron excitability: the importance of neuromodulatory inputs, Clin Neurophysiol, vol.120, pp.2040-54, 2009.

E. Hedlund, M. Karlsson, T. Osborn, W. Ludwig, and O. Isacson, Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection, Brain, vol.133, pp.2313-2343, 2010.

J. Hegedus, C. T. Putman, and T. Gordon, Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis, Neurobiol Dis, vol.28, pp.154-64, 2007.

J. Hegedus, C. T. Putman, N. Tyreman, and T. Gordon, Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis, J Physiol, vol.586, pp.3337-51, 2008.

J. Hellstrom, A. L. Oliveira, B. Meister, and S. Cullheim, Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2, J Comp Neurol, vol.460, pp.476-86, 2003.

J. Hellström, A. L. Oliveira, B. Meister, and S. Cullheim, Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2, The Journal of Comparative Neurology, vol.460, pp.476-86, 2003.

T. Hengl, H. Kaneko, K. Dauner, K. Vocke, S. Frings et al., Molecular components of signal amplification in olfactory sensory cilia, Proc Natl Acad Sci U S A, vol.107, pp.6052-6059, 2010.

E. Henneman, G. Somjen, and D. O. Carpenter, Functional Significance of Cell Size in Spinal Motoneurons, J Neurophysiol, vol.28, pp.560-80, 1965.

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat Rev Mol Cell Biol, vol.13, pp.89-102, 2012.

D. Hicks, A. Sarkozy, N. Muelas, K. Koehler, A. Huebner et al., A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy, Brain, vol.134, pp.171-82, 2011.

B. Hivert and S. Luvisetto, Anacleto Navangione, Angelita Tottene, and Daniela Pietrobon, The Journal of General Physiology, vol.113, pp.679-94, 1999.

J. Hounsgaard, H. Hultborn, B. Jespersen, and O. Kiehn, Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan, The Journal Of Physiology, vol.405, pp.345-67, 1988.

J. Hounsgaard and O. Kiehn, Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential, The Journal Of Physiology, vol.414, pp.265-82, 1989.

J. Hounsgaard and I. Mintz, Calcium conductance and firing properties of spinal motoneurones in the turtle, J Physiol, vol.398, pp.591-603, 1988.

D. S. Howland, J. Liu, Y. She, B. Goad, N. J. Maragakis et al., Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS), Proc Natl Acad Sci U S A, vol.99, pp.1604-1613, 2002.

W. C. Huang, S. Xiao, F. Huang, B. D. Harfe, Y. N. Jan et al., Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons, Neuron, vol.74, pp.179-92, 2012.

J. T. Isaac, M. C. Ashby, and C. J. Mcbain, The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity, Neuron, vol.54, pp.859-71, 2007.

A. Israelson, N. Arbel, S. Cruz, H. Ilieva, K. Yamanaka et al., Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS, Neuron, vol.67, pp.575-87, 2010.

A. N. Issa, W. Z. Zhan, G. C. Sieck, and C. B. Mantilla, Neuregulin-1 at synapses on phrenic motoneurons, J Comp Neurol, vol.518, pp.4213-4238, 2010.

L. Jami, Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions, Physiol Rev, vol.72, pp.623-66, 1992.

E. Jankowska and S. Lindström, Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat, The Journal Of Physiology, vol.226, pp.805-828, 1972.

E. Jankowska and W. J. Roberts, Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones, The Journal Of Physiology, vol.222, pp.623-665, 1972.

T. J. Jentsch, V. Stein, F. Weinreich, and A. A. Zdebik, Molecular structure and physiological function of chloride channels, Physiol Rev, vol.82, pp.503-68, 2002.

M. C. Jiang, A. Adimula, D. Birch, and C. J. Heckman, Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis, Neuroscience, vol.362, pp.33-46, 2017.

M. Jiang, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis, J Neurosci, vol.29, pp.15031-15039, 2009.

B. Johnson, A. N. Leek, L. Sole, E. E. Maverick, T. P. Levine et al., Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB, Proc Natl Acad Sci U S A, vol.115, pp.7331-7371, 2018.

K. Kunzelmann, V. M. Milenkovic, M. Spitzner, R. B. Soria, and R. Schreiber, Calciumdependent chloride conductance in epithelia: is there a contribution by Bestrophin?, Pflugers Arch, vol.454, pp.879-89, 2007.

J. J. Kuo, R. H. Lee, L. Zhang, and C. J. Heckman, Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones, J Physiol, vol.574, pp.819-853, 2006.

J. J. Kuo, T. Siddique, R. Fu, and C. J. Heckman, Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice, J Physiol, vol.563, pp.843-54, 2005.

L. Lacomblez, G. Bensimon, P. N. Leigh, P. Guillet, L. Powe et al., A confirmatory dose-ranging study of riluzole in ALS, vol.47, pp.242-50, 1996.

G. M. Lanuza, S. Gosgnach, A. Pierani, M. Thomas, M. Jessell et al., Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements, Neuron, vol.42, pp.375-86, 2004.

W. A. Large and Q. Wang, Characteristics and physiological role of the Ca(2+)-activated Clconductance in smooth muscle, Am J Physiol, vol.271, pp.435-54, 1996.

L. Masson, G. , S. Przedborski, and L. F. Abbott, A computational model of motor neuron degeneration, Neuron, vol.83, pp.975-88, 2014.

R. H. Lee and C. J. Heckman, Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine, J Neurophysiol, vol.81, pp.2164-74, 1999.

S. E. Lee, Guam dementia syndrome revisited in 2011, Curr Opin Neurol, vol.24, pp.517-541, 2011.

S. Lee, B. E. Yoon, K. Berglund, S. J. Oh, H. Park et al., Channel-mediated tonic GABA release from glia, Science, vol.330, pp.790-796, 2010.

F. Leroy, B. Lamotte-d'incamps, R. D. Imhoff-manuel, and D. Zytnicki, Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis, p.3, 2014.

M. Leslie, N. G. Forger, and S. M. Breedlove, Sexual dimorphism and androgen effects on spinal motoneurons innervating the rat flexor digitorum brevis, Brain Res, vol.561, pp.269-73, 1991.

A. Leveille, J. Kiernan, J. A. Goodwin, and J. Antel, Eye movements in amyotrophic lateral sclerosis, Arch Neurol, vol.39, pp.684-690, 1982.

W. Li, P. A. Ochalski, S. Brimijoin, L. M. Jordan, and J. I. Nagy, C-terminals on motoneurons: Electron microscope localization of cholinergic markers in adult rats and antibody-induced depletion in neonates, Neuroscience, vol.65, pp.879-91, 1995.

Y. Li and D. J. Bennett, Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats, J Neurophysiol, vol.90, pp.857-69, 2003.

E. G. Liddell and . C. Sherrington, Recruitment and some other factors of reflex inhibition, Proc. R. Soc. Lond, vol.97, pp.488-518, 1925.

B. Liu, J. E. Linley, X. Du, X. Zhang, L. Ooi et al., The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl-channels, J Clin Invest, vol.120, pp.1240-52, 2010.

T. Lomo, R. H. Westgaard, and H. A. Dahl, Contractile properties of muscle: control by pattern of muscle activity in the rat, Proc R Soc Lond B Biol Sci, vol.187, pp.99-103, 1974.

S. Lumbroso, F. Sandillon, V. Georget, J. M. Lobaccaro, A. O. Brinkmann et al., Immunohistochemical localization and immunoblotting of androgen receptor in spinal neurons of male and female rats, Eur J Endocrinol, vol.134, pp.626-658, 1996.

N. Maharjan, C. Kunzli, K. Buthey, and S. Saxena, C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress, Mol Neurobiol, vol.54, pp.3062-77, 2017.

I. Mahjneh, J. Jaiswal, A. Lamminen, M. Somer, G. Marlow et al., A new distal myopathy with mutation in anoctamin 5, Neuromuscul Disord, vol.20, pp.791-796, 2010.

S. Malessa, P. N. Leigh, O. Bertel, E. Sluga, and O. Hornykiewicz, Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord, J Neurol Neurosurg Psychiatry, vol.54, pp.984-992, 1991.

F. Mammano, G. I. Frolenkov, L. Lagostena, I. A. Belyantseva, M. Kurc et al., ATP-Induced Ca2+ Release in Cochlear Outer Hair Cells: Localization of an Inositol Triphosphate-Gated Ca2+ Store to the Base of the Sensory Hair Bundle, Journal of Neuroscience, vol.19, pp.6918-6947, 1999.

T. Mannen, Rinsho Shinkeigaku, vol.31, pp.1281-1286, 1991.

M. Manuel, C. Meunier, M. Donnet, and D. Zytnicki, Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons, J Neurosci, vol.27, pp.12977-88, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00202471

A. D. Marmorstein, L. Y. Marmorstein, M. Rayborn, X. Wang, J. G. Hollyfield et al., Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium, Proc Natl Acad Sci U S A, vol.97, pp.12758-63, 2000.

E. Martin, W. Cazenave, D. Cattaert, and P. Branchereau, Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis, Neurobiol Dis, vol.54, pp.116-142, 2013.

L. J. Martin and Q. Chang, Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis, Mol Neurobiol, vol.45, pp.30-42, 2012.

M. L. Martinez-silva, R. D. Imhoff-manuel, A. Sharma, C. J. Heckman, N. A. Shneider et al., Hypoexcitability precedes denervation in the large fastcontracting motor units in two unrelated mouse models of ALS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02011470

J. R. Martins, D. Faria, P. Kongsuphol, B. Reisch, R. Schreiber et al., Anoctamin 6 is an essential component of the outwardly rectifying chloride channel, Proc Natl Acad Sci U S A, vol.108, pp.18168-72, 2011.

V. V. Matchkov, P. Larsen, E. V. Bouzinova, A. Rojek, D. M. Boedtkjer et al., Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells, Circ Res, vol.103, pp.864-72, 2008.

S. Matus, E. Lopez, V. Valenzuela, M. Nassif, and C. Hetz, Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis, PLoS One, vol.8, p.66672, 2013.

S. Matus, V. Valenzuela, D. B. Medinas, and C. Hetz, ER Dysfunction and Protein Folding Stress in ALS, Int J Cell Biol, p.674751, 2013.

T. A. Mavlyutov, M. L. Epstein, K. A. Andersen, L. Ziskind-conhaim, and A. E. Ruoho, The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study, Neuroscience, vol.167, pp.247-55, 2010.

M. L. Mayer, A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture, J Physiol, vol.364, pp.217-256, 1985.

P. A. Mccombe and R. D. Henderson, Effects of gender in amyotrophic lateral sclerosis, Gend Med, vol.7, pp.557-70, 2010.

C. J. Mcdermott and P. J. Shaw, Diagnosis and management of motor neurone disease, BMJ, vol.336, pp.658-62, 2008.

J. G. Mclarnon, Potassium currents in motoneurones, Progress in Neurobiology, vol.47, pp.513-544, 1995.

P. Menon, M. C. Kiernan, and S. Vucic, Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS, Clin Neurophysiol, vol.126, pp.803-812, 2015.

L. Milan, G. Barriere, P. De-deurwaerdere, J. R. Cazalets, and S. S. Bertrand, Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice, Front Neural Circuits, vol.8, p.77, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178095

L. Milan, G. Courtand, L. Cardoit, F. Masmejean, G. Barriere et al., Age-Related Changes in Pre-and Postsynaptic Partners of the Cholinergic CBoutons in Wild-Type and SOD1G93A Lumbar Motoneurons, PLoS One, vol.10, p.135525, 2015.

V. M. Milenkovic, A. Rivera, F. Horling, and B. H. Weber, Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane, J Biol Chem, vol.282, pp.1313-1334, 2007.

G. B. Miles, R. Hartley, A. J. Todd, and R. M. Brownstone, Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion, Proc Natl Acad Sci U S A, vol.104, pp.2448-53, 2007.

J. W. Mink, R. J. Blumenschine, and D. B. Adams, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis, Am J Physiol, vol.241, pp.203-215, 1981.

H. Misonou, D. P. Mohapatra, E. W. Park, V. Leung, D. Zhen et al., Regulation of ion channel localization and phosphorylation by neuronal activity, Nat Neurosci, vol.7, pp.711-719, 2004.

J. R. Morrice, C. Y. Gregory-evans, and C. A. Shaw, Animal models of amyotrophic lateral sclerosis: A comparison of model validity, Neural Regen Res, vol.13, pp.2050-54, 2018.

B. M. Morrison, W. G. Janssen, J. W. Gordon, and J. H. Morrison, Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice, J Comp Neurol, vol.395, pp.523-557, 1998.

A. Mosfeldt-laursen and J. C. Rekling, Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro, Neuroscience, vol.30, pp.619-656, 1989.

E. A. Muennich and R. E. Fyffe, Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones, J Physiol, vol.554, pp.673-85, 2004.

C. Munch, M. Ebstein, U. Seefried, B. Zhu, S. Stamm et al., Alternative splicing of the 5'-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis, J Neurochem, vol.82, pp.594-603, 2002.

S. Nagata, J. Suzuki, K. Segawa, and T. Fujii, Exposure of phosphatidylserine on the cell surface, Cell Death Differ, vol.23, pp.952-61, 2016.

J. I. Nagy, T. Yamamoto, and L. M. Jordan, Evidence for the cholinergic nature of C-terminals associated with subsurface cisterns in alpha-motoneurons of rat, Synapse, vol.15, pp.17-32, 1993.

M. Naujock, N. Stanslowsky, S. Bufler, M. Naumann, P. Reinhardt et al., 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells, Stem Cells, vol.34, pp.1563-75, 2016.

P. G. Nelson and K. Frank, Action Potential Production Studied by the Voltage Clamp Technic on the Cat Motoneuron, Actual Neurophysiol, vol.5, pp.15-35, 1964.

D. M. Nguyen, L. S. Chen, W. P. Yu, and T. Y. Chen, Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase, J Gen Physiol, vol.151, pp.518-549, 2019.

J. Nijssen, L. H. Comley, and E. Hedlund, Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis, Acta Neuropathol, vol.133, pp.863-85, 2017.

E. A. Nimchinsky, W. G. Young, G. Yeung, R. A. Shah, J. W. Gordon et al., Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice, J Comp Neurol, vol.416, pp.112-137, 2000.

E. Nosyreva and E. T. Kavalali, Activity-dependent augmentation of spontaneous neurotransmission during endoplasmic reticulum stress, J Neurosci, vol.30, pp.7358-68, 2010.

Y. Noto, K. Shibuya, S. Vucic, and M. C. Kiernan, Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis, Expert Rev Neurother, vol.16, pp.1147-54, 2016.

P. Oeckl, C. Jardel, F. Salachas, F. Lamari, P. M. Andersen et al., Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS, Amyotroph Lateral Scler Frontotemporal Degener, vol.17, pp.404-417, 2016.

H. Panayi, E. Panayiotou, M. Orford, N. Genethliou, R. Mean et al., Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord, J Neurosci, vol.30, pp.12274-80, 2010.

P. Paul and J. De-belleroche, Experimental approaches for elucidating co-agonist regulation of NMDA receptor in motor neurons: Therapeutic implications for amyotrophic lateral sclerosis (ALS), Front Synaptic Neurosci, vol.6, issue.10, pp.2-6, 2014.

C. Paulino, Y. Neldner, A. K. Lam, V. Kalienkova, J. D. Brunner et al., Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A, 2017.

K. G. Pearson, Proprioceptive regulation of locomotion, Curr Opin Neurobiol, vol.5, pp.786-91, 1995.

N. Pedemonte and L. J. Galietta, Structure and function of TMEM16 proteins (anoctamins), Physiol Rev, vol.94, pp.419-59, 2014.

J. F. Perrier, H. B. Rasmussen, R. K. Christensen, and A. V. Petersen, Modulation of the intrinsic properties of motoneurons by serotonin, Curr Pharm Des, vol.19, pp.4371-84, 2013.

M. Pieri, F. Albo, C. Gaetti, A. Spalloni, C. P. Bengtson et al., Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis, Neurosci Lett, vol.351, pp.153-159, 2003.

M. Pieri, S. Caioli, N. Canu, N. B. Mercuri, E. Guatteo et al., Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis, Exp Neurol, vol.247, pp.349-58, 2013.

J. D. Porter, Extraocular muscle: cellular adaptations for a diverse functional repertoire, Ann N Y Acad Sci, vol.956, pp.7-16, 2002.

R. K. Powers and M. D. Binder, Input-output functions of mammalian motoneurons, Rev Physiol Biochem Pharmacol, vol.143, pp.137-263, 2001.

A. H. Pullen, J. E. Martin, and M. Swash, Ultra structure of pre-synaptic input to motor neurons in Onuf's nucleus: controls and motor neuron disease, Neuropathology and Applied Neurobiology, vol.18, pp.213-244, 1992.

S. Pun, A. F. Santos, S. Saxena, L. Xu, and P. Caroni, Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF, Nat Neurosci, vol.9, pp.408-427, 2006.

