, Un traitement antireflet R < 1, 5 %à 1035 nm et R < 1, 5 % sur

, Température du cristal réglableà l'aide d'un four entre 20?C et 200?C avec une précision de 0, 01?C pour accorder la longueur d'onde de notre OPO

, Le schéma descriptif de la cavité linéaire que nous avons réalisée est présenté sur la figure 3-12-a

, Schéma de la cavité OPO en fonctionnement 1f. b) : Schéma de la cavité OPO en fonctionnement 2f

, Le cristal est monté sur une platine de translation permettant d'ajuster les positions x, y, z de celui-ci afin d'ajuster finement la position du waist du faisceau pompe dans le cristal et de sélectionner le réseau sur lequel nous voulons travailler

G. Tison, Étude, réalisation et applications d'une chaîne amplificatrice laser compacte pour l'allumage de turbomoteurs, 2013.

P. Deslandes, Développement d'oscillateurs lasersà fibre de forte puissance moyenne età durée d'impulsion ajustable, 2013.

A. E. Siegman, Lasers. University Science Books, 1986.

R. W. Boyd, Nonlinear Optics, Third Edition, 2008.

F. E. , Amplification regenerative et multipassage d'impulsions lumineuses dans des milieux solides (yag dope neodyme, alexandrite, saphir dope titane), 1992.

R. G. Meyerand and A. F. Haught, Gas breakdown at optical frequencies, Physical Review Letters, vol.11, issue.9, p.401, 1963.

M. H. Morsy, Review and recent developments of laser ignition for internal combustion engines applications, Renewable and Sustainable Energy Reviews, vol.16, issue.7, pp.4849-4875, 2012.

J. Dale, Application of high energy ignition systems to engines, Progress in Energy and Combustion Science, vol.23, issue.5-6, pp.379-398, 1997.

P. D. Ronney, Laser versus conventional ignition of flames, Optical Engineering, vol.33, issue.2, pp.510-521, 1994.

T. X. Phuoc, Laser-induced spark ignition fundamental and applications, Optics and Lasers in Engineering, vol.44, issue.5, pp.351-397, 2006.

S. Howard, S. Homan, and . William, Minimum mass of burning aluminum particles for ignition of methane/air and propane/air mixtures, Symposium (International) on Combustion, vol.18, pp.1709-1717, 1981.

G. , V. Elbe, and B. Lewis, Free-Radical Reactions in Glow and Explosion of Carbon Monoxide-Oxygen Mixtures, Combust. Flame, vol.63, pp.1-2, 1986.

G. Richard, F. J. Kingdon, and . Weinberg, The effect of plasma constitution on laser ignition energies, Symposium (International) on Combustion, vol.16, issue.1, pp.747-756, 1977.

M. A. Tanoff, M. D. Smooke, R. E. Teets, and J. A. Sell, Computational and experimental studies of laser-induced thermal ignition in premixed ethylene-oxidizer mixtures, Combustion and Flame, vol.103, pp.253-280, 1995.

R. G. Norrish, The study of combustion by photochemical methods. Symposium (International) on Combustion, vol.10, pp.1-18, 1965.

D. Lucas, D. Dunn-rankin, K. Hom, and N. J. Brown, Ignition by excimer laser photolysis of ozone, Combustion and Flame, vol.69, issue.2, pp.171-184, 1987.

M. Lavid and J. G. Stevens, Photochemical ignition of premixed hydrogenoxidizer mixtures with excimer lasers, Combustion and Flame, vol.60, issue.2, pp.195-202, 1985.

M. Lavid, Y. Nachshon, S. K. Gulati, and J. G. Stevens, Photochemical Ignition of Premixed Hydrogen/Oxygen Mixtures With ArF Laser, Combustion Science and Technology, vol.96, issue.4-6, pp.231-245, 1994.

S. Mau, T. J. Chou, and . Zukowski, Ignition of H2/O2/NH3, H2/air/NH3 and CH4/O2/NH3 mixtures by excimer-laser photolysis of NH3, Combustion and Flame -COMBUST FLAME, vol.87, pp.191-202, 1991.

