M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, Image Processing with, ImageJ. Biophotonics International, vol.11, issue.7, pp.36-42, 2004.

L. Arce, K. T. Pate, and M. L. Waterman, Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression, BMC Cancer, vol.9, p.159, 2009.

S. J. Arnold and E. J. Robertson, Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo, Nat Rev Mol Cell Biol, vol.10, issue.2, pp.91-103, 2009.

J. Behrens, J. P. Von-kries, M. Kuhl, L. Bruhn, D. Wedlich et al., Functional interaction of beta-catenin with the transcription factor LEF-1, 1996.

, Nature, vol.382, issue.6592, pp.638-642

N. Ben-arie, H. J. Bellen, D. L. Armstrong, A. E. Mccall, P. R. Gordadze et al.,

H. Y. Zoghbi, Math1 is essential for genesis of cerebellar granule neurons, Nature, vol.390, issue.6656, pp.169-172, 1997.

A. N. Billin, H. Thirlwell, and D. E. Ayer, Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator, Mol Cell Biol, vol.20, issue.18, pp.6882-6890, 2000.

S. A. Blythe, S. W. Cha, E. Tadjuidje, J. Heasman, and P. S. Klein, beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8, 2010.

P. , Dev Cell, vol.19, issue.2, pp.220-231

C. Borday, P. Cabochette, K. Parain, N. Mazurier, S. Janssens et al., Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation, Development, vol.139, issue.19, pp.3499-3509, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739966

T. R. Burglin and M. Affolter, Homeodomain proteins: an update, Chromosoma, vol.125, issue.3, pp.497-521, 2016.

K. M. Cadigan, TCFs and Wnt/beta-catenin signaling: more than one way to throw the switch, Curr Top Dev Biol, vol.98, pp.1-34, 2012.

K. M. Cadigan and M. L. Waterman, TCF/LEFs and Wnt signaling in the nucleus, Cold Spring Harb Perspect Biol, issue.11, p.4, 2012.

G. Chen, J. Fernandez, S. Mische, and A. J. Courey, A functional interaction between the histone deacetylase Rpd3 and the corepressor groucho in Drosophila development, Genes Dev, vol.13, issue.17, pp.2218-2230, 1999.

J. V. Chodaparambil, K. T. Pate, M. R. Hepler, B. P. Tsai, U. M. Muthurajan et al.,

W. I. Weis, Molecular functions of the TLE tetramerization domain in Wnt target gene repression, Embo J, vol.33, issue.7, pp.719-731, 2014.

H. Clevers and R. Nusse, Wnt/beta-catenin signaling and disease, Cell, vol.149, issue.6, pp.1192-1205, 2012.

M. F. Cole, S. E. Johnstone, J. J. Newman, M. H. Kagey, and R. A. Young, Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells, Genes Dev, vol.22, issue.6, pp.746-755, 2008.

D. L. Daniels and W. I. Weis, Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation, Nat Struct Mol Biol, vol.12, issue.4, pp.364-371, 2005.

E. M. De-robertis and H. Kuroda, Dorsal-ventral patterning and neural induction in Xenopus embryos, Annu Rev Cell Dev Biol, vol.20, pp.285-308, 2004.

Y. Ding, D. Ploper, E. A. Sosa, G. Colozza, Y. Moriyama et al.,

E. M. De-robertis, Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis, Proc Natl Acad Sci U S A, vol.114, issue.15, 2017.

J. T. Gamse and H. Sive, Early anteroposterior division of the presumptive neurectoderm in Xenopus, Mech Dev, vol.104, issue.1-2, pp.21-36, 2001.

L. Gao, X. Zhu, G. Chen, X. Ma, Y. Zhang et al., A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT, Development, vol.143, issue.3, pp.492-503, 2016.

E. A. Grove, S. Tole, J. Limon, L. Yip, and C. W. Ragsdale, The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice, Development, vol.125, issue.12, pp.2315-2325, 1998.

J. Heasman, M. Kofron, and C. Wylie, Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach, Dev Biol, vol.222, issue.1, pp.124-134, 2000.

H. Hikasa, J. Ezan, K. Itoh, X. Li, M. W. Klymkowsky et al., Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification, Dev Cell, vol.19, issue.4, pp.521-532, 2010.

J. D. Holland, A. Klaus, A. N. Garratt, and W. Birchmeier, Wnt signaling in stem and cancer stem cells, Curr Opin Cell Biol, vol.25, issue.2, pp.254-264, 2013.

N. References-arbour, J. L. Vanderluit, J. N. Le-grand, A. Jahani-asl, V. A. Ruzhynsky et al., Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA damage, J. Neurosci, vol.28, pp.6068-78, 2008.

,

R. Arya and K. White, Cell death in development: Signaling pathways and core mechanisms, 2015.

. Semin, Cell Dev. Biol, vol.39, pp.12-19

E. H. Baehrecke, How death shapes life during development, Nat. Rev. Mol. Cell Biol, vol.3, pp.779-87, 2002.

J. G. Clohessy, J. Zhuang, and H. J. Brady, Characterisation of Mcl-1 cleavage during apoptosis of haematopoietic cells, Br. J. Haematol, vol.125, pp.655-665, 2004.

,

L. Coen, D. Du-pasquier, S. Le-mevel, S. Brown, J. Tata et al., Xenopus Bcl-XL selectively protects Rohon-Beard neurons from metamorphic degeneration, 2000.

, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.7869-7874

Q. Ding, X. He, J. Hsu, W. Xia, C. Chen et al., Degradation of Mcl-1 by ?-TrCP Mediates Glycogen Synthase Kinase 3-Induced Tumor Suppression and Chemosensitization, Mol. Cell. Biol, vol.27, pp.4006-4017, 2007.

,

H. M. Ellis and H. R. Horvitz, Genetic Control of Programmed Cell Death in the Nematode C. elegans, Cell, vol.44, issue.86, pp.90004-90012, 1986.

D. R. Green, L. Galluzzi, and G. Kroemer, Metabolic control of cell death. Science (80-. ), vol.345, 2014.

C. Hensey and J. Gautier, Programmed Cell Death during Xenopus Development: A Spatiotemporal Analysis, Dev. Biol, vol.203, pp.36-48, 1998.

S. Homma, H. Yaginuma, and R. W. Oppenheim, Programmed cell death during the earliest stages of spinal cord development in the chick embryo: A possible means of early phenotypic selection, J. Comp. Neurol, vol.345, pp.377-395, 1994.

J. Johnston, R. Chan, M. Calderon-segura, S. Mcfarlane, and L. W. Browder, The roles of BclxL in modulating apoptosis during development of Xenopus laevis, BMC Dev. Biol, vol.5, issue.20, 2005.

H. A. Juraver-geslin, J. J. Ausseil, M. Wassef, and B. C. Durand, Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of ?-catenin activation, Proc. Natl. Acad, 2011.

. U. Sci, , vol.108, pp.2288-2293

H. A. Juraver-geslin and B. C. Durand, Early development of the neural plate: New Roles for Apoptosis and for One of its Main Effectors Caspase-3, Genesis, vol.53, pp.203-224, 2015.

,

H. A. Juraver-geslin, J. L. Gómez-skarmeta, and B. C. Durand, The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog, Dev. Biol, vol.396, pp.107-120, 2014.

J. F. Kerr, History of the events leading to the formulation of the apoptosis concept, Toxicology, vol.181, issue.182, pp.457-459, 2002.

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a Basic Biological Phenomenon With WideRanging Implications in Tissue Kinetics, Br. J. Cancer, vol.26, pp.239-257, 1972.

,

S. Li, S. M. Price, H. Cahill, D. K. Ryugo, M. M. Shen et al., Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene, Development, vol.129, pp.3523-3555, 2002.

S. Li, F. Qiu, A. Xu, S. M. Price, and M. Xiang, Barhl1 Regulates Migration and Survival of Cerebellar Granule Cells by Controlling Expression of the Neurotrophin-3 Gene, J. Neurosci, vol.24, pp.3104-3114, 2004.

M. A. Malikova, M. Van-stry, and K. Symes, Apoptosis regulates notochord development in Xenopus, Dev. Biol, vol.311, pp.434-448, 2007.

