. A-titre-de-comparaison and . De-noé, 29], les auteurs tracent la même figure avec leurs échantillons. Cette figure est reproduite sur la figure 3.18. Les deux nanotubes présentés sont respectivement déposés sur de la silice et du hBN. Celui déposé sur de la silice présente une très forte diffusion spectrale alors que celui sur hBN

, Traces temporelles d'un nanotube de carbone déposé sur SiO 2 (en (a) haut) et hBN (en (a) bas). Déviation d'Allan correspondantes (en b) du nanotube sur SiO 2 (en orange) et de celui sur hBN, Figure 3.18 -Source : article de Noé

, Une fois cette période dépassée, la déviation d'Allan diminue puisque l'oscillation ne se voit plus dans l'intégrale. Le premier point de chaque courbe correspond aux écarts-types que nous avons comparés dans la partie 5.3. D'après les tracés de déviations d'Allan, les échantillons en coquille, quelque soit l'échelle de temps utilisée, plus stable que celui sur silice. Et celui en matrice est plus stable que celui sur hBN. Selon la théorie de la déviation d'Allan sur les oscillateurs, la pente de la déviation d'Allan donne le type de bruit mis en jeu. Les deux nanotubes en double coquille semblent avoir le même type de pente de la déviation d'Allan mais à des valeurs différentes, La déviation d'Allan du nanotube en double coquille PFO/PS (en vert) reste stable lorsque ? augmente. La déviation d'Allan du nanotube de carbone avec double coquille PS/PS (en bleu) semble diminuer un peu

, avancées dans ces domaines, il sera possible d'adapter les synthèses sur des nanotubes de plus large diamètre : les nanotubes de carbone de type ablation laser

, Cette thèse a permis de mettre au point une nouvelle technique de protection des nanotubes de carbone contre les effets des mouvements de charges dans leur environnement local. Cette technique est efficace et ouvre la voie à un large champ d

M. S-m-bachilo, C. Strano, R. Kittrell, R. Hauge, R. Smalley et al., Structure-assigned optical spectra of single-walled carbon nanotubes, Science, vol.298, issue.5602, p.49, 2002.

E. Gaufrès, N. Izard, X. L. Roux, S. Kazaoui, D. Marrismorini et al., Optical microcavity with semiconducting single-wall carbon nanotubes, Optics Express, vol.18, issue.6, p.5740, 2010.

H. Ozawa, N. Ide, T. Fujigaya, Y. Niidome, and N. Nakashima, One-pot Separation of Highly Enriched (6,5)-Single-walled Carbon Nanotubes Using a Fluorene-based Copolymer, Chemistry Letters, vol.40, issue.3, p.31, 2011.

A. Jeantet, Cavity Quantum Electrodynamics with Carbon Nanotubes, vol.10, p.59, 2009.
URL : https://hal.archives-ouvertes.fr/tel-01523965

A. H. Castro-neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, pp.109-162, 2009.

C. Roquelet, Transfert d'énergie dans des composés nanotube de carbone/porphyrine, vol.9, p.49, 2012.

F. Vialla, Interaction entre les nanotubes de carbone et leur environnement physico-chimique : vers un contrôle des propriétés optiques, vol.10, p.68, 2014.

S. Berger, Etude optique de la dynamique des interactions électroniques dans des nanotubes de carbone, p.11, 2007.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki et al., Optical properties of single-wall carbon nanotubes, Synthetic Metals, vol.103, issue.1-3, pp.2555-2558, 1999.

R. B. Weisman, S. M. Bachilo, and D. Tsyboulski, Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension, Applied Physics A, vol.78, issue.8, p.49, 2004.

G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz et al., Structural Dependence of Excitonic Optical Transitions and Band-Gap Energies in Carbon Nanotubes, Nano Letters, vol.5, issue.11, pp.2314-2318, 2005.

. Claus-f-klingshirn, Semiconductor Optics, 2012.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser et al., Fiber-based confocal microscope for cryogenic spectroscopy, Review of Scientific Instruments, vol.79, issue.2, p.23709, 2008.

C. Galland, A. Högele, H. E. Türeci, and A. Imamo?lu, Non-Markovian Decoherence of Localized Nanotube Excitons by Acoustic Phonons, Physical Review Letters, vol.101, issue.6, p.67, 2008.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski et al., Influence of exciton dimensionality on spectral diffusion of single-walled carbon nanotubes, ACS Nano, vol.8, issue.10, p.19, 2014.

X. Ma, F. Nicolai, J. K. Hartmann, . Baldwin, H. Stephen-k-doorn et al., Room-temperature single-photon generation from solitary dopants of carbon nanotubes, Nature Nanotechnology, vol.10, issue.8, pp.671-675, 2015.