B. E. Forch and A. W. Miziolek, Oxygen-atom two-photon resonance effects in multiphoton photochemical ignition of premixed H 2 /O 2 flows, Optics Letters, vol.11, issue.3, pp.129-131, 1986.

B. E. Forch and A. W. Miziolek, Laser-based ignition of H2o2 and D2o2 premixed gases through resonant multiphoton excitation of H and D atoms near 243 nm, Combustion and Flame, vol.85, issue.1, pp.254-262, 1991.

B. E. Forch, Resonant laser ignition of reactive gases, International Society for Optics and Photonics, vol.2122, pp.118-129, 1994.

L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications, 1989.

D. Bradley, C. G. Sheppard, I. M. Suardjaja, and R. Woolley, Fundamentals of high-energy spark ignition with lasers, Combustion and Flame, vol.138, issue.1, pp.55-77, 2004.

S. Soubacq, P. Pignolet, E. Schall, and J. Batina, Investigation of a gas breakdown process in a laser-plasma experiment, Journal of Physics D : Applied Physics, vol.37, issue.19, p.2686, 2004.

N. Kawahara, J. L. Beduneau, T. Nakayama, E. Tomita, and Y. Ikeda, Spatially, temporally, and spectrally resolved measurement of laser-induced plasma in air, Applied Physics B, vol.86, issue.4, pp.605-614, 2007.

E. Schwarz, S. Gross, B. Fischer, I. Muri, J. Tauer et al., Laser-induced optical breakdown applied for laser spark ignition, Laser and Particle Beams, vol.28, issue.01, p.109, 2010.

C. G. Morgan, Laser-induced breakdown of gases, Reports on Progress in Physics, vol.38, issue.5, p.621, 1975.

R. George, Développement de nouvelles stratégies d'allumage laser : applicationà la propulsion aéronautique et/ou spatiale, 2017.

M. Soo-bak, M. A. Seong-kyun-im, and . Cappelli, Successive laser-induced breakdowns in atmospheric pressure air and premixed ethane-air mixtures. Combustion and Flame, vol.161, pp.1744-1751, 2014.

M. Bärwinkel, S. Lorenz, R. Stäglich, and D. Brüggemann, Influence of focal point properties on energy transfer and plasma evolution during laser ignition process with a passively q-switched laser, Optics Express, vol.24, issue.14, p.15189, 2016.

S. Lorenz, M. Bärwinkel, R. Stäglich, W. Mühlbauer, and D. Brüggemann, Pulse train ignition with passively Q-switched laser spark plugs, International Journal of Engine Research, vol.17, issue.1, pp.139-150, 2016.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, Temperaturedependent stimulated emission cross section and concentration quenching in highly doped Nd3+ :YAG crystals. physica status solidi (a), vol.202, pp.2565-2573, 2005.

A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, Temperature dependence of the 1.06 µm stimulated emission cross section of neodymium in YAG and in GSGG, Applied Optics, vol.41, issue.33, p.7052, 2002.

Y. Sato and T. Taira, Temperature dependencies of stimulated emission cross section for Nd-doped solid-state laser materials, Optical Materials Express, vol.2, issue.8, p.1076, 2012.

N. Pavel, M. Tsunekane, and T. Taira, Enhancing performances of a passively Qswitched Nd :YAGCr(4+) :YAG microlaser with a volume Bragg grating output coupler, Optics Letters, vol.35, issue.10, pp.1617-1619, 2010.

L. Cini and J. I. Mackenzie, Analytical thermal model for end-pumped solid-state lasers, Applied Physics B, vol.123, issue.12, 2017.

W. Koechner, Thermal Lensing in a Nd :YAG Laser Rod. Applied Optics, vol.9, issue.11, pp.2548-2553, 1970.

T. A. Planchon, W. Amir, C. Childress, J. A. Squier, and C. G. ,

. Durfee, Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti :sapphire amplifier, Optics Express, vol.16, issue.23, pp.18557-18564, 2008.

