M. A. Hannan, M. M. Hoque, A. Mohamed, and A. Ayob, Review of energy storage systems for electric vehicle applications: Issues and challenges, Renew. Sustain. Energy Rev, vol.69, pp.771-789, 2017.

M. Aneke and M. Wang, Energy storage technologies and real life applications -A state of the art review, Appl. Energy, vol.179, pp.350-377, 2016.

S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, Energy Storage Systems for Transport and Grid Applications, IEEE Trans. Ind. Electron, vol.57, issue.12, pp.3881-3895, 2010.

R. German, Étude du vieillissement calendaire des supercondensateurs et impact des ondulations de courant haute fréquence, 2013.

A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev, vol.58, pp.1189-1206, 2016.

S. S. Zhang, Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor, J. Power Sources, vol.343, pp.322-328, 2017.

S. F. Tie and C. W. Tan, A review of energy sources and energy management system in electric vehicles, Renew. Sustain. Energy Rev, vol.20, pp.82-102, 2013.

A. I. Stan, M. ?wierczy?ski, D. I. Stroe, R. Teodorescu, and S. J. Andreasen, Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications; An overview, 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp.713-720, 2014.

E. and R. Iglesias, Étude du vieillissement des batteries lithium-ion dans les applications "véhicule électrique" : combinaison des effets de vieillissement calendaire et de cyclage, 2017.

A. Lièvre, Développement d'un système de gestion de batterie lithium-ion à destination de véhicules "mild hybrid" : détermination des indicateurs d'état (SoC, SoH et SoF), 2015.

S. Grolleau, Vieillissement calendaire des accumulateurs Lithium-Ion : modélisation et analysese, 2013.

A. Devie, Caractérisation de l'usage des batteries Lithium-ion dans les véhicules électriques et hybrides : application à l'étude du vieillissement et de la fiabilité, 2012.

X. Luo, J. Wang, M. Dooner, and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, vol.137, pp.511-536, 2015.

A. Eddahech, Modélisation du vieillissement et détermination de l'état de santé de batteries lithium-ion pour application véhicule électrique et hybride, 2013.

G. Mulder, N. Omar, S. Pauwels, M. Meeus, F. Leemans et al., Comparison of commercial battery cells in relation to material properties, Electrochimica Acta, vol.87, pp.473-488, 2013.

F. Chrétien, Etude de l'effet des sels de lithium de la couche de passivation sur la cyclabilité d'un accumulateur lithium-ion, 2015.

W. Cao, Novel High Energy Density Li-Ion Capacitors, 2013.

M. Ayadi, Étude et modélisation du vieillissement des supercondensateurs en mode combiné cyclage/calendaire pour applications transport, 2015.

R. Chaari, Evaluation et modélisation du vieillissement des supercondensateurs pour des applications véhicules hybrides, 2013.

A. Hammar, P. Venet, R. Lallemand, G. Coquery, and G. Rojat, Study of Accelerated Aging of Supercapacitors for Transport Applications, IEEE Trans. Ind. Electron, vol.57, issue.12, pp.3972-3979, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00747288

A. I. Belyakov and D. A. Sojref, High power supercapacitor's solutions for reliable power supply, 2009 International Conference on Power Engineering, Energy and Electrical Drives, pp.348-352, 2009.

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater, vol.7, issue.11, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, vol.1, issue.157, pp.11-27, 2006.

H. S. Choi and C. R. Park, Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor, J. Power Sources, vol.259, pp.1-14, 2014.

V. Khomenko, E. Raymundo-piñero, and F. Béguin, High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources, vol.177, issue.2, pp.643-651, 2008.

W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects, Adv. Sci, vol.4, issue.7, 2017.

S. Dsoke, B. Fuchs, E. Gucciardi, and M. Wohlfahrt-mehrens, The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12, J. Power Sources, vol.282, pp.385-393, 2015.

S. R. Sivakkumar and A. G. Pandolfo, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochimica Acta, vol.65, pp.280-287, 2012.

