C. Annexe,

, Groupe d'experts intergouvernemental sur l'evolution du climat. Changements climatiques 2014 rapport de synthèse, GIEC, vol.2, p.3, 2014.

, Groupe de travail I. Changements climatiques 2013 contribution du groupe de travail i "les éléments scientifiques, GIEC, p.2, 2013.

R. S. Vose, D. Arndt, V. F. Banzon, D. R. Easterling, B. Gleason et al., Noaa's merged land-ocean surface temperature analysis, Bull. Am. Meteor. Soc, vol.93, p.2, 2012.

C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones, Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates. the hadcrut4 data set, J. Geophs. Res, vol.117, p.2, 2012.

J. Hansen, R. Ruedy, M. Sato, and K. Lo, Global surface temperature change, Rev. Geophys, vol.48, p.2, 2010.

S. Abrar, D. Piero-de-bonis, F. Buttle, J. J. Gagliardi, K. Mingo et al., Franco Di Persio, Natalia Lebedeva, Heinz Ossenbrink, and Cristian Sales Agut. The strategic energy technology (set) plan, p.2, 2017.

I. Chambre, Pollution de l'air : notre sante n'est toujours pas suffisamment protegee, p.2, 2018.

L. Van-biert, M. Godjevac, P. V. Visser, and . Aravind, A review of fuel cell systems for maritime applications, Journal of Power Sources, vol.327, p.16, 2016.

J. Adolf, C. H. Balzer, and J. Louis, Uwe Schabla, Manfred Fischedick, Karin Arnold, and Andreas Pastowski and. Dietmar Schü-wer. Shell hydrogen study : Energy of the future ? sustainable mobility through fuel cells and h2, vol.5, 2017.

G. Sattler, Fuel cells going on-board, Journal of Power Sources, vol.86, issue.1-2, p.6, 2000.

L. Langfeldt, Maritime fuel cell applications : Regulations, codes and standards, p.6, 2017.

J. W. Pratt and S. Han-chan, Maritime fuel cell generator project, p.6, 2017.

B. Pregelj, A. Debenjak, G. Dolanc, and J. Petrov?i?, A diesel-powered fuel cell apu-reliability issues and mitigation approaches, IEEE Transactions on Industrial Electronics, vol.7, p.10, 2017.

P. Arku, B. Regmi, and A. Dutta, A review of catalytic partial oxidation of fossil fuels and biofuels : Recent advances in catalyst development and kinetic modelling, Chemical Engineering Research and Design, vol.136, p.15, 2018.

A. Naidja, C. R. Krishna, T. Butcher, and D. Mahajan, Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems, Progress in Energy and Combustion Science, vol.29, p.9, 2003.

C. Schluckner, V. Sbottic, V. Lawlor, and C. Hochenauer, Threedimensional numerical and experimental investigation of an industrialsized sofc fueled by diesel reformal -part ii : Detailed reformer chemistry and carbon deposition analysis, International journal of Hydrogen Energy, vol.40, p.10, 2015.

J. Bae, S. Lee, S. Kim, J. Oh, S. Choi et al., Liquid fuel processing for hydrogen production : A review, International journal of Hydrogen Energy, p.10, 2016.

L. Shi, D. J. Bayless, and M. E. Prudich, A cfd model of autothermal reforming, International journal of Hydrogen Energy, vol.34, p.16, 2009.

J. , Simulation numerique du reformage autothermique du methane, vol.62, p.183, 2013.

S. Specchia, Fuel processing activities at european level : A panoramic overview, International journal of Hydrogen Energy, p.11, 2014.

X. Xu, P. Li, and Y. Shen, Small-scale reforming of diesel and jet fuels to make hydrogen and syngas for fuel cells : A review, Applied Energy, vol.108, p.13, 2013.

A. G. Berry and R. Edgeworth-johnstone, Petroleum coke -formation and properties, Industrial and Engineering Chemistry, vol.36, issue.12, p.12, 1944.

