?. Revillon, ;. Guillaume, A. ;. Mohammad-djafari, and C. Enderli, Radar emitters classification and clustering with a scale mixture of normal distributions', IET Radar, Sonar & Navigation, vol.13, pp.128-138, 2019.

?. G. International-conferences, A. Revillon, C. Mohammad-djafari, and . Enderli, Radar emitters classification and clustering with a scale mixture of normal distributions, 2018 IEEE Radar Conference (RadarConf18), pp.1371-1376, 2018.

?. G. Revillon, A. Mohammad-djafari, and C. Enderli, Radar Emitters Clustering With Outliers and Missing Data, International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2018.

D. W. Aha, D. Kibler, and M. K. Albert, Instance-based learning algorithms, Machine Learning, vol.6, pp.37-66, 1991.

H. Akaike, Information theory and an extension of the maximum likelihood principle, Selected Papers of Hirotugu Akaike, p.19, 1998.

. Naomi-s-altman, An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician, vol.46, issue.3, pp.175-185, 1992.

D. F. Andrews and C. L. Mallows, Scale mixtures of normal distributions, Journal of the Royal Statistical Society. Series B (Methodological), vol.36, issue.1, p.29, 1974.

H. Attias, Inferring parameters and structure of latent variable models by variational Bayes, Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, p.18, 1999.

C. Archambeau and M. Verleysen, Robust Bayesian clustering, Neural Networks, vol.20, issue.1, p.33, 2007.

. Awt-global, Radar scan types, 2012.

R. H. Barker, Group synchronization of binary digital systems, Communication theory, p.56, 1953.

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE transactions on pattern analysis and machine intelligence, vol.22, p.26, 2000.

E. Bernhard, I. M. Boser, V. N. Guyon, and . Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152, 1992.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics), p.16, 2006.

D. Je?rey, A. E. Banfield, and . Raftery, Model-based Gaussian and nonGaussian clustering, Biometrics, vol.49, issue.3, pp.803-821, 1993.

L. Breiman, Random forests. Machine learning, vol.45, p.26, 2001.

L. Breiman, Classification and regression trees. Routledge, 2017.

J. Butler, Tracking and control in multi-function radar, 1998.

M. Byrne, K. White, and J. Williams, Scheduling multifunction radar for search and tracking, Information Fusion (Fusion), 2015 18th International Conference on, pp.945-952, 2015.

W. Chen, Radar emitter classification for large data set based on weightedxgboost, IET Radar, Sonar & Navigation, vol.11, issue.4, pp.1203-1207, 2017.

Y. Chen, C. Lin, and C. Hsueh, Emitter identification of electronic intelligence system using type-2 fuzzy classifier, Systems Science & Control Engineering: An Open Access Journal, vol.2, issue.1, pp.389-397, 2014.

P. John and . Costas, A study of a class of detection waveforms having nearly ideal range. Doppler ambiguity properties, Proceedings of the IEEE, vol.72, issue.8, p.55, 1984.

D. R. Cox, The regression analysis of binary sequences, Journal of the Royal Statistical Society. Series B (Methodological), vol.20, issue.2, pp.215-242, 1958.

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol.20, issue.3, pp.273-297, 1995.

Y. Inderjit-s-dhillon, B. Guan, and . Kulis, Kernel k-means: spectral clustering and normalized cuts, Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, vol.11, p.12, 2004.

C. L. Davies and P. Hollands, Automatic processing for ESM, IEE Proceedings F (Communications, Radar and Signal Processing, vol.129, p.23, 1982.

J. Dudczyk and A. Kawalec, Identification of emitter sources in the aspect of their fractal features, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol.61, issue.3, pp.623-628, 2013.

J. Dudczyk and . Kawalec, Fast-decision identification algorithm of emission source pattern in database, Bulletin of the Polish Academy of Sciences Technical Sciences, vol.63, issue.2, pp.385-389, 2015.

