M. Miller, J. Zhang, and K. Binzel, Characterization of the Vereos Digital photon counting PET system, J. Nucl. Med, vol.56, issue.3, pp.434-434, 2015.

C. Maurizio, State of the art and challenges of time-of-flight PET, Phys. Medica, vol.25, issue.1, pp.1-11, 2009.

G. Ariño-estrada, J. Du, and H. Kim, Development of TlBr detectors for PET imaging, Phys. Med. Biol, vol.63, issue.13, pp.13-17, 2018.

G. Ariño-estrada, G. Mitchell, and S. Kwon, Towards time-of-flight PET with a semiconductor detector, Phys. Med. Biol, vol.63, issue.4, pp.4-5, 2018.

P. Crespo, A. Blanco, and M. Couceiro, Resistive plate chambers in positron emission tomography, Eur. Phys. J. Plus, vol.128, issue.7, p.73, 2013.

P. Martins, A. Blanco, and P. Crespo, Towards very high resolution RPC-PET for small animals, J. Instrum, vol.9, issue.10, p.10012, 2014.

J. Gomez-cadenas, J. Benlloch-rodríguez, and P. Ferrario, Monte carlo study of the coincidence resolving time of a liquid xenon PET scanner

, J. Instrum, vol.12, issue.08, p.8023, 2017.

L. G. Manzano, S. Bassetto, and N. Beaupere, XEMIS : A liquid xenon detector for medical imaging, Nucl. Instrum. Meth. A, vol.787, pp.89-93, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01166249

D. Yvon, J. Renault, and . Tauzin, CaLIPSO : An novel detector concept for PET imaging, IEEE T. Nucl. Sci, vol.61, issue.1, pp.60-66, 2014.
URL : https://hal.archives-ouvertes.fr/cea-01758650

E. Ramos, O. Kochebina, and D. Yvon, Efficient and fast 511-kev ? detection through Cherenkov radiation : the CaLIPSO optical detector, J. Instrum, vol.11, issue.11, p.11008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554420

C. Canot, M. Alokhina, and P. Abbon, Development of the fast and efficient gamma detector using Cherenkov light for TOF-PET, J. Instrum, vol.12, issue.12, p.12029, 2017.

C. Canot, Détecteur optique Cherenkov de photons 511 keV, rapide et efficace, pour l'imagerie TEP, 2018.

É. Gaudin, M. Toussaint, and C. Thibaudeau, Performance simulation of an ultrahigh resolution brain PET scanner using 1.2-mm pixel detectors

J. D. Jackson, Chapter 2 : Boundary-value problems in electrostatics I, 1999.

W. Shockley, Currents to conductors induced by a moving point charge, J. Appl. Phys, vol.9, issue.10, pp.635-636, 1938.

S. Ramo, Currents induced by electron motion, Proc. IRE, vol.27, pp.584-585, 1939.

E. Aprile, R. Mukherjee, and M. Suzuki, Measurements of the lifetime of conduction electrons in liquid xenon, Nucl. Instrum. Meth. A, vol.300, issue.2, pp.343-350, 1991.

I. Lopes and W. F. Schmidt, Analysis of electronic conduction pulses produced in liquid ionization chambers by high energy radiation, Ninth International Conference on Conduction and Breakdown in Dielectric Liquids, pp.116-123, 1987.

G. F. Knoll, Chapter 5 : Ionization chambers. Dans Radiation Detection and Measurement, 2000.

W. F. Schmidt, Charge carrier energetics and dynamics in nonpolar liquids, Nucl. Instrum. Meth. A, vol.327, issue.1, pp.83-86, 1993.

A. O. Allen and R. A. Holroyd, Chemical reaction rates of quasi free electrons in nonpolar liquids, J Phys Chem, vol.78, issue.8, pp.796-803, 1974.

J. P. Jay-gerin, T. Goulet, and I. Billard, On the correlation between electron mobility, free-ion yield, and electron thermalization distance in nonpolar dielectric liquids, Can. J. Chem, vol.71, issue.3, pp.287-293, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00015793

J. Feltesse, Liquid noble gas and warm liquid detectors, Nucl. Instrum. Meth. A, vol.283, issue.3, pp.375-386, 1989.

J. Engler, Liquid ionization chambers at room temperatures, J. Phys. G Nucl. Partic, vol.22, issue.1, p.1, 1996.

E. Johansson, J. Andersson, and L. Johansson, Liquid ionization chamber initial recombination dependence on LET for electrons and photons, Phys. Med. Biol, vol.58, issue.12, p.4225, 2013.

