Skip to Main content Skip to Navigation

Rôle de la cassiicoline dans l'interaction compatible Hevea brasiliensis / Corynespora cassiicola : vers la sélection assistée par effecteur : Biologie végétale

Abstract : The rubber tree (Hevea brasiliensis) is the primary commercial source of natural rubber worldwide. In Asia and Africa, H. brasiliensis is affected by the Corynespora leaf fall (CLF) disease, caused by the broad-spectrum necrotrophic fungus Corynespora cassiicola. During severe attacks, massive fall of young leaves can occur in susceptible cultivars. Early evaluation of the susceptibility of rubber clones in breeding programs is required to avoid developing highly susceptible clones that would amplify the disease. An indirect phenotyping procedure envisaged consists in testing the sensitivity to the fungal toxins (or effectors) rather than the susceptibility to the fungus itself (toxin test). Among all putative effectors identified in silico, only cassiicolin Cas1 has been purified and characterized to date. This small secreted glycoprotein was for long suspected to play a role in the early phase of infection by inducing tissue necrosis. Strains carrying the Cas1 gene are the most aggressive on tested rubber clones. However, strains without cassiicolin gene (called Cas0) still show moderate aggressiveness, suggesting the existence of effectors other than cassiicolin. The objectives of this study are (i) to determine if susceptibility to cassiicolin Cas1 is a relevant selection criterion to eliminate the rubber clones most susceptible to CLF disease, and (ii) identify molecular factors involved in the sensitivity to Cas1, in rubber tree. We have thus analyzed the typology of a large set of C. cassiicola isolates collected from various rubber plantations in West Africa. Our results show that isolates carrying the cassiicolin isoform Cas1 are widely represented, but that the most represented type (A/Cas0) are isolates without cassiicolin gene. Here we show that deletion of the cassiicolin gene in the isolate CCP resulted in a total loss of virulence. This clearly demonstrated that cassiicolin is indeed a necrotrophic effector required for the virulence of isolate CCP in rubber tree. Finally, we have investigated susceptibility factors to cassiicolin Cas1 on rubber tree with two different approaches. We identified about thirty candidate proteins that could physically interact with the toxin, through the two-hybrid assay. A transcriptomic approach allowed us to identify the rubber genes differentially expressed in response to the purified cassiicolin, comparing a susceptible clone (PB260) and a tolerant clone (RRIM600). In conclusion, we think that the necrotrophic effector Cas1 can be an interesting tool for effector-based selection of tolerant clones for African plantations; however, efforts should also be placed on A/Cas0 isolates, in order to identify potential necrotrophic effector(s) responsible for their virulence. This would enlarge the potential of effector-based selection.
Complete list of metadatas

Cited literature [236 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, September 2, 2019 - 10:07:07 AM
Last modification on : Tuesday, March 17, 2020 - 1:34:43 AM
Long-term archiving on: : Thursday, January 9, 2020 - 9:02:07 PM


Version validated by the jury (STAR)


  • HAL Id : tel-02275923, version 1



Sébastien Ribeiro. Rôle de la cassiicoline dans l'interaction compatible Hevea brasiliensis / Corynespora cassiicola : vers la sélection assistée par effecteur : Biologie végétale. Génétique des plantes. Université Clermont Auvergne, 2019. Français. ⟨NNT : 2019CLFAC010⟩. ⟨tel-02275923⟩



Record views


Files downloads