J. Dudczyk and A. Kawalec, Specific emitter identification based on graphical representation of the distribution of radar signal parameters, Bulletin of the Polish Academy of Sciences Technical Sciences, vol.63, issue.2, pp.391-396, 2015.

M. Dumitru, W. Li, N. Gac, and A. Mohammad-djafari, Performance comparison of Bayesian iterative algorithms for three classes of sparsity enforcing priors with application in computed tomography, 2017 IEEE International Conference on Image Processing, p.31, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01568337

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B (methodological), vol.16, p.18, 1977.

J. Dudczyk, Radar emission sources identification based on hierarchical agglomerative clustering for large data sets, Journal of Sensors, issue.1, 2016.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Kdd, vol.96, p.79, 1996.

S. Brian, C. Everitt, and . Merette, The clustering of mixed-mode data: a comparison of possible approaches, Journal of Applied Statistics, vol.17, issue.3, p.148, 1990.

B. S. Everitt, A finite mixture model for the clustering of mixed-mode data, Statistics & Probability Letters, vol.6, issue.5, p.148, 1988.

J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, vol.28, pp.337-407, 2000.

A. Ronald and . Fisher, The use of multiple measurements in taxonomic problems. Annals of human genetics, vol.7, pp.179-188, 1936.

G. Fettweis, M. Löhning, D. Petrovic, M. Windisch, P. Zillmann et al., Dirty RF: A new paradigm, International Journal of Wireless Information Networks, vol.14, issue.2, pp.133-148, 2007.

Y. Freund, Boosting a weak learning algorithm by majority. Information and computation, vol.121, pp.256-285, 1995.

Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of computer and system sciences, vol.55, issue.1, pp.119-139, 1997.

R. Frank, R. Zado?, and . Heimiller, Phase shift pulse codes with good periodic correlation properties, IRE Transactions on Information Theory, vol.8, issue.6, p.56, 1962.

M. Germain, B. Goze, J. Bénié, S. Boucher, K. Foucher et al., Contribution of the fractal dimension to multiscale adaptive filtering of SAR imagery, IEEE transactions on geoscience and remote sensing, vol.41, issue.8, pp.1765-1772, 2003.

J. Pedro, J. García-laencina, . Sancho-gómez, and . Figueiras-vidal, Pattern classification with missing data: a review, Neural Computing and Applications, vol.19, issue.2, p.75, 2010.

L. Hubert and P. Arabie, Comparing partitions, Journal of classification, vol.2, issue.1, p.142, 1985.

L. Hunt and M. Jorgensen, Theory & methods: Mixture model clustering using the MULTIMIX program, Australian & New Zealand Journal of Statistics, vol.41, issue.2, p.61, 1999.

S. Hess, K. Morik, W. Duivesteijn, and P. Honysz, The SpectACl of nonconvex clustering: a spectral approach to density-based clustering, p.13, 2018.

K. Tin and . Ho, The random subspace method for constructing decision forests, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.8, pp.832-844, 1998.

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural networks, vol.2, issue.5, pp.359-366, 1989.

T. Hastie, R. Tibshirani, G. Sherlock, M. Eisen, P. Brown et al., Imputing missing data for gene expression arrays, p.41, 2001.

Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, Data Mining and Knowledge Discovery, vol.2, issue.3, pp.283-304, 1998.

A. John, . Hartigan, A. Manchek, and . Wong, Algorithm AS 136: A k-means clustering algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, issue.1, p.140, 1979.

A. He, D. Zeng, J. Wang, and B. Tang, Multi-parameter signal sorting algorithm based on dynamic distance clustering, Journal of Electronic Science and Technology, vol.7, issue.3, p.26, 2009.

J. Engel, Polytomous logistic regression, Statistica Neerlandica, vol.42, issue.4, pp.233-252, 1988.

P. Jaccard, Comparative study of the floral distribution in a portion of the alps and jura. The Company Vaudoise Bulletin of Natural Sciences, vol.37, p.75, 1901.