A. Yu, V. Chabot, and J. Zhang, Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, 2017.

G. G. Amatucci, F. Badway, A. D. Pasquier, and T. Zheng, An Asymmetric Hybrid Nonaqueous Energy Storage Cell, J. Electrochem. Soc, vol.148, issue.8, pp.930-939, 2001.

G. G. Amatucci and U. S. Patent, , vol.252, 2001.

R. Satish, V. Aravindan, W. C. Ling, and S. Madhavi, Carbon-coated Li3V2(PO4)3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance, J. Power Sources, vol.281, pp.310-317, 2015.

X. Hu, Z. Deng, J. Suo, and Z. Pan, A high rate, high capacity and long life (LiMn2O4+AC)/Li4Ti5O12 hybrid battery-supercapacitor, J. Power Sources, vol.187, issue.2, pp.635-639, 2009.

H. Kim, M. Cho, M. Kim, K. Park, H. Gwon et al., A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode, Adv. Energy Mater, vol.3, issue.11, pp.1500-1506, 2013.

Q. Fan, M. Yang, Q. Meng, B. Cao, and Y. Yu, Activated-Nitrogen-Doped GrapheneBased Aerogel Composites as Cathode Materials for High Energy Density Lithium-Ion Supercapacitor, J. Electrochem. Soc, vol.163, issue.8, pp.1736-1742, 2016.

W. Zuo, C. Wang, Y. Li, and J. Liu, Directly Grown Nanostructured Electrodes for High Volumetric Energy Density Binder-Free Hybrid Supercapacitors: A Case Study of CNTs//Li4Ti5O12, Sci. Rep, vol.5, p.7780, 2015.

T. Rauhala, J. Leis, T. Kallio, and K. Vuorilehto, Lithium-ion capacitors using carbidederived carbon as the positive electrode -A comparison of cells with graphite and Li4Ti5O12 as the negative electrode, J. Power Sources, vol.331, pp.156-166, 2016.

X. Liu, H. Jung, S. Kim, H. Choi, S. Lee et al., Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors, Sci. Rep, vol.3, p.3183, 2013.

F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng et al., A highperformance supercapacitor-battery hybrid energy storage device based on grapheneenhanced electrode materials with ultrahigh energy density, Energy Environ. Sci, vol.6, issue.5, pp.1623-1632, 2013.

E. Lim, Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode, ACS nano, vol.8, issue.9, pp.8968-8978, 2014.

H. Wang, Z. Xu, Z. Li, K. Cui, J. Ding et al., Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide, Nano Lett, vol.14, issue.4, pp.1987-1994, 2014.

J. Zhang, Z. Shi, J. Wang, and J. Shi, Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance, J. Electroanal. Chem, vol.747, pp.20-28, 2015.

W. J. Cao, J. Shih, J. P. Zheng, and T. Doung, Development and characterization of Li-ion capacitor pouch cells, J. Power Sources, vol.257, pp.388-393, 2014.

K. Karthikeyan, V. Aravindan, S. B. Lee, I. C. Jang, H. H. Lim et al., Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors, J. Power Sources, vol.195, issue.11, pp.3761-3764, 2010.

J. Ronsmans and B. Lalande, Combining energy with power: Lithium-ion capacitors, 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), pp.1-4, 2015.

. Taiyo-yuden-navigator, The Use of PAS Capacitors/Lithium Capacitors for Adapting to Diversification of Energy Supply, Special Topics 1, vol.4, pp.1-9, 2015.

W. Cao, J. Luo, J. Yan, and X. Chen, High Performance Li-Ion Capacitor Laminate Cells, Meet. Abstr, issue.1, pp.10-10, 2017.

W. J. Cao, J. F. Luo, J. Yan, X. J. Chen, W. Brandt et al., High Performance Li-Ion Capacitor Laminate Cells Based on Hard Carbon/Lithium Stripes Negative Electrodes, J. Electrochem. Soc, vol.164, issue.2, pp.93-98, 2017.