G. Jaffé, Zur theorie der ionisation in kolonnen, Ann. d. Phys, vol.347, issue.12, pp.303-344, 1913.

H. A. Kramers, On a modification of Jaffe's theory of column-ionization, Physica, vol.18, issue.10, pp.665-675, 1952.

J. Thomas and D. A. Imel, Recombination of electron-ion pairs in liquid argon and liquid xenon, Phys. Rev. A, vol.36, issue.2, p.614, 1987.

A. N. Gerritsen, Ionization by alpha-particles in liquids at low temperatures : 1. Measurements in liquid nitrogen and liquid hydrogen, Physica, vol.14, issue.6, pp.381-406, 1948.

W. R. Kanne and J. A. Bearden, Columnar ionization, Phys. Rev, vol.50, issue.10, p.935, 1936.

R. A. Holroyd, S. Geer, and F. Ptohos, Free-ion yields for several silicon-, germanium-, and tin-containing liquids and their mixtures, Phys. Rev. B, vol.43, issue.11, p.9003, 1991.

L. Onsager, Initial recombination of ions, Phys. Rev, vol.54, issue.8, p.554, 1938.

J. Terlecki and J. Fiutak, Onsager's recombination theory applied to liquid alkanes, Int. J. Radiat. Phys. Ch, vol.4, issue.4, pp.469-478, 1972.

A. Mozumder, Effect of an external electric field on the yield of free ions. I General results from the onsager theory, J. Chem. Phys, vol.60, issue.11, pp.4300-4304, 1974.

A. Mozumder, Effect of an external electric field on the yield of free ions. II The initial distribution of ion pairs in liquid hydrocarbons, J. Chem. Phys, vol.60, issue.11, pp.4305-4310, 1974.

J. Mathieu, D. Blanc, and D. Cartaillac, Les phénomènes de recombinaison ionique dans les diélectriques liquides, J. Phys, vol.27, issue.3-4, pp.246-253, 1966.

A. Mozumder, Electron Escape : The Free-Ion Yield, Fundamentals of Radiation Chemistry, vol.9, pp.285-316, 1999.

H. Jungblut and W. F. Schmidt, Ionization of tetramethylsilane by 60 Co ?-radiation

, Nucl. Instrum. Meth. A, vol.241, issue.2-3, pp.616-617, 1985.

W. F. Schmidt and A. O. Allen, Free-ion yields in sundry irradiated liquids, J. Chem. Phys, vol.52, issue.5, pp.2345-2351, 1970.

M. I. Lopes, K. Masuda, and T. Doke, Estimation of the electron lifetime in tetramethylsilane, Nucl. Instrum. Meth. A, vol.271, issue.3, pp.464-470, 1988.

R. A. Holroyd, S. Geer, and F. Ptohos, Free-ion yields for several silicon-, germanium-, and tin-containing liquids and their mixtures, Phys. Rev. B, vol.43, issue.11, p.9003, 1991.

R. C. Muñoz, D. Drijard, and A. Ferrando, On the application of the Onsager theory to the description of the free-ion yield observed in "warm liquids" irradiated by ?-rays, Nucl. Instrum. Meth. B, vol.69, issue.2-3, pp.293-306, 1992.

J. Engler, J. Knapp, and G. Vater, Electron conduction in methylsilanes and their mixtures, Nucl. Instrum. Meth. A, vol.327, issue.1, pp.102-106, 1993.

H. Hara, H. Ohnuma, and Y. Hoshi, A study of energy resolution in a gridded ionization chamber filled with tetramethylsilane and tetramethylgermanium, Radiat. Meas, vol.29, issue.1, pp.1-8, 1998.

S. Jan, G. Santin, and D. Strul, GATE : a simulation toolkit for PET and SPECT, Phys. Med. Biol, vol.49, issue.19, p.4543, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

S. Agostinelli, J. Allison, and K. Amako, GEANT4-a simulation toolkit, Nucl. Instrum. Meth. A, vol.506, issue.3, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

G. F. Knoll, Chapter 2 : Radiation interactions, 2000.

M. Farradèche, G. Tauzin, and J. P. Mols, Free ion yield of trimethyl bismuth used as sensitive medium for high-energy photon detection, J Instrum, vol.13, issue.11, p.11004, 2018.

J. Pardo-montero and F. Gómez, Determining charge collection efficiency in parallelplate liquid ionization chambers, Phys. Med. Biol, vol.54, issue.12, p.3677, 2009.