C. D. Malone, S. M. Hasan, R. B. Roome, J. Xiong, M. Furlong et al., Mcl-1 regulates the survival of adult neural precursor cells, Mol. Cell. Neurosci, vol.49, pp.439-447, 2012.

U. Maurer, C. Charvet, A. S. Wagman, E. Dejardin, and D. R. Green, Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1, Mol. Cell, vol.21, pp.749-760, 2006.

C. Milet, F. Maczkowiak, D. D. Roche, and A. H. Monsoro-burq, Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183640

, Proc. Natl. Acad. Sci, vol.110, pp.5528-5533

M. Miura, Active participation of cell death in development and organismal homeostasis, Dev. Growth Differ, vol.53, pp.125-161, 2011.

N. Motoyama, F. Wang, K. A. Roth, H. Sawa, K. Nakayama et al., Massive Cell Death of Immature Hematopoietic Cells and Neurons in Bcl-x-deficient mice, Science, vol.267, pp.1506-1516, 1995.

,

J. T. Opferman and A. Kothari, Anti-apoptotic BCL-2 family members in development, Cell Death Differ, vol.25, pp.37-45, 2018.

K. D. Patterson, O. Cleaver, W. V. Gerber, F. G. White, and P. A. Krieg, Distinct expression patterns for two Xenopus Bar homeobox genes, Dev. Genes Evol, vol.210, pp.140-144, 2000.

,

E. Peden, E. Kimberly, K. Gengyo-ando, S. Mitani, and D. Xue, Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho, Genes Dev, vol.21, pp.3195-207, 2007.

Y. Saka and J. C. Smith, Spatial and temporal patterns of cell division during early Xenopus embryogenesis, Dev. Biol, vol.229, pp.307-318, 2001.

H. T. Schwartz and H. R. Horvitz, The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9, Genes Dev, vol.21, pp.3181-94, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00089763

,

A. M. Session, Y. Uno, T. Kwon, J. A. Chapman, A. Toyoda et al., , p.156

J. Fortriede, K. Burns, V. Lotay, K. Karimi, Y. Yasuoka et al.,

D. W. Houston, J. Shendure, L. Dupasquier, P. D. Vize, A. M. Zorn et al.,

R. M. Harland, M. Taira, and D. S. Rokhsar, Genome evolution in the allotetraploid frog Xenopus laevis, Nature, vol.538, pp.336-343, 2016.

H. L. Sive, R. M. Grainger, and R. M. Harland, Microinjection of Xenopus embryos, Cold Spring Harb. Protoc, 2010.

L. W. Thomas, C. Lam, and S. W. Edwards, Mcl-1; the molecular regulation of protein function, FEBS Lett, vol.584, pp.2981-2989, 2010.

Y. Tsuchiya and S. Yamashita, Anti-apoptotic Activity and Proteasome-mediated Degradation of Xenopus Mcl-1 Protein in Egg Extracts, J. Biol. Chem, vol.286, pp.15806-15814, 2011.

,

M. Van-stry, K. A. Mclaughlin, P. Ataliotis, and K. Symes, The mitochondrial-apoptotic pathway is triggered in Xenopus mesoderm cells deprived of PDGF receptor signaling during gastrulation, Dev. Biol, vol.268, pp.232-242, 2004.

I. Yanai, L. Peshkin, P. Jorgensen, and M. W. Kirschner, Mapping Gene Expression in two Xenopus Species: Evolutionary Constraints and Developmental Flexibility, Dev. Cell, vol.20, pp.483-96, 2011.

W. Yeo and J. Gautier, A role for programmed cell death during early neurogenesis in Xenopus, Dev. Biol, vol.260, pp.222-229, 2003.

Q. Zhong, W. Gao, F. Du, and X. Wang, Mule/ARF-BP1, a BH3-only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis, Cell, vol.121, pp.1085-1095, 2005.

,

T. M. Jessell, J. R. Sanes, and . Development, The decade of the developing brain, Curr. Opin. Neurobiol, vol.10, pp.599-611, 2000.

J. M. Hebert and G. Fishell, The genetics of early telencephalon patterning: Some assembly required, Nat. Rev. Neurosci, vol.9, pp.678-685, 2008.

, J. Dev. Biol, vol.4, p.31, 2016.

S. Scholpp and A. Lumsden, Review: Building a bridal chamber: Development of the thalamus, Trends Neurosci, vol.33, pp.373-380, 2010.

F. Cavodeassi and C. Houart, Brain regionalization: Of signaling centers and boundaries, Dev. Neurobiol, vol.72, pp.218-233, 2012.

C. Kiecker and A. Lumsden, The role of organizers in patterning the nervous system, Annu. Rev. Neurosci, vol.35, pp.347-367, 2012.

D. Echevarría, C. Vieira, L. Gimeno, and S. Martinez, Neuroepithelial secondary organizers and cell fate specification in the developing brain, Brain Res. Brain Res. Rev, vol.43, pp.179-191, 2003.

C. Anderson and C. D. Stern, Organizers in development, Curr. Top. Dev. Biol, vol.117, pp.435-454, 2016.

S. Scholpp, O. Wolf, M. Brand, and A. Lumsden, Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon, vol.133, pp.855-864, 2006.

C. Vieira, A. L. Garda, K. Shimamura, and S. Martinez, Thalamic development induced by shh in the chick embryo, Dev. Biol, vol.284, pp.351-363, 2005.

C. Kiecker and A. Lumsden, Hedgehog signaling from the zli regulates diencephalic regional identity, Nat. Neurosci, vol.7, pp.1242-1249, 2004.

K. Hashimoto-torii, J. Motoyama, C. C. Hui, A. Kuroiwa, M. Nakafuku et al., Differential activities of sonic hedgehog mediated by gli transcription factors define distinct neuronal subtypes in the dorsal thalamus, Mech. Dev, vol.120, pp.1097-1111, 2003.

H. A. Juraver-geslin, J. L. Gomez-skarmeta, and B. C. Durand, The conserved barh-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by sonic hedgehog, Dev. Biol, vol.396, pp.107-120, 2014.

D. J. Epstein, Regulation of thalamic development by sonic hedgehog, Front. Neurosci, vol.6, 2012.

Y. Jeong, D. K. Dolson, R. R. Waclaw, M. P. Matise, L. Sussel et al., Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity, Development, vol.138, pp.531-541, 2011.

N. E. Szabo, T. Zhao, X. Zhou, and G. Alvarez-bolado, The role of sonic hedgehog of neural origin in thalamic differentiation in the mouse, J. Neurosci, vol.29, pp.2453-2466, 2009.

M. Chatterjee and J. Y. Li, Patterning and compartment formation in the diencephalon, Front. Neurosci, vol.6, 2012.

A. Martinez-ferre and S. Martinez, Molecular regionalization of the diencephalon, Front. Neurosci, vol.6, 2012.

H. Bergquist and B. Kallen, Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates, J. Comp. Neurol, vol.100, pp.627-659, 1954.

R. E. Coggeshall, A study of diencephalic development in the albino rat, J. Comp. Neurol, vol.122, pp.241-269, 1964.

A. Keyser, The development of the diencephalon of the chinese hamster. An investigation of the validity of the criteria of subdivision of the brain, Acta Anat. Suppl, vol.59, pp.1-178, 1972.

S. Vaage, The segmentation of the primitive neural tube in chick embryos (gallus domesticus): A morphological, histochemical and autoradiographical investigation, Ergeb. Anat. Entwicklungsgesch, vol.41, pp.3-87, 1969.

A. Bulfone, L. Puelles, M. H. Porteus, M. A. Frohman, G. R. Martin et al., Spatially restricted expression of dlx-1, dlx-2 (tes-1), gbx-2, and wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries, J. Neurosci, vol.13, pp.3155-3172, 1993.

J. L. Rubenstein, S. Martinez, K. Shimamura, and L. Puelles, The embryonic vertebrate forebrain: The prosomeric model, Science, vol.266, pp.578-580, 1994.

M. C. Figdor and C. D. Stern, Segmental organization of embryonic diencephalon, Nature, vol.363, pp.630-634, 1993.

L. Puelles and J. L. Rubenstein, Forebrain gene expression domains and the evolving prosomeric model, Trends Neurosci, vol.26, pp.469-476, 2003.