W. Cao and H. Chen, High performance lithium-ion capacitor laminate cells, US20160126023 A1, p.5, 2016.

X. Chen, Development of Electrolytes for Li-Ion Capacitors, 2011.

M. Bolloli, Nouvelles membrane polymères et électrolytes liquides pour batteries Liion, 2014.

E. Nanini-maury, Formulation d'électrolytes haut potentiel pour la caractérisation d'électrodes positives innovantes : batteries lithium-ion pour le véhicule électrique, 2014.

S. R. Sivakkumar, V. Ruiz, and A. G. Pandolfo, Assembly and testing of lithium-ion capacitors, 2010.

S. R. Sivakkumar, J. Y. Nerkar, and A. G. Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors, Electrochimica Acta, vol.55, issue.9, pp.3330-3335, 2010.

A. Shellikeri, I. Hung, Z. Gan, and J. Zheng, In Situ NMR Tracks Real-Time Li Ion Movement in Hybrid Supercapacitor-Battery Device, J. Phys. Chem. C, vol.120, issue.12, pp.6314-6323, 2016.

M. Yang and H. Xia, Exploration and progress of high-energy supercapacitors and related electrode materials, Sci. China Technol. Sci, vol.58, issue.11, pp.1851-1863, 2015.

H. Gu, Y. Zhu, J. Yang, J. Wei, and Z. Zhou, Nanomaterials and Technologies for Lithium-Ion Hybrid Supercapacitors, ChemNanoMat, vol.2, issue.7, pp.578-587, 2016.

N. Bertrand, Caractérisation électrique, mise en évidence des phénomènes physicochimiques et modélisation fractionnaire des supercondensateurs à électrodes à base de carbone activé, 2011.

H. Helmholtz, Studien über electrische Grenzschichten, Ann. Phys, vol.243, issue.7, pp.337-382, 1879.

M. Gouy, Sur la constitution de la charge électrique à la surface d'un électrolyte, J. Phys. Théorique Appliquée, vol.9, issue.1, pp.457-468, 1910.

D. L. Chapman, LI. A contribution to the theory of electrocapillarity, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.25, issue.148, pp.475-481, 1913.

O. Stern, &. Zur, . Der, and . Doppelschicht, Berichte Bunsenges. Für Phys. Chem, vol.30, issue.21, pp.508-516, 1924.

Y. Hou, Controlling Variables of Electric Double-Layer Capacitance, 2014.

M. M. Dubinin, The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces, Chem. Rev, vol.60, issue.2, pp.235-241, 1960.

T. Aida, I. Murayama, K. Yamada, and M. Morita, Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor, J. Electrochem. Soc, vol.154, issue.8, pp.798-804, 2007.

M. Yuan, W. Liu, Y. Zhu, and Y. Xu, Electrochemical performance of lithium ion capacitors with different types of negative electrodes, Russ. J. Electrochem, vol.50, issue.6, pp.594-598, 2014.

V. Khomenko, E. Raymundo-piñero, and F. Béguin, High-energy density graphite/AC capacitor in organic electrolyte, J. Power Sources, vol.177, issue.2, pp.643-651, 2008.

F. Beguin and E. Frackowiak, Carbons for Electrochemical Energy Storage and Conversion Systems, 2009.

M. Yang, Y. Zhong, J. Ren, X. Zhou, J. Wei et al., Electrochemical Capacitors: Fabrication of High-Power Li-Ion Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage, Adv. Energy Mater, vol.17, issue.17, 2015.

M. Kim, F. Xu, J. H. Lee, C. Jung, S. M. Hong et al., A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors, J. Mater. Chem. A, vol.2, issue.26, pp.10029-10033, 2014.

J. Zhang, H. Wu, J. Wang, J. Shi, and Z. Shi, Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors, Electrochimica Acta, vol.182, pp.156-164, 2015.

Y. Firouz, N. Omar, J. Timmermans, P. Van-den-bossche, and J. Van-mierlo, Lithium-ion capacitor -Characterization and development of new electrical model, Energy, vol.83, pp.597-613, 2015.

M. Taguchi and U. S. , , vol.113, 2012.

B. Cao, J. Yan, and J. P. Zheng, High Performance Li-Ion Capacitors," presented at the International Battery Seminar, vol.23, 2017.