Z. Qu and C. Hartzell, Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel, J Gen Physiol, vol.124, pp.371-82, 2004.

K. A. Quinlan, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis, J Physiol, vol.589, pp.2245-60, 2011.

R. A. Radford, M. Morsch, S. L. Rayner, N. J. Cole, D. L. Pountney et al., The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia, Front Cell Neurosci, vol.9, p.414, 2015.

W. Rall, Time constants and electrotonic length of membrane cylinders and neurons, Biophys J, vol.9, pp.1483-508, 1969.

V. Rangaraju, N. Calloway, and T. A. Ryan, Activity-driven local ATP synthesis is required for synaptic function, Cell, vol.156, pp.825-860, 2014.

L. Ranvier, De quelques faits relatifs à l'histologie et à la physiologie des muscles striés, Arch Physiol Norm Pathol, vol.1, pp.5-18, 1874.

C. Raoul, A. G. Estevez, H. Nishimune, D. W. Cleveland, O. Delapeyriere et al., Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations, Neuron, vol.35, pp.1067-83, 2002.

A. G. Reaume, J. L. Elliott, E. K. Hoffman, N. W. Kowall, R. J. Ferrante et al., Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nat Genet, vol.13, pp.43-50, 1996.

J. C. Rekling, G. D. Funk, D. A. Bayliss, X. W. Dong, and J. L. Feldman, Synaptic control of motoneuronal excitability, Physiol Rev, vol.80, pp.767-852, 2000.

M. Renaud, M. Anheim, E. J. Kamsteeg, M. Mallaret, F. Mochel et al., Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study, JAMA Neurol, vol.71, pp.1305-1315, 2014.

A. E. Renton, E. Majounie, A. Waite, J. Simon-sanchez, S. Rollinson et al., , vol.72, pp.257-68, 2011.

B. Renshaw, Influence of discharge of motoneurons upon excitation of neighboring Motoneurons, J. Neurophysiol, vol.4, pp.167-183, 1941.

D. A. Robinson, Oculomotor unit behavior in the monkey, J Neurophysiol, vol.33, pp.393-403, 1970.

J. R. Rock and B. D. Harfe, Expression of TMEM16 paralogs during murine embryogenesis, Dev Dyn, vol.237, pp.2566-74, 2008.

S. H. Romer, A. S. Deardorff, and R. E. Fyffe, Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons, 2016.

S. H. Romer, K. M. Dominguez, M. W. Gelpi, A. S. Deardorff, R. C. Tracy et al., Redistribution of Kv2.1 ion channels on spinal motoneurons following peripheral nerve injury, Brain Res, vol.1547, pp.1-15, 2014.

F. Roselli and P. Caroni, From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases, Neuron, vol.85, pp.901-911, 2015.

D. R. Rosen, T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.362, pp.59-62, 1993.

S. Rossignol, R. Dubuc, and J. P. Gossard, Dynamic sensorimotor interactions in locomotion, Physiol Rev, vol.86, pp.89-154, 2006.

J. D. Rothstein, G. Tsai, R. W. Kuncl, L. Clawson, D. R. Cornblath et al., Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis, Ann Neurol, vol.28, pp.18-25, 1990.

J. D. Rothstein, M. Van-kammen, A. I. Levey, L. J. Martin, and R. W. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Ann Neurol, vol.38, pp.73-84, 1995.

L. P. Rowland and N. A. Shneider, Amyotrophic lateral sclerosis, N Engl J Med, vol.344, pp.1688-700, 2001.

R. R. Roy, D. L. Hutchison, D. J. Pierotti, J. A. Hodgson, and V. R. Edgerton, EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming, J Appl Physiol, vol.70, pp.2522-2531, 1985.

C. Ruegsegger, N. Maharjan, A. Goswami, A. Filezac-de-l'etang, J. Weis et al., Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-alpha3 impairs its activity and contributes to motor neuron vulnerability in ALS, Acta Neuropathol, vol.131, pp.427-51, 2016.

L. Saba, M. T. Viscomi, S. Caioli, A. Pignataro, E. Bisicchia et al., Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis, Cereb Cortex, vol.26, pp.1512-1540, 2016.

Y. Sagot, M. Dubois-dauphin, S. A. Tan, F. Bilbao, P. Aebischer et al., Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease, J Neurosci, vol.15, pp.7727-7760, 1995.

P. Sah, Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons, Journal of Neurophysiology, vol.68, pp.2237-2284, 1992.

P. Sah, Ca2+-activated K+ currents in neurones: types, physiological roles and modulation, Trends in Neurosciences, vol.19, pp.150-54, 1996.

J. Sasabe, T. Chiba, M. Yamada, K. Okamoto, I. Nishimoto et al., D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis, EMBO J, vol.26, pp.4149-59, 2007.

S. Sasaki, H. Warita, T. Komori, T. Murakami, K. Abe et al., Parvalbumin and calbindin D-28k immunoreactivity in transgenic mice with a G93A mutant SOD1 gene, Brain Res, vol.1083, pp.196-203, 2006.

A. Sathyamurthy, K. R. Johnson, K. J. Matson, C. I. Dobrott, L. Li et al., Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior, Cell Rep, vol.22, pp.2216-2241, 2018.

S. Saxena, E. Cabuy, and P. Caroni, A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice, Nat Neurosci, vol.12, pp.627-663, 2009.

S. Saxena, F. Roselli, K. Singh, K. Leptien, J. Julien et al., Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival, Neuron, vol.80, pp.80-96, 2013.

S. Schiaffino, S. Ausoni, L. Gorza, L. Saggin, K. Gundersen et al., Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres, Acta Physiol Scand, vol.134, pp.575-581, 1988.

R. Schreiber, I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza et al., Expression and function of epithelial anoctamins, J Biol Chem, vol.285, pp.7838-7883, 2010.

B. Schroeder, T. Christian, Y. Cheng, and . Nung, Expression cloning of TMEM16A as a calcium-activated chloride channel subunit, Cell, vol.134, pp.1019-1048, 2008.

P. C. Schwindt and W. E. Crill, Properties of a persistent inward current in normal and TEA-injected motoneurons, Journal of Neurophysiology, vol.44, pp.1700-1724, 1980.

, Differential effects of TEA and cations on outward ionic currents of cat motoneurons, J Neurophysiol, vol.46, pp.1-16, 1981.

P. Schwindt and W. Crill, Role of a persistent inward current in motoneuron bursting during spinal seizures, Journal of Neurophysiology, vol.43, pp.1296-318, 1980.

P. Scudieri, E. Caci, A. Venturini, E. Sondo, G. Pianigiani et al., Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms, J Physiol, vol.593, pp.3829-3877, 2015.

K. Segawa and S. Nagata, An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure, Trends Cell Biol, vol.25, pp.639-50, 2015.

K. Segawa, J. Suzuki, and S. Nagata, Constitutive exposure of phosphatidylserine on viable cells, Proc Natl Acad Sci, vol.108, pp.19246-51, 2011.

K. Sharma, Z. Hui, K. Sheng, H. Lettieri, A. Li et al., LIM Homeodomain Factors Lhx3 and Lhx4 Assign Subtype Identities for Motor Neurons, Cell, vol.95, pp.817-845, 1998.

J. T. Sheridan, E. N. Worthington, K. Yu, S. E. Gabriel, H. C. Hartzell et al., Characterization of the oligomeric structure of the Ca(2+)-activated Cl-channel Ano1/TMEM16A', J Biol Chem, vol.286, pp.1381-1389, 2011.

H. Sherk and G. A. Fowler, Visual analysis and image motion in locomoting cats, Eur J Neurosci, vol.13, pp.1239-1287, 2001.

C. S. Sherrington, Observations on the scratch-reflex in the spinal dog, J Physiol, vol.34, pp.1-50, 1906.

T. Shimizu, T. Iehara, K. Sato, T. Fujii, H. Sakai et al., TMEM16F is a component of a Ca2+-activated Cl-channel but not a volume-sensitive outwardly rectifying Cl-channel', Am J Physiol Cell Physiol, vol.304, pp.748-59, 2013.

I. Sinha-hikim, W. E. Taylor, N. F. Gonzalez-cadavid, W. Zheng, and S. Bhasin, Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment, J Clin Endocrinol Metab, vol.89, pp.5245-55, 2004.

K. J. Spiller, C. J. Cheung, C. R. Restrepo, L. K. Kwong, A. M. Stieber et al., Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy, J Neurosci, vol.36, pp.7707-7724, 2016.

P. Steinacker, E. Feneberg, J. Weishaupt, J. Brettschneider, H. Tumani et al., Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients, J Neurol Neurosurg Psychiatry, vol.87, pp.12-20, 2016.

P. Steinacker, A. Huss, B. Mayer, T. Grehl, J. Grosskreutz et al., Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: Data from the German MND-net, Amyotroph Lateral Scler Frontotemporal Degener, vol.18, pp.112-131, 2017.

A. E. Stepien, M. Tripodi, and S. Arber, Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells, Neuron, vol.68, pp.456-72, 2010.

N. Stifani, Motor neurons and the generation of spinal motor neuron diversity, Front Cell Neurosci, vol.8, p.293, 2014.

T. P. Su, E. D. London, and J. H. Jaffe, Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems, Science, vol.240, pp.219-240, 1988.

B. C. Suh and B. Hille, PIP2 is a necessary cofactor for ion channel function: how and why?, Annu Rev Biophys, vol.37, pp.175-95, 2008.

H. Sun, T. Tsunenari, K. W. Yau, and J. Nathans, The vitelliform macular dystrophy protein defines a new family of chloride channels, Proc Natl Acad Sci U S A, vol.99, pp.4008-4021, 2002.

H. Suzuki, Y. Shibagaki, S. Hattori, and M. Matsuoka, The proline-arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicasemediated ribosome biogenesis, Cell Death Dis, vol.9, p.975, 2018.

J. Suzuki, T. Fujii, T. Imao, K. Ishihara, H. Kuba et al., Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members, J Biol Chem, vol.288, pp.13305-13321, 2013.

H. C. Wang, C. C. Lin, R. Cheung, Y. Zhang-hooks, A. Agarwal et al., Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells, vol.163, pp.1348-59, 2015.

R. Wang and D. Zhang, Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model, Eur J Neurosci, vol.22, pp.2376-80, 2005.

J. M. Whitlock and H. C. Hartzell, Anoctamins/TMEM16 Proteins: Chloride Channels Flirting with Lipids and Extracellular Vesicles, Annu Rev Physiol, vol.79, pp.119-162, 2017.

J. M. Wilson, J. Rempel, and R. M. Brownstone, Postnatal development of cholinergic synapses on mouse spinal motoneurons, The Journal of Comparative Neurology, vol.474, pp.13-23, 2004.

E. C. Witts, L. Zagoraiou, and G. B. Miles, Anatomy and function of cholinergic C bouton inputs to motor neurons, J Anat, vol.224, pp.52-60, 2014.

D. H. Woo, K. S. Han, J. W. Shim, B. E. Yoon, E. Kim et al., TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation, Cell, vol.151, pp.25-40, 2012.

C. M. Wooley, R. B. Sher, A. Kale, W. N. Frankel, G. A. Cox et al., Gait analysis detects early changes in transgenic SOD1(G93A) mice', Muscle Nerve, vol.32, pp.43-50, 2005.

X. M. Xia, B. Fakler, A. Rivard, G. Wayman, T. Johnson-pais et al., Mechanism of calcium gating in smallconductance calcium-activated potassium channels, Nature, vol.395, pp.503-510, 1998.

T. Yamamoto, E. L. Hertzberg, and J. I. Nagy, Subsurface cisterns in alpha-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin32, Brain Research, vol.527, pp.119-155, 1990.

H. Yang, A. Kim, T. David, D. Palmer, T. Jin et al., TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation, Cell, vol.151, pp.111-133, 2012.

H. Yang and L. Y. Jan, TMEM16 Membrane Proteins in Health and Disease in 'Ion Channels in Health and Disease, Perspectives in Translational Cell Biology, pp.165-197, 2016.

Y. Yang, H. Duk, J. Y. Cho, M. Koo, Y. Ho-tak et al., TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, vol.455, pp.1210-1225, 2008.

W. Ye, T. W. Han, L. M. Nassar, M. Zubia, Y. N. Jan et al., Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F, Proc Natl Acad Sci U S A, vol.115, pp.1667-74, 2018.

H. Z. Yin and J. H. Weiss, Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures, Brain Res, vol.1448, pp.153-62, 2012.

K. Yu, Y. Cui, and H. C. Hartzell, The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function, Invest Ophthalmol Vis Sci, vol.47, pp.4956-61, 2006.

Y. Yu and T. Y. Chen, Purified human brain calmodulin does not alter the bicarbonate permeability of the ANO1/TMEM16A channel, J Gen Physiol, vol.145, pp.79-81, 2015.

L. Zagoraiou, T. Akay, J. F. Martin, R. M. Brownstone, T. M. Jessell et al., A cluster of cholinergic premotor interneurons modulates mouse locomotor activity, Neuron, vol.64, pp.645-62, 2009.

N. Zampieri, T. M. Jessell, and A. J. Murray, Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus, Neuron, vol.81, pp.766-78, 2014.

G. Zanette, P. S.-tamburin, N. Manganotti, A. Refatti, N. Forgione et al., Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis, Clin Neurophysiol, vol.113, pp.1688-97, 2002.

J. E. Zengel, S. A. Reid, G. W. Sypert, and J. B. Munson, Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat, J Neurophysiol, vol.53, pp.1323-1367, 1985.

L. Zhang and K. Krnjevic, Effects of 4-aminopyridine on the action potential and the afterhyperpolarization of cat spinal motoneurons, Can J Physiol Pharmacol, vol.64, pp.58-62, 1986.

, Intracellular injection of Ca2+ chelator does not affect spike repolarization of cat spinal motoneurons, Brain Res, vol.462, pp.174-80, 1988.

M. Zhang, X. Y. Meng, M. Cui, J. M. Pascal, D. E. Logothetis et al., Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex, Nat Chem Biol, vol.10, pp.753-762, 2014.

Y. Zhang, Z. Zhang, S. Xiao, J. Tien, S. Le et al., Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis, References Adragna, vol.95, p.255, 2015.

A. E. Allain, H. Le-corronc, A. Delpy, W. Cazenave, P. Meyrand et al., Maturation of the GABAergic transmission in normal and pathologic motoneurons, Neural Plast, p.905624, 2011.

V. Arce, A. Garces, B. De-bovis, P. Filippi, C. Henderson et al., Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique, J. Neurosci. Res, vol.55, pp.119-126, 1999.

M. L. Baccei and M. Fitzgerald, Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn, J. Neurosci, vol.24, pp.4749-4757, 2004.

S. Berrih-aknin, M. Frenkian-cuvelier, and B. Eymard, Diagnostic and clinical classification of autoimmune myasthenia gravis, J. Autoimmun, pp.143-148, 2014.

M. Bialer, Why are antiepileptic drugs used for nonepileptic conditions?, Epilepsia, vol.53, pp.26-33, 2012.

P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, Cation-chloride cotransporters and neuronal function, Neuron, vol.61, pp.820-838, 2009.

T. Boettger, M. B. Rust, H. Maier, T. Seidenbecher, M. Schweizer et al., Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold, EMBO J, vol.22, pp.5422-5434, 2003.

M. Bowerman, L. M. Murray, A. Beauvais, B. Pinheiro, and R. Kothary, A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology, Neuromuscul. Disord, vol.22, pp.263-276, 2012.

R. M. Brownstone, Beginning at the end: repetitive firing properties in the final common pathway, Prog. Neurobiol, vol.78, pp.156-172, 2006.

N. Byun and E. Delpire, Axonal and periaxonal swelling precede peripheral neurodegeneration in KCC3 knockout mice, Neurobiol. Dis, vol.28, pp.39-51, 2007.

W. Camu, B. Tremblier, C. Plassot, S. Alphandery, C. Salsac et al., Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis, Neurobiol. Aging, vol.35, pp.1198-1205, 2014.

L. Carrascal, J. L. Nieto-gonzalez, W. E. Cameron, B. Torres, and P. A. Nunez-abades, Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro, Brain Res. Brain Res. Rev, vol.49, pp.377-387, 2005.

M. Cordero-erausquin, J. A. Coull, D. Boudreau, M. Rolland, and Y. De-koninck, Differential maturation of GABA action and anion reversal potential in spinal lamina I neurons: impact of chloride extrusion capacity, J. Neurosci, vol.25, pp.9613-9623, 2005.

M. Debraekeleer, A. Dallaire, and J. Mathieu, Genetic epidemiology of sensorimotor polyneuropathy with or without agenesis of the corpus callosum in northeastern Quebec, Hum. Genet, vol.91, pp.223-227, 1993.