J. Towfighi, M. Sadrameli, and A. Niaei, Coke formation mechanisms and coke inhibiting methods in pyrolysis furnaces, journal of chemical engineering of Japan, vol.35, issue.10, p.14, 2002.

P. Vervische, Soot and NOx modeling dedicated to Diesel engine, vol.13, p.15, 2012.

M. Elisio-maria-ranzi, S. Dente, and . Pierucci, Coking simulation aids on-stream time, Oil & Gas Journal, p.13, 1985.

S. Yoon, I. Kang, and J. Bae, Effects of ethylene on carbon formation in diesel autothermal reforming, International journal of Hydrogen Energy, vol.33, p.13, 2008.

H. Zhang, Y. Wang, S. Shao, and R. Xiao, An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural, Combustion and Flame, p.15, 2016.

C. Li, S. Appari, R. Tanaka, K. Hanao, Y. Lee et al., A cfd study on the reacting flow of partially combusting hot coke oven gas in a bench-scale reformer, Fuel, vol.159, p.15, 2015.

L. Maier, M. Hartmann, S. Tischer, and O. Deutschmann, Interaction of heterogeneous and homogeneous kinetics with mass and heat transfert in catalytic reforming of logistic fuels, Combustion and Flame, vol.158, p.16, 2011.

B. Amblard, R. Singh, E. Gbordzoe, and L. Raynal, Cfd modeling of the coke combustion in an industrial fcc regenerator, Chemical Engineering Science, p.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01631640

P. Rodrigues, Modélisation multiphysique de flammes turbulentes suitées avec la prise en compte des transferts radiatifs et des transferts de chaleur pariétaux, p.15, 2018.

S. Sengodan, R. Lana, J. Humphreysa, D. Dua, W. Xua et al., Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications, Renewable and Sustainable Energy Reviews, vol.82, p.15, 2018.

D. Benjamin, X. Gould, J. W. Chen, and . Schwank, ndodecane reforming over nickel-based monolith catalysts : Deactivation and carbon deposition, Applied Catalysis A : General, vol.334, p.15, 2008.

A. Vita, C. Italiano, C. Fabiano, L. Pino, M. Laganà et al., Hydrogen-rich gas production by steam reforming of n-dodecane part i : Catalytic activity of pt/ceo2 catalysts in optimized bed configuration, Applied Catalysis B : Environmental, vol.199, p.15, 2016.

A. Vita, C. Italiano, L. Pino, V. Recupero, and M. Laganà, Hydrogen-rich gas production by steam reforming of n-dodecane. part ii : Stability, regenerability and sulfur poisoning of low loading rh-based catalyst, Applied Catalysis B : Environmental, vol.218, p.15, 2017.

M. Hartmann, L. Maier, H. D. Minh, and O. Deutschmann, Catalytic partial oxidation of iso-octane over rhodium catalysts ; an experimental, modeling and simulation study, Combustion and Flame, vol.157, p.15, 2010.

D. Liu, T. D. Kaun, H. Liao, and S. Ahmed, Characterization of kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons, International journal of Hydrogen Energy, vol.29, p.15, 2004.

J. Pasel, S. Wohlrab, S. Kreft, M. Rotov, K. Lohken et al., Routes for deactivation of different autothermal reforming catalysts, Journal of Power Sources, vol.325, p.17, 2016.

I. Kang and J. Bae, Autothermal reforming study of diesel for fuel cell application, Journal of Power Sources, vol.159, p.15, 2006.

Z. Por?, J. Pasel, A. Tschauder, R. Dahl, R. Peters et al., Optimised mixture formation for diesel fuel processing, Fuell Cells, vol.08, issue.2, p.55, 2008.

A. Richter, P. Seifert, F. Compart, P. Tischer, and B. Meyer, A large-scale benchmark for the cfd modeling of non-catalytic reforming of natural gas based on the freiberg test plant hp pox, Fuel, vol.152, p.16, 2015.

B. Magnussen and B. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symposium (International) on Combustion, vol.16, p.182, 1977.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer et al., Gri-mech 3.0. tech. rep, p.16, 1999.