W. Cao, J. Zheng, D. Adams, T. Doung, and J. P. Zheng, Comparative Study of the Power and Cycling Performance for Advanced Lithium-Ion Capacitors with Various Carbon Anodes, J. Electrochem. Soc, vol.161, issue.14, pp.2087-2092, 2014.

A. Shellikeri, V. Watson, D. Adams, E. E. Kalu, J. A. Read et al., Investigation of Pre-lithiation in Graphite and Hard-Carbon Anodes Using Different Lithium Source Structures, J. Electrochem. Soc, vol.164, issue.14, pp.3914-3924, 2017.

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev, vol.104, issue.10, pp.4303-4418, 2004.

P. Ganesh, D. Jiang, and P. R. Kent, Accurate Static and Dynamic Properties of Liquid Electrolytes for Li-Ion Batteries from ab initio Molecular Dynamics, J. Phys. Chem. B, vol.115, issue.12, pp.3085-3090, 2011.

S. A. Krachkovskiy, J. D. Bazak, S. Fraser, I. C. Halalay, and G. R. Goward, Determination of Mass Transfer Parameters and Ionic Association of LiPF6: Organic Carbonates Solutions, J. Electrochem. Soc, vol.164, issue.4, pp.912-916, 2017.

A. Von-wald-cresce, M. Gobet, O. Borodin, J. Peng, S. M. Russell et al., Anion Solvation in Carbonate-Based Electrolytes, J. Phys. Chem. C, vol.119, issue.49, pp.27255-27264, 2015.

X. Bogle, R. Vazquez, S. W. Greenbaum, K. Cresce, and . Xu, Understanding Li+-Solvent Interaction in Nonaqueous Carbonate Electrolytes with 17O NMR, J. Phys. Chem. Lett, vol.4, issue.10, pp.1664-1668, 2013.

C. J. Orendorff, The Role of Separators in Lithium-Ion Cell Safety, The electrochemical Society Interface, 2012.

J. Ronsmans and B. Lalande, Combining energy with power: Lithium-ion capacitors, 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), pp.1-4, 2015.

N. Omar, M. Daowd, O. Hegazy, M. Sakka, T. Coosemans et al., Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications, Electrochimica Acta, vol.86, pp.305-315, 2012.

F. Ciccarelli, A. D. Pizzo, and D. Iannuzzi, Improvement of Energy Efficiency in Light Railway Vehicles Based on Power Management Control of Wayside Lithium-Ion Capacitor Storage, IEEE Trans. Power Electron, vol.29, issue.1, pp.275-286, 2014.

F. Ciccarelli, D. Iannuzzi, K. Kondo, and L. Fratelli, Line-Voltage Control Based on Wayside Energy Storage Systems for Tramway Networks, IEEE Trans. Power Electron, vol.31, issue.1, pp.884-899, 2016.

K. Fleurbaey, N. Omar, J. Ronsmans, P. Van-den-bossche, and J. Van-mierlo, Lithium Ion Capacitor-Review of Applications and Advantages, 5th European Symposium on SuperCapacitors and Hybrid Solutions, pp.1-6, 2015.

A. Esmaili, B. Novakovic, A. Nasiri, and O. Abdel-baqi, A Hybrid System of Li-Ion Capacitors and Flow Battery for Dynamic Wind Energy Support, IEEE Trans. Ind. Appl, vol.49, issue.4, pp.1649-1657, 2013.

T. Nakayama, W. Tachihara, M. Toda, M. Ishida, H. Hasegawa et al., Improvement of converter efficiency in partial load using temporary storage with lithium-ion capacitor, 2014 49th International Universities Power Engineering Conference (UPEC), pp.1-6, 2014.

G. Mandic, A. Nasiri, E. Ghotbi, and E. Muljadi, Lithium-Ion Capacitor Energy Storage Integrated With Variable Speed Wind Turbines for Power Smoothing, IEEE J. Emerg. Sel. Top. Power Electron, vol.1, issue.4, pp.287-295, 2013.