G. Linassier, Étude expérimentale et numérique de l'allumage des turboréacteurs en conditions de haute altitude, 2012.

N. Garcia and R. , Phénomènes d'allumage d'un foyer de turbomachine en conditions de haute altitude, GérardÉnergétique et transferts Toulouse, 2008.

K. Suresh and . Aggarwal, A review of spray ignition phenomena : present status and future research, Progress in Energy and Combustion Science, vol.24, issue.6, pp.565-600, 1998.

D. R. Ballal and A. H. Lefebvre, Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air, Symposium (International) on Combustion, vol.18, issue.1, pp.321-328, 1981.

T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, Yb : fiber-laserpumped high-energy picosecond optical parametric oscillator, Optics express, vol.17, issue.16, pp.14229-14234, 2009.

O. Kokabee, A. Esteban-martin, and M. Ebrahim-zadeh, Efficient, high-power, ytterbium-fiber-laser-pumped picosecond optical parametric oscillator, Optics letters, vol.35, issue.19, pp.3210-3212, 2010.

S. , C. Kumar, J. Wei, J. Debray, B. Vincent-kemlin et al., High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5%MgO :PPLN, Optics Letters, vol.40, issue.16, p.3897, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01206995

E. C. Cheung and J. M. Liu, Theory of a synchronously pumped optical parametric oscillator in steady-state operation, JOSA B, vol.7, issue.8, pp.1385-1401, 1990.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang et al., Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator, Applied Physics B, vol.60, issue.5, pp.427-436, 1995.

D. V. John, J. H. Khaydarov, K. D. Andrews, and . Singer, Pulsecompression mechanism in a synchronously pumped optical parametric oscillator

, JOSA B, vol.12, issue.11, pp.2199-2208, 1995.

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, Fourier transformed picosecond synchronously pumped Optical Parametric Oscillator without spectral filtering element, Journal of the European Optical Society : Rapid publications, vol.3, p.8037, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00560947

D. Jean-baptiste, G. Antoine, J. , and M. Raybaut, Sources paramétriques optiques fondements, mise en oeuvre et applications. Techniques de l'ingénieur Sources laser

S. Brosnan and R. Byer, Optical parametric oscillator threshold and linewidth studies, IEEE Journal of Quantum Electronics, vol.15, issue.6, pp.415-431, 1979.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, Broadly tunable high repetition rate femtosecond optical parametric oscillator, Applied Physics Letters, vol.54, issue.18, pp.1728-1730, 1989.

L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate, Optics letters, vol.24, issue.1, pp.28-30, 1999.

J. Seres and J. Hebling, Nonstationary theory of synchronously pumped femtosecond optical parametric oscillators, JOSA B, vol.17, issue.5, pp.741-750, 2000.

R. , S. Kurti, and K. D. Singer, Pulse compression in a silver gallium sulfide, midinfrared, synchronously pumped optical parametric oscillator, JOSA B, vol.22, issue.10, pp.2157-2163, 2005.

J. Khurgin, J. Melkonian, A. Godard, M. Lefebvre, and E. Rosencher, Passive mode locking of optical parametric oscillators : an efficient technique for generating sub-picosecond pulses, Optics Express, vol.16, issue.7, pp.4804-4818, 2008.

C. Laporte, J. Dherbecourt, J. Melkonian, M. Raybaut, C. Drag et al., Analysis of cavity-length detuning in diffraction-grating narrowed picosecond optical parametric oscillators, Journal of the Optical Society of America B, vol.31, issue.5, p.1026, 2014.

L. Tartara, Simple and versatile dual-signal wave optical parametric oscillator, Optics letters, vol.32, issue.9, pp.1105-1107, 2007.

M. Ebrahimzadeh, S. French, and A. Miller, Design and performance of a singly resonant picosecond LiB 3 O 5 optical parametric oscillator synchronously pumped by a self-mode-locked Ti : sapphire laser, JOSA B, vol.12, issue.11, pp.2180-2191, 1995.