C. Raynaud, Spectroscopie d'absorption et d'émission des excitons dans les nanotubes de carbone, 2014.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, p.56, 1991.

P. Nikolaev, R. K. Bronikowski, F. Bradley, . Rohmund, K. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, p.32, 1999.

A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-487, 1996.

O. Jost, A. A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein et al., Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, Applied Physics Letters, vol.75, issue.15, pp.2217-2219, 1999.

A. Högele, C. Galland, M. Winger, and A. Imamolu, Photon antibunching in the photoluminescence spectra of a single carbon nanotube, Physical Review Letters, vol.100, issue.21, p.16, 2008.

X. He, B. J. Gifford, N. F. Hartmann, R. Ihly, X. Ma et al.,

S. Blackburn, S. K. Tretiak, H. Doorn, and . Htoon, Low-Temperature Bibliographie Single Carbon Nanotube Spectroscopy of sp3 Quantum Defects, ACS Nano, vol.11, issue.11, p.16, 2017.

X. Ma, A. R. James, N. F. Hartmann, J. K. Baldwin, J. Dominguez et al., Solitary Oxygen Dopant Emission from Carbon Nanotubes Modified by Dielectric Metasurfaces, ACS Nano, vol.11, issue.6, p.16, 2017.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. Lauret et al., Widely tunable single-photon source from a carbon nanotube in the Purcell regime, Physical Review Letters, vol.116, issue.24, p.59, 2016.

X. He, H. Htoon, S. K. Doorn, W. H. Pernice, F. Pyatkov et al., Carbon nanotubes as emerging quantum-light sources, Nature Materials, p.17, 2018.

S. Khasminskaya, F. Pyatkov, K. S?owik, S. Ferrari, O. Kahl et al., Fully integrated quantum photonic circuit with an electrically driven light source, Nature Photonics, vol.10, issue.11, p.17, 2016.

I. V. Zaporotskova, N. P. Boroznina, Y. N. Parkhomenko, and L. V. Kozhitov, Carbon nanotubes: Sensor properties. A review, Modern Electronic Materials, vol.2, issue.4, pp.95-105, 2016.

J. C. Noé, M. Nutz, J. Reschauer, N. Morell, I. Tsioutsios et al., Environmental Electrometry with Luminescent Carbon Nanotubes, Nano Lett, vol.18, issue.7, p.81, 2018.

I. Sarpkaya, Z. Zhang, W. Walden-newman, X. Wang, J. Hone et al., Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes, Nature communications, vol.4, p.19, 2013.

J. T. Matthias-s-hofmann, J. Glückert, C. Noé, R. Bourjau, A. Dehmel et al., Bright, long-lived and coherent excitons in carbon nanotube quantum dots, Nature nanotechnology, vol.8, issue.7, p.20, 2013.

N. Ai, W. Walden-newman, and Q. Song, Sokratis Kalliakos, and Stefan Strauf. Suppression of blinking and enhanced exciton emission from individual carbon nanotubes, ACS Nano, vol.5, issue.4, p.58, 2011.

A. Jeantet, . Chassagneux, . Claude, J. Roussignol, J. Lauret et al., Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube, Nano Letters, vol.17, issue.7, p.72, 1921.
URL : https://hal.archives-ouvertes.fr/hal-01558239

W. Walden-newman, I. Sarpkaya, and S. Strauf, Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes, Nano Letters, vol.12, issue.4, p.31, 2012.

A. Jeantet, Y. Chassagneux, T. Claude, J. S. Lauret, and C. Voisin, Interplay of spectral diffusion and phonon-broadening in single photo-emitters : The case of carbon nanotubes, Nanoscale, vol.10, issue.2, p.21, 2017.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth et al., Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots, Nature, vol.479, issue.7372, pp.203-207, 1922.

B. Ji, E. Giovanelli, B. Habert, P. Spinicelli, M. Nasilowski et al., Non-blinking quantum dot with a plasmonic nanoshell resonator, Nature Nanotechnology, vol.10, issue.2, p.28, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01350067

F. F. Bergler, S. Stahl, A. Goy, F. Schöppler, and T. Hertel, Substrate-Mediated Cooperative Adsorption of Sodium Cholate on (6,5) Single-Wall Carbon Nanotubes. Langmuir, page acs.langmuir.6b02759, vol.23, p.24, 2016.

G. Clavé, G. Delport, C. Roquelet, J. Lauret, E. Deleporte et al., Functionalization of Carbon Nanotubes through Polymerization in Micelles: A Bridge between the Covalent and Noncovalent Methods, Chemistry of Materials, vol.25, issue.13, p.55, 2013.