C. L. Thompson, L. Ng, V. Menon, S. Martinez, C. K. Lee et al., A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain, Neuron, vol.83, pp.309-323, 2014.

, J. Dev. Biol, vol.4, pp.31-47, 2016.

J. L. Ferran, L. Puelles, and J. L. Rubenstein, Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus, Front. Neuroanat, vol.9, 2015.

R. Garcia-lopez, C. Vieira, D. Echevarria, and S. Martinez, Fate map of the diencephalon and the zona limitans at the 10-somites stage in chick embryos, Dev. Biol, vol.268, pp.514-530, 2004.

C. W. Larsen, L. M. Zeltser, and A. Lumsden, Boundary formation and compartition in the avian diencephalon, J. Neurosci, vol.21, pp.4699-4711, 2001.

K. Shimamura, D. J. Hartigan, S. Martinez, L. Puelles, and J. L. Rubenstein, Longitudinal organization of the anterior neural plate and neural tube, Development, vol.121, pp.3923-3933, 1995.

L. M. Zeltser, C. W. Larsen, and A. Lumsden, A new developmental compartment in the forebrain regulated by lunatic fringe, Nat. Neurosci, vol.4, pp.683-684, 2001.

S. Scholpp, I. Foucher, N. Staudt, D. Peukert, A. Lumsden et al., Otx1l, otx2 and irx1b establish and position the zli in the diencephalon, Development, vol.134, pp.3167-3176, 2007.

J. Ericson, S. Morton, A. Kawakami, H. Roelink, and T. M. Jessell, Two critical periods of sonic hedgehog signaling required for the specification of motor neuron identity, Cell, vol.87, pp.661-673, 1996.

Y. Watanabe and H. Nakamura, Control of chick tectum territory along dorsoventral axis by sonic hedgehog, vol.127, pp.1131-1140, 2000.

M. Placzek, M. Tessier-lavigne, T. Yamada, T. Jessell, and J. Dodd, Mesodermal control of neural cell identity: Floor plate induction by the notochord, Science, vol.250, pp.985-988, 1990.

C. E. Chamberlain, J. Jeong, C. Guo, B. L. Allen, and A. P. Mcmahon, Notochord-derived shh concentrates in close association with the apically positioned basal body in neural target cells and forms a dynamic gradient during neural patterning, Development, vol.135, pp.1097-1106, 2008.

M. Placzek and J. Briscoe, The floor plate: Multiple cells, multiple signals, Nat. Rev. Neurosci, vol.6, pp.230-240, 2005.

L. M. Zeltser, Shh-dependent formation of the zli is opposed by signals from the dorsal diencephalon, vol.132, pp.2023-2033, 2005.

C. Vieira and S. Martinez, Sonic hedgehog from the basal plate and the zona limitans intrathalamica exhibits differential activity on diencephalic molecular regionalization and nuclear structure, Neuroscience, vol.143, pp.129-140, 2006.

J. Mathieu, A. Barth, F. M. Rosa, S. W. Wilson, and N. Peyrieras, Distinct and cooperative roles for nodal and hedgehog signals during hypothalamic development, vol.129, pp.3055-3065, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02119448

J. Holzschuh, G. Hauptmann, and W. Driever, Genetic analysis of the roles of hh, fgf8, and nodal signaling during catecholaminergic system development in the zebrafish brain, J. Neurosci, vol.23, pp.5507-5519, 2003.

K. Sampath, A. L. Rubinstein, A. M. Cheng, J. O. Liang, K. Fekany et al., Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling, Nature, vol.395, pp.185-189, 1998.

S. Martinez and L. Puelles, Neurogenetic compartments of the mouse diencephalon and some characteristic gene expression patterns, Results Probl. Cell Differ, vol.30, pp.91-106, 2000.

C. Kiecker and A. Lumsden, Compartments and their boundaries in vertebrate brain development, Nat. Rev. Neurosci, vol.6, pp.553-564, 2005.

P. H. Crossley, S. Martinez, and G. R. Martin, Midbrain development induced by fgf8 in the chick embryo, Nature, vol.380, pp.66-68, 1996.

E. Robertshaw, K. Matsumoto, A. Lumsden, and C. Kiecker, Irx3 and pax6 establish differential competence for shh-mediated induction of gabaergic and glutamatergic neurons of the thalamus, Proc. Natl. Acad. Sci, vol.110, pp.3919-3926, 2013.

J. L. Rubenstein, K. Shimamura, S. Martinez, and L. Puelles, Regionalization of the prosencephalic neural plate, Annu. Rev. Neurosci, vol.21, pp.445-477, 1998.

B. Mattes, S. Weber, J. Peres, Q. Chen, G. Davidson et al., Wnt3 and wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain, Neural Dev, vol.7, p.12, 2012.

A. Martinez-ferre, M. Navarro-garberi, C. Bueno, and S. Martinez, Wnt signal specifies the intrathalamic limit and its organizer properties by regulating shh induction in the alar plate, J. Neurosci, vol.33, pp.3967-3980, 2013.

C. Houart, M. Westerfield, and S. W. Wilson, A small population of anterior cells patterns the forebrain during zebrafish gastrulation, Nature, vol.391, pp.788-792, 1998.

S. W. Wilson and C. Houart, Review: Early steps in the development of the forebrain, Dev. Cell, vol.6, pp.167-181, 2004.

A. Ruiz-i-altaba, V. Nguyen, and V. Palma, The emergent design of the neural tube: Prepattern, shh morphogen and gli code, Curr. Opin. Genet. Dev, vol.13, pp.513-521, 2003.

J. Jacob, J. Briscoe, J. Britto, D. Tannahill, and R. Keynes, Gli proteins and the control of spinal-cord patterning, EMBO Rep, vol.4, pp.761-765, 2003.

T. M. Jessell, Neuronal specification in the spinal cord: Inductive signals and transcriptional codes, Nat. Rev. Genet, vol.1, pp.20-29, 2000.

D. Kobayashi, M. Kobayashi, K. Matsumoto, T. Ogura, M. Nakafuku et al., Early subdivisions in the neural plate define distinct competence for inductive signals, vol.129, pp.83-93, 2002.

J. L. Gomez-skarmeta, S. Campuzano, and J. Modolell, Half a century of neural prepatterning: The story of a few bristles and many genes, Nat. Rev. Neurosci, vol.4, pp.587-598, 2003.

D. Acampora, M. P. Postiglione, V. Avantaggiato, M. Di-bonito, and A. Simeone, The role of otx and otp genes in brain development, Int. J. Dev. Biol, vol.44, pp.669-677, 2000.

F. Beby and T. Lamonerie, The homeobox gene otx2 in development and disease, Exp. Eye Res, vol.111, pp.9-16, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00811762

M. Pannese, C. Polo, M. Andreazzoli, R. Vignali, B. Kablar et al., The xenopus homologue of otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions, Development, vol.121, pp.707-720, 1995.

L. N. Schuhmacher, S. Albadri, M. Ramialison, and L. Poggi, Evolutionary relationships and diversification of barhl genes within retinal cell lineages, BMC Evol. Biol, vol.11, 2011.

G. Reig, M. E. Cabrejos, and M. L. Concha, Functions of barh transcription factors during embryonic development, Dev. Biol, vol.302, pp.367-375, 2007.

H. A. Juraver-geslin and B. C. Durand, Early development of the neural plate: New roles for apoptosis and for one of its main effectors caspase-3, Genesis, vol.53, pp.203-224, 2015.

N. Offner, N. Duval, M. Jamrich, and B. Durand, The pro-apoptotic activity of a vertebrate bar-like homeobox gene plays a key role in patterning the xenopus neural plate by limiting the number of chordin-and shh-expressing cells, Development, vol.132, pp.1807-1818, 2005.

H. A. Juraver-geslin, J. J. Ausseil, M. Wassef, and B. C. Durand, Barhl2 limits growth of the diencephalic primordium through caspase3 inhibition of beta-catenin activation, Proc. Natl. Acad. Sci, vol.108, pp.2288-2293, 2011.

N. Staudt and C. Houart, The prethalamus is established during gastrulation and influences diencephalic regionalization, PLoS Biol, vol.5, 2007.

Z. Mo, S. Li, X. Yang, and M. Xiang, Role of the barhl2 homeobox gene in the specification of glycinergic amacrine cells, vol.131, pp.1607-1618, 2004.