A. Delpy, A. E. Allain, P. Meyrand, and P. Branchereau, NKCC1 cotransporter inactivation underlies embryonic development of chloride-mediated inhibition in mouse spinal motoneuron, J. Physiol, vol.586, pp.1059-1075, 2008.

J. Ding and E. Delpire, Deletion of KCC3 in parvalbumin neurons leads to locomotor deficit in a conditional mouse model of peripheral neuropathy associated with agenesis of the corpus callosum, Behav. Brain Res, vol.274, pp.128-136, 2014.

N. Dupre, H. C. Howard, J. Mathieu, G. Karpati, M. Vanasse et al., Hereditary motor and sensory neuropathy with agenesis of the corpus callosum, Ann. Neurol, vol.54, pp.9-18, 2003.

I. J. Edwards, G. Bruce, C. Lawrenson, L. Howe, S. J. Clapcote et al., Na+/K+ ATPase alpha1 and alpha3 isoforms are differentially expressed in alpha-and gamma-motoneurons, J. Neurosci, vol.33, pp.9913-9919, 2013.

T. Fujii, Y. Takahashi, Y. Itomi, K. Fujita, M. Morii et al., K +-Cl-cotransporter-3a Up-regulates Na +, K +-ATPase in lipid rafts of gastric luminal parietal cells, J. Biol. Chem, vol.283, pp.6869-6877, 2008.

T. Fujii, K. Fujita, T. Shimizu, N. Takeguchi, and H. Sakai, The NH(2)-terminus of K(+)-Cl(?) cotransporter 3a is essential for up-regulation of Na(+),K(+)-ATPase activity, Biochem. Biophys. Res. Commun, vol.399, pp.683-687, 2010.

K. B. Gagnon and E. Delpire, Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts, Am. J. Phys. Cell Physiol, vol.304, pp.693-714, 2013.

C. J. Heckman, C. Mottram, K. Quinlan, R. Theiss, and J. Schuster, Motoneuron excitability: the importance of neuromodulatory inputs, Clin. Neurophysiol, vol.120, pp.2040-2054, 2009.

K. Hiki, R. J. D'andrea, J. Furze, J. Crawford, E. Woollatt et al., Cloning, characterization, and chromosomal location of a novel human K+-Cl-cotransporter, J. Biol. Chem, vol.274, pp.10661-10667, 1999.

H. C. Howard, D. B. Mount, D. Rochefort, N. Byun, N. Dupre et al., The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum, Nat. Genet, vol.32, pp.384-392, 2002.

C. A. Hubner, V. Stein, I. Hermans-borgmeyer, T. Meyer, K. Ballanyi et al., Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition, Neuron, vol.30, pp.515-524, 2001.

K. Kanai, S. Kuwabara, S. Misawa, N. Tamura, K. Ogawara et al., Altered axonal excitability properties in amyotrophic lateral sclerosis: impaired potassium channel function related to disease stage, Brain, vol.129, pp.953-962, 2006.

J. H. Kaplan, Biochemistry of Na, K-ATPase, Annu. Rev. Biochem, vol.71, pp.511-535, 2002.

J. H. Kim, I. Sizov, M. Dobretsov, and H. Von-gersdorff, Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3, 2007.

, Nat. Neurosci, vol.10, pp.196-205

A. Larbrisseau, M. Vanasse, P. Brochu, and G. Jasmin, The Andermann syndrome: agenesis of the corpus callosum associated with mental retardation and progressive sensorimotor neuronopathy. Can, J. Neurol. Sci, vol.11, pp.257-261, 1984.

P. Le-rouzic, T. R. Ivanov, P. J. Stanley, F. M. Baudoin, F. Chan et al., KCC3 and KCC4 expression in rat adult forebrain, Brain Res, vol.1110, pp.39-45, 2006.

B. Li, L. Hertz, and L. Peng, Cell-specific mRNA alterations in Na+, K+-ATPase alpha and beta isoforms and FXYD in mice treated chronically with carbamazepine, an anti-bipolar drug, Neurochem. Res, vol.38, pp.834-841, 2013.

H. Liu, J. Lu, H. Chen, Z. Du, X. J. Li et al., Spinal muscular atrophy patient-derived motor neurons exhibit hyperexcitability, Sci Rep, vol.5, p.12189, 2015.

O. Lucas, C. Hilaire, E. Delpire, and F. Scamps, KCC3-dependent chloride extrusion in adult sensory neurons, Mol. Cell. Neurosci, vol.50, pp.211-220, 2012.

J. Mathieu, F. Bedard, C. Prevost, and P. Langevin, Motor and sensory neuropathies with or without agenesis of the corpus callosum: a radiological study of 64 cases. Can, J. Neurol. Sci, vol.17, pp.103-108, 1990.

A. Mercado, N. Vazquez, L. Song, R. Cortes, A. H. Enck et al., NH2-terminal heterogeneity in the KCC3 K+-Cl-cotransporter, Am. J. Physiol. Renal Physiol, vol.289, pp.1246-1261, 2005.

G. B. Miles, R. Hartley, A. J. Todd, and R. M. Brownstone, Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.2448-2453, 2007.

P. Mitra and R. M. Brownstone, An in vitro spinal cord slice preparation for recording from lumbar motoneurons of the adult mouse, J. Neurophysiol, vol.107, pp.728-741, 2012.

E. B. Moloney, F. De-winter, and J. Verhaagen, ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease, Front. Neurosci, vol.8, p.252, 2014.

D. B. Mount, A. Mercado, L. Song, J. Xu, A. L. George et al., Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family, J. Biol. Chem, vol.274, pp.16355-16362, 1999.

C. A. Del-negro, C. F. Hsiao, and S. H. Chandler, Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons, J. Neurophysiol, vol.81, pp.1478-1485, 1999.

W. C. O'neill, Physiological significance of volume-regulatory transporters, Am. J. Phys, vol.276, pp.995-1011, 1999.

S. Pieraut, V. Laurent-matha, C. Sar, T. Hubert, I. Mechaly et al., NKCC1 phosphorylation stimulates neurite growth of injured adult sensory neurons, J. Neurosci, vol.27, pp.6751-6759, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00164013

J. E. Race, F. N. Makhlouf, P. J. Logue, F. H. Wilson, P. B. Dunham et al., Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter, Am. J. Phys, vol.277, pp.1210-1219, 1999.

C. Raoul, C. E. Henderson, and B. Pettmann, Programmed cell death of embryonic motoneurons triggered through the Fas death receptor, J. Cell Biol, vol.147, pp.1049-1062, 1999.

C. Raoul, A. G. Estevez, H. Nishimune, D. W. Cleveland, O. Delapeyriere et al., Motoneuron death triggered by a specific pathway downstream of Fas. Potentiation by ALS-linked SOD1 mutations, Neuron, vol.35, pp.1067-1083, 2002.

C. Rivera, J. Voipio, J. A. Payne, E. Ruusuvuori, H. Lahtinen et al., The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

C. Ruegsegger, N. Maharjan, A. Goswami, A. F. De-l'etang, J. Weis et al., Aberrant association of misfolded SOD1 with Na/KATPasealpha3 impairs its activity and contributes to motor neuron vulnerability in ALS, Acta Neuropathol, vol.131, pp.427-451, 2016.

S. Saxena, F. Roselli, K. Singh, K. Leptien, J. P. Julien et al., Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival, Neuron, vol.80, pp.80-96, 2013.

R. Scuri, R. Mozzachiodi, and M. Brunelli, Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech, J. Neurophysiol, vol.88, pp.2490-2500, 2002.

M. Shekarabi, R. X. Moldrich, S. Rasheed, A. Salin-cantegrel, J. Laganiere et al., Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum, J. Neurosci, vol.32, pp.3865-3876, 2012.

A. Stil, S. Liabeuf, C. Jean-xavier, C. Brocard, J. C. Viemari et al., Developmental up-regulation of the potassium-chloride cotransporter type 2 in the rat lumbar spinal cord, Neuroscience, vol.164, pp.809-821, 2009.

Y. T. Sun, T. S. Lin, S. F. Tzeng, E. Delpire, and M. R. Shen, Deficiency of electroneutral K+-Cl-cotransporter 3 causes a disruption in impulse propagation along peripheral nerves, Glia, vol.58, pp.1544-1552, 2010.

M. E. Vargas and B. A. Barres, Why is Wallerian degeneration in the CNS so slow?, Annu. Rev. Neurosci, vol.30, pp.153-179, 2007.

Y. Yan, R. J. Dempsey, and D. Sun, Expression of Na(+)-K(+)-Cl(?) cotransporter in rat brain during development and its localization in mature astrocytes, Brain Res, vol.911, pp.43-55, 2001.

S. Original-research-references-anant, S. Roy, and K. Vijayraghavan, Twist and Notch negatively regulate adult muscle differentiation in Drosophila, Development, vol.125, pp.1361-1369, 1998.

A. Baier, B. Wittek, and B. Brembs, Drosophila as a new model organism for the neurobiology of aggression?, J. Exp. Biol, vol.205, pp.1233-1240, 2002.

M. Bate, E. Rushton, and D. A. Currie, Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila, Development, vol.113, pp.79-89, 1991.

S. Benzer, Behavioral mutants of drosophila isolated by countercurrent distribution, Proc. Natl. Acad. Sci. U.S.A, vol.58, pp.1112-1119, 1967.

A. Beramendi, S. Peron, G. Casanova, C. Reggiani, and R. Cantera, Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging, J. Comp. Neurol, vol.501, pp.498-508, 2007.

F. Bernard, A. Krejci, B. Housden, B. Adryan, and S. J. Bray, Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors, Development, vol.137, pp.2633-2642, 2010.

R. Bodmer, J. , and Y. N. , Morphological differentiation of the embryonic peripheral neurons in Drosophila. Roux's Arch, Dev. Biol, vol.196, pp.69-77, 1987.

I. Bothe and M. K. Baylies, Drosophila myogenesis, Curr. Biol, vol.26, 2016.

V. Budnik, Y. H. Koh, B. Guan, B. Hartmann, C. Hough et al., Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg, Neuron, vol.17, pp.80196-80204, 1996.

J. C. Cardoso, R. C. Felix, and D. M. Power, Nematode and arthropod genomes provide new insights into the evolution of class 2 B1 GPCRs, PLoS ONE, vol.9, 2014.

S. H. Cole, G. E. Carney, C. A. Mcclung, S. S. Willard, B. J. Taylor et al., Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility, J. Biol. Chem, vol.280, pp.14948-14955, 2005.

R. M. Cripps, E. Ball, M. Stark, A. Lawn, and J. C. Sparrow, Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function, Genetics, vol.137, pp.151-164, 1994.

A. Crocker, M. Shahidullah, I. B. Levitan, and A. Sehgal, Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior, Neuron, vol.65, pp.670-681, 2010.

A. C. Crossley, The morphology and development of the Drosophila muscular system, The Genetics and Biology of Drosophila, vol.2, pp.499-560, 1978.

D. A. Currie and M. Bate, The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves, Development, vol.113, pp.91-102, 1991.

K. C. Dobi, V. K. Schulman, and M. K. Baylies, Specification of the somatic musculature in Drosophila, Wiley Interdiscip. Rev. Dev. Biol, vol.4, pp.357-375, 2015.

D. R. Drummond, E. S. Hennessey, and J. C. Sparrow, Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster, Mol. Gen. Genet, vol.226, pp.70-80, 1991.

D. F. Eberl and G. Boekhoff-falk, Development of Johnston's organ in Drosophila, Int. J. Dev. Biol, vol.51, pp.679-687, 2007.

C. J. Elliott, H. L. Brunger, M. Stark, and J. C. Sparrow, Direct measurement of the performance of the Drosophila jump muscle in whole flies, Fly, vol.1, pp.68-74, 2007.

S. L. Elliott, C. F. Cullen, N. Wrobel, M. J. Kernan, and H. Ohkura, EB1 is essential during Drosophila development and plays a crucial role in the integrity of chordotonal mechanosensory organs, Mol. Biol. Cell, vol.16, pp.891-901, 2005.

J. Enriquez, L. Venkatasubramanian, M. Baek, M. Peterson, U. Aghayeva et al., Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes, Neuron, vol.86, pp.955-970, 2015.

J. Fernandes, M. Bate, and K. Vijayraghavan, Development of the indirect flight muscles of Drosophila, Development, vol.113, pp.67-77, 1991.

N. Figeac, T. Jagla, R. Aradhya, J. P. Da-ponte, and K. Jagla, Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway, Development, vol.137, pp.1965-1973, 2010.

J. W. Gargano, I. Martin, P. Bhandari, and M. S. Grotewiel, Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila, Exp. Gerontol, vol.40, pp.386-395, 2005.

S. Hebbar, R. E. Hall, S. A. Demski, A. Subramanian, and J. J. Fernandes, The adult abdominal neuromuscular junction of Drosophila: a model for synaptic plasticity, J. Neurobiol, vol.66, pp.1140-1155, 2006.

L. Y. Jan, J. , and Y. N. , Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos, Proc. Natl. Acad. Sci. U.S.A, vol.79, pp.2700-2704, 1982.

A. Jenett, G. M. Rubin, T. T. Ngo, D. Shepherd, C. Murphy et al., A GAL4-driver line resource for Drosophila neurobiology, Cell Rep, vol.2, pp.991-1001, 2012.

J. Johansen, M. E. Halpern, K. M. Johansen, and H. Keshishian, Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae, J. Neurosci, vol.9, pp.710-725, 1989.

E. C. Johnson, O. T. Shafer, J. S. Trigg, J. Park, D. A. Schooley et al., A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling, J. Exp. Biol, vol.208, pp.1239-1246, 2005.

A. C. Koon, J. Ashley, R. Barria, S. Dasgupta, R. Brain et al., Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling, Nat. Neurosci, vol.14, pp.190-199, 2011.

S. G. Kramer, T. Kidd, J. H. Simpson, and C. S. Goodman, Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration, Science, vol.292, pp.737-740, 2001.

T. Lahey, M. Gorczyca, X. X. Jia, and V. Budnik, The Drosophila tumor suppressor gene dlg is required for normal synaptic bouton structure, Neuron, vol.13, pp.90249-90255, 1994.

P. A. Lawrence, Cell lineage of the thoracic muscles of Drosophila, Cell, vol.29, pp.493-503, 1982.

C. S. Mendes, I. Bartos, T. Akay, S. Marka, and R. S. Mann, Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster, vol.2, p.231, 2013.

K. P. Menon, R. A. Carrillo, and K. Zinn, Development and plasticity of the Drosophila larval neuromuscular junction, Wiley Interdiscip. Rev. Dev. Biol, vol.2, pp.647-670, 2013.

A. Miller, The internal anatomy and histology of the imago of Drosophila melanogaster, Biology of Drosophila, pp.420-534, 1950.

M. Monastirioti, C. E. Linn, and K. White, Characterization of Drosophila tyramine beta-hydroxylase gene and isolation of mutant flies lacking octopamine, J. Neurosci, vol.16, pp.3900-3911, 1996.

S. Nagarkar-jaiswal, P. T. Lee, M. E. Campbell, K. Chen, S. Anguiano-zarate et al., A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila, Elife, vol.4, p.5338, 2015.

E. Ordan, M. Brankatschk, B. Dickson, F. Schnorrer, and T. Volk, Slit cleavage is essential for producing an active, stable, non-diffusible shortrange signal that guides muscle migration, Development, vol.142, pp.1431-1436, 2015.

B. D. Pfeiffer, A. Jenett, A. S. Hammonds, T. T. Ngo, S. Misra et al., Tools for neuroanatomy and neurogenetics in Drosophila, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.9715-9720, 2008.

A. A. Postigo, E. Ward, J. B. Skeath, and D. C. Dean, zfh-1, the Drosophila homologue of ZEB, is a transcriptional repressor that regulates somatic myogenesis, Mol. Cell. Biol, vol.19, pp.7255-7263, 1999.

A. Prokop, Organization of the efferent system and structure of neuromuscular junctions in Drosophila, Int. Rev. Neurobiol, vol.75, pp.71-90, 2006.

P. K. Rivlin, R. M. St-clair, I. Vilinsky, and D. L. Deitcher, Morphology and molecular organization of the adult neuromuscular junction of Drosophila, J. Comp. Neurol, vol.468, pp.596-613, 2004.

S. Roy and K. Vijayraghavan, Muscle pattern diversification in Drosophila: the story of imaginal myogenesis, Bioessays, vol.21, pp.486-498, 1999.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

F. Schnorrer and B. J. Dickson, Muscle building; mechanisms of myotube guidance and attachment site selection, Dev. Cell, vol.7, pp.9-20, 2004.

C. Soler, L. Laddada, and K. Jagla, Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila leg, Front. Physiol, vol.7, p.22, 2016.

S. T. Sweeney, K. Broadie, J. Keane, H. Niemann, and C. J. Kane, Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects, Neuron, vol.14, pp.341-351, 1995.