M. A. Founti, D. I. Katsourinis, and D. I. Kolaitis, Turbulent sprays evaporating under "stabilized cool flame" conditions : Assessment of two cfd approaches. Numerical Heat Transfer Fundamentals, p.16, 2007.

K. The-Ìa-lancien, D. Prieur, S. Durox, R. Candel, and . Vicquelin, Large eddy simulation of light-round in an annular combustor with liquid spary injection and comparison with experiments, Proceedings of ASME Turbo Expo 2017 : Turbomachinery Technical Conference and Exposition, vol.163, p.165, 2017.

A. Hadi-amirshaghaghi, H. Zamaniyan, M. Ebrahimi, and . Zarkesh, Numerical simulation of methane partial oxidation in the burner and combustion chamber of autothermal reformer, Applied Mathematical Modelling, vol.34, p.16, 2010.

S. Kim, A. M. Dean, and J. Bae, Coupled transport and kinetics in the mixing region for hydrocarbon autothermal reforming applications, International journal of Hydrogen Energy, vol.38, p.21, 2013.

Z. Pors, Eduktvorbereitung und Gemischbildung in Reaktionsapparaten zur autothermen Reformierung von dieselähnlichen Kraft-stoffen, p.17, 0201.

J. Pasel, R. C. Samsun, D. Schmitt, R. Peters, and D. Stolten, Test of a water-gas-shift reactor on a 3 kwe-scale-design points for high-and low-temperature shift reaction, Journal of Power Sources, vol.152, p.17, 2005.

J. Pasel, R. Remzi-can-samsun, B. Peters, D. Thiele, and . Stolten, Long-term stability at fuel processing of diesel and kerosene, International journal of Hydrogen Energy, vol.39, p.17, 2014.

J. Pasel, J. Meißner, Z. Por?, R. C. Samsun, A. Tschauder et al., Autothermal reforming of commercial jet a-1 on a 5 kwe scale, International journal of Hydrogen Energy, vol.32, p.17, 2007.

J. Pasel, R. Remzi-can-samsun, D. Peters, and . Stolten, Fuel processing of diesel and kerosene for auxiliary power unit applications, Energy & Fuels, vol.27, p.17, 2013.

J. Meißner, J. Pasel, and R. Peters, Remzi Can Samsun, Andreas Tschauder, and Detlef Stolten. Elimination of by-products of autothermal diesel reforming, Chemical Engineering Journal, vol.306, p.17, 2016.

J. Pasel, A. Remzi-can-samsun, R. Tschauder, D. Peters, and . Stolten, Advances in autothermal reformer design, Applied Energy, vol.198, p.193, 2017.

J. Pasel, A. Remzi-can-samsun, and . Tschauder, Ralf Peters, and Detlef Stolten. A novel reactor type for autothermal reforming of diesel fuel and kerosene, Applied Energy, vol.150, p.17, 2015.

V. Fichet, Modelisation de la combustion du gaz naturel par reseaux de reacteurs avec cinetique chimique detaillee, vol.81, p.97, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00549790

C. K. Westbrook and F. L. Dryer, Chemical kinetic modeling of hydrocarbon combustion, Progress in Energy and Combustion Science, vol.10, p.99, 1984.

F. Desogus and R. Carta, Kinetic modelling of the gas-phase water oxidation of light hydrocarbons. Chemical Engineering Transactions, vol.52, p.104, 2016.

M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Building-up virtual optimized mechanism for flame modeling. Proceedings of the Combustion Institute, vol.127, p.138, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01541938

T. A. Epalle, F. Gaugain, V. Melot, N. Darabiha, and O. Gicquel, Numerical study of counter jet formed by impinging jets in cross-flow and its effets on mixing, Proceedings of ASME Turbo Expo 2017 : Turbomachinery Technical Conference and Exposition GT2017, p.24, 2017.

C. Priere, Simulation aux grandes echelles : application au jet transverse, vol.32, p.34, 2005.

E. F. Hasselbrink and M. G. , Transverse jets and jet flames. part 1. scaling laws for strong transverse jets, journal of Fluid Mechanics, vol.443, p.31, 2001.