Y. Yao, P. J. Minor, Y. T. Zhao, Y. Jeong, A. M. Pani et al., Nat. Genet, vol.48, pp.575-580, 2016.

K. D. Patterson, O. Cleaver, W. V. Gerber, F. G. White, and P. A. Krieg, Distinct expression patterns for two xenopus bar homeobox genes, Dev. Genes Evol, vol.210, pp.140-144, 2000.

A. Colombo, G. Reig, M. Mione, and M. L. Concha, Zebrafish barh-like genes define discrete neural domains in the early embryo, Gene Expr. Patterns, vol.6, pp.347-352, 2006.

T. Hirata, M. Nakazawa, O. Muraoka, R. Nakayama, Y. Suda et al., Zinc-finger genes fez and fez-like function in the establishment of diencephalon subdivisions, Development, vol.133, pp.3993-4004, 2006.

Q. Ding, R. Balasubramanian, D. Zheng, G. Liang, and L. Gan, Barhl2 determines the early patterning of the diencephalon by regulating shh, Mol. Neurobiol, 2016.

S. A. Ramsbottom and M. E. Pownall, Regulation of hedgehog signalling inside and outside the cell, J. Dev. Biol, 2016.

J. A. Porter, S. C. Ekker, W. J. Park, D. P. Kessler, K. E. Young et al., Hedgehog patterning activity: Role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain, Cell, vol.86, pp.21-34, 1996.

J. A. Porter, D. P. Kessler, S. C. Ekker, K. E. Young, J. J. Lee et al., The product of hedgehog autoproteolytic cleavage active in local and long-range signalling, Nature, vol.374, pp.363-366, 1995.

D. A. Bumcrot, R. Takada, and A. P. Mcmahon, Proteolytic processing yields two secreted forms of sonic hedgehog, Mol. Cell. Biol, vol.15, pp.2294-2303, 1995.

X. Chen, H. Tukachinsky, C. H. Huang, C. Jao, Y. R. Chu et al., Processing and turnover of the hedgehog protein in the endoplasmic reticulum, J. Cell Biol, vol.192, pp.825-838, 2011.

J. A. Porter, K. E. Young, and P. A. Beachy, Cholesterol modification of hedgehog signaling proteins in animal development, Science, vol.274, pp.255-259, 1996.

Y. Li, H. Zhang, Y. Litingtung, and C. Chiang, Cholesterol modification restricts the spread of shh gradient in the limb bud, Proc. Natl. Acad. Sci, vol.103, pp.6548-6553, 2006.

R. B. Pepinsky, C. Zeng, D. Wen, P. Rayhorn, D. P. Baker et al., Identification of a palmitic acid-modified form of human sonic hedgehog, J. Biol. Chem, vol.273, pp.14037-14045, 1998.

J. A. Buglino and M. D. Resh, Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of sonic hedgehog, J. Biol. Chem, vol.283, pp.22076-22088, 2008.

Z. Chamoun, R. K. Mann, D. Nellen, D. P. Kessler, M. Bellotto et al., Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal, Science, vol.293, pp.2080-2084, 2001.

R. Y. Hardy and M. D. Resh, Identification of n-terminal residues of sonic hedgehog important for palmitoylation by hedgehog acyltransferase, J. Biol. Chem, vol.287, pp.42881-42889, 2012.

M. H. Chen, Y. J. Li, T. Kawakami, S. M. Xu, and P. T. Chuang, Palmitoylation is required for the production of a soluble multimeric hedgehog protein complex and long-range signaling in vertebrates, Genes Dev, vol.18, pp.641-659, 2004.

J. D. Kohtz, H. Y. Lee, N. Gaiano, J. Segal, E. Ng et al., N-Terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons, vol.128, pp.2351-2363, 2001.

R. Burke, D. Nellen, M. Bellotto, E. Hafen, K. A. Senti et al., Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells, Cell, vol.99, pp.803-815, 1999.

A. Creanga, T. D. Glenn, R. K. Mann, A. M. Saunders, W. S. Talbot et al., Scube/you activity mediates release of dually lipid-modified hedgehog signal in soluble form, Genes Dev, vol.26, pp.1312-1325, 2012.

H. Tukachinsky, R. P. Kuzmickas, C. Y. Jao, J. Liu, and A. Salic, Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand, Cell Rep, vol.2, pp.308-320, 2012.

C. Eugster, D. Panakova, A. Mahmoud, and S. Eaton, Lipoprotein-heparan sulfate interactions in the hh pathway, Dev. Cell, vol.13, pp.57-71, 2007.

D. Panakova, H. Sprong, E. Marois, C. Thiele, and S. Eaton, Lipoprotein particles are required for hedgehog and wingless signalling, Nature, vol.435, pp.58-65, 2005.

S. Liegeois, A. Benedetto, J. M. Garnier, Y. Schwab, and M. Labouesse, The v0-atpase mediates apical secretion of exosomes containing hedgehog-related proteins in caenorhabditis elegans, J. Cell Biol, vol.173, pp.949-961, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188024

A. Callejo, A. Bilioni, E. Mollica, N. Gorfinkiel, G. Andres et al., Dispatched mediates hedgehog basolateral release to form the long-range morphogenetic gradient in the drosophila wing disk epithelium, Proc. Natl. Acad. Sci, vol.108, pp.12591-12598, 2011.

N. Vyas, A. Walvekar, D. Tate, V. Lakshmanan, D. Bansal et al., Vertebrate hedgehog is secreted on two types of extracellular vesicles with different signaling properties, Sci. Rep, 2014.

D. Huangfu, A. Liu, A. S. Rakeman, N. S. Murcia, L. Niswander et al., Hedgehog signalling in the mouse requires intraflagellar transport proteins, Nature, vol.426, pp.83-87, 2003.

K. I. Hilgendorf, C. T. Johnson, and P. K. Jackson, The primary cilium as a cellular receiver: Organizing ciliary gpcr signaling, Curr. Opin. Cell Biol, vol.39, pp.84-92, 2016.

C. B. Bai, D. Stephen, and A. L. Joyner, All mouse ventral spinal cord patterning by hedgehog is gli dependent and involves an activator function of gli3, Dev. Cell, vol.6, pp.103-115, 2004.

J. Briscoe, Making a grade: Sonic hedgehog signalling and the control of neural cell fate, EMBO J, vol.28, pp.457-465, 2009.

M. Fuccillo, A. L. Joyner, and G. Fishell, Morphogen to mitogen: The multiple roles of hedgehog signalling in vertebrate neural development, Nat. Rev. Neurosci, vol.7, pp.772-783, 2006.

S. Mukhopadhyay and R. Rohatgi, Protein-coupled receptors, hedgehog signaling and primary cilia, Semin. Cell. Dev. Biol, vol.33, pp.63-72, 2014.

M. A. Willaredt, K. Hasenpusch-theil, H. A. Gardner, I. Kitanovic, V. C. Hirschfeld-warneken et al., A crucial role for primary cilia in cortical morphogenesis, J. Neurosci, vol.28, pp.12887-12900, 2008.

C. Cruz, V. Ribes, E. Kutejova, J. Cayuso, V. Lawson et al., Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling, Development, vol.137, pp.4271-4282, 2010.

M. I. Chung, S. M. Peyrot, S. Leboeuf, T. J. Park, K. L. Mcgary et al., Rfx2 is broadly required for ciliogenesis during vertebrate development, Dev. Biol, vol.363, pp.155-165, 2012.

A. G. Kramer-zucker, F. Olale, C. J. Haycraft, B. K. Yoder, A. F. Schier et al., Cilia-driven fluid flow in the zebrafish pronephros, brain and kupffer's vesicle is required for normal organogenesis, Development, vol.132, pp.1907-1921, 2005.

A. Christ, A. Christa, E. Kur, O. Lioubinski, S. Bachmann et al., Lrp2 is an auxiliary shh receptor required to condition the forebrain ventral midline for inductive signals, Dev. Cell, vol.22, pp.268-278, 2012.

C. Hagenlocher, P. Walentek, C. Müller, T. Thumberger, and K. Feistel, Ciliogenesis and cerebrospinal fluid flow in the developing xenopus brain are regulated by foxj1, vol.2, p.12, 2013.