D. S. Syed, S. B. Gowda, O. V. Reddy, H. Reichert, and K. Vijayraghavan, Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking, Elife, vol.5, p.11572, 2016.

M. V. Taylor, Comparison of Muscle Development in Drosophila and Vertebrates, 2006.

V. Tixier, L. Bataille, and K. Jagla, Diversification of muscle types: recent insights from Drosophila, Exp. Cell Res, vol.316, pp.3019-3027, 2010.

C. Verderio, S. Coco, A. Bacci, O. Rossetto, P. De-camilli et al., Tetanus toxin blocks the exocytosis of synaptic vesicles clustered at synapses but not of synaptic vesicles in isolated axons, J. Neurosci, vol.19, pp.6723-6732, 1999.

J. O. Vigoreaux, Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems, Bioessays, vol.23, pp.1047-1063, 2001.

N. Wagner, U. Laugks, M. Heckmann, E. Asan, and K. Neuser, Aging Drosophila melanogaster display altered pre-and postsynaptic ultrastructure at adult neuromuscular junctions, J. Comp. Neurol, vol.523, pp.2457-2475, 2015.

B. Wayburn and T. Volk, LRT, a tendon-specific leucinerich repeat protein, promotes muscle-tendon targeting through its interaction with Robo, Development, vol.136, pp.3607-3615, 2009.

A. J. Whitworth, D. A. Theodore, J. C. Greene, H. Benes, P. D. Wes et al., Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.8024-8029, 2005.

C. S. Leblond, H. M. Kaneb, P. A. Dion, and G. A. Rouleau, Dissection of genetic factors associated with amyotrophic lateral sclerosis, Exp Neurol, vol.262, pp.91-101, 2014.

C. F. Valori, L. Brambilla, F. Martorana, and D. Rossi, The multifaceted role of glial cells in amyotrophic lateral sclerosis, Cell Mol Life Sci, vol.71, pp.287-297, 2014.

M. Bowerman, Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis, Front Cell Neurosci, vol.7, p.214, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02156121

J. I. Engelhardt, J. Tajti, and S. H. Appel, Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis, Arch Neurol, vol.50, pp.30-36, 1993.

M. Fiala, IL-17A is increased in the serum and in spinal cord CD8 and mast cells of ALS patients, J Neuroinflammation, vol.7, p.76, 2010.

T. Kawamata, H. Akiyama, T. Yamada, and P. L. Mcgeer, Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue, Am J Pathol, vol.140, pp.691-707, 1992.

D. R. Beers, J. S. Henkel, W. Zhao, J. Wang, and S. H. Appel, CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS, Proc Natl Acad Sci, vol.105, pp.15558-15563, 2008.

I. M. Chiu, T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS, Proc Natl Acad Sci, vol.105, pp.17913-17918, 2008.

D. R. Beers, ALS patients' regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity, JCI Insight, vol.2, p.89530, 2017.

J. S. Henkel, Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival, EMBO Mol Med, vol.5, pp.64-79, 2013.

R. Banerjee, Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice, PLoS One, vol.3, p.2740, 2008.

D. R. Beers, Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis, Brain, vol.134, pp.1293-1314, 2011.

J. Rossjohn, T cell antigen receptor recognition of antigen-presenting molecules, Annu Rev Immunol, vol.33, pp.169-200, 2015.

S. Song, Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis, Nat Med, vol.22, pp.397-403, 2016.

K. A. Staats, Beta-2 microglobulin is important for disease progression in a murine model for amyotrophic lateral sclerosis, Front Cell Neurosci, vol.7, p.249, 2013.

W. P. Fung-leung, CD8 is needed for development of cytotoxic T cells but not helper T cells, Cell, vol.65, pp.443-449, 1991.

S. P. Cobbold, G. Martin, and H. Waldmann, The induction of skin graft tolerance in major histocompatibility complex-mismatched or primed recipients: Primed T cells can be tolerized in the periphery with anti-CD4 and anti-CD8 antibodies, Eur J Immunol, vol.20, pp.2747-2755, 1990.

C. Bourgeois and B. Stockinger, CD25+CD4+ regulatory T cells and memory T cells prevent lymphopenia-induced proliferation of naive T cells in transient states of lymphopenia, J Immunol, vol.177, pp.4558-4566, 2006.

J. Aebischer, IFN? triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1, Cell Death Differ, vol.18, pp.754-768, 2011.

P. Golstein and G. M. Griffiths, An early history of T cell-mediated cytotoxicity, Nat Rev Immunol, vol.18, pp.527-535, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117989

C. J. Froelich, S. S. Metkar, and S. M. Raja, Granzyme B-mediated apoptosis-The elephant and the blind men?, Cell Death Differ, vol.11, pp.369-371, 2004.

C. Raoul, Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations, Neuron, vol.35, pp.1067-1083, 2002.

E. S. Cohen and H. C. Bodmer, Cytotoxic T lymphocytes recognize and lyse chondrocytes under inflammatory, but not non-inflammatory conditions, Immunology, vol.109, pp.8-14, 2003.

R. M. Ritzel, Age-associated resident memory CD8 T cells in the central nervous system are primed to potentiate inflammation after ischemic brain injury, J Immunol, vol.196, pp.3318-3330, 2016.

M. Salou, Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis, Ann Clin Transl Neurol, vol.2, pp.609-622, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01200787

T. Calzascia, Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs, Immunity, vol.22, pp.175-184, 2005.

G. Nardo, Counteracting roles of MHCI and CD8 + T cells in the peripheral and central nervous system of ALS SOD1 G93A mice, Mol Neurodegener, vol.13, p.42, 2018.

R. Glas, Major histocompatibility complex class I-specific and -restricted killing of beta 2-microglobulin-deficient cells by CD8+ cytotoxic T lymphocytes, Proc Natl Acad Sci, vol.89, pp.11381-11385, 1992.

E. Lamousé-smith, V. K. Clements, and S. Ostrand-rosenberg, Beta 2M-/-knockout mice contain low levels of CD8+ cytotoxic T lymphocyte that mediate specific tumor rejection, J Immunol, vol.151, pp.6283-6290, 1993.

C. P. Argyropoulos, Rediscovering beta-2 microglobulin as a biomarker across the spectrum of kidney diseases, Front Med (Lausanne), vol.4, p.73, 2017.

B. M. Elmer and A. K. Mcallister, Major histocompatibility complex class I proteins in brain development and plasticity, Trends Neurosci, vol.35, pp.660-670, 2012.

A. L. Oliveira, A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy, Proc Natl Acad Sci, vol.101, pp.17843-17848, 2004.

M. W. Glynn, MHCI negatively regulates synapse density during the establishment of cortical connections, Nat Neurosci, vol.14, pp.442-451, 2011.

J. D. Adelson, Neuroprotection from stroke in the absence of MHCI or PirB, Neuron, vol.73, pp.1100-1107, 2012.

H. Lindå, Expression of MHC class I and beta2-microglobulin in rat spinal motoneurons: Regulatory influences by IFN-gamma and axotomy, Exp Neurol, vol.150, pp.282-295, 1998.

H. Neumann, A. Cavalié, D. E. Jenne, and H. Wekerle, Induction of MHC class I genes in neurons, Science, vol.269, pp.549-552, 1995.

W. Camu, Vitamin D confers protection to motoneurons and is a prognostic factor of amyotrophic lateral sclerosis, Neurobiol Aging, vol.35, pp.1198-1205, 2014.

M. Bowerman, KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects, Neurobiol Dis, vol.106, pp.35-48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759835

P. Couratier, J. Hugon, P. Sindou, J. M. Vallat, and M. Dumas, Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors, Lancet, vol.341, pp.265-268, 1993.

S. A. Smith, R. G. Miller, J. R. Murphy, and S. P. Ringel, Treatment of ALS with high dose pulse cyclophosphamide, J Neurol Sci, vol.124, pp.84-87, 1994.

R. H. Brown, . Jr, S. L. Hauser, H. Harrington, and H. L. Weiner, Failure of immunosuppression with a ten-to 14-day course of high-dose intravenous cyclophosphamide to alter the progression of amyotrophic lateral sclerosis, Arch Neurol, vol.43, pp.383-384, 1986.

J. Kelemen, W. Hedlund, J. B. Orlin, E. M. Berkman, and T. L. Munsat, Plasmapheresis with immunosuppression in amyotrophic lateral sclerosis, Arch Neurol, vol.40, pp.752-753, 1983.

L. Werdelin, G. Boysen, T. S. Jensen, and P. Mogensen, Immunosuppressive treatment of patients with amyotrophic lateral sclerosis, Acta Neurol Scand, vol.82, pp.132-134, 1990.

A. Adomaviciene, K. J. Smith, H. Garnett, and P. Tammaro, Putative pore-loops of TMEM16/anoctamin channels affect channel density in cell membranes, J Physiol, vol.591, pp.3487-505, 2013.

J. Aebischer, P. Cassina, B. Otsmane, A. Moumen, D. Seilhean et al., IFNgamma triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1, Cell Death Differ, vol.18, pp.754-68, 2011.

G. M. Alexander, K. L. Erwin, N. Byers, J. S. Deitch, B. J. Augelli et al., Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS, Brain Res Mol Brain Res, vol.130, pp.7-15, 2004.

A. A. Alsultan, R. Waller, P. R. Heath, and J. Kirby, The genetics of amyotrophic lateral sclerosis: current insights, Degener Neurol Neuromuscul Dis, vol.6, pp.49-64, 2016.

C. Alvadia, N. K. Lim, V. Mosina, G. T. Oostergetel, R. Dutzler et al., Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F, 2019.

F. J. Alvarez and R. E. Fyffe, The continuing case for the Renshaw cell, J Physiol, vol.584, pp.31-45, 2007.

A. Amjad, A. Hernandez-clavijo, S. Pifferi, D. K. Maurya, A. Boccaccio et al., Conditional knockout of TMEM16A/anoctamin1 abolishes the calciumactivated chloride current in mouse vomeronasal sensory neurons, J Gen Physiol, vol.145, pp.285-301, 2015.

P. M. Andersen and A. Al-chalabi, Clinical genetics of amyotrophic lateral sclerosis: what do we really know?, Nat Rev Neurol, vol.7, pp.603-618, 2011.

S. Andre, H. Boukhaddaoui, B. Campo, M. Al-jumaily, V. Mayeux et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons, J Neurophysiol, vol.90, pp.3764-73, 2003.

Y. Aoki, R. Manzano, Y. Lee, R. Dafinca, M. Aoki et al., C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia, Brain, vol.140, pp.887-97, 2017.

T. Araki and C. A. Terzuolo, Membrane currents in spinal motoneurons associated with the action potential and synaptic activity, J Neurophysiol, vol.25, pp.772-89, 1962.

V. Arce, A. Garces, B. Bovis, P. Filippi, C. Henderson et al., Cardiotrophin-1 requires LIFRbeta to promote survival of mouse motoneurons purified by a novel technique, J Neurosci Res, vol.55, pp.119-145, 1999.

V. Arce, R. A. Pollock, J. M. Philippe, D. Pennica, C. E. Henderson et al., Synergistic effects of Schwann-and muscle-derived factors on motoneuron survival involve GDNF and cardiotrophin-1 (CT-1), Journal of Neuroscience, vol.18, pp.1440-1488, 1998.

J. Arreola, T. Begenisich, K. Nehrke, H. V. Nguyen, K. Park et al., Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl-channel gene, J Physiol, vol.545, pp.207-223, 2002.

U. Arvidsson, J. Svedlund, P. A. Lagerback, and S. Cullheim, An ultrastructural study of the synaptology of gamma-motoneurones during the postnatal development in the cat, Brain Res, vol.465, pp.303-315, 1987.

E. F. Barrett, J. N. Barrett, and W. E. Crill, Voltage-sensitive outward currents in cat motoneurones, J Physiol, vol.304, pp.251-76, 1980.

J. N. Barrett and W. E. Crill, Voltage clamp of cat motoneurone somata: properties of the fast inward current, J Physiol, vol.304, pp.231-280, 1980.

L. Beliez, G. Barriere, S. S. Bertrand, and J. R. Cazalets, Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord, Front Neural Circuits, vol.8, p.99, 2014.

Y. Ben-ari, J. L. Gaiarsa, R. Tyzio, and R. Khazipov, GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations, Physiol Rev, vol.87, pp.1215-84, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00483857

D. J. Bennett, H. Hultborn, B. Fedirchuk, and M. Gorassini, Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats, Journal of Neurophysiology, vol.80, pp.2023-2060, 1998.

G. Bensimon, L. Lacomblez, and V. Meininger, A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group, N Engl J Med, vol.330, pp.585-91, 1994.

N. Bernard-marissal, A. Moumen, C. Sunyach, C. Pellegrino, K. Dudley et al., Reduced calreticulin levels link endoplasmic reticulum stress and Fastriggered cell death in motoneurons vulnerable to ALS, J Neurosci, vol.32, pp.4901-4913, 2012.

J. J. Bernstein and M. E. Bernstein, Ventral horn synaptology in the rat', Journal of Neurocytology, vol.5, pp.109-132, 1976.

S. S. Bertrand and J. R. Cazalets, Cholinergic partition cells and lamina x neurons induce a muscarinic-dependent short-term potentiation of commissural glutamatergic inputs in lumbar motoneurons, Front Neural Circuits, vol.5, p.15, 2011.

A. Bjorklund and G. Skagerberg, Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing, Brain Res, vol.177, pp.170-175, 1979.

P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, Cation-chloride cotransporters and neuronal function, Neuron, vol.61, pp.820-858, 2009.

I. P. Blair, K. L. Williams, S. T. Warraich, J. C. Durnall, A. D. Thoeng et al., FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis, J Neurol Neurosurg Psychiatry, vol.81, pp.639-684, 2010.

H. Blasco, A. M. Guennoc, C. Veyrat-durebex, P. H. Gordon, C. R. Andres et al., Amyotrophic lateral sclerosis: a hormonal condition?, Amyotroph Lateral Scler, vol.13, pp.585-593, 2012.

A. M. Blokhuis, E. J. Groen, M. Koppers, L. H. Van-den, R. J. Berg et al., Protein aggregation in amyotrophic lateral sclerosis, Acta Neuropathol, vol.125, pp.777-94, 2013.

D. Bodian, Electron microscopy: two major synaptic types on spinal motoneurons, Science, vol.151, pp.1093-94, 1966.

, Origin of specific synaptic types in the motoneuron neuropil of the monkey, The Journal of Comparative Neurology, vol.159, pp.225-268, 1975.

V. Bolduc, G. Marlow, K. M. Boycott, K. Saleki, H. Inoue et al., Recessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies, Am J Hum Genet, vol.86, pp.213-234, 2010.

C. Bories, J. Amendola, B. Lamotte-d'incamps, and J. Durand, Early electrophysiological abnormalities in lumbar motoneurons in a transgenic mouse model of amyotrophic lateral sclerosis, Eur J Neurosci, vol.25, pp.451-460, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173820

J. Borowska, C. T. Jones, H. Zhang, J. Blacklaws, M. Goulding et al., Functional subpopulations of V3 interneurons in the mature mouse spinal cord, J Neurosci, vol.33, pp.18553-65, 2013.

D. A. Bosco, G. Morfini, N. M. Karabacak, Y. Song, F. Gros-louis et al.,

H. Brown, Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS, Nat Neurosci, vol.13, pp.1396-403, 2010.

M. Boudes, S. Pieraut, J. Valmier, P. Carroll, and F. Scamps, Single-cell electroporation of adult sensory neurons for gene screening with RNA interference mechanism, J Neurosci Methods, vol.170, pp.204-215, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00257563

M. Boudes, C. Sar, A. Menigoz, C. Hilaire, M. O. Pequignot et al., Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl-current expression in axotomized sensory neurons, J Neurosci, vol.29, pp.10063-71, 2009.

M. Boudes and F. Scamps, Calcium-activated chloride current expression in axotomized sensory neurons: what for?, Front Mol Neurosci, vol.5, p.35, 2012.

M. Bowerman, C. Salsac, V. Bernard, C. Soulard, A. Dionne et al., KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects, Neurobiol Dis, vol.106, pp.35-48, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01759835

M. Bowerman, C. Salsac, E. Coque, E. Eiselt, R. G. Deschaumes et al., Tweak regulates astrogliosis, microgliosis and skeletal muscle atrophy in a mouse model of amyotrophic lateral sclerosis, 2015.

M. H. Brooke and K. K. Kaiser, Muscle fiber types: how many and what kind?, Arch Neurol, vol.23, pp.369-79, 1970.

M. B. Brooks, J. L. Catalfamo, R. Macnguyen, D. Tim, S. Fancher et al., A TMEM16F point mutation causes an absence of canine platelet TMEM16F and ineffective activation and death-induced phospholipid scrambling, J Thromb Haemost, vol.13, pp.2240-52, 2015.