M. Uno and K. Tanaka, Spacecraft Electrical Power System using Lithium-Ion Capacitors, IEEE Trans. Aerosp. Electron. Syst, vol.49, issue.1, pp.175-188, 2013.

J. A. Jeevarajan, Performance and Safety of Lithium-ion Capacitors," presented at the Power Sources Conference, pp.9-12, 2014.

O. Bolufawi, A. Shellikeri, and J. P. Zheng, Lithium Ion Capacitor Safety Testing, Meet. Abstr, issue.4, pp.279-279, 2017.

A. Hammar, Modélisation du superconducteur et étude de son vieillissement : utilisation dans les applications de transport ferroviaire, 2006.

J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. Möller et al., Ageing mechanisms in lithiumion batteries, J. Power Sources, vol.147, issue.1, pp.269-281, 2005.

A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications, J. Power Sources, vol.241, pp.680-689, 2013.

C. Lin, A. Tang, H. Mu, W. Wang, and C. Wang, Aging Mechanisms of Electrode Materials in Lithium-Ion Batteries for Electric Vehicles, Journal of Chemistry, 2015.

I. Baghdadi, Aging modes taking into account in the modeling of lithium-ion batteries performance for lifetime assessment in automotive usage, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01578752

M. Bettge, Y. Li, K. Gallagher, Y. Zhu, Q. Wu et al., Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density, J. Electrochem. Soc, vol.160, issue.11, pp.2046-2055, 2013.

H. Li and H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem. Commun, vol.48, issue.9, pp.1201-1217, 2012.

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.6332-6341, 2010.

H. Bryngelsson, M. Stjerndahl, T. Gustafsson, and K. Edström, How dynamic is the SEI?, J. Power Sources, vol.174, issue.2, pp.970-975, 2007.

E. Peled, D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, J. Electrochem. Soc, vol.144, issue.8, pp.208-210, 1997.

M. N. Richard and J. R. Dahn, Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental, J. Electrochem. Soc, vol.146, issue.6, pp.2068-2077, 1999.

R. Yazami and Y. F. Reynier, Mechanism of self-discharge in graphite-lithium anode, Electrochimica Acta, vol.47, issue.8, pp.1217-1223, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00418086

P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser et al., Calendar Aging of Lithium-Ion Batteries I. Impact of the Graphite Anode on Capacity Fade, J. Electrochem. Soc, vol.163, issue.9, pp.1872-1880, 2016.

V. Winkler, T. Hanemann, and M. Bruns, Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition, Surf. Interface Anal, vol.49, issue.5, pp.361-369, 2017.

M. Lashaki, J. D. Atkinson, Z. Hashisho, J. H. Phillips, J. E. Anderson et al., The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors, J. Hazard. Mater, vol.317, pp.284-294, 2016.

P. Azaïs, L. Duclaux, P. Florian, D. Massiot, M. Lillo-rodenas et al., Causes of supercapacitors ageing in organic electrolyte, J. Power Sources, vol.171, issue.2, pp.1046-1053, 2007.

N. N. Mohammad-naim, Modelling the ageing behaviour of supercapacitors using electrochemical impedance spectroscopy for dynamic applications, 2015.

R. German, P. Venet, A. Sari, O. Briat, and J. M. Vinassa, Improved Supercapacitor Floating Ageing Interpretation Through Multipore Impedance Model Parameters Evolution, IEEE Trans. Power Electron, vol.29, issue.7, pp.3669-3678, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988961

W. Lajnef, Modélisation des supercondensateurs et évaluation de leur vieillissement en cyclage actif à forts niveaux de courant pour des applications véhicules électriques et hybrides, Université Bordeaux, vol.1, 2006.

X. Sun, X. Zhang, W. Liu, K. Wang, C. Li et al., Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor, Electrochimica Acta, vol.235, pp.158-166, 2017.

M. Schroeder, M. Winter, S. Passerini, and A. Balducci, On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material, J. Power Sources, vol.238, pp.388-394, 2013.