K. Mahesh, The interaction of jets with crossflow, Annu. Rev. Fluid Mech, vol.45, p.33, 2013.

S. H. Smith and M. G. , Mixing, structure and scaling of the jet in crossflow, Journal of Fluid Mechanics, vol.357, p.30, 1998.

G. I. Barenblatt and Y. B. Zeldovich, Self-similar solutions as intermediate asymptotics, Annu. Rev. Fluid Mech, vol.4, p.30, 1972.

E. V. Kartaev, V. A. Emelkin, M. G. Ktalkherman, S. M. Aulchenko, S. P. Vashenko et al., Formation of counter flow jet resulting from impingement of multiple jets radially injected in a crossflow, Experimental Thermal and Fluid Science, vol.68, p.41, 2015.

T. F. Fric and A. Roshko, Structure in the near-field of the transverse jet, Stanford, editor, 7th Symp. on Turbulent Shear Flows, p.31, 1989.

A. R. Karagozian, Transverse jets and their control, Progress in Energy and Combustion Science, vol.36, p.31, 2010.

R. M. Kelso, T. T. Lim, and A. E. Perry, An experimental study of round jets in cross-flow, Journal of Fluid Mechanics, vol.306, p.32, 1996.

J. E. Broadwell and R. E. Breidenthal, Structure and mixing of a transverse jet in incompressible flow, Journal of Fluid Mechanics, vol.148, p.31, 1984.

S. Muppidi and K. Mahesh, A model for the formation of the counter-rotating vortex pair in jets in crossflow, Phys. Fluids, p.31, 2006.

R. M. Kelso and A. J. Smits, Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet, Physics of Fluids, vol.7, p.32, 1995.

S. Acharya, M. Tyagi, and A. Hoda, Flow and heat tranfer predictions for film cooling, Ann. NY Acad. Sci, vol.934, p.206, 2001.

S. Muppidi and K. Mahesh, Direct numerical simulation of round turbulent jets in crossflow, journal of Fluid Mechanics, vol.574, p.33, 2007.

. Vincent-robin, Contribution à la modélisation des écoulements turbulent réactifs partiellement prémélangés, p.33, 2007.

S. Muppidi and K. Mahesh, Direct numerical simulation of passive scalar transport in transverse jets, journal of Fluid Mechanics, vol.598, p.33, 2008.

J. Andreopoulos and W. Rodi, Experimental investigation of jets in a crossflow, journal of Fluid Mechanics, vol.128, p.35, 1984.

J. Andreopoulos, Heat transfer measurements in a heated jet-pipe flow issuing into a cold stream, Physics of Fluids, vol.26, p.34, 1983.

F. R. Menter, Best practice : Scale-resolving simulations in ansys cfd, ANSYS Germany GmbH, p.35, 2015.

E. V. Kartaev, V. A. Emelkin, M. G. Ktalkherman, V. I. Kuzmin, S. M. Aulchenko et al., Analysis of mixing of impinging radial jets with crossflow in the regime of counter flow jet formation, Chemical Engineering Science, vol.119, p.38, 2014.

J. J. Mcguirk and A. Spencer, Coupled and uncoupled cfd prediction of the characteristics of jets from combustor air admission ports, Journal of Engineering for Gas Turbines and Power, p.38, 2001.

P. Luo, Y. Fang, B. Wu, and H. Wu, Turbulent characteristics and design of transverse jet mixers with multiple orifices. Industrial and Engineering Chemistry Research, vol.39, p.47, 2016.

M. D. Sivapragasam, . Eshpande, P. Ramamurthy, and . White, Turbulent jet in confined counterflow, Sadhana, vol.39, issue.3, p.43, 2014.

W. D. Morgan, B. J. Brinkworth, and G. V. Evans, Upstream penetration of an enclosed counterflowing jet, Ind. Eng. Chem, RÉFÉRENCES, vol.15, issue.2, p.41, 1976.