R. M. Brownstone, Beginning at the end: repetitive firing properties in the final common pathway, Prog Neurobiol, vol.78, pp.156-72, 2006.

L. I. Bruijn, M. W. Becher, M. K. Lee, K. L. Anderson, N. A. Jenkins et al., ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions, Neuron, vol.18, pp.327-365, 1997.

J. D. Brunner, N. K. Lim, S. Schenck, A. Duerst, and R. Dutzler, X-ray structure of a calciumactivated TMEM16 lipid scramblase, Nature, vol.516, pp.207-219, 2014.

J. T. Buchanan and S. Grillner, Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord, Science, vol.236, pp.312-316, 1987.

R. E. Burke, Motor units in cat muscles: anatomical considerations in relation to motor unit types, Adv Neurol, vol.36, pp.31-45, 1982.

R. E. Burke, D. N. Levine, P. Tsairis, and F. E. Zajac, Physiological types and histochemical profiles in motor units of the cat gastrocnemius, J Physiol, vol.234, pp.723-771

R. E. Burke, D. N. Levine, and F. E. Zajac, Mammalian motor units: physiologicalhistochemical correlation in three types in cat gastrocnemius, Science, vol.174, pp.709-721

R. E. Burke and P. Tsairis, Anatomy and innervation ratios in motor units of cat gastrocnemius, J Physiol, vol.234, pp.749-65, 1973.

D. C. Button, K. Gardiner, T. Marqueste, and P. F. Gardiner, Frequency-current relationships of rat hindlimb alpha-motoneurones, J Physiol, vol.573, pp.663-77, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00198368

W. Camu, J. Khoris, B. Moulard, F. Salachas, V. Briolotti et al., Genetics of familial ALS and consequences for diagnosis, J Neurol Sci, vol.165, issue.1, pp.21-27, 1999.

S. Cantor, W. Zhang, N. Delestree, L. Remedio, G. Z. Mentis et al., Preserving neuromuscular synapses in ALS by stimulating MuSK with a therapeutic agonist antibody, 2018.

A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti et al., TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity, Science, vol.322, pp.590-594, 2008.

A. Caputo, E. Caci, L. Ferrera, N. Pedemonte, C. Barsanti et al., TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity, Science, vol.322, pp.590-94, 2008.

E. Castoldi, P. W. Collins, P. L. Williamson, and E. M. Bevers, Compound heterozygosity for 2 novel TMEM16F mutations in a patient with Scott syndrome, Blood, vol.117, pp.4399-400, 2011.

C. Catela, M. M. Shin, and J. S. Dasen, Assembly and function of spinal circuits for motor control, Annu Rev Cell Dev Biol, vol.31, pp.669-98, 2015.

J. Celichowski and H. Drzymala-celichowska, The number of motor units in the medial gastrocnemius muscle of male and female rats, J Physiol Pharmacol, vol.58, pp.821-829, 2007.

J. Celichowski and H. Drzymala, Differences between properties of male and female motor units in the rat medial gastrocnemius muscle, J Physiol Pharmacol, vol.57, pp.83-93, 2006.

J. Y. Cha, J. Wee, J. Jung, Y. Jang, B. Lee et al., Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia, Proc Natl Acad Sci U S A, vol.112, pp.9722-9729, 2015.

Q. Chang and L. J. Martin, Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis, Neurobiol Dis, vol.174, pp.78-95, 2009.

S. B. Charge and M. A. Rudnicki, Cellular and molecular regulation of muscle regeneration, Physiol Rev, vol.84, pp.209-247, 2004.

G. Charlesworth, V. Plagnol, K. M. Holmstrom, J. Bras, U. M. Sheerin et al., Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis, Am J Hum Genet, vol.91, pp.1041-50, 2012.

A. Y. Chiu, P. Zhai, M. C. Canto, T. M. Peters, Y. W. Kwon et al., Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis, Mol Cell Neurosci, vol.6, pp.349-62, 1995.

H. Cho, Y. D. Yang, J. Lee, B. Lee, T. Kim et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons, Nat Neurosci, vol.15, pp.1015-1036, 2012.

L. H. Comley, J. Nijssen, J. Frost-nylen, and E. Hedlund, Cross-disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology, J Comp Neurol, vol.524, pp.1424-1466, 2016.

M. Connaughton, J. V. Priestley, M. V. Sofroniew, F. Eckenstein, and A. C. Cuello, Inputs to motoneurones in the hypoglossal nucleus of the rat: Light and electron microscopic immunocytochemistry for choline acetyltransferase, substance P and enkephalins using monoclonal antibodies, Neuroscience, vol.17, pp.205-229, 1986.

S. Conradi, Ultrastructure and distribution of neuronal and glial elements on the surface of the proximal part of a motoneuron dendrite, as analyzed by serial sections, Acta Physiol Scand Suppl, vol.332, pp.49-64, 1969.

S. Conradi, J. O. Kellerth, and C. H. Berthold, Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. II. A method for the description of architecture and synaptology of the cell body and proximal dendritic segments, J Comp Neurol, vol.184, pp.741-54, 1979.

S. Conradi and S. Skoglund, Observations on the ultrastruture and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the cat during postnatal development, Acta Physiol Scand Suppl, vol.333, pp.5-52, 1969.

B. A. Conway, H. Hultborn, O. Kiehn, and I. Mintz, Plateau potentials in alpha-motoneurones induced by intravenous injection of L-dopa and clonidine in the spinal cat, The Journal Of Physiology, vol.405, pp.369-84, 1988.

J. S. Coombs, D. R. Curtis, and J. C. Eccles, The generation of impulses in motoneurones, J Physiol, vol.139, pp.232-281, 1957.

J. S. Coombs, J. C. Eccles, and P. Fatt, The electrical properties of the motoneurone membrane, J Physiol, vol.130, pp.291-325, 1955.

R. Couteaux and M. Pecot-dechavassine, Ultrastructural and cytochemical data on the mechanism of acetylcholine release in synaptic transmission, Arch Ital Biol, vol.111, pp.231-62, 1973.

C. Crone, H. Hultborn, O. Kiehn, L. Mazieres, and H. Wigström, Maintained changes in motoneuronal excitability by short-lasting synaptic inputs in the decerebrate cat, The Journal Of Physiology, vol.405, pp.321-364, 1988.

S. A. Crone, G. Zhong, R. Harris-warrick, and K. Sharma, In mice lacking V2a interneurons, gait depends on speed of locomotion, The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol.29, pp.7098-109, 2009.

S. Cronin, O. Hardiman, and B. J. Traynor, Ethnic variation in the incidence of ALS: a systematic review, Neurology, vol.68, pp.1002-1009, 2007.

N. L. Cross, Initiation of the activation potential by an increase in intracellular calcium in eggs of the frog, Rana pipiens, Dev Biol, vol.85, pp.380-384, 1981.

S. Cullheim, J. W. Fleshman, L. L. Glenn, and R. E. Burke, Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons, J Comp Neurol, vol.255, pp.68-81, 1987.

S. Cullheim and J. O. Kellerth, A morphological study of the axons and recurrent axon collaterals of cat alpha-motoneurones supplying different hind-limb muscles, J Physiol, vol.281, pp.285-99, 1978.

S. Da-cruz, P. A. Parone, V. S. Lopes, C. Lillo, M. Mcalonis-downes et al., Elevated PGC-1alpha activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS, Cell Metab, vol.15, pp.778-86, 2012.

M. C. Dal-canto and M. E. Gurney, A low expressor line of transgenic mice carrying a mutant human Cu,Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis, Acta Neuropathol, vol.93, pp.537-50, 1997.

M. Das, J. W. Rumsey, N. Bhargava, M. Stancescu, and J. J. Hickman, Skeletal muscle tissue engineering: a maturation model promoting long-term survival of myotubes, structural development of the excitation-contraction coupling apparatus and neonatal myosin heavy chain expression, Biomaterials, vol.30, pp.5392-402, 2009.

M. De-carvalho, A. Eisen, C. Krieger, and M. Swash, Motoneuron firing in amyotrophic lateral sclerosis (ALS), Front Hum Neurosci, vol.8, p.719, 2014.

A. S. Deardorff, S. H. Romer, Z. Deng, K. L. Bullinger, P. Nardelli et al., Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons, J Physiol, vol.591, pp.875-97, 2013.

A. S. Deardorff, S. H. Romer, P. M. Sonner, and R. E. Fyffe, Swimming against the tide: investigations of the C-bouton synapse, Front Neural Circuits, vol.8, p.106, 2014.

M. Dejesus-hernandez, I. R. Mackenzie, B. F. Boeve, A. L. Boxer, M. Baker et al., Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS', Neuron, vol.72, pp.245-56, 2011.

N. Delestree, M. Manuel, C. Iglesias, S. M. Elbasiouny, C. J. Heckman et al., Adult spinal motoneurones are not hyperexcitable in a mouse model of inherited amyotrophic lateral sclerosis, J Physiol, vol.592, pp.1687-703, 2014.

Z. Deng and R. E. Fyffe, Expression of P2X7 receptor immunoreactivity in distinct subsets of synaptic terminals in the ventral horn of rat lumbar spinal cord, Brain Res, vol.1020, pp.53-61, 2004.

W. Derave, B. O. Eijnde, and P. Hespel, Creatine supplementation in health and disease: what is the evidence for long-term efficacy?, Mol Cell Biochem, vol.244, pp.49-55, 2003.

A. C. Devlin, K. Burr, S. Borooah, J. D. Foster, E. M. Cleary et al., Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability, Nat Commun, vol.6, p.5999, 2015.

G. Dobrowolny, M. Aucello, E. Rizzuto, S. Beccafico, C. Mammucari et al., Skeletal muscle is a primary target of SOD1G93A-mediated toxicity, Cell Metab, vol.8, pp.425-461, 2008.

A. G. Douglas, Non-coding RNA in C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia: A perfect storm of dysfunction, Noncoding RNA Res, vol.3, pp.178-87, 2018.

A. Duflocq, F. Chareyre, M. Giovannini, F. Couraud, and M. Davenne, Characterization of the axon initial segment (AIS) of motor neurons and identification of a para-AIS and a juxtapara-AIS, BMC Biol, vol.9, p.66, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00634721

A. Duflocq, B. L. Bras, E. Bullier, F. Couraud, and M. Davenne, Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments, Mol Cell Neurosci, vol.39, pp.180-92, 2008.

S. S. Dukkipati, T. L. Garrett, and S. M. Elbasiouny, The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis, J Physiol, vol.596, pp.1723-1768, 2018.

N. A. Dumont, Y. X. Wang, and M. A. Rudnicki, Intrinsic and extrinsic mechanisms regulating satellite cell function, Development, vol.142, pp.1572-81, 2015.

L. Dupuis, J. L. Gonzalez-de-aguilar, A. Echaniz-laguna, J. Eschbach, F. Rene et al., Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degeneration of motor neurons, PLoS ONE, vol.4, p.5390, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00403134

J. Eccles, P. Fatt, and K. Koketsu, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones, The Journal Of Physiology, vol.126, pp.524-62, 1954.

J. C. Eccles, Trophic interactions in the mammalian central nervous system, Annals of the New York Academy of Sciences, vol.228, pp.406-429, 1974.

J. Eggermont, Calcium-activated chloride channels: (un)known, (un)loved?, Proc Am Thorac Soc, vol.1, pp.22-29, 2004.

S. M. Elbasiouny, J. E. Schuster, and C. J. Heckman, Persistent inward currents in spinal motoneurons: important for normal function but potentially harmful after spinal cord injury and in amyotrophic lateral sclerosis, Clin Neurophysiol, vol.121, pp.1669-79, 2010.

S. Elkabes and A. B. Nicot, Sex steroids and neuroprotection in spinal cord injury: a review of preclinical investigations, Exp Neurol, vol.259, pp.28-37, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02163172

A. Enjin, K. E. Leao, S. Mikulovic, P. Le-merre, W. G. Tourtellotte et al., Sensorimotor function is modulated by the serotonin receptor 1d, a novel marker for gamma motor neurons, Mol Cell Neurosci, vol.49, pp.322-354, 2012.

A. Enjin, N. Rabe, S. T. Nakanishi, A. Vallstedt, H. Gezelius et al., Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells, J Comp Neurol, vol.518, pp.2284-304, 2010.

M. G. Evans, L. Lagostena, P. Darbon, and F. Mammano, Cholinergic control of membrane conductance and intracellular free Ca2+ in outer hair cells of the guinea pig cochlea, Cell Calcium, vol.28, pp.195-203, 2000.

B. Fakler and J. P. Adelman, Control of K(Ca) channels by calcium nano/microdomains, Neuron, vol.59, pp.873-81, 2008.

G. Fallah, T. Romer, S. Detro-dassen, U. Braam, F. Markwardt et al., TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels, Mol Cell Proteomics, vol.10, pp.110-004697, 2011.

M. A. Farg, V. Sundaramoorthy, J. M. Sultana, S. Yang, R. A. Atkinson et al., C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking, Hum Mol Genet, vol.23, pp.3579-95, 2014.

A. Filezac-de-l'etang, N. Maharjan, M. Brana, C. Ruegsegger, R. Rehmann et al., Marinesco-Sjogren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS, Nat Neurosci, vol.18, pp.227-265, 2015.

L. R. Fischer, D. G. Culver, P. Tennant, A. A. Davis, M. Wang et al., Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man, Exp Neurol, vol.185, pp.232-272, 2004.

B. R. Foerster, M. G. Pomper, B. C. Callaghan, M. Petrou, R. A. Edden et al., An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy, JAMA Neurol, vol.70, pp.1009-1025, 2013.

D. Frey, C. Schneider, L. Xu, J. Borg, W. Spooren et al., Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases, J Neurosci, vol.20, pp.2534-2576, 2000.

A. Friese, J. A. Kaltschmidt, D. R. Ladle, M. Sigrist, T. M. Jessell et al., Gamma and alpha motor neurons distinguished by expression of transcription factor Err3, Proc Natl Acad Sci U S A, vol.106, pp.13588-93, 2009.

S. Frings, D. Reuter, and S. J. Kleene, Neuronal Ca2+ -activated Cl-channels--homing in on an elusive channel species, Prog Neurobiol, vol.60, pp.247-89, 2000.

X. Gallart-palau, O. Tarabal, A. Casanovas, J. Sabado, F. J. Correa et al., Neuregulin-1 is concentrated in the postsynaptic subsurface cistern of C-bouton inputs to alpha-motoneurons and altered during motoneuron diseases, FASEB J, vol.28, pp.3618-3650, 2014.

P. F. Gardiner, Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius, J Neurophysiol, vol.69, pp.1160-70, 1993.

I. Gijselinck, K. Sleegers, S. Engelborghs, W. Robberecht, J. J. Martin et al., Neuronal inclusion protein TDP-43 has no primary genetic role in FTD and ALS, Neurobiol Aging, vol.30, pp.1329-1360, 2009.

M. Gizzi, A. Dirocco, M. Sivak, and B. Cohen, Ocular motor function in motor neuron disease, Neurology, vol.42, pp.1037-1083, 1992.

M. Goulding and S. L. Pfaff, Development of circuits that generate simple rhythmic behaviors in vertebrates, Curr Opin Neurobiol, vol.15, pp.14-20, 2005.

M. Goulding, G. Lanuza, T. Sapir, and S. Narayan, The formation of sensorimotor circuits, Current Opinion in Neurobiology, vol.12, pp.508-523, 2002.

L. Grant, S. Slapnick, H. Kennedy, and C. Hackney, Ryanodine receptor localisation in the mammalian cochlea: an ultrastructural study, Hear Res, vol.219, pp.101-110, 2006.

S. Grillner, Locomotion in vertebrates: central mechanisms and reflex interaction, Physiol Rev, vol.55, pp.247-304, 1975.

A. Gritli-linde, F. Vaziri, J. R. Sani, K. Rock, D. Hallberg et al., Expression patterns of the Tmem16 gene family during cephalic development in the mouse, Gene Expr Patterns, vol.9, pp.178-91, 2009.

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, pp.1772-1777, 1994.

B. Gustafsson and M. J. Pinter, An investigation of threshold properties among cat spinal alpha-motoneurones, J Physiol, vol.357, pp.453-83, 1984.

S. Gyobu, K. Ishihara, J. Suzuki, K. Segawa, and S. Nagata, Characterization of the scrambling domain of the TMEM16 family, Proc Natl Acad Sci U S A, vol.114, pp.6274-79, 2017.

G. E. Ha, J. Lee, H. Kwak, K. Song, J. Kwon et al., The Ca(2+)-activated chloride channel anoctamin-2 mediates spike-frequency adaptation and regulates sensory transmission in thalamocortical neurons, Nat Commun, vol.7, p.13791, 2016.

M. Hadzipasic, B. Tahvildari, M. Nagy, M. Bian, A. L. Horwich et al., Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS, Proc Natl Acad Sci U S A, vol.111, pp.16883-16891, 2014.