K. Anil and . Jain, Data clustering: 50 years beyond K-means, Pattern recognition letters, vol.31, issue.8, p.26, 2010.

I. Michael, R. Jordan, and . Jacobs, Hierarchical mixtures of experts and the EM algorithm, Neural computation, vol.6, issue.2, p.26, 1994.

A. Kawalec and . Owczarek, Radar emitter recognition using intrapulse data, Microwaves, Radar and Wireless Communications, vol.2, pp.435-438, 2004.

M. Keshavarzi and . Amir-mansour-pezeshk, A simple geometrical approach for deinterleaving radar pulse trains, 2016 UKSim-AMSS 18th International Conference on, pp.172-177, 2016.

L. Kaufmann and P. Rousseeuw, Clustering by means of medoids, Data Analysis based on the L1-Norm and Related Methods, pp.405-416, 1987.

L. Kaufman, J. Peter, and . Rousseeuw, Finding groups in data: an introduction to cluster analysis, vol.344, p.142, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in neural information processing systems, pp.1097-1105, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Ha?ner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

M. Lichman, UCI machine learning repository, 2013.

H. Li, W. D. Jin, H. D. Liu, and T. W. Chen, Work mode identification of airborne phased array radar based on the combination of multi-level modeling and deep learning, 35th Chinese Control Conference (CCC), pp.7005-7010, 2016.

C. J. Lawrence and W. J. Krzanowski, Mixture separation for mixed-mode data, Statistics and Computing, vol.6, issue.1, p.60, 1996.

N. Levanon and E. Mozeson, Radar signals, vol.55, p.56, 2004.

H. K. Mardia, New techniques for the deinterleaving of repetitive sequences, IEE Proceedings F -Radar and Signal Processing, vol.136, pp.149-154, 1989.

M. Marbac, C. Biernacki, and V. Vandewalle, Model-based clustering of Gaussian copulas for mixed data, Communications in StatisticsTheory and Methods, vol.46, issue.23, p.61, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00987760

T. P. Minka, Expectation propagation for approximate Bayesian inference, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, UAI'01, p.147, 2001.

J. B. Moore and V. Krishnamurthy, Deinterleaving pulse trains using discretetime stochastic dynamic-linear models, IEEE Transactions on Signal Processing, vol.42, issue.11, pp.3092-3103, 1994.

I. Morlini, A latent variables approach for clustering mixed binary and continuous variables within a Gaussian mixture model. Advances in Data Analysis and Classification, vol.6, p.61, 2012.

. Ws, W. Mcclulloch, and . Pitts, A logical calculus of the ideas immanent in neurons activity, Bulletin of mathematical biophysics, vol.5, issue.10, pp.115-133, 1943.

M. Minsky and S. Papert, Perceptrons, issue.10, 1969.

D. J. Milojevic and B. M. Popovic, Improved algorithm for the deinterleaving of radar pulses, IEE Proceedings F -Radar and Signal Processing, vol.139, pp.98-104, 1992.

G. Mclachlan and D. Peel, Finite mixture models, p.33, 2004.

T. M. Nguyen and Q. M. Wu, Bounded asymmetrical Student's-t mixture model, IEEE Transactions on Cybernetics, vol.44, issue.6, p.30, 2014.

M. Opper and D. Saad, Advanced mean field methods: Theory and practice, p.18, 2001.

N. Petrov, I. Jordanov, and J. Roe, Radar emitter signals recognition and classification with feedforward networks, Procedia Computer Science, vol.22, issue.1, p.26, 2013.

D. Peel and G. J. Mclachlan, Robust mixture modelling using the t distribution, Statistics and computing, vol.10, issue.4, p.30, 2000.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, p.14, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

R. E. Quandt and J. B. Ramsey, Estimating mixtures of normal distributions and switching regressions, Journal of the American statistical Association, vol.73, issue.364, p.26, 1978.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation, DTIC Document, issue.10, 1985.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Cognitive modeling, vol.5, issue.3, 1988.