S. Geer, R. A. Holroyd, and F. Ptohos, Search for new room temperature liquids for use in ionization chambers, Nucl. Instrum. Meth. A, vol.301, issue.1, pp.61-68, 1991.

W. F. Schmidt, Electron mobility in nonpolar liquids : the effect of molecular structure, temperature, and electric field, Can. J. Chem, vol.55, issue.11, pp.2197-2210, 1977.

E. Ramos, O. Kochebina, and D. Yvon, Efficient and fast 511-kev ? detection through Cherenkov radiation : the CaLIPSO optical detector, J. Instrum, vol.11, issue.11, p.11008, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01554420

D. R. Lide, Physical constants of organic compounds, CRC Handbook of Chemistry and Physics, 2005.

M. J. Berger, J. H. Hubbell, and S. M. Seltzer, XCOM : Photon Cross Section Database, National Institute of Standards and Technology, 2010.

J. E. Cremer and S. Callaway, Further studies on the toxicity of some tetra and trialkyl lead compounds, Occup. Environ. Med, vol.18, issue.4, pp.277-282, 1961.

H. Hara, H. Ohnuma, and Y. Hoshi, A study of energy resolution in a gridded ionization chamber filled with tetramethylsilane and tetramethylgermanium, Radiat. Meas, vol.29, issue.1, pp.1-8, 1998.

U. Hahn, M. Hesse, and H. Remde, A new cleaning facility for particle-free UHVcomponents, Vacuum, vol.73, issue.2, pp.231-235, 2004.

R. J. Elsey, Outgassing of vacuum materials-II, Vacuum, vol.25, issue.8, pp.347-361, 1975.

S. Ochsenbein, D. Schinzel, and A. Gonidec, Purity in room temperature liquid ionization chambers, Nucl. Instrum. Meth. A, vol.273, issue.2-3, pp.654-656, 1988.

P. Salin, La calorimétrie à liquide organique diélectrique à température ambiante : étude des propriétés dans la perspective du LHC, 1993.

J. Engler and H. Keim, A liquid ionization chamber using tetramethylsilane, Nucl. Instrum. Methods, vol.223, issue.1, pp.47-51, 1984.

H. Jungblut and W. F. Schmidt, Ionization of tetramethylsilane by 60 Co ?-radiation

, Nucl. Instrum. Meth. A, vol.241, issue.2-3, pp.616-617, 1985.

K. Masuda, T. Doke, and T. Ikegami, Room temperature liquid ionization chambers using tetramethylsilane, Nucl. Instrum. Meth. A, vol.241, issue.2-3, pp.607-609, 1985.

J. Engler, F. Fessler, and J. R. Hörandel, A warm-liquid calorimeter for cosmic-ray hadrons, Nucl. Instrum. Meth. A, vol.427, issue.3, pp.528-542, 1999.

D. W. Breck, Chapter 2 : Structure of zeolites, Zeolite Molecular Sieves, 1974.

R. R. Bannock, Molecular sieve pumping, Vacuum, vol.12, issue.2, pp.107-108, 1962.

D. M. Ruthven, Principles of adsorption & adsorption processes, 1984.

B. Beagley and K. T. Mcaloon, The molecular structure of trimethyl bismuth, by gasphase electron diffraction, J. Mol. Struct, vol.17, pp.429-430, 1973.

Y. Marcus, Chapter 4 : Chemical properties of solvents. Dans The Properties of Solvents, 1998.

C. De-la-taille, Basics on preamplifiers and shapers. École d'électronique analogique de l'IN2P3, 2008.

P. Vallerand, Les préamplificateurs dans la chaîne d'instrumentation nucléaire. Sé-minaire GANIL, 2012.

M. Schrader, , 1990.

W. F. Schmidt, Charge carrier energetics and dynamics in nonpolar liquids, Nucl. Instrum. Meth. A, vol.327, issue.1, pp.83-86, 1993.

S. Jan, G. Santin, and D. Strul, GATE : a simulation toolkit for PET and SPECT, Phys. Med. Biol, vol.49, issue.19, p.4543, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00021834

S. Agostinelli, J. Allison, and K. Amako, GEANT4-a simulation toolkit, Nucl. Instrum. Meth. A, vol.506, issue.3, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

J. Engler, F. Fessler, and J. R. Hörandel, A warm-liquid calorimeter for cosmic-ray hadrons, Nucl. Instrum. Meth. A, vol.427, issue.3, pp.528-542, 1999.

W. F. Schmidt and A. O. Allen, Mobility of electrons in dielectric liquids, J. Chem. Phys, vol.52, issue.9, pp.4788-4794, 1970.