J. D. Holdeman, Mixing of multiple jets with a subsonic crossflow, Progress in Energy and Combustion Science, vol.19, p.47, 1993.

J. D. Holdeman, D. S. Liscinsky, V. K. Oechsle, .. S. Samuelsen, and C. E. Smith, Mixing of multiple jets with a confined subsonic crossflow : Part l cylindrical duc, Transactions of the ASME, vol.119, p.47, 1997.

H. Urson, M. F. Lightstone, and M. J. Thomson, A numerical study of jets in a reactive crossflow, Numerical Heat Transfert, vol.40, p.47, 2001.

D. J. Forliti, D. V. Salazar, and A. J. Bishop, Physicsâbased scaling laws for confined and unconfined transverse jets, Exp Fluids, vol.56, issue.36, p.47, 2015.

A. Frassoldati, D. Gianluca, T. Errico, A. Lucchini, A. Stagni et al., Reduced kinetic mechanisms of diesel surrogate for engine cfd, Combustion and Flame, vol.162, p.58, 2015.

J. T. Farrell, N. P. Cernansky, F. L. Dryer, C. K. Law, D. G. Friend et al., Development of an experimental database and kinetic models for surrogate diesel fuels, In SAE Technical Paper Series, p.55, 2007.

J. William, C. J. Pitz, and . Mueller, Recent progress in the development of diesel surrogate fuels, Progress in Energy and Combustion Science, vol.37, p.54, 2011.

G. Vanhove, A. E. Bakali, M. Ribaucour, and R. Minetti, Detailed thermokinetic modelling of the low-temperature autoignition of a tertiary surrogate petrol fuel, Proceedings of the third European combustion meeting, p.55, 2007.

S. Kim and A. Dean, The impact of fuel evaporation on the gas-phase kinetics in the mixing region of a diesel autothermal reformer, International journal of Hydrogen Energy, vol.40, p.55, 2015.

Y. Pei, M. Mehl, W. Liu, T. Lu, W. J. Pitz et al., A multi-component blend as a diesel fuel surrogate for compression ignition engine applications, Proceedings of the ASME 2014 Internal Combustion Engine Division Fall Technical Conference, vol.58, p.211, 2014.

A. Frassoldati, A. Cuoci, A. Stagni, T. Faravelli, and E. Ranzi, Skeletal kinetic mechanism for diesel combustion. Combustion Theory and Modelling, p.93, 2015.

W. Hentschel, K. P. Schindler, and O. Haahtela, European diesel research idea -experimental results from di diesel engine investigations, p.55, 1994.

E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, T. Faravelli et al., Reduced kinetic schemes of complex reaction systems : Fossil and biomassderived transportation fuels, International Journal of Chemical Kinetics, p.56, 2014.

F. Battin-leclerc, Detailed chemical kinetic models for the lowtemperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Progress in Energy and Combustion Science, vol.34, p.58, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00288708

S. Vasu, D. F. Davidson, Z. Hong, V. Vasudevan, and H. R. , n-dodecane oxidation at high-pressures : Measurements of ignition delay times and oh concentration time-histories, Proceedings of the Combustion Institute, p.59, 2009.

P. S. Hsi-, J. Shen, J. Steinberg, M. A. Vanderover, and . Oehlschlaeger, A shock tube study of the ignition of n-heptane, ndecane, n-dodecane, and n-tetradecane at elevated pressures, Energy & Fuels, p.59, 2009.

T. J. Snowden, P. H. Van-der-graaf, and M. J. Tindall, Methods of model reduction for large-scale biological systems : A survey of current methods and trends, Bulletin of Mathematical Biology, vol.79, p.96, 2017.

J. Kirch, C. Thomaseth, A. Jensch, and N. E. Radde, The effect of model rescaling and normalization on sensitivity analysis on an example of a mapk pathway model, EPJ Nonlinear Biomed Phys, vol.4, issue.1, p.91, 2016.

N. Jaouen, An automated approach for derive and optimize reduced chemical mechanisms for turbulent combustion, p.99, 2017.

A. S. Tomlin, T. Turanyi, and M. J. Pilling, Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Comprehensive chemical kinetics, vol.35, p.91, 1997.