J. L. Gomez-skarmeta and J. Modolell, Iroquois genes: Genomic organization and function in vertebrate neural development, Curr. Opin. Genet. Dev, vol.12, pp.403-408, 2002.

F. Cavodeassi, J. Modolell, and J. L. Gomez-skarmeta, The iroquois family of genes: From body building to neural patterning, Development, vol.128, pp.2847-2855, 2001.

T. Peters, R. Dildrop, K. Ausmeier, and U. Ruther, Organization of mouse iroquois homeobox genes in two clusters suggests a conserved regulation and function in vertebrate development, Genome Res, vol.10, pp.1453-1462, 2000.

E. De-la-calle-mustienes, J. Modolell, and J. L. Gomez-skarmeta, The xiro-repressed gene corest is expressed in xenopus neural territories, Mech. Dev, vol.110, pp.209-211, 2002.

E. Rodriguez-seguel, P. Alarcon, and J. L. Gomez-skarmeta, The xenopus irx genes are essential for neural patterning and define the border between prethalamus and thalamus through mutual antagonism with the anterior repressors fezf and arx, Dev. Biol, vol.329, pp.258-268, 2009.

V. Lecaudey, I. Anselme, F. Rosa, and S. Schneider-maunoury, The zebrafish iroquois gene iro7 positions the r4/r5 boundary and controls neurogenesis in the rostral hindbrain, vol.131, pp.3121-3131, 2004.

C. Dahmann, A. C. Oates, and M. Brand, Boundary formation and maintenance in tissue development, Nat. Rev. Genet, vol.12, pp.43-55, 2011.

J. H. Baek, J. Hatakeyama, S. Sakamoto, T. Ohtsuka, and R. Kageyama, Persistent and high levels of hes1 expression regulate boundary formation in the developing central nervous system, vol.133, pp.2467-2476, 2006.

T. Grigoryan, P. Wend, A. Klaus, and W. Birchmeier, Deciphering the function of canonical wnt signals in development and disease: Conditional loss-and gain-of-function mutations of beta-catenin in mice, Genes Dev, vol.22, pp.2308-2341, 2008.

, J. Dev. Biol, 2016.

R. Van-amerongen and R. Nusse, Towards an integrated view of wnt signaling in development, vol.136, pp.3205-3214, 2009.

R. Noelanders and K. Vleminckx, How wnt signaling builds the brain: Bridging development and disease, Neuroscientist, 2016.

C. Redies, Cadherins in the central nervous system, Prog. Neurobiol, vol.61, pp.611-648, 2000.

E. Puelles, Genetic control of basal midbrain development, J. Neurosci. Res, vol.85, pp.3530-3534, 2007.

D. Peukert, S. Weber, A. Lumsden, and S. Scholpp, Lhx2 and lhx9 determine neuronal differentiation and compartition in the caudal forebrain by regulating wnt signaling, PLoS Biol, vol.9, 2011.

F. Pinto-teixeira and C. Desplan, Notch activity in neural progenitors coordinates cytokinesis and asymmetric differentiation, Sci. Signal, vol.7, 2014.

Y. C. Cheng, M. Amoyel, X. Qiu, Y. J. Jiang, Q. Xu et al., Notch activation regulates the segregation and differentiation of rhombomere boundary cells in the zebrafish hindbrain, Dev. Cell, vol.6, pp.539-550, 2004.

K. Tossell, C. Kiecker, A. Wizenmann, E. Lang, and C. Irving, Notch signalling stabilises boundary formation at the midbrain-hindbrain organiser, Development, vol.138, pp.3745-3757, 2011.

N. Barrios, E. Gonzalez-perez, R. Hernandez, and S. Campuzano, The homeodomain iroquois proteins control cell cycle progression and regulate the size of developmental fields, PLoS Genet, vol.11, 2015.

E. Villa-cuesta, E. Gonzalez-perez, and J. Modolell, Apposition of iroquois expressing and non-expressing cells leads to cell sorting and fold formation in the drosophila imaginal wing disc, BMC Dev. Biol, vol.7, p.106, 2007.

E. Jimenez-guri and C. Pujades, An ancient mechanism of hindbrain patterning has been conserved in vertebrate evolution, Evol. Dev, vol.13, pp.38-46, 2011.

B. C. Durand, Stem cell-like xenopus embryonic explants to study early neural developmental features in vitro and in vivo, J. Vis. Exp, p.53474, 2016.

J. Y. Jeong, Z. Einhorn, P. Mathur, L. Chen, S. Lee et al., Patterning the zebrafish diencephalon by the conserved zinc-finger protein fezl, Development, vol.134, pp.127-136, 2007.

A. I. Hagemann and S. Scholpp, The tale of the three brothers-Shh, wnt, and fgf during development of the thalamus, Front. Neurosci, vol.6, p.76, 2012.

I. M. Caballero, M. N. Manuel, M. Molinek, I. Quintana-urzainqui, D. Mi et al., Cell-autonomous repression of shh by transcription factor pax6 regulates diencephalic patterning by controlling the central diencephalic organizer, Cell Rep, vol.8, pp.1405-1418, 2014.

A. M. Pani, E. E. Mullarkey, J. Aronowicz, S. Assimacopoulos, E. A. Grove et al., Ancient deuterostome origins of vertebrate brain signalling centres, Nature, vol.483, pp.289-294, 2012.

C. J. Lowe, M. Wu, A. Salic, L. Evans, E. Lander et al., Anteroposterior patterning in hemichordates and the origins of the chordate nervous system, Cell, vol.113, pp.853-865, 2003.

R. R. Llinas, Thalamo-cortical dysrhythmia syndrome: Neuropsychiatric features, Anales de la Real Academia Nacional de Medicina, vol.120, pp.267-290, 2003.

P. Marcorelles, A. Laquerriere, . Neuropathology, and . Holoprosencephaly, Am. J. Med. Genet. Part. C Semin. Med. Genet, vol.154, pp.109-119, 2010.

M. A. Willaredt, E. Tasouri, and K. L. Tucker, Primary cilia and forebrain development, Mech. Dev, vol.130, pp.373-380, 2013.

G. M. Xavier, M. Seppala, W. Barrell, A. A. Birjandi, F. Geoghegan et al., Hedgehog receptor function during craniofacial development, Dev. Biol, vol.415, pp.198-215, 2016.

R. Guerrini and W. B. Dobyns, Malformations of cortical development: Clinical features and genetic causes, Lancet Neurol, vol.13, pp.710-726, 2014.

W. F. Hu, M. H. Chahrour, and C. A. Walsh, The diverse genetic landscape of neurodevelopmental disorders, Ann. Rev. Genom. Hum. Genet, vol.15, pp.195-213, 2014.

G. M. Shepherd, Corticostriatal connectivity and its role in disease, Nat. Rev. Neurosci, vol.14, pp.278-291, 2013.

, J. Dev. Biol, 2016.

J. S. Hahn and P. D. Barnes, Neuroimaging advances in holoprosencephaly: Refining the spectrum of the midline malformation, Am. J. Med. Genet. Part C Semin. Med. Genet, vol.154, pp.120-132, 2010.

M. Munke, Clinical, cytogenetic, and molecular approaches to the genetic heterogeneity of holoprosencephaly, Am. J. Med. Genet, vol.34, pp.237-245, 1989.

L. Nanni, J. E. Ming, M. Bocian, K. Steinhaus, D. W. Bianchi et al., The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: Shh mutations cause a significant proportion of autosomal dominant holoprosencephaly, Hum. Mol. Genet, vol.8, pp.2479-2488, 1999.

P. A. Gongal, C. R. French, and A. J. Waskiewicz, Aberrant forebrain signaling during early development underlies the generation of holoprosencephaly and coloboma, Biochim. Biophys. Acta, vol.1812, pp.390-401, 2011.

A. Petryk, D. Graf, R. Marcucio, and . Holoprosencephaly, Signaling interactions between the brain and the face, the environment and the genes, and the phenotypic variability in animal models and humans, Interdiscip. Rev. Dev. Biol, vol.4, pp.17-32, 2015.