A. Mark and . Richards, Fundamentals of radar signal processing. McGraw-Hill Education, 2005.

L. Rokach and O. Maimon, Clustering methods. In Data mining and knowledge discovery handbook, vol.5, p.6, 2005.

. Jav-rogers, ESM processor system for high pulse density radar environments, IEE Proceedings F (Communications, Radar and Signal Processing, vol.132, pp.621-625, 1985.

L. Rokach, Pattern classification using ensemble methods, World Scientific, vol.75, p.9, 2010.

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain, Psychological review, vol.65, issue.6, p.26, 1958.

M. Ranalli and R. Rocci, Mixture models for mixed-type data through a composite likelihood approach, Computational Statistics & Data Analysis, vol.110, p.61, 2017.

G. Schwarz, Estimating the dimension of a model. The annals of statistics, vol.6, p.19, 1978.

M. Svensén and C. M. Bishop, Robust Bayesian mixture modelling, Neurocomputing, vol.64, p.33, 2005.

D. and C. Schleher, Introduction to Electronic Warfare, 1986.

E. Robert and . Schapire, The strength of weak learnability, Machine learning, vol.5, issue.2, pp.197-227, 1990.

L. Joseph and . Schafer, Analysis of incomplete multivariate data, vol.41, p.75, 1997.

H. Seute, C. Enderli, J. Grandin, A. Khenchaf, and J. Cexus, Experimental analysis of time deviation on a passive localization system, Sensor Signal Processing for Defence (SSPD), p.22, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01396704

J. Sander, M. Ester, H. Kriegel, and X. Xu, Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data mining and knowledge discovery, vol.2, p.26, 1998.

Y. Shi, Kernel canonical correlation analysis for specific radar emitter identification, Electronics Letters, vol.50, issue.2, pp.1318-1320, 2001.

C. Shieh and C. Lin, A vector neural network for emitter identification, IEEE Transactions on Antennas and Propagation, vol.50, issue.8, p.26, 2002.

J. Sun, Radar emitter classification based on unidimensional convolutional neural network. IET Radar, Sonar & Navigation, 2018.

J. Sun, A. Zhou, S. Keates, and S. Liao, Simultaneous Bayesian clustering and feature selection through Student's t mixtures model, IEEE Transactions on Neural Networks and Learning Systems, vol.29, issue.99, p.30, 2017.

O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie et al., Missing value estimation methods for DNA microarrays, Bioinformatics, vol.17, issue.6, p.41, 2001.

L. Tierney and J. B. Kadane, Accurate approximations for posterior moments and marginal densities, Journal of the American statistical association, vol.81, issue.393, p.73, 1986.

R. Turyn, On Barker codes of even length, Proceedings of the IEEE, vol.51, issue.9, p.56, 1963.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, p.141, 2007.

K. Jeroen, J. Vermunt, and . Magidson, Latent class cluster analysis, vol.11, p.60, 2002.

M. P. Veyssieres and R. E. Plant, Identification of vegetation state and transition domains in California's hardwood rangelands, vol.101, 1998.

A. Willse and R. J. Boik, Identifiable finite mixtures of location models for clustering mixed-mode data, Statistics and Computing, vol.9, issue.2, p.60, 1999.

G. Richard and . Wiley, Electronic Intelligence: the analysis of radar signals, 1982.

S. Waterhouse, D. Mackay, and T. Robinson, Bayesian methods for mixtures of experts, Advances in neural information processing systems, vol.2, p.18, 1996.

J. Martin, . Wainwright, P. Eero, and . Simoncelli, Scale mixtures of Gaussians and the statistics of natural images, Advances in neural information processing systems, p.29, 2000.

Z. Yang, Z. Wu, Z. Yin, T. Quan, and H. Sun, Hybrid radar emitter recognition based on rough k-means classifier and relevance vector machine, Sensors, vol.13, issue.1, p.26, 2013.

S. Zado?, Phase coded signal receiver, US Patent, vol.3, p.56, 1963.

D. Zhou, X. Wang, S. Cheng, and X. Zhang, An online multisensor data fusion framework for radar emitter classification, International Journal of Aerospace Engineering, vol.1, p.26, 2016.