J. Huang, P. G. Hill, W. K. Bushe, and S. R. Munshi, Shock-tube study of methane ignition under engine-relevant conditions : experiments and modeling, Combustion and Flame, vol.136, p.91, 2004.

U. Burke, P. Kieran, . Somers, O. Peter, C. M. Toole et al., An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combustion and Flame, vol.162, p.91, 2015.

T. Turányi, Sensitivity analysis of complex kinetic systems. tools and applications, Journal of Mathematical Chemistry, vol.5, p.91, 1990.

M. R. Maurya, S. Katare, P. R. Patkar, A. E. Rundell, and V. Venkatasubramanian, A systematic framework for the design of reduced-order models for signal transduction pathways from a control theoretic perspective, Computers & Chemical Engineering, vol.30, issue.3, p.92, 2006.

K. Edwards, T. F. Edgar, and V. I. Manousiouthakis, Kinetic model reduction using genetic algorithms, Computers & Chemical Engineering, vol.22, issue.1-2, p.92, 1997.

L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian et al., Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms, Computers & Chemical Engineering, vol.30, p.92, 2006.

N. Jaouen, P. Domingo, and L. Vervisch, Using genetic algorithm for automated optimization of reduced chemical schemes, Proceedings of the European Combustion Meeting, vol.93, p.140, 2015.

P. Pepiot-desjardins and H. Pitsch, An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms, Combustion Theory and Modelling, vol.12, issue.6, p.92, 2008.

T. Lu and C. K. Law, A directed relation graph method for mechanism reduction, Proceedings of the Combustion Institute, vol.30, p.93, 2005.

P. Pepiot and H. Pitsch, Systematic reduction of large chemical mechanisms, 4th Joint Meeting of the U.S. Sections of the Combustion Institute, p.93, 2005.

J. J. Hernandez, J. Sanz-argent, and E. Monederovillalba, A reduced chemical kinetic mechanism of a dieselfuel surrogate (n-heptane/toluene) for hcci combustion modelling, Fuel, vol.133, p.97, 2014.

X. L. Zheng, T. F. Lu, and C. K. Law, Experimental counterflow ignition temperatures and reaction mechanisms of 1,3-butadiene, Proceedings of the Combustion Institute, vol.31, p.93, 2007.

W. Sun, Z. Chen, X. Gou, and Y. Ju, A path flux analysis method for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame, vol.157, p.93, 2010.

T. Lu and C. K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph : n-heptane and iso-octane, Combustion and Flame, vol.144, p.93, 2006.

, Ansys Inc. Chemkin Theory Manual, p.93, 2018.

, Ansys Inc. Chemkin Advanced Analysis Manual, p.93, 2018.

M. Bodenstein and H. Lutkemeyer, Quasi-steady state assumption, Z. Physics and Chemistry, vol.114, p.94, 1924.

N. Peters, Numerical simulation of combustion phenomena, chapter Numerical and asymptotic analysis of systematically reduced reaction schemes for hydrocarbon flames, p.94, 1985.

A. N. Tikhonov, Systems of differential equations containing small parameters in the derivatives, Matematicheskii Sbornik, vol.73, issue.3, p.94, 1952.

W. Klonowski, Simplifying principles for chemical and enzyme reaction kinetics, Biophys Chem, p.94, 1983.

S. H. Lam, Using csp to understand complex chemical kinetics, Combustion Science and Technology, vol.89, issue.5-6, p.95, 1993.

U. Maas and S. B. Pope, Simplifying chemical kinetics : Intrinsic lowdimensional manifolds in composition space, Combustion and Flame, p.181, 1992.

S. H. Lam and D. A. Goussis, Conventional asymptotics and computational singular perturbation for simplified kinetics modelling, Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames, p.96, 1991.

O. Gicquel, Developpement d'une nouvelle methode de reduction des schemas cinetique : Application au methane, vol.99, p.181, 2000.