C. Dubourg, W. Carre, H. Hamdi-roze, C. Mouden, J. Roume et al., Mutational spectrum in holoprosencephaly shows that fgf is a new major signaling pathway, Hum. Mutat, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439363

V. Dupe, L. Rochard, S. Mercier, Y. Le-petillon, I. Gicquel et al., Notch, a new signaling pathway implicated in holoprosencephaly, Hum. Mol. Genet, vol.20, pp.1122-1131, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00554387

S. Mercier, V. David, L. Ratie, I. Gicquel, S. Odent et al., Nodal and shh dose-dependent double inhibition promotes an hpe-like phenotype in chick embryos, Dis. Models Mech, vol.6, pp.537-543, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00824979

M. Gorivodsky, M. Mukhopadhyay, M. Wilsch-braeuninger, M. Phillips, A. Teufel et al., Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain, Dev. Biol, vol.325, pp.24-32, 2009.

X. Tropicalis, Les résultats sont normalisés par rapport à l'expression du contrôle. Les résultats sont présentés en moyenne ± s.e et évalués comme significatifs par un test T apparié (P = 0,013, variances inégales, à deux queues). (H) Barhl2 GOF et LOF changent l'activité transcriptionnelle de Tcf dans les embryons de reporter Wnt de 10,5 X. tropicalis Wnt. L'ISH utilisant la sonde gfp a été réalisée sur des embryons transgéniques pbin7LefdGFP de stade 10.5 injectés avec de l'ARN codant pour barhl2 (barhl2) (b, c) ou avec MObarhl2 (d, e) conjointement avec un traceur. (H) embryons représentatifs de stade 10, Les niveaux d'ARN de gfp ont été analysés par (F) ISH sur les embryons wt (a), stade 8 (b) et 8.5 (c) ou par analyse (G) RT-qPCR sur embryons injectés wt (bleu) ou MObarhl2 (orange), vol.5

. Mcl1-regule-l'apoptose-a-la-plaque and . Neurale, Notre équipe a précédemment décrit que le facteur de transcription Barhl2 favorise l'apoptose dans l'organisateur axial des embryons Xenopus. La perte de fonction de Barhl2 conduit à une diminution des cellules apoptotiques et une perturbation dans les gradients Shh et anti-Bmp émanant de l'organisateur, 2005.

, En accord avec son profil d'expression, nous démontrons que Mcl1 contrôle la survie des cellules organisatrices axiales dans la neurula gastrula-précoce tardive. Nous présentons des preuves que Barhl2, et la protéine anti-apoptotique Mcl1, Dans la deuxième partie de résultats nous présentons le profil d'expression de mcl1 et bcl-XL chez des embryons de X

, Figure 20 Expression de mcl1 pendant la neurulation chez X. laevis. ISH montrant le profil d'expression du gène anti-apoptotique mcl1 chez les embryons de la fin de la gastrula aux stades tardifs de la neurula. Les embryons sont montrés face dorsale vers le haut, sauf à partir de (g) montrant la face antérieure vers le haut. (e) correspond à une section sagittale à l'étape 14, la coloration bleue correspond à la coloration de la sonde ISH, p.229

H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler, ?-Catenin is a target for the ubiquitin-proteasome pathway, EMBO J, vol.16, pp.3797-804, 1997.

,

E. Agius, M. Oelgeschläger, O. Wessely, C. Kemp, and E. M. De-robertis, Endodermal Nodal-related signals and mesoderm induction in Xenopus, Development, vol.127, pp.1173-83, 2000.

,

A. Cho, E. Dressler, and G. R. , TCF-4 binds ?-catenin and is expressed in distinct regions of the embryonic brain and limbs, Mech. Dev, vol.77, pp.131-133, 1998.

C. Akgul, P. C. Turner, M. R. White, and S. W. Edwards, Functional analysis of the human MCL-1 gene, Cell. Mol. Life Sci, vol.57, pp.684-691, 2000.

R. C. Akkers, S. J. Van-heeringen, U. G. Jacobi, E. M. Janssen-megens, K. J. Françoijs et al., A Hierarchy of H3K4me3 and H3K27me3 Acquisition in Spatial Gene Regulation in Xenopus Embryos, Dev. Cell, vol.17, pp.425-434, 2009.

,

E. Amaya, T. J. Musci, and M. W. Kirschner, Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos, Cell, vol.66, pp.257-70, 1991.

, , pp.90616-90623

C. Anderson and C. D. Stern, Organizers in Development, Curr. Top. Dev. Biol, vol.117, pp.435-454, 2016.

K. Aoto and P. A. Trainor, Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival, Hum. Mol. Genet, vol.24, pp.698-713, 2015.

,

N. Arbour, J. L. Vanderluit, J. N. Le-grand, A. Jahani-asl, V. A. Ruzhynsky et al., Mcl-1 Is a Key Regulator of Apoptosis during CNS Development and after DNA damage, J. Neurosci, vol.28, pp.6068-78, 2008.

T. C. Archer, J. Jin, and E. S. Casey, Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis, Dev. Biol, vol.350, pp.429-440, 2011.

,

R. Arya and K. White, Cell death in development: Signaling pathways and core mechanisms, Semin. Cell Dev. Biol, vol.39, pp.12-19, 2015.

,

S. Bae, C. D. Reid, and D. S. Kessler, Siamois and Twin are redundant and essential in formation of the Spemann organizer, Dev. Biol, vol.352, pp.367-381, 2011.

,

E. H. Baehrecke, How death shapes life during development, Nat. Rev. Mol. Cell Biol, vol.3, pp.779-87, 2002.

J. Behrens, J. Von-kries, M. Kuhl, L. Bruhn, D. Wedlich et al., Functional interaction of ?-catenin with the trancription factor LEF-1, Nature, vol.382, pp.638-642, 1996.

A. N. Billin, H. Thirlwell, and D. E. Ayer, ?-Catenin-Histone Deacetylase Interactions Regulate the Transition of LEF1 from a Transcriptional Repressor to an Activator, 2000.

, Cell. Biol, vol.20, pp.6882-6890

S. Blancas, R. Fadó, J. Rodriguez-alvarez, and J. Morán, Endogenous XIAP, but not other members of the inhibitory apoptosis protein family modulates cerebellar granule neurons survival, Int. J. Dev. Neurosci, vol.37, pp.26-35, 2014.

I. L. Blitz and K. W. Cho, Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle, Development, vol.121, pp.993-1004, 1995.

S. A. Blythe, S. W. Cha, E. Tadjuidje, J. Heasman, and P. S. Klein, ?-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2, Dev. Cell, vol.19, pp.220-231, 2010.

P. A. Branney, L. Faas, S. E. Steane, M. E. Pownall, and H. V. Isaacs, Characterisation of the fibroblast growth factor dependent transcriptome in early development, PLoS One, vol.4, 2009.

M. Brannon, M. Gomperts, L. Sumoy, M. Gom, L. Sum et al., A ?-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus, Genes Dev, vol.11, pp.2359-2370, 1997.

H. Brantjes, N. Barker, J. Van-es, and H. Clevers, TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling, Biol Chem, vol.383, pp.255-261, 2002.

,

H. Brantjes, J. Roose, M. Van-de-wetering, and H. Clevers, All Tcf HMG box transcription factors interact with Groucho-related co-repressors, Nucleic Acids Res, vol.29, pp.1410-1419, 2001.

,

J. Briscoe and P. P. Therond, The mechanisms of Hedgehog signalling and its roles in development and disease, Nat. Rev. Mol. Cell Biol, vol.14, pp.416-429, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831295

,

. Bulfone, E. Menguzzato, V. Broccoli, . Marchitiello, C. Gattuso et al., , p.231

G. G. Martinez, S. Ballabio, and S. Banfi, Barhl1, a gene belonging to a new subfamily of mammalian homeobox genes, 2000.

, Hum. Mol. Genet, vol.9, pp.1443-1452

R. R. Buss, W. Sun, and R. W. Oppenheim, Adaptive Roles of Programmed Cell Death During Nervous System Development, Annu. Rev. Neurosci, vol.29, pp.1-35, 2006.

,

K. M. Cadigan, TCFs and Wnt/?-catenin Signaling. More than One Way to Throw the Switch, Current Topics in Developmental Biology, 2012.

,

K. M. Cadigan and M. L. Waterman, TCF/LEFs and Wnt Signaling in the Nucleus, Cold Spring Harb. Perspect. Biol, vol.4, 2012.