M. Uno and A. Kukita, Cycle Life Evaluation Based on Accelerated Aging Testing for Lithium-Ion Capacitors as Alternative to Rechargeable Batteries, IEEE Trans. Ind. Electron, vol.63, issue.3, pp.1607-1617, 2016.

E. H. Brouji, O. Briat, J. M. Vinassa, N. Bertrand, and E. Woirgard, Impact of Calendar Life and Cycling Ageing on Supercapacitor Performance, IEEE Trans. Veh. Technol, vol.58, issue.8, pp.3917-3929, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00424304

, Fixed electric double layer capacitors for use in electronic equipment, Part I: Generic specification, 2003.

Y. Diab, Étude et modélisation des supercondensateurs : applications aux systèmes de puissance, 2009.

S. Barcellona, F. Ciccarelli, D. Iannuzzi, and L. Piegari, Overview of Lithium-ion Capacitor Applications Based on Experimental Performances, Electr. Power Compon. Syst, vol.44, issue.11, pp.1248-1260, 2016.

P. Venet, Amélioration de la sûreté de fonctionnement des dispositifs de stockage d'énergie, 2007.

N. E. Ghossein, A. Sari, and P. Venet, Interpretation of the Particularities of LithiumIon Capacitors and Development of a Simple Circuit Model, 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp.1-5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01645639

A. Shellikeri, I. Hung, Z. Gan, and J. Zheng, In Situ NMR Tracks Real-Time Li Ion Movement in Hybrid Supercapacitor-Battery Device, J. Phys. Chem. C, vol.120, issue.12, pp.6314-6323, 2016.

M. Z. Bazant, M. S. Kilic, B. D. Storey, and A. Ajdari, Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, 2009.

N. E. Ghossein, A. Sari, and P. Venet, Nonlinear Capacitance Evolution of LithiumIon Capacitors Based on Frequency-and Time-Domain Measurements, IEEE Trans. Power Electron, vol.33, issue.7, pp.5909-5916, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01646176

H. Yang and Y. Zhang, Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications, J. Power Sources, vol.196, issue.20, pp.8866-8873, 2011.

S. Barcellona, F. Ciccarelli, D. Iannuzzi, and L. Piegari, Modeling and Parameter Identification of Lithium-Ion Capacitor Modules, IEEE Trans. Sustain. Energy, vol.5, issue.3, pp.785-794, 2014.

H. E. Brouji, O. Briat, J. Vinassa, N. Bertrand, and E. Woirgard, Comparison between changes of ultracapacitors model parameters during calendar life and power cycling ageing tests, Microelectron. Reliab, vol.48, issue.8, pp.1473-1478, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00333031

H. Song, H. Hwang, K. Lee, and L. H. Dao, The effect of pore size distribution on the frequency dispersion of porous electrodes, Electrochimica Acta, vol.45, issue.14, pp.2241-2257, 2000.

R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, vol.45, issue.15, pp.2483-2498, 2000.

N. E. Ghossein, A. Sari, and P. Venet, A Lithium-Ion Capacitor electrical model considering pore size dispersion, 2018 IEEE International Conference on Industrial Technology (ICIT), pp.1738-1742, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01864496

M. Montaru and S. Pelissier, Frequency and Temporal Identification of a Li-ion Polymer Battery Model Using Fractional Impedance, Oil Gas Sci. Technol. -Rev. L'Institut Fr. Pétrole, vol.65, issue.1, pp.67-78
URL : https://hal.archives-ouvertes.fr/hal-00426939

M. E. Suss, T. F. Baumann, M. A. Worsley, K. A. Rose, T. F. Jaramillo et al., Impedance-based study of capacitive porous carbon electrodes with hierarchical and bimodal porosity, J. Power Sources, vol.241, pp.266-273, 2013.

S. S. Zhang, K. Xu, and T. R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery, Electrochimica Acta, vol.51, issue.8, pp.1636-1640, 2006.