B. Fiorina, Modelisation de la combustion turbulente pour l'amelioration de la prediction des polluants dans un bruleur industriel, p.181, 2004.

J. A. Van-oijen and L. P. De-goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combustion Science and Technology, vol.161, issue.1, p.99, 2000.

W. P. Jones and R. P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combustion and Flame, vol.73, p.149, 1988.

A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, C. Candusso et al., Simplified kinetic schemes for oxy-fuel combustion, 1st International Conference on Sustainable Fossil Fuels for Future Energy, vol.100, p.104, 2009.

A. Abou-taouk, I. R. Sigfrid, R. Whiddon, and L. E. Eriksson, A fourstep global reaction mechanism for cfd simulations of flexi-fuel burner for gas turbines. Turbulence, vol.7, p.104, 2012.

B. Farcy, A. Abou-taouk, L. Vervisch, P. Domingo, and N. Perret, Two approaches of chemistry downsizing for simulating selective non catalytic reduction denox process, Fuel, p.104, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01612393

F. José, M. Cariena, and . Santander, Dimensional analysis, Advances in Electronics and Electron Physics, vol.72, p.112, 1988.

L. Brand, The pi theorem of dimensional analysis, Archive for Rational Mechanics and Analysis, vol.1, p.216, 1957.

J. Bertrand, Sur l'homogénéité dans les formules de physique, Comptes rendus, vol.85, issue.15, p.112, 1878.

E. Buckingham, On physically similar systems ; illustrations of the use of dimensional equations, Physical Review, vol.4, p.112, 1914.

R. J. Kee, F. M. Rupley, and E. Meeks, CHEMKIN-III : a FORTRAN Chemical Kinetics Package for the Analysis of GasPhase Chemical and Plasma Kinetics, vol.114, p.217, 1996.

. Coursera, Machine learning, vol.127, p.156, 2017.

L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian et al., An informed operator based genetic algorithm for tuning the reaction rate parameters of chemical kinetics mechanisms, GECCO, vol.128, p.140, 2004.

W. Polifke, W. Genc, and K. Dobbeling, Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms, Combustion and Flame, vol.113, p.140, 1998.

C. Martin, Etude energetique des instabilites thermoacoustiques et optimisation genetique des cinetiques reduites. PhD thesis, vol.128, p.140, 2005.

F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley et al., Deep neuroevolution : Genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning, ArXiv, p.127, 2018.

C. Darwin, On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life, p.127, 1859.

G. Mendel, Versuche über pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, 1866, p.127

D. Simon, Evolutionary Optimization Algorithms : Biologically-Inspired and Population-Based Approaches to Computer Intelligence, vol.128, p.137, 2013.

J. H. Holland, Adaptation in Natural and Artificial Systems. The University of, p.130, 1975.

I. Rechenberg, Evolutionstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, p.127, 1971.

P. Hans and . Schwefel, Evolutionsstrategie und numerische Optimierung, p.127, 1975.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, vol.131, p.136, 1995.

A. D. Kenneth and . Jong, Genetic algorithms are not function optimizers, Foundations on Genetic Algorithms, vol.136, p.147, 2002.

R. Kruse, C. Borgelt, C. Braune, S. Mostaghim, and M. Steinbrecher, Computational Intelligence A Methodological Introduction, vol.131, p.147, 2016.

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, p.137, 1989.

L. Elliotta, D. B. Inghama, A. G. Kyneb, N. S. Merab, M. Pourkashanianc et al., Genetic algorithms for optimisation of chemical kinetics reaction mechanisms, Progress in Energy and Combustion Science, vol.39, p.131, 2004.

J. E. Baker, Reducing bias and inefficiency in the selection algorithm, Proceedings of the Second International Conference on Genetic Algorithms and their Application, p.133, 1987.

A. Neubauer, Adaptive non-uniform mutation for genetic algorithms, International Conference on Computational Intelligence, p.136, 1997.

C. M. Fonseca and P. J. Fleming, An overview of evolutionary algorithms in multiobjective optimization, Evolutionary Computation, vol.3, issue.1, p.139, 1995.