G. Carnac, L. Kodjabachian, J. B. Gurdon, and P. Lemaire, The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm, Development, vol.122, pp.3055-3065, 1996.

A. C. Carreira, G. G. Alves, W. F. Zambuzzi, M. C. Sogayar, and J. M. Granjeiro, Bone Morphogenetic Proteins: Structure, biological function and therapeutic applications, 2014.

, Biochem. Biophys, vol.561, pp.64-73

J. Castrop, K. Van-norren, and H. C. Clevers, A gene family of HMG box factors with homology to TCF-1, Nucleic Acids Res, vol.20, p.611, 1992.

R. A. Cavallo, R. T. Cox, M. M. Moline, J. Roose, G. A. Polevoy et al., Drosophila Tcf and Groucho interact to repress Wingless signalling activity, Nature, vol.395, pp.604-608, 1998.

J. Cayuso and E. Martí, Morphogens in motion: growth control of the neural tube, J. Neurobiol, vol.64, pp.376-87, 2005.

J. Chai, E. Shiozaki, S. M. Srinivasula, Q. Wu, P. Dataa et al., Structural basis of caspase-7 inhibition by XIAP, Cell, vol.104, pp.769-780, 2001.

, , pp.272-272

H. K. Chea, C. V. Wright, and B. J. Swalla, Nodal signaling and the evolution of deuterostome gastrulation, Dev. Dyn, vol.234, pp.269-278, 2005.

G. Chen, J. Fernandez, S. Mische, and A. J. Courey, A functional interaction between the histone deacetylase Rpd3 and the corepressor Groucho in Drosophila development, 1999.

, Genes Dev, vol.13, pp.2218-2230

G. Chen, P. H. Nguyen, and A. J. Courey, A role for Groucho tetramerization in transcriptional repression, Mol Cell Biol, vol.18, pp.7259-7268, 1998.

H. P. Chen, Y. T. Zhao, and T. C. Zhao, Histone Deacetylases and Mechanisms of Regulation of Gene Expression (Histone deacetylases in cancer), Crit. Rev. Oncol, 2015.

. Hematol, , vol.20, pp.35-47

K. W. Cho, B. Blumberg, H. Steinbeisser, and E. M. De-robertis, Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid, Cell, vol.67, pp.1111-1120, 1991.

J. L. Christian and R. T. Moon, Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus, Genes Dev, vol.7, pp.13-28, 1993.

E. Cinnamon, A. Helman, . Ben-haroush, R. Schyr, A. Orian et al., Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis, Development, vol.135, pp.829-837, 2008.

E. Cinnamon and Z. Paroush, Context-dependent regulation of Groucho/TLE-mediated repression, Curr. Opin. Genet. Dev, vol.18, pp.435-440, 2008.

,

H. Clevers and R. Nusse, Wnt/?-Catenin signaling and Disease, Cell, vol.149, pp.1192-1205, 2012.

J. G. Clohessy, J. Zhuang, and H. J. Brady, Characterisation of Mcl-1 cleavage during apoptosis of haematopoietic cells, Br. J. Haematol, vol.125, pp.655-665, 2004.

,

L. Coen, D. Du-pasquier, S. Le-mevel, S. Brown, J. Tata et al., Xenopus Bcl-XL selectively protects Rohon-Beard neurons from metamorphic degeneration, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.7869-7874, 2000.

,

M. F. Cole, S. E. Johnstone, J. J. Newman, M. H. Kagey, and R. A. Young, Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells, Genes Dev, vol.22, pp.746-755, 2008.

C. Collart, N. D. Owens, L. Bhaw-rosun, B. Cooper, E. De-domenico et al., High-resolution analysis of gene activity during the Xenopus mid-blastula transition, Development, vol.141, pp.1927-1939, 2014.

,

A. Colombo, G. Reig, M. Mione, and M. L. Concha, Zebrafish BarH-like genes define discrete neural domains in the early embryo, Gene Expr. Patterns, vol.6, pp.347-352, 2006.

,

P. F. Connolly, R. Jã¤ger, H. O. Fearnhead, and R. Jäger, New roles for old enzymes: killer 233 caspases as the engine of cell behavior changes, Front. Physiol, vol.5, pp.1-10, 2014.

,

A. J. Copp, N. D. Greene, and J. N. Murdoch, The genetic basis of mammalian neurulation, Nat. Rev. Genet, vol.4, pp.784-793, 2003.

R. Croxton, Y. Ma, L. Song, E. B. Haura, and W. D. Cress, Direct repression of the Mcl-1 promoter by E2F1, Oncogene, vol.21, pp.1359-1369, 2002.

D. L. Daniels and W. I. Weis, ?-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation, Nat. Struct. Mol. Biol, vol.12, pp.364-371, 2005.

,

E. M. De-robertis and H. Kuroda, Dorsal-ventral patterning and neural induction in Xenopus embryos, Annu. Rev. Cell Dev. Biol, vol.20, pp.285-308, 2004.

,

E. Delaune, P. Lemaire, and L. Kodjabachian, Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition, Development, vol.132, pp.299-310, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00118172

,

E. Dessaud, A. P. Mcmahon, and J. Briscoe, Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network, Development, vol.135, pp.2489-2503, 2008.

Q. Ding, R. Balasubramanian, D. Zhen, G. Liang, and L. Gan, Barhl2 Determines the Early Patterning of the Diencephalon by Regulating Shh, Mol. Neurobiol, vol.54, pp.4414-4420, 2017.

,

Q. Ding, H. Chen, X. Xie, R. T. Libby, N. Tian et al., BARHL2 Differentially Regulates the Development of Retinal Amacrine and Ganglion Neurons, J. Neurosci, vol.29, pp.3992-4003, 2009.

Q. Ding, X. He, J. Hsu, W. Xia, C. Chen et al., Degradation of Mcl-1 by ?-TrCP Mediates Glycogen Synthase Kinase 3-Induced Tumor Suppression and Chemosensitization, Mol. Cell. Biol, vol.27, pp.4006-4017, 2007.

Y. Ding, G. Colozza, K. Zhang, Y. Moriyama, D. Ploper et al., Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula, Dev. Biol, vol.426, pp.176-187, 2016.

,

Y. Ding, D. Ploper, E. A. Sosa, G. Colozza, Y. Moriyama et al., Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc. Natl. Acad, p.234, 2017.

. Sci, , vol.114, pp.3081-3090

I. Dominguez, K. Itoh, and S. Y. Sokol, Role of glycogen synthase kinase 3? as a negative regulator of dorsoventral axis formation in Xenopus embryos, Proc. Natl. Acad. Sci, 1995.

, A, vol.92, pp.8498-8502

K. Dorey and E. Amaya, FGF signalling: diverse roles during early vertebrate embryogenesis, Development, vol.137, pp.3731-3742, 2010.

B. P. Eckelman and G. S. Salvesen, The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases, J. Biol. Chem, vol.281, pp.3254-3260, 2006.

,

H. M. Ellis and H. R. Horvitz, Genetic Control of Programmed Cell Death in the Nematode C. elegans, Cell, vol.44, issue.86, pp.90004-90012, 1986.

M. J. Engleka and D. S. Kessler, Siamois cooperates with TGF? signals to induce the complete function of the Spemann-Mangold Organizer, Int. J. Dev. Biol, vol.45, pp.241-250, 2001.

D. J. Epstein, Regulation of thalamic development by Sonic hedgehog, Front. Neurosci, vol.6, pp.1-6, 2012.

M. J. Fan, W. Grüning, G. Walz, and S. Y. Sokol, Wnt signaling and transcriptional control of Siamois in Xenopus embryos, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.5626-5631, 1998.

,

P. Fernando, S. Brunette, and L. Megeney, Neural stem cell differentiation is dependent upon endogenous caspase 3 activity, FASEB J, vol.19, pp.1671-1674, 2005.

A. L. Fisher and M. Caudy, Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates, 1998.

R. B. Fletcher and R. M. Harland, The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus, Dev. Dyn, vol.237, pp.1243-1254, 2008.

,

J. Fujita, A. M. Crane, M. K. Souza, M. Dejosez, M. Kyba et al., Caspase activity mediates the differentiation of embryonic stem cells, 2008.