A. R. Haeusler, C. J. Donnelly, and J. D. Rothstein, The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease, Nat Rev Neurosci, vol.17, pp.383-95, 2016.

J. E. Hamos and J. S. King, The synaptic organization of the motor nucleus of the trigeminal nerve in the opossum, Journal of Comparative Neurology, vol.194, pp.441-63, 1980.

S. B. Hansen, Lipid agonism: The PIP2 paradigm of ligand-gated ion channels, Biochim Biophys Acta, vol.1851, pp.620-628, 2015.

J. J. Harris, R. Jolivet, and D. Attwell, Synaptic energy use and supply, Neuron, vol.75, pp.762-77, 2012.

C. Hartzell, I. Putzier, and J. Arreola, Calcium-activated chloride channels, Annu Rev Physiol, vol.67, pp.719-58, 2005.

H. C. Hartzell, K. Yu, Q. Xiao, L. T. Chien, and Z. Qu, Anoctamin/TMEM16 family members are Ca2+-activated Cl-channels, J Physiol, vol.587, pp.2127-2166, 2009.

H. Hayashi, M. Suga, M. Satake, and T. Tsubaki, Reduced glycine receptor in the spinal cord in amyotrophic lateral sclerosis, Ann Neurol, vol.9, pp.292-296, 1981.

T. Hayashi and T. P. Su, Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival, Cell, vol.131, pp.596-610, 2007.

C. J. Heckman, C. Mottram, K. Quinlan, R. Theiss, and J. Schuster, Motoneuron excitability: the importance of neuromodulatory inputs, Clin Neurophysiol, vol.120, pp.2040-54, 2009.

E. Hedlund, M. Karlsson, T. Osborn, W. Ludwig, and O. Isacson, Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection, Brain, vol.133, pp.2313-2343, 2010.

J. Hegedus, C. T. Putman, and T. Gordon, Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis, Neurobiol Dis, vol.28, pp.154-64, 2007.

J. Hegedus, C. T. Putman, N. Tyreman, and T. Gordon, Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis, J Physiol, vol.586, pp.3337-51, 2008.

J. Hellstrom, A. L. Oliveira, B. Meister, and S. Cullheim, Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2, J Comp Neurol, vol.460, pp.476-86, 2003.

J. Hellström, A. L. Oliveira, B. Meister, and S. Cullheim, Large cholinergic nerve terminals on subsets of motoneurons and their relation to muscarinic receptor type 2, The Journal of Comparative Neurology, vol.460, pp.476-86, 2003.

T. Hengl, H. Kaneko, K. Dauner, K. Vocke, S. Frings et al., Molecular components of signal amplification in olfactory sensory cilia, Proc Natl Acad Sci U S A, vol.107, pp.6052-6059, 2010.

E. Henneman, G. Somjen, and D. O. Carpenter, Functional Significance of Cell Size in Spinal Motoneurons, J Neurophysiol, vol.28, pp.560-80, 1965.

J. P. Henriquez, A. Webb, M. Bence, H. Bildsoe, M. Sahores et al., Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin, Proc Natl Acad Sci U S A, vol.105, pp.18812-18819, 2008.

L. R. Herron and G. B. Miles, Gender-specific perturbations in modulatory inputs to motoneurons in a mouse model of amyotrophic lateral sclerosis, Neuroscience, vol.226, pp.313-336, 2012.

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nat Rev Mol Cell Biol, vol.13, pp.89-102, 2012.

D. Hicks, A. Sarkozy, N. Muelas, K. Koehler, A. Huebner et al., A founder mutation in Anoctamin 5 is a major cause of limb-girdle muscular dystrophy, Brain, vol.134, pp.171-82, 2011.

B. Hivert and S. Luvisetto, Anacleto Navangione, Angelita Tottene, and Daniela Pietrobon, The Journal of General Physiology, vol.113, pp.679-94, 1999.

J. Hounsgaard, H. Hultborn, B. Jespersen, and O. Kiehn, Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan, The Journal Of Physiology, vol.405, pp.345-67, 1988.

J. Hounsgaard and O. Kiehn, Serotonin-induced bistability of turtle motoneurones caused by a nifedipine-sensitive calcium plateau potential, The Journal Of Physiology, vol.414, pp.265-82, 1989.

J. Hounsgaard and I. Mintz, Calcium conductance and firing properties of spinal motoneurones in the turtle, J Physiol, vol.398, pp.591-603, 1988.

D. S. Howland, J. Liu, Y. She, B. Goad, N. J. Maragakis et al., Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS), Proc Natl Acad Sci U S A, vol.99, pp.1604-1613, 2002.

W. C. Huang, S. Xiao, F. Huang, B. D. Harfe, Y. N. Jan et al., Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons, Neuron, vol.74, pp.179-92, 2012.

J. T. Isaac, M. C. Ashby, and C. J. Mcbain, The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity, Neuron, vol.54, pp.859-71, 2007.

A. Israelson, N. Arbel, S. Cruz, H. Ilieva, K. Yamanaka et al., Misfolded mutant SOD1 directly inhibits VDAC1 conductance in a mouse model of inherited ALS, Neuron, vol.67, pp.575-87, 2010.

A. N. Issa, W. Z. Zhan, G. C. Sieck, and C. B. Mantilla, Neuregulin-1 at synapses on phrenic motoneurons, J Comp Neurol, vol.518, pp.4213-4238, 2010.

A. Jain, G. Z. Huang, and C. S. Woolley, Latent Sex Differences in Molecular Signaling That Underlies Excitatory Synaptic Potentiation in the Hippocampus, Journal of Neuroscience, vol.39, pp.1552-65, 2019.

L. Jami, Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions, Physiol Rev, vol.72, pp.623-66, 1992.

E. Jankowska and S. Lindström, Morphology of interneurones mediating Ia reciprocal inhibition of motoneurones in the spinal cord of the cat, The Journal Of Physiology, vol.226, pp.805-828, 1972.

E. Jankowska and W. J. Roberts, Synaptic actions of single interneurones mediating reciprocal Ia inhibition of motoneurones, The Journal Of Physiology, vol.222, pp.623-665, 1972.

T. J. Jentsch, V. Stein, F. Weinreich, and A. A. Zdebik, Molecular structure and physiological function of chloride channels, Physiol Rev, vol.82, pp.503-68, 2002.

M. C. Jiang, A. Adimula, D. Birch, and C. J. Heckman, Hyperexcitability in synaptic and firing activities of spinal motoneurons in an adult mouse model of amyotrophic lateral sclerosis, Neuroscience, vol.362, pp.33-46, 2017.

M. Jiang, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Progressive changes in synaptic inputs to motoneurons in adult sacral spinal cord of a mouse model of amyotrophic lateral sclerosis, J Neurosci, vol.29, pp.15031-15039, 2009.

B. Johnson, A. N. Leek, L. Sole, E. E. Maverick, T. P. Levine et al., Kv2 potassium channels form endoplasmic reticulum/plasma membrane junctions via interaction with VAPA and VAPB, Proc Natl Acad Sci U S A, vol.115, pp.7331-7371, 2018.

C. A. Juul, S. Grubb, K. A. Poulsen, T. Kyed, N. Hashem et al., Anoctamin 6 differs from VRAC and VSOAC but is involved in apoptosis and supports volume regulation in the presence of Ca2+, Pflugers Arch, vol.466, pp.1899-910, 2014.

M. A. Kamaleddin, Molecular, biophysical, and pharmacological properties of calciumactivated chloride channels, J Cell Physiol, vol.233, pp.787-98, 2018.

K. Kanekura, H. Suzuki, S. Aiso, and M. Matsuoka, ER stress and unfolded protein response in amyotrophic lateral sclerosis, Mol Neurobiol, vol.39, pp.81-90, 2009.

K. C. Kanning, A. Kaplan, and C. E. Henderson, Motor neuron diversity in development and disease, Annu Rev Neurosci, vol.33, pp.409-449, 2010.

A. Kaplan, K. J. Spiller, C. Towne, K. C. Kanning, G. T. Choe et al., Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration, Neuron, vol.81, pp.333-381, 2014.

R. C. Kaplan, N. L. Smith, S. Zucker, S. R. Heckbert, K. Rice et al., Matrix metalloproteinase-3 (MMP3) and MMP9 genes and risk of myocardial infarction, ischemic stroke, and hemorrhagic stroke, Atherosclerosis, vol.201, pp.130-137, 2008.

S. J. Kaur, S. R. Mckeown, and S. Rashid, Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis, Gene, vol.577, pp.109-127, 2016.

Y. Kawahara, K. Ito, H. Sun, H. Aizawa, I. Kanazawa et al., Glutamate receptors: RNA editing and death of motor neurons, Nature, vol.427, p.801, 2004.

Y. Kawahara, H. Sun, K. Ito, T. Hideyama, M. Aoki et al., Underediting of GluR2 mRNA, a neuronal death inducing molecular change in sporadic ALS, does not occur in motor neurons in ALS1 or SBMA, Neurosci Res, vol.54, pp.11-15, 2006.

E. L. Keller and D. A. Robinson, Absence of a stretch reflex in extraocular muscles of the monkey, J Neurophysiol, vol.34, pp.908-927, 1971.

J. O. Kellerth, C. H. Berthold, and S. Conradi, Electron microscopic studies of serially sectioned cat spinal alpha-motoneurons. III. Motoneurons innervating fast-twitch (type FR) units of the gastrocnemius muscle, J Comp Neurol, vol.184, pp.755-67, 1979.

P. M. Kennedy and J. T. Inglis, Distribution and behaviour of glabrous cutaneous receptors in the human foot sole, J Physiol, vol.538, pp.995-1002, 2002.

D. Kernell, Functional properties of spinal motoneurons and gradation of muscle force, Neural Plast, vol.39, pp.69-76, 1983.

O. Kiehn and K. Kullander, Central pattern generators deciphered by molecular genetics, Neuron, vol.41, pp.317-338, 2004.

A. Kmit, R. Van-kruchten, J. Ousingsawat, N. J. Mattheij, B. Senden-gijsbers et al., Calcium-activated and apoptotic phospholipid scrambling induced by Ano6 can occur independently of Ano6 ion currents, Cell Death Dis, vol.4, p.611, 2013.

V. Kostic, V. Jackson-lewis, F. Bilbao, M. Dubois-dauphin, and S. Przedborski, Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis, Science, vol.277, pp.559-62, 1997.

K. Krnjevic, Y. Lamour, J. F. Macdonald, and A. Nistri, Motoneuronal after-potentials and extracellular divalent cations, Can J Physiol Pharmacol, vol.56, pp.516-536, 1978.

K. Krnjevic, E. Puil, and R. Werman, EGTA and motoneuronal after-potentials, J Physiol, vol.275, pp.199-223, 1978.

K. Kunzelmann, V. M. Milenkovic, M. Spitzner, R. B. Soria, and R. Schreiber, Calciumdependent chloride conductance in epithelia: is there a contribution by Bestrophin?, Pflugers Arch, vol.454, pp.879-89, 2007.

K. Kunzelmann, B. Nilius, G. Owsianik, R. Schreiber, J. Ousingsawat et al., Molecular functions of anoctamin 6 (TMEM16F): a chloride channel, cation channel, or phospholipid scramblase?, Pflugers Arch, vol.466, pp.407-421, 2014.

J. J. Kuo, R. H. Lee, L. Zhang, and C. J. Heckman, Essential role of the persistent sodium current in spike initiation during slowly rising inputs in mouse spinal neurones, J Physiol, vol.574, pp.819-853, 2006.

J. J. Kuo, T. Siddique, R. Fu, and C. J. Heckman, Increased persistent Na(+) current and its effect on excitability in motoneurones cultured from mutant SOD1 mice, J Physiol, vol.563, pp.843-54, 2005.

L. Lacomblez, G. Bensimon, P. N. Leigh, P. Guillet, L. Powe et al., A confirmatory dose-ranging study of riluzole in ALS, vol.47, pp.242-50, 1996.

B. Lamotte-d'incamps, G. S. Bhumbra, J. D. Foster, M. Beato, and P. Ascher, Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse, p.4037, 2017.

G. M. Lanuza, S. Gosgnach, A. Pierani, M. Thomas, M. Jessell et al., Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements, Neuron, vol.42, pp.375-86, 2004.

W. A. Large and Q. Wang, Characteristics and physiological role of the Ca(2+)-activated Clconductance in smooth muscle, Am J Physiol, vol.271, pp.435-54, 1996.

L. Masson, G. , S. Przedborski, and L. F. Abbott, A computational model of motor neuron degeneration, Neuron, vol.83, pp.975-88, 2014.

R. H. Lee and C. J. Heckman, Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine, J Neurophysiol, vol.81, pp.2164-74, 1999.

S. E. Lee, Guam dementia syndrome revisited in 2011, Curr Opin Neurol, vol.24, pp.517-541, 2011.

S. Lee, B. E. Yoon, K. Berglund, S. J. Oh, H. Park et al., Channel-mediated tonic GABA release from glia, Science, vol.330, pp.790-796, 2010.

F. Leroy, B. Lamotte-d'incamps, R. D. Imhoff-manuel, and D. Zytnicki, Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis, p.3, 2014.

M. Leslie, N. G. Forger, and S. M. Breedlove, Sexual dimorphism and androgen effects on spinal motoneurons innervating the rat flexor digitorum brevis, Brain Res, vol.561, pp.269-73, 1991.

A. Leveille, J. Kiernan, J. A. Goodwin, and J. Antel, Eye movements in amyotrophic lateral sclerosis, Arch Neurol, vol.39, pp.684-690, 1982.

W. Li, P. A. Ochalski, S. Brimijoin, L. M. Jordan, and J. I. Nagy, C-terminals on motoneurons: Electron microscope localization of cholinergic markers in adult rats and antibody-induced depletion in neonates, Neuroscience, vol.65, pp.879-91, 1995.

Y. Li and D. J. Bennett, Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats, J Neurophysiol, vol.90, pp.857-69, 2003.

B. Liu, J. E. Linley, X. Du, X. Zhang, L. Ooi et al., The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl-channels, J Clin Invest, vol.120, pp.1240-52, 2010.

J. P. Loeffler, G. Picchiarelli, L. Dupuis, and J. L. Gonzalez-de-aguilar, The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis, Brain Pathol, vol.26, pp.227-263, 2016.

T. Lomo, R. H. Westgaard, and H. A. Dahl, Contractile properties of muscle: control by pattern of muscle activity in the rat, Proc R Soc Lond B Biol Sci, vol.187, pp.99-103, 1974.

P. Lorenzon, A. Bernareggi, V. Degasperi, E. Nurowska, A. Wernig et al., Properties of primary mouse myoblasts expanded in culture, Exp Cell Res, vol.278, pp.84-91, 2002.

S. Lumbroso, F. Sandillon, V. Georget, J. M. Lobaccaro, A. O. Brinkmann et al., Immunohistochemical localization and immunoblotting of androgen receptor in spinal neurons of male and female rats, Eur J Endocrinol, vol.134, pp.626-658, 1996.

N. Maharjan, C. Kunzli, K. Buthey, and S. Saxena, C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress, Mol Neurobiol, vol.54, pp.3062-77, 2017.

I. Mahjneh, J. Jaiswal, A. Lamminen, M. Somer, G. Marlow et al., A new distal myopathy with mutation in anoctamin 5, Neuromuscul Disord, vol.20, pp.791-796, 2010.

S. Malessa, P. N. Leigh, O. Bertel, E. Sluga, and O. Hornykiewicz, Amyotrophic lateral sclerosis: glutamate dehydrogenase and transmitter amino acids in the spinal cord, J Neurol Neurosurg Psychiatry, vol.54, pp.984-992, 1991.

F. Mammano, G. I. Frolenkov, L. Lagostena, I. A. Belyantseva, M. Kurc et al., ATP-Induced Ca2+ Release in Cochlear Outer Hair Cells: Localization of an Inositol Triphosphate-Gated Ca2+ Store to the Base of the Sensory Hair Bundle, Journal of Neuroscience, vol.19, pp.6918-6947, 1999.

T. Mannen, Rinsho Shinkeigaku, vol.31, pp.1281-1286, 1991.

M. Manuel and C. J. Heckman, Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?, Journal of Neuroscience, vol.31, pp.15188-94, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02045316

M. Manuel, C. Meunier, M. Donnet, and D. Zytnicki, Resonant or not, two amplification modes of proprioceptive inputs by persistent inward currents in spinal motoneurons, J Neurosci, vol.27, pp.12977-88, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00202471

R. Manzano, J. M. Toivonen, A. C. Calvo, S. Olivan, P. Zaragoza et al., Altered in vitro proliferation of mouse SOD1-G93A skeletal muscle satellite cells, Neurodegener Dis, vol.11, pp.153-64, 2013.

A. D. Marmorstein, L. Y. Marmorstein, M. Rayborn, X. Wang, J. G. Hollyfield et al., Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium, Proc Natl Acad Sci U S A, vol.97, pp.12758-63, 2000.