J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, p.139, 1985.

E. Neshat and R. Saray, An optimized chemical kinetic mechanism for hcci combustion of prfs using multi-zone model and genetic algorithm. Energy Conversion and Management, p.140, 2015.

, Ansys Inc. ANSYS Fluent Theory Guide, vol.164, p.206, 2015.

D. P. Schmidt, I. Nouar, P. K. Senecal, C. J. Rutland, J. K. Martin et al., Pressure-swirl atomization in the near field, SAE Paper, p.163, 1999.

E. P-rosin and . Rammler, The laws governing the fineness of powdered coal, J. Inst. Fuel, vol.7, p.163, 1933.

C. Weber, Zum zerfall eines flüssigkeitsstrahles. ZAMM, vol.11, p.163, 1931.

Z. Han, S. Perrish, P. V. Farrell, and R. D. Reitz, Modeling atomization processes of pressure-swirl hollow-cone fuel sprays, Atomization and Sprays, vol.7, issue.6, p.164, 1997.

M. Massot, Ecoulements diphasiques. Cours Centrale Paris, p.165
URL : https://hal.archives-ouvertes.fr/hal-01888449

J. M. Senoner, M. Sanjosé, T. Lederlin, F. Jaegle, M. García et al., Eulerian and lagrangian large-eddy simulations of an evaporating two-phase flow, Comptes Rendus Mecanique, vol.337, p.165, 2009.

M. García, Développement et validation du formalisme Euler-Lagrange dans un solveur parallèle et non-structuré pour la simulation aux grandes échelles, p.166, 2009.

R. S. Miller, K. Harstad, and J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas-liquid flow simulations, International Journal of Multiphase Flow, vol.24, issue.6, p.166, 1998.

S. S. Sazhin, Advanced models of fuel droplet heating and evaporation, Progress in Energy and Combustion Science, vol.32, p.166, 2006.

W. E. Ranz and W. R. Marshall, Vaporation from drops, part i, Chem. Eng. Prog, vol.48, issue.3, p.166, 1952.

W. E. Ranz and W. R. Marshall, Evaporation from drops, part i and part ii, Chem. Eng. Prog, vol.48, issue.4, p.166, 1952.

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, p.208, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00270731

B. F. Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, 19th American Institute of Aeronautics and Astronautics Aerospace Science Meeting, vol.182, p.183, 1981.

J. A. Van-oijen, F. A. Lammers, and L. P. De-goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, p.181, 2001.

H. Tennekes, Simple model for the small scale structure of turbulence, Physics of Fluids, vol.11, issue.3, p.182, 1968.

F. Bjørn and . Magnussen, The eddy dissipation concept a bridge between science and technology, ECCOMAS Thematic Conference on Computational Combustion, p.183, 2005.

R. Inge, B. F. Gran, and . Magnussen, A numerical study of a bluffbody stabilized diffusion flame. part 2. influence of combustion modeling and finite-rate chemistry, Combustion Science and Technology, vol.119, p.183, 1996.

F. Bjørn and . Magnussen, Modeling of pollutant formation in gas turbine combustors based on the eddy dissipation concept, Eighteenth lnternational Congress on Combustion Engines. International Council on Combustion Engines, p.183, 1989.

B. Stephen and . Pope, Turbulent Flows, vol.205, p.235, 2000.

A. Lesne and M. Lagues, Scale Invariance -From Phase Transitions to Turbulence, p.204, 2012.

D. Mercier, Towards Large Eddy Simulation of Two-Way Coupled Two-Phase Flows, p.205, 2019.

L. F. Richardson, Weather Prediction by Numerical Process, p.205, 1922.

P. Spalart and S. Allmaras, A one-equation turbulence model for aerodynamic flows, p.206, 1992.

C. David and . Wilcox, Turblence Modelling for CFD, p.207, 1994.

B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, p.206, 1972.

B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, p.207, 1974.

F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal, vol.32, issue.8, p.207, 1994.

F. Richecoeur, Aérodynamique -Mécanique des fluides. Ellipse, p.210, 2013.