A. O. Allen and R. A. Holroyd, Chemical reaction rates of quasi free electrons in nonpolar liquids, J Phys Chem, vol.78, issue.8, pp.796-803, 1974.

N. E. Cipollini and A. O. Allen, Electron mobilities in liquid tetramethylsilane at temperatures up to the critical point, J. Chem. Phys, vol.67, issue.1, pp.131-133, 1977.

R. C. Muñoz and G. Ascarelli, Measurement of the room-temperature hall mobility of injected electrons in liquid tetramethylsilane, Chem. Phys. Lett, vol.94, issue.2, pp.235-239, 1983.

R. A. Holroyd and W. F. Schmidt, On the low field electron mobility of tetramethylsilane, Nucl. Instrum. Meth. A, vol.311, issue.3, pp.631-632, 1992.

J. Engler, J. Knapp, and G. Vater, Electron conduction in methylsilanes and their mixtures, Nucl. Instrum. Meth. A, vol.327, issue.1, pp.102-106, 1993.

S. Geer, R. A. Holroyd, and F. Ptohos, Search for new room temperature liquids for use in ionization chambers, Nucl. Instrum. Meth. A, vol.301, issue.1, pp.61-68, 1991.

. Tmbi, Une étude du potentiel d'utilisation du TMPb comme milieu de détection pour l'imagerie TEP est également envisagée

, Défi 10 ps" qui permet d'entrevoir des applications d'imagerie ultra-rapide permettant d'acquérir une image en temps réel sans recourir à la reconstruction tomographique. Pour cela, ClearMind propose [6.7] : (i) d'améliorer l'efficacité de collection de lumière dans un cristal à haut numéro atomique et haute densité par le dépôt d'une couche photoélectrique directement sur la face de sortie du cristal scintillant, (ii) d'encapsuler ce cristal avec un MCP-PMT densément pixelisé, (iii) d'exploiter la carte des photoélectrons produits à la surface du cristal pour reconstruire la position d'interaction du photon au moyen d'estimateurs statistiques robustes, (iv) d'exploiter l'émission de lumière Cherenkov

, Le cristal retenu pour ce projet est le tungstate de plomb (PbWO 4 )

, ] grâce à son numéro atomique élevé. C'est un scintillateur et un radiateur Cherenkov. Cette double production de lumière permettra d'atteindre une excellente résolution en temps, une mesure de l'énergie déposée et une reconstruction de la position d

. Bibliographie,

W. F. Schmidt, The basic properties of liquid xenon as related to its application in radiation detectors. Dans Technique and Application of Xenon detectors, pp.1-16, 2002.

J. P. Jay-gerin, T. Goulet, and I. Billard, On the correlation between electron mobility, free-ion yield, and electron thermalization distance in nonpolar dielectric liquids, Can. J. Chem, vol.71, issue.3, pp.287-293, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00015793

O. Gevin, O. Lemaire, and F. Lugiez, Imaging X-ray detector front-end with high dynamic range : IDeF-X HD, Nucl. Instrum. Meth. A, vol.695, pp.415-419, 2012.

E. Ramos, Démonstrateur optique CaLIPSO pour l'imagerie TEP clinique et précli-nique, 2015.

G. F. Knoll, Chapter 2 : Radiation interactions. Dans Radiation Detection and Measurement, 2000.

J. Rasch, Improvement of PET-images of freely-moving mice by registration of shorttime reconstructions, 2013.

D. Yvon and V. Sharyy, Detector of high-energy photons. Brevet FR1759065, 2017.

M. J. Berger, J. H. Hubbell, and S. M. Seltzer, Photon Cross Section Database, 2010.

O. R. Frisch, Isotope analysis of uranium samples by means of their alpha-ray groups, Brit. Atom. Energy Project, p.49, 1944.

O. Bunemann, T. E. Cranshaw, and J. A. Harvey, Design of grid ionization chambers, Can. J. Res, vol.27, issue.5, pp.191-206, 1949.

A. Göök, F. J. Hambsch, and A. Oberstedt, Application of the Shockley-Ramo theorem on the grid inefficiency of Frisch grid ionization chambers, Nucl. Instrum. Meth. A, vol.664, issue.1, pp.289-293, 2012.

A. Al-adili, F. J. Hambsch, and R. Bencardino, Ambiguities in the grid-inefficiency correction for Frisch-grid ionization chambers, Nucl. Instrum. Meth. A, vol.673, pp.116-121, 2012.