K. Mølhave, S. B. Gudnason, A. T. Pedersen, C. Hyttel-clausen, A. Horsewell et al., Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air, Nano Letters, vol.6, issue.8, pp.1663-1668, 1928.

C. Roquelet, J. Lauret, V. Alain-rizzo, C. Voisin, R. Fleurier et al., ?-Stacking Functionalization of Carbon Nanotubes through Micelle Swelling, ChemPhysChem, vol.11, issue.8, p.28, 2010.

Y. Tsutsumi, T. Fujigaya, and N. Nakashima, Polymer synthesis inside a nanospace of a surfactant-micelle on carbon nanotubes: Bibliographie Creation of highly-stable individual nanotubes/ultrathin cross-linked polymer hybrids, vol.4, p.29, 2014.

V. Ardizzone, Y. Chassagneux, F. Vialla, G. Delport, C. Delcamp et al., Strong reduction of exciton-phonon coupling in single-wall carbon nanotubes of high crystalline quality: Insight into broadening mechanisms and exciton localization, Physical Review B, vol.91, issue.12, p.121410, 1929.
URL : https://hal.archives-ouvertes.fr/hal-01145028

D. Fong and A. Adronov, Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers, Chem. Sci, vol.8, issue.11, p.31, 2017.

J. Azevedo, C. Costa-coquelard, P. Jegou, T. Yu, and J. Benattar, Highly Ordered Monolayer, Multilayer, and Hybrid Films of Graphene Oxide Obtained by the Bubble Deposition Method, The Journal of Physical Chemistry C, vol.115, issue.30, p.36, 2011.

G. Tang, X. Zhang, S. Yang, V. Derycke, and J. Benattar, New Confinement Method for the Formation of Highly Aligned and Densely Packed Single-Walled Carbon Nanotube Monolayers, Small, vol.6, issue.14, p.36, 2010.

G. F. Levchik, K. Si, S. V. Levchik, G. Camino, and C. A. Wilkie, The correlation between cross-linking and thermal stability: Crosslinked polystyrenes and polymethacrylates, Polymer Degradation and Stability, vol.65, issue.3, pp.395-403, 1999.

L. Cognet, D. A. Tsyboulski, J. Rocha, D. Condell, J. M. Doyle et al., Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions, Science, issue.5830, p.50, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164617

M. J. O'connell, S. M. Bachilo, C. B. Huffman, and . Bruce-weisman, Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, issue.5581, p.50, 2002.

H. Oh, J. Sim, and S. Ju, Binding Affinities and Thermodynamics of Noncovalent Functionalization of Carbon Nanotubes with Surfactants, Langmuir, vol.29, issue.35, p.55, 2013.

S. Ju, W. P. Kopcha, and F. Papadimitrakopoulos, Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization, Science, vol.323, issue.5919, p.55, 2009.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The optical resonances in carbon nanotubes arise from excitons, Science, vol.308, issue.5723, p.57, 2005.

S. Moehl, H. Zhao, B. Don, S. Wachter, and H. Kalt, Solid immersion lens-enhanced nano-photoluminescence: Principle and applications, Journal of Applied Physics, vol.93, issue.10, pp.6265-6272, 2003.

F. Vialla, Y. Chassagneux, R. Ferreira, C. Roquelet, C. Diederichs et al., Unifying the low-temperature photoluminescence spectra of carbon nanotubes: The role of acoustic phonon confinement, Physical Review Letters, vol.113, issue.5, p.68, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01066160

G. Margolin, V. Protasenko, M. Kuno, and E. Barkai, Photon Counting Statistics for Blinking CdSe-ZnS Quantum Dots: A Lévy Walk Process ?, The Journal of Physical Chemistry B, vol.110, issue.38, pp.19053-19060, 1974.

F. Treussart, R. Alléaume, V. L. Floc'h, L. T. Xiao, J. Courty et al., Direct Measurement of the Photon Statistics of a Triggered Single Photon Source, Physical Review Letters, vol.89, issue.9, p.74, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00008370

A. Baumgartner, G. Abulizi, K. Watanabe, T. Taniguchi, J. Gramich et al., Carbon nanotube quantum dots on hexagonal boron nitride, Applied Physics Letters, vol.105, issue.2

O. Kozlova, Caractérisation d'une horloge à piégeage cohérent de population dans une vapeur thermique de césium. Principaux effets pouvant affecter la stabilité de fréquence à moyen-long terme, vol.78, p.79, 2012.

L. Orcin-chaix, G. Trippé-allard, C. Voisin, H. Okuno, V. Derycke et al., Single-walled carbon nanotube/polystyrene core-shell hybrids: Synthesis and photoluminescence properties, Journal of Materials Chemistry C, vol.6, issue.17, p.84, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01770262