E. Martin, W. Cazenave, D. Cattaert, and P. Branchereau, Embryonic alteration of motoneuronal morphology induces hyperexcitability in the mouse model of amyotrophic lateral sclerosis, Neurobiol Dis, vol.54, pp.116-142, 2013.

L. J. Martin and Q. Chang, Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis, Mol Neurobiol, vol.45, pp.30-42, 2012.

M. L. Martinez-silva, R. D. Imhoff-manuel, A. Sharma, C. J. Heckman, N. A. Shneider et al., Hypoexcitability precedes denervation in the large fastcontracting motor units in two unrelated mouse models of ALS, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02011470

J. R. Martins, D. Faria, P. Kongsuphol, B. Reisch, R. Schreiber et al., Anoctamin 6 is an essential component of the outwardly rectifying chloride channel, Proc Natl Acad Sci U S A, vol.108, pp.18168-72, 2011.

V. V. Matchkov, P. Larsen, E. V. Bouzinova, A. Rojek, D. M. Boedtkjer et al., Bestrophin-3 (vitelliform macular dystrophy 2-like 3 protein) is essential for the cGMP-dependent calcium-activated chloride conductance in vascular smooth muscle cells, Circ Res, vol.103, pp.864-72, 2008.

S. Matus, E. Lopez, V. Valenzuela, M. Nassif, and C. Hetz, Functional contribution of the transcription factor ATF4 to the pathogenesis of amyotrophic lateral sclerosis, PLoS One, vol.8, p.66672, 2013.

S. Matus, V. Valenzuela, D. B. Medinas, and C. Hetz, ER Dysfunction and Protein Folding Stress in ALS, Int J Cell Biol, p.674751, 2013.

T. A. Mavlyutov, M. L. Epstein, K. A. Andersen, L. Ziskind-conhaim, and A. E. Ruoho, The sigma-1 receptor is enriched in postsynaptic sites of C-terminals in mouse motoneurons. An anatomical and behavioral study, Neuroscience, vol.167, pp.247-55, 2010.

M. L. Mayer, A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture, J Physiol, vol.364, pp.217-256, 1985.

P. A. Mccombe and R. D. Henderson, Effects of gender in amyotrophic lateral sclerosis, Gend Med, vol.7, pp.557-70, 2010.

C. J. Mcdermott and P. J. Shaw, Diagnosis and management of motor neurone disease, BMJ, vol.336, pp.658-62, 2008.

J. G. Mclarnon, Potassium currents in motoneurones, Progress in Neurobiology, vol.47, pp.513-544, 1995.

L. K. Mcloon, V. M. Harandi, T. Brannstrom, P. M. Andersen, and J. X. Liu, Wnt and extraocular muscle sparing in amyotrophic lateral sclerosis, Invest Ophthalmol Vis Sci, vol.55, pp.5482-96, 2014.

P. Menon, M. C. Kiernan, and S. Vucic, Cortical hyperexcitability precedes lower motor neuron dysfunction in ALS, Clin Neurophysiol, vol.126, pp.803-812, 2015.

L. Milan, G. Barriere, P. De-deurwaerdere, J. R. Cazalets, and S. S. Bertrand, Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice, Front Neural Circuits, vol.8, p.77, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01178095

L. Milan, G. Courtand, L. Cardoit, F. Masmejean, G. Barriere et al., Age-Related Changes in Pre-and Postsynaptic Partners of the Cholinergic CBoutons in Wild-Type and SOD1G93A Lumbar Motoneurons, PLoS One, vol.10, p.135525, 2015.

V. M. Milenkovic, A. Rivera, F. Horling, and B. H. Weber, Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane, J Biol Chem, vol.282, pp.1313-1334, 2007.

G. B. Miles, R. Hartley, A. J. Todd, and R. M. Brownstone, Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion, Proc Natl Acad Sci U S A, vol.104, pp.2448-53, 2007.

J. W. Mink, R. J. Blumenschine, and D. B. Adams, Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis, Am J Physiol, vol.241, pp.203-215, 1981.

H. Misonou, D. P. Mohapatra, E. W. Park, V. Leung, D. Zhen et al., Regulation of ion channel localization and phosphorylation by neuronal activity, Nat Neurosci, vol.7, pp.711-719, 2004.

J. R. Morrice, C. Y. Gregory-evans, and C. A. Shaw, Animal models of amyotrophic lateral sclerosis: A comparison of model validity, Neural Regen Res, vol.13, pp.2050-54, 2018.

B. M. Morrison, W. G. Janssen, J. W. Gordon, and J. H. Morrison, Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice, J Comp Neurol, vol.395, pp.523-557, 1998.

A. Mosfeldt-laursen and J. C. Rekling, Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro, Neuroscience, vol.30, pp.619-656, 1989.

E. A. Muennich and R. E. Fyffe, Focal aggregation of voltage-gated, Kv2.1 subunit-containing, potassium channels at synaptic sites in rat spinal motoneurones, J Physiol, vol.554, pp.673-85, 2004.

D. Muller, P. Cherukuri, K. Henningfeld, C. H. Poh, L. Wittler et al., Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution, Science, vol.343, pp.1264-1270, 2014.

C. Munch, M. Ebstein, U. Seefried, B. Zhu, S. Stamm et al., Alternative splicing of the 5'-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis, J Neurochem, vol.82, pp.594-603, 2002.

S. Nagata, J. Suzuki, K. Segawa, and T. Fujii, Exposure of phosphatidylserine on the cell surface, Cell Death Differ, vol.23, pp.952-61, 2016.

J. I. Nagy, T. Yamamoto, and L. M. Jordan, Evidence for the cholinergic nature of C-terminals associated with subsurface cisterns in alpha-motoneurons of rat, Synapse, vol.15, pp.17-32, 1993.

M. Naujock, N. Stanslowsky, S. Bufler, M. Naumann, P. Reinhardt et al., 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells, Stem Cells, vol.34, pp.1563-75, 2016.

P. G. Nelson and K. Frank, Action Potential Production Studied by the Voltage Clamp Technic on the Cat Motoneuron, Actual Neurophysiol, vol.5, pp.15-35, 1964.

D. M. Nguyen, L. S. Chen, W. P. Yu, and T. Y. Chen, Comparison of ion transport determinants between a TMEM16 chloride channel and phospholipid scramblase, J Gen Physiol, vol.151, pp.518-549, 2019.

J. Nijssen, L. H. Comley, and E. Hedlund, Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis, Acta Neuropathol, vol.133, pp.863-85, 2017.

E. A. Nimchinsky, W. G. Young, G. Yeung, R. A. Shah, J. W. Gordon et al., Differential vulnerability of oculomotor, facial, and hypoglossal nuclei in G86R superoxide dismutase transgenic mice, J Comp Neurol, vol.416, pp.112-137, 2000.

H. Nishimaru, C. E. Restrepo, J. Ryge, Y. Yanagawa, and O. Kiehn, Mammalian motor neurons corelease glutamate and acetylcholine at central synapses, Proc Natl Acad Sci U S A, vol.102, pp.5245-5254, 2005.

Y. Noto, K. Shibuya, S. Vucic, and M. C. Kiernan, Novel therapies in development that inhibit motor neuron hyperexcitability in amyotrophic lateral sclerosis, Expert Rev Neurother, vol.16, pp.1147-54, 2016.

P. Oeckl, C. Jardel, F. Salachas, F. Lamari, P. M. Andersen et al., Multicenter validation of CSF neurofilaments as diagnostic biomarkers for ALS, Amyotroph Lateral Scler Frontotemporal Degener, vol.17, pp.404-417, 2016.

R. W. Oppenheim, The neurotrophic theory and naturally occurring motoneuron death, Trends Neurosci, vol.12, pp.252-257, 1989.

H. Panayi, E. Panayiotou, M. Orford, N. Genethliou, R. Mean et al., Sox1 is required for the specification of a novel p2-derived interneuron subtype in the mouse ventral spinal cord, J Neurosci, vol.30, pp.12274-80, 2010.

K. H. Park, S. Franciosi, and B. R. Leavitt, Postnatal muscle modification by myogenic factors modulates neuropathology and survival in an ALS mouse model, Nat Commun, vol.4, p.2906, 2013.

P. Paul and J. De-belleroche, Experimental approaches for elucidating co-agonist regulation of NMDA receptor in motor neurons: Therapeutic implications for amyotrophic lateral sclerosis (ALS), Front Synaptic Neurosci, vol.6, issue.10, pp.2-6, 2014.

C. Paulino, Y. Neldner, A. K. Lam, V. Kalienkova, J. D. Brunner et al., Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A, 2017.

K. G. Pearson, Proprioceptive regulation of locomotion, Curr Opin Neurobiol, vol.5, pp.786-91, 1995.

N. Pedemonte and L. J. Galietta, Structure and function of TMEM16 proteins (anoctamins), Physiol Rev, vol.94, pp.419-59, 2014.

J. F. Perrier, H. B. Rasmussen, R. K. Christensen, and A. V. Petersen, Modulation of the intrinsic properties of motoneurons by serotonin, Curr Pharm Des, vol.19, pp.4371-84, 2013.

A. Picollo, M. Malvezzi, and A. Accardi, TMEM16 proteins: unknown structure and confusing functions, J Mol Biol, vol.427, pp.94-105, 2015.

M. Pieri, F. Albo, C. Gaetti, A. Spalloni, C. P. Bengtson et al., Altered excitability of motor neurons in a transgenic mouse model of familial amyotrophic lateral sclerosis, Neurosci Lett, vol.351, pp.153-159, 2003.

M. Pieri, S. Caioli, N. Canu, N. B. Mercuri, E. Guatteo et al., Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis, Exp Neurol, vol.247, pp.349-58, 2013.

J. D. Porter, Extraocular muscle: cellular adaptations for a diverse functional repertoire, Ann N Y Acad Sci, vol.956, pp.7-16, 2002.

R. K. Powers and M. D. Binder, Input-output functions of mammalian motoneurons, Rev Physiol Biochem Pharmacol, vol.143, pp.137-263, 2001.

P. Pozzi, C. Bendotti, S. Simeoni, F. Piccioni, V. Guerini et al., Androgen 5-alpha-reductase type 2 is highly expressed and active in rat spinal cord motor neurones, J Neuroendocrinol, vol.15, pp.882-889, 2003.

P. F. Pradat, A. Barani, J. Wanschitz, O. Dubourg, A. Lombes et al., Abnormalities of satellite cells function in amyotrophic lateral sclerosis, Amyotroph Lateral Scler, vol.12, pp.264-71, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00744437

A. H. Pullen, J. E. Martin, and M. Swash, Ultra structure of pre-synaptic input to motor neurons in Onuf's nucleus: controls and motor neuron disease, Neuropathology and Applied Neurobiology, vol.18, pp.213-244, 1992.

S. Pun, A. F. Santos, S. Saxena, L. Xu, and P. Caroni, Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF, Nat Neurosci, vol.9, pp.408-427, 2006.

Z. Qu and C. Hartzell, Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel, J Gen Physiol, vol.124, pp.371-82, 2004.

G. Querin, G. Soraru, and P. F. Pradat, Kennedy disease (X-linked recessive bulbospinal neuronopathy): A comprehensive review from pathophysiology to therapy, Rev Neurol, vol.173, pp.326-363, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01520284

K. A. Quinlan, J. E. Schuster, R. Fu, T. Siddique, and C. J. Heckman, Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis, J Physiol, vol.589, pp.2245-60, 2011.

R. A. Radford, M. Morsch, S. L. Rayner, N. J. Cole, D. L. Pountney et al., The established and emerging roles of astrocytes and microglia in amyotrophic lateral sclerosis and frontotemporal dementia, Front Cell Neurosci, vol.9, p.414, 2015.

W. Rall, Time constants and electrotonic length of membrane cylinders and neurons, Biophys J, vol.9, pp.1483-508, 1969.

V. Rangaraju, N. Calloway, and T. A. Ryan, Activity-driven local ATP synthesis is required for synaptic function, Cell, vol.156, pp.825-860, 2014.

C. Raoul, A. G. Estevez, H. Nishimune, D. W. Cleveland, O. Delapeyriere et al., Motoneuron death triggered by a specific pathway downstream of Fas. potentiation by ALS-linked SOD1 mutations, Neuron, vol.35, pp.1067-83, 2002.

A. G. Reaume, J. L. Elliott, E. K. Hoffman, N. W. Kowall, R. J. Ferrante et al., Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nat Genet, vol.13, pp.43-50, 1996.

J. C. Rekling, G. D. Funk, D. A. Bayliss, X. W. Dong, and J. L. Feldman, Synaptic control of motoneuronal excitability, Physiol Rev, vol.80, pp.767-852, 2000.

M. Renaud, M. Anheim, E. J. Kamsteeg, M. Mallaret, F. Mochel et al., Autosomal recessive cerebellar ataxia type 3 due to ANO10 mutations: delineation and genotype-phenotype correlation study, JAMA Neurol, vol.71, pp.1305-1315, 2014.

A. E. Renton, E. Majounie, A. Waite, J. Simon-sanchez, S. Rollinson et al., , vol.72, pp.257-68, 2011.

D. A. Robinson, Oculomotor unit behavior in the monkey, J Neurophysiol, vol.33, pp.393-403, 1970.

J. R. Rock and B. D. Harfe, Expression of TMEM16 paralogs during murine embryogenesis, Dev Dyn, vol.237, pp.2566-74, 2008.

S. H. Romer, A. S. Deardorff, and R. E. Fyffe, Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons, 2016.

S. H. Romer, K. M. Dominguez, M. W. Gelpi, A. S. Deardorff, R. C. Tracy et al., Redistribution of Kv2.1 ion channels on spinal motoneurons following peripheral nerve injury, Brain Res, vol.1547, pp.1-15, 2014.

F. Roselli and P. Caroni, From intrinsic firing properties to selective neuronal vulnerability in neurodegenerative diseases, Neuron, vol.85, pp.901-911, 2015.

D. R. Rosen, T. Siddique, D. Patterson, D. A. Figlewicz, P. Sapp et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.362, pp.59-62, 1993.

S. Rossignol, R. Dubuc, and J. P. Gossard, Dynamic sensorimotor interactions in locomotion, Physiol Rev, vol.86, pp.89-154, 2006.

J. D. Rothstein, G. Tsai, R. W. Kuncl, L. Clawson, D. R. Cornblath et al., Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis, Ann Neurol, vol.28, pp.18-25, 1990.

J. D. Rothstein, M. Van-kammen, A. I. Levey, L. J. Martin, and R. W. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Ann Neurol, vol.38, pp.73-84, 1995.

L. P. Rowland and N. A. Shneider, Amyotrophic lateral sclerosis, N Engl J Med, vol.344, pp.1688-700, 2001.

R. R. Roy, D. L. Hutchison, D. J. Pierotti, J. A. Hodgson, and V. R. Edgerton, EMG patterns of rat ankle extensors and flexors during treadmill locomotion and swimming, J Appl Physiol, vol.70, pp.2522-2531, 1985.

C. Ruegsegger, N. Maharjan, A. Goswami, A. Filezac-de-l'etang, J. Weis et al., Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-alpha3 impairs its activity and contributes to motor neuron vulnerability in ALS, Acta Neuropathol, vol.131, pp.427-51, 2016.

L. Saba, M. T. Viscomi, S. Caioli, A. Pignataro, E. Bisicchia et al., Altered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis, Cereb Cortex, vol.26, pp.1512-1540, 2016.

Y. Sagot, M. Dubois-dauphin, S. A. Tan, F. Bilbao, P. Aebischer et al., Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease, J Neurosci, vol.15, pp.7727-7760, 1995.

P. Sah, Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons, Journal of Neurophysiology, vol.68, pp.2237-2284, 1992.

P. Sah, Ca2+-activated K+ currents in neurones: types, physiological roles and modulation, Trends in Neurosciences, vol.19, pp.150-54, 1996.

J. R. Sanes and J. W. Lichtman, Induction, assembly, maturation and maintenance of a postsynaptic apparatus, Nat Rev Neurosci, vol.2, pp.791-805, 2001.

J. Sasabe, T. Chiba, M. Yamada, K. Okamoto, I. Nishimoto et al., D-serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis, EMBO J, vol.26, pp.4149-59, 2007.

S. Sasaki, H. Warita, T. Komori, T. Murakami, K. Abe et al., Parvalbumin and calbindin D-28k immunoreactivity in transgenic mice with a G93A mutant SOD1 gene, Brain Res, vol.1083, pp.196-203, 2006.

A. Sathyamurthy, K. R. Johnson, K. J. Matson, C. I. Dobrott, L. Li et al., Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior, Cell Rep, vol.22, pp.2216-2241, 2018.

S. Saxena, E. Cabuy, and P. Caroni, A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice, Nat Neurosci, vol.12, pp.627-663, 2009.