N. E. Ghossein, A. Sari, and P. Venet, Effets du Vieillissement Calendaire sur les Supercondensateurs Lithium-Ion, Symposium de Genie Electrique SGE, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01921933

N. E. Ghossein, A. Sari, and P. Venet, Effects of the Hybrid Composition of Commercial Lithium-Ion Capacitors on their Floating Aging, IEEE Trans. Power Electron, pp.1-1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01864487

N. E. Ghossein, A. Sari, and P. Venet, Degradation behavior of Lithium-Ion capacitors during calendar aging, 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA, pp.142-146, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646247

M. Uno and K. Tanaka, Accelerated Charge-Discharge Cycling Test and Cycle Life Prediction Model for Supercapacitors in Alternative Battery Applications, IEEE Trans. Ind. Electron, vol.59, issue.12, pp.4704-4712, 2012.

T. Zhang, B. Fuchs, M. Secchiaroli, M. Wohlfahrt-mehrens, and S. Dsoke, Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts, Electrochimica Acta, vol.218, pp.163-173, 2016.

P. W. Ruch, D. Cericola, M. Hahn, R. Kötz, and A. Wokaun, On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions, J. Electroanal. Chem, vol.636, issue.1, pp.128-131, 2009.

M. Widmaier, B. Krüner, N. Jäckel, M. Aslan, S. Fleischmann et al., Carbon as Quasi-Reference Electrode in Unconventional Lithium-Salt Containing Electrolytes for Hybrid Battery/Supercapacitor Devices, J. Electrochem. Soc, vol.163, issue.14, pp.2956-2964, 2016.

L. Zubieta and R. Bonert, Characterization of double-layer capacitors (DLCs) for power electronics applications, Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), vol.2, pp.1149-1154, 1998.

B. and P. Matadi, Etude des mécanismes de vieillissement des batteries Li-ion en cyclage à basse température et en stockage à haute température : compréhension des origines et modélisation du vieillissement, 2017.

T. Waldmann, A. Iturrondobeitia, M. Kasper, N. Ghanbari, F. Aguesse et al., Review-Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques, J. Electrochem. Soc, vol.163, issue.10, pp.2149-2164, 2016.

H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani et al., Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging, J. Power Sources, vol.68, issue.2, pp.311-315, 1997.

G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot et al., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries, J. Power Sources, vol.178, issue.1, pp.409-421, 2008.

H. Kim, S. Grugeon, G. Gachot, M. Armand, L. Sannier et al., Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives, Electrochimica Acta, vol.136, pp.157-165, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01003182

Y. Qi and S. J. Harris, In Situ Observation of Strains during Lithiation of a Graphite Electrode, J. Electrochem. Soc, vol.157, issue.6, pp.741-747, 2010.

L. Somerville, Post-mortem analysis of lithium-ion cells after accelerated lifetime testing, 2017.

M. Winter, P. Novák, and A. Monnier, Graphites for Lithium Ion Cells: The Correlation of the First Cycle Charge Loss with the Brunauer Emmett Teller Surface Area, J. Electrochem. Soc, vol.145, issue.2, pp.428-436, 1998.

G. Nagasubramanian, Comparison of the thermal and electrochemical properties of LiPF6 and LiN(SO2C2F5)2 salts in organic electrolytes, J. Power Sources, pp.811-814, 2003.

S. Chhor, Etude et modélisation de l'interface graphite/électrolyte dans les batteries lithium-ion, 2014.

P. Kreczanik, Étude de la fiabilité et du vieillissement d'un système de stockage par supercondensateurs pour l'alimentation partielle et ponctuelle d'un trolleybus grâce à la récupération de l'énergie de freinage : approche du composant au système de stockage, 2011.

N. E. Ghossein, A. Sari, and P. Venet, Accelerated Cycle Aging Tests Applied to Lithium-Ion Capacitors, 2017 IEEE Vehicle Power and Propulsion Conference (VPPC, pp.1-5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01864515

J. Kowal, E. Avaroglu, F. Chamekh, A. ?enfelds, T. Thien et al., Detailed analysis of the self-discharge of supercapacitors, J. Power Sources, vol.196, issue.1, pp.573-579, 2011.

, Annexe 5 Organigramme des caractérisations fréquentielles périodiques durant le vieillissement par cyclage