S. Saxena, F. Roselli, K. Singh, K. Leptien, J. P. Julien et al., Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival, Neuron, vol.80, pp.80-96, 2013.

S. Saxena, F. Roselli, K. Singh, K. Leptien, J. Julien et al., Neuroprotection through excitability and mTOR required in ALS motoneurons to delay disease and extend survival, Neuron, vol.80, pp.80-96, 2013.

S. Schiaffino, S. Ausoni, L. Gorza, L. Saggin, K. Gundersen et al., Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibres, Acta Physiol Scand, vol.134, pp.575-581, 1988.

S. Schiaffino and C. Reggiani, Fiber types in mammalian skeletal muscles, Physiol Rev, vol.91, pp.1447-531, 2011.

R. Schreiber, I. Uliyakina, P. Kongsuphol, R. Warth, M. Mirza et al., Expression and function of epithelial anoctamins, J Biol Chem, vol.285, pp.7838-7883, 2010.

B. C. Schroeder, T. Cheng, Y. N. Jan, and L. Y. , Expression cloning of TMEM16A as a calcium-activated chloride channel subunit, Cell, vol.134, pp.1019-1048, 2008.

B. Schroeder, T. Christian, Y. Cheng, and . Nung, Expression cloning of TMEM16A as a calcium-activated chloride channel subunit, Cell, vol.134, pp.1019-1048, 2008.

P. C. Schwindt and W. E. Crill, Properties of a persistent inward current in normal and TEA-injected motoneurons, Journal of Neurophysiology, vol.44, pp.1700-1724, 1980.

, Differential effects of TEA and cations on outward ionic currents of cat motoneurons, J Neurophysiol, vol.46, pp.1-16, 1981.

P. Schwindt and W. Crill, Role of a persistent inward current in motoneuron bursting during spinal seizures, Journal of Neurophysiology, vol.43, pp.1296-318, 1980.

P. Scudieri, E. Caci, A. Venturini, E. Sondo, G. Pianigiani et al., Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms, J Physiol, vol.593, pp.3829-3877, 2015.

K. Segawa and S. Nagata, An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure, Trends Cell Biol, vol.25, pp.639-50, 2015.

K. Segawa, J. Suzuki, and S. Nagata, Constitutive exposure of phosphatidylserine on viable cells, Proc Natl Acad Sci, vol.108, pp.19246-51, 2011.

K. Sharma, Z. Hui, K. Sheng, H. Lettieri, A. Li et al., LIM Homeodomain Factors Lhx3 and Lhx4 Assign Subtype Identities for Motor Neurons, Cell, vol.95, pp.817-845, 1998.

C. Shen, L. Li, K. Zhao, L. Bai, A. Wang et al., Motoneuron Wnts regulate neuromuscular junction development, 2018.

J. T. Sheridan, E. N. Worthington, K. Yu, S. E. Gabriel, H. C. Hartzell et al., Characterization of the oligomeric structure of the Ca(2+)-activated Cl-channel Ano1/TMEM16A', J Biol Chem, vol.286, pp.1381-1389, 2011.

H. Sherk and G. A. Fowler, Visual analysis and image motion in locomoting cats, Eur J Neurosci, vol.13, pp.1239-1287, 2001.

C. S. Sherrington, Observations on the scratch-reflex in the spinal dog, J Physiol, vol.34, pp.1-50, 1906.

T. Shimizu, T. Iehara, K. Sato, T. Fujii, H. Sakai et al., TMEM16F is a component of a Ca2+-activated Cl-channel but not a volume-sensitive outwardly rectifying Cl-channel', Am J Physiol Cell Physiol, vol.304, pp.748-59, 2013.

J. M. Silverman, S. M. Fernando, L. I. Grad, A. F. Hill, B. J. Turner et al., Disease Mechanisms in ALS: Misfolded SOD1 Transferred Through ExosomeDependent and Exosome-Independent Pathways, Cell Mol Neurobiol, 2016.

I. Sinha-hikim, W. E. Taylor, N. F. Gonzalez-cadavid, W. Zheng, and S. Bhasin, Androgen receptor in human skeletal muscle and cultured muscle satellite cells: up-regulation by androgen treatment, J Clin Endocrinol Metab, vol.89, pp.5245-55, 2004.

A. S. Smith, C. J. Long, K. Pirozzi, and J. J. Hickman, A functional system for high-content screening of neuromuscular junctions in vitro, Technology (Singap World Sci), vol.1, pp.37-48, 2013.

R. E. Sorge, J. C. Mapplebeck, S. Rosen, S. Beggs, S. Taves et al., Different immune cells mediate mechanical pain hypersensitivity in male and female mice, Nat Neurosci, vol.18, pp.1081-1084, 2015.

K. J. Spiller, C. J. Cheung, C. R. Restrepo, L. K. Kwong, A. M. Stieber et al., Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy, J Neurosci, vol.36, pp.7707-7724, 2016.

P. Steinacker, E. Feneberg, J. Weishaupt, J. Brettschneider, H. Tumani et al., Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients, J Neurol Neurosurg Psychiatry, vol.87, pp.12-20, 2016.

P. Steinacker, A. Huss, B. Mayer, T. Grehl, J. Grosskreutz et al., Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: Data from the German MND-net, Amyotroph Lateral Scler Frontotemporal Degener, vol.18, pp.112-131, 2017.

A. E. Stepien, M. Tripodi, and S. Arber, Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells, Neuron, vol.68, pp.456-72, 2010.

N. Stifani, Motor neurons and the generation of spinal motor neuron diversity, Front Cell Neurosci, vol.8, p.293, 2014.

T. P. Su, E. D. London, and J. H. Jaffe, Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems, Science, vol.240, pp.219-240, 1988.

B. C. Suh and B. Hille, PIP2 is a necessary cofactor for ion channel function: how and why?, Annu Rev Biophys, vol.37, pp.175-95, 2008.

H. Sun, T. Tsunenari, K. W. Yau, and J. Nathans, The vitelliform macular dystrophy protein defines a new family of chloride channels, Proc Natl Acad Sci U S A, vol.99, pp.4008-4021, 2002.

H. Suzuki, Y. Shibagaki, S. Hattori, and M. Matsuoka, The proline-arginine repeat protein linked to C9-ALS/FTD causes neuronal toxicity by inhibiting the DEAD-box RNA helicasemediated ribosome biogenesis, Cell Death Dis, vol.9, p.975, 2018.

J. Suzuki, T. Fujii, T. Imao, K. Ishihara, H. Kuba et al., Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members, J Biol Chem, vol.288, pp.13305-13321, 2013.

J. Suzuki, M. Umeda, P. J. Sims, and S. Nagata, Calcium-dependent phospholipid scrambling by TMEM16F, Nature, vol.468, pp.834-842, 2010.

E. Svensson, M. J. Williams, and H. B. Schioth, Neural Cotransmission in Spinal Circuits Governing Locomotion, Trends Neurosci, vol.41, pp.540-50, 2018.

C. M. Ta, K. E. Acheson, N. J. Rorsman, R. C. Jongkind, and P. Tammaro, Contrasting effects of phosphatidylinositol 4,5-bisphosphate on cloned TMEM16A and TMEM16B channels, Br J Pharmacol, vol.174, pp.2984-99, 2017.

H. Takuma, S. Kwak, T. Yoshizawa, and I. Kanazawa, Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis, Ann Neurol, vol.46, pp.806-821, 1999.

M. Tartas, F. Morin, G. Barriere, M. Goillandeau, J. C. Lacaille et al., Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord, Front Neural Circuits, vol.4, p.4, 2010.

J. P. Taylor, R. H. Brown, J. , and D. W. Cleveland, Decoding ALS: from genes to mechanism, Nature, vol.539, pp.197-206, 2016.

Y. Tian, R. Schreiber, and K. Kunzelmann, Anoctamins are a family of Ca2+-activated Clchannels, J Cell Sci, vol.125, pp.4991-4999, 2012.

J. Tien, H. Y. Lee, D. L. Minor, Y. N. Jan, and L. Y. , Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC), Proc Natl Acad Sci U S A, vol.110, pp.6352-6359, 2013.

N. J. Tillakaratne, P. Duru, H. Fujino, H. Zhong, M. S. Xiao et al., Identification of interneurons activated at different inclines during treadmill locomotion in adult rats, J Neurosci Res, vol.92, pp.1714-1736, 2014.

J. Torres-torrelo, D. Rodriguez-rosell, P. Nunez-abades, L. Carrascal, and B. Torres, Glutamate modulates the firing rate in oculomotor nucleus motoneurons as a function of the recruitment threshold current, J Physiol, vol.590, pp.3113-3140, 2012.

M. Tortarolo, G. Grignaschi, N. Calvaresi, E. Zennaro, G. Spaltro et al., Glutamate AMPA receptors change in motor neurons of SOD1G93A transgenic mice and their inhibition by a noncompetitive antagonist ameliorates the progression of amytrophic lateral sclerosis-like disease, J Neurosci Res, vol.83, pp.134-180, 2006.

E. Tremblay, E. Martineau, and R. Robitaille, Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter, J Neurosci, vol.37, pp.8901-8919, 2017.

E. M. Ullian, B. T. Harris, A. Wu, J. R. Chan, and B. A. Barres, Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture, Mol Cell Neurosci, vol.25, pp.241-51, 2004.

P. Van-damme, E. Bogaert, M. Dewil, N. Hersmus, D. Kiraly et al., Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity, Proc Natl Acad Sci U S A, vol.104, pp.14825-14855, 2007.

P. Van-damme, W. Robberecht, L. Van-den, and . Bosch, Modelling amyotrophic lateral sclerosis: progress and possibilities, Dis Model Mech, vol.10, pp.537-586, 2017.

. Van-den and L. Bosch, Genetic rodent models of amyotrophic lateral sclerosis, J Biomed Biotechnol, p.348765, 2011.

. Van-den, L. Bosch, P. Van-damme, E. Bogaert, and W. Robberecht, The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis, Biochim Biophys Acta, vol.1762, pp.1068-82, 2006.

B. Van-zundert, M. H. Peuscher, M. Hynynen, A. Chen, R. L. Neve et al., Neonatal neuronal circuitry shows hyperexcitable disturbance in a mouse model of the adult-onset neurodegenerative disease amyotrophic lateral sclerosis, J Neurosci, vol.28, pp.10864-74, 2008.

C. Vance, B. Rogelj, T. Hortobagyi, K. J. De-vos, A. L. Nishimura et al.,

I. P. Leigh, G. Blair, J. Nicholson, J. M. De-belleroche, C. C. Gallo et al., Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science, vol.323, pp.1208-1219, 2009.

A. S. Varejao and V. M. Filipe, Contribution of cutaneous inputs from the hindpaw to the control of locomotion in rats, Behav Brain Res, vol.176, pp.193-201, 2007.

B. Varga, M. Martin-fernandez, C. Hilaire, A. Sanchez-vicente, J. Areias et al., Myotube elasticity of an amyotrophic lateral sclerosis mouse model, p.5917, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01775215

F. Viana, D. A. Bayliss, and A. J. Berger, Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons, J Neurophysiol, vol.69, pp.2150-63, 1993.

F. Von-lewinski and B. U. Keller, Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS, Trends Neurosci, vol.28, pp.494-500, 2005.

S. Vucic, U. Ziemann, A. Eisen, M. Hallett, and M. C. Kiernan, Transcranial magnetic stimulation and amyotrophic lateral sclerosis: pathophysiological insights, J Neurol Neurosurg Psychiatry, vol.84, pp.1161-70, 2013.

H. C. Wang, C. C. Lin, R. Cheung, Y. Zhang-hooks, A. Agarwal et al., Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells, vol.163, pp.1348-59, 2015.

R. Wang and D. Zhang, Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model, Eur J Neurosci, vol.22, pp.2376-80, 2005.

J. M. Whitlock and H. C. Hartzell, Anoctamins/TMEM16 Proteins: Chloride Channels Flirting with Lipids and Extracellular Vesicles, Annu Rev Physiol, vol.79, pp.119-162, 2017.

T. L. Williamson and D. W. Cleveland, Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons, Nat Neurosci, vol.2, pp.50-56, 1999.

J. M. Wilson, J. Rempel, and R. M. Brownstone, Postnatal development of cholinergic synapses on mouse spinal motoneurons, The Journal of Comparative Neurology, vol.474, pp.13-23, 2004.

E. C. Witts, L. Zagoraiou, and G. B. Miles, Anatomy and function of cholinergic C bouton inputs to motor neurons, J Anat, vol.224, pp.52-60, 2014.

M. Wong and L. J. Martin, Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice, Hum Mol Genet, vol.19, pp.2284-302, 2010.

D. H. Woo, K. S. Han, J. W. Shim, B. E. Yoon, E. Kim et al., TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation, Cell, vol.151, pp.25-40, 2012.

C. M. Wooley, R. B. Sher, A. Kale, W. N. Frankel, G. A. Cox et al., Gait analysis detects early changes in transgenic SOD1(G93A) mice', Muscle Nerve, vol.32, pp.43-50, 2005.

X. M. Xia, B. Fakler, A. Rivard, G. Wayman, T. Johnson-pais et al., Mechanism of calcium gating in smallconductance calcium-activated potassium channels, Nature, vol.395, pp.503-510, 1998.

T. Yamamoto, E. L. Hertzberg, and J. I. Nagy, Subsurface cisterns in alpha-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin32, Brain Research, vol.527, pp.119-155, 1990.

H. Yang, A. Kim, T. David, D. Palmer, T. Jin et al., TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation, Cell, vol.151, pp.111-133, 2012.

Y. D. Yang, H. Cho, J. Y. Koo, M. H. Tak, Y. Cho et al., TMEM16A confers receptor-activated calciumdependent chloride conductance, Nature, vol.455, pp.1210-1215, 2008.

Y. Yang, H. Duk, J. Y. Cho, M. Koo, Y. Ho-tak et al., TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, vol.455, pp.1210-1225, 2008.

W. Ye, T. W. Han, L. M. Nassar, M. Zubia, Y. N. Jan et al., Phosphatidylinositol-(4, 5)-bisphosphate regulates calcium gating of small-conductance cation channel TMEM16F, Proc Natl Acad Sci U S A, vol.115, pp.1667-74, 2018.

H. Z. Yin and J. H. Weiss, Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures, Brain Res, vol.1448, pp.153-62, 2012.

K. Yu, Y. Cui, and H. C. Hartzell, The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function, Invest Ophthalmol Vis Sci, vol.47, pp.4956-61, 2006.

Y. Yu and T. Y. Chen, Purified human brain calmodulin does not alter the bicarbonate permeability of the ANO1/TMEM16A channel, J Gen Physiol, vol.145, pp.79-81, 2015.

L. Zagoraiou, T. Akay, J. F. Martin, R. M. Brownstone, T. M. Jessell et al., A cluster of cholinergic premotor interneurons modulates mouse locomotor activity, Neuron, vol.64, pp.645-62, 2009.

N. Zampieri, T. M. Jessell, and A. J. Murray, Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus, Neuron, vol.81, pp.766-78, 2014.

G. Zanette, P. S.-tamburin, N. Manganotti, A. Refatti, N. Forgione et al., Different mechanisms contribute to motor cortex hyperexcitability in amyotrophic lateral sclerosis, Clin Neurophysiol, vol.113, pp.1688-97, 2002.

J. E. Zengel, S. A. Reid, G. W. Sypert, and J. B. Munson, Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat, J Neurophysiol, vol.53, pp.1323-1367, 1985.

L. Zhang and K. Krnjevic, Effects of 4-aminopyridine on the action potential and the afterhyperpolarization of cat spinal motoneurons, Can J Physiol Pharmacol, vol.64, pp.58-62, 1986.

, Intracellular injection of Ca2+ chelator does not affect spike repolarization of cat spinal motoneurons, Brain Res, vol.462, pp.174-80, 1988.

M. Zhang, X. Y. Meng, M. Cui, J. M. Pascal, D. E. Logothetis et al., Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex, Nat Chem Biol, vol.10, pp.753-762, 2014.

S. J. Zhang, M. Zou, L. Lu, D. Lau, D. A. Ditzel et al., Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity, PLoS Genet, vol.5, p.1000604, 2009.

Y. Zhang, Z. Zhang, S. Xiao, J. Tien, S. Le et al., Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning, Neuron, vol.95, pp.1103-1114, 2017.

L. Ziskind and M. J. Dennis, Depolarising effect of curare on embryonic rat muscles, Nature, vol.276, pp.622-625, 1978.

, The percentage of myotubes contractions inhibited by CNQX is 11 %, 22 % and 78 % in WT co-cultures (WT/WT), in mixed WT motoneurons, mutant myotubes (SOD/WT) and mutant motoneurons and myotubes (SOD/SOD), SOD1 G93A in myotubes and motoneurons drastically decreases the number of myotubes responding to CNQX inhibition. (F)