, Cell Stem Celltem cell, vol.2, pp.595-601

S. Fujita, Analysis of neuron differentiation in the central nervous system by tritiated thymidine autoradiography, J. Comp. Neurol, vol.122, pp.311-327, 1964.

,

N. Funayama, F. Fagotto, P. Mccrea, and B. M. Gumbiner, Embryonic Axis Induction by 235, 1995.

, the Armadillo Repeat Domain of ?-catenin: Evidence for Intracellular Signaling, J. Cell Biol, vol.128, pp.959-968

A. Gallet, Hedgehog morphogen: From secretion to reception, Trends Cell Biol, vol.21, pp.238-246, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00559402

Y. Gavrieli, Y. Sherman, and S. A. Ben-sasson, Idenitification of Programmed Cell Death In Situ via Specific Labeling of Nuclear DNA Fragmentation, J. Cell. Biol, vol.119, pp.493-501, 1992.

,

K. Giese, J. Cox, and R. Grosschedl, The HMG Domain of Lymphoid Enhancer Factor 1, 1992.

, Bends DNA and Facilitates Assembly of Functional Nucleoprotein Structures. Cell, vol.69, pp.185-195

S. F. Godsave and A. J. Durston, Neural induction and patterning in embryos deficient in FGF signaling, Int. J. Dev. Biol, vol.41, pp.57-65, 1997.

T. A. Graham, C. Weaver, F. Mao, D. Kimelman, and W. Xu, Crystal Structure of a ?-Catenin/Tcf Complex, Cell, vol.103, pp.885-896, 2000.

D. R. Green, L. Galluzzi, and G. Kroemer, Metabolic control of cell death. Science (80-. ), vol.345, pp.1250256-1250257, 2014.

A. Gross and S. G. Katz, Non-apoptotic functions of BCL-2 family proteins, Cell Death Differ, vol.24, pp.1348-1358, 2017.

K. A. Guger and B. M. Gumbiner, ?-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning, Dev. Biol, vol.172, pp.115-125, 1995.

,

A. J. Hanson, H. Wallace, T. J. Freeman, R. D. Beauchamp, . Lee et al., XIAP monoubiquitylates Groucho/TLE to promote canonical Wnt signaling, Mol. Cell, vol.45, pp.619-647, 2012.

X. He, J. P. Saint-jeannet, J. R. Woodgett, H. E. Varmus, and I. B. Dawid, Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos, 1995.

J. Heasman, Patterning the early Xenopus embryo, Development, vol.133, pp.1205-1222, 2006.

J. Heasman, A. Crawford, K. Goldstone, P. Garner-hamrick, B. Gumbiner et al., Overexpression of cadherins and underexpression of ?-catenin inhibit dorsal mesoderm induction in early Xenopus embryos, Cell, vol.79, pp.90069-90077, 1994.

J. Heasman, M. Kofron, and C. Wylie, Catenin Signaling Activity Dissected in the Early Xenopus Embryo: A Novel Antisense Approach, vol.222, pp.124-134, 2000.

,

. Hecht, C. M. Litterst, O. Huber, and R. Kemler, Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro, J. Biol. Chem, vol.274, pp.18017-18025, 1999.

,

A. Hemmati-brivanlou and D. A. Melton, A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos, Nature, vol.359, pp.609-614, 1992.

C. Hensey and J. Gautier, Programmed Cell Death during Xenopus Development: A Spatio-temporal Analysis, Dev. Biol, vol.203, pp.36-48, 1998.

S. I. Higashijima, T. Kojima, T. Michiue, S. Ishimaru, Y. Emori et al., Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development, Genes Dev, vol.6, pp.50-60, 1992.

,

S. I. Higashijima, T. Michiue, Y. Emori, and K. Saigo, Subtype determination of Drosophila embryonic external sensory organs by redundant homeo box genes BarH1 and BarH2, 1992.

, Genes Dev, vol.6, pp.1005-1018

H. Hikasa, J. Ezan, K. Itoh, X. Li, M. W. Klymkowsky et al., Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification, Dev. Cell, vol.19, pp.521-532, 2010.

H. Hikasa and S. Y. Sokol, Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2, J. Biol. Chem, vol.286, pp.12093-12100, 2011.

,

S. Homma, H. Yaginuma, and R. W. Oppenheim, Programmed cell death during the earliest stages of spinal cord development in the chick embryo: A possible means of early phenotypic selection, J. Comp. Neurol, vol.345, pp.377-395, 1994.

,

S. Hontelez, I. Van-kruijsbergen, G. Georgiou, S. J. Van-heeringen, O. Bogdanovic et al., Embryonic transcription is controlled by maternally defined chromatin state, Nat. Commun, vol.6, pp.1-11, 2015.

D. W. Houston, M. Kofron, E. Resnik, R. Langland, O. Destree et al., Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal XTcf3, Development, vol.129, pp.4015-4025, 2002.

S. C. Hsu, J. Galceran, and R. Grosschedl, Modulation of transcriptional regulation by LEF-237, 1998.

, in response to Wnt-1 signaling and association with beta-catenin, Mol. Cell. Biol, vol.18, pp.4807-4825

O. Huber, R. Korn, J. Mclaughlin, M. Ohsugi, B. G. Herrmann et al., Nuclear localization of ?-catenin by interaction with transcription factor LEF-1, Mech. Dev, vol.59, pp.597-604, 1996.

A. L. Hufton, A. Vinayagam, S. Suhai, and J. C. Baker, Genomic analysis of Xenopus organizer function, BMC Dev. Biol, vol.6, pp.1-22, 2006.

A. Hurlstone and H. Clevers, T-cell factors: turn-ons and turn-offs, EMBO J, vol.21, pp.2303-2311, 2002.

V. Janzen, H. E. Fleming, T. Riedt, G. Karlsson, M. J. Riese et al., Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3, Cell Stem Cell, vol.2, pp.584-94, 2008.

J. B. Jaynes and P. H. O-'farrell, Active repression of transcription by the Engrailed homeodomain protein, EMBO J, vol.10, pp.1427-1433, 1991.

B. H. Jennings and D. Ish-horowicz, The Groucho/TLE/Grg family of transcriptional corepressors, Genome Biol, vol.9, 2008.

B. H. Jennings, L. M. Pickles, S. M. Wainwright, S. M. Roe, L. H. Pearl et al., Molecular Recognition of Transcriptional Repressor Motifs by the WD Domain of the Groucho/TLE Corepressor, Mol. Cell, vol.22, pp.645-655, 2006.

,

G. Jiménez, Z. Paroush, and D. Ish-horowicz, Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed, Genes Dev, vol.11, pp.3072-3082, 1997.

,

G. Jiménez, C. P. Verrijzer, and D. Ish-horowicz, A conserved motif in goosecoid mediates groucho-dependent repression in Drosophila embryos, Mol. Cell. Biol, vol.19, pp.2080-2087, 1999.

,

J. Johnston, R. Chan, M. Calderon-segura, S. Mcfarlane, and L. W. Browder, The roles of Bcl-xL in modulating apoptosis during development of Xenopus laevis, BMC Dev. Biol, vol.5, issue.20, 2005.

C. M. Jones, M. R. Kuehn, B. L. Hogan, J. C. Smith, and C. V. Wright, Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation, Development, vol.121, pp.3651-3662, 1995.

E. M. Joseph and D. A. Melton, Xnr4: A Xenopus nodal-related gene expressed in the 238, 1997.

. Spemann-organizer, Dev. Biol, vol.184, pp.367-372

H. A. Juraver-geslin, J. J. Ausseil, M. Wassef, and B. C. Durand, Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of ?-catenin activation, Proc. Natl, 2011.

. Acad and . U. Sci, , vol.108, pp.2288-2293

H. A. Juraver-geslin and B. C. Durand, Early development of the neural plate: New Roles for Apoptosis and for One of its Main Effectors Caspase-3, Genesis, vol.53, pp.203-224, 2015.

,

H. A. Juraver-geslin, J. L. Gómez-skarmeta, and B. C. Durand, The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog, 2014.

, Dev. Biol, vol.396, pp.107-120

K. Kaya, H. E. Ditzel, M. Meier, P. Bergmann, and A. , An inhibitory monoubiquitylation of the Drosophila initiator caspase Dronc functions in both apoptotic and non-apoptotic pathways, PLoS Genet, vol.13, pp.1-24, 2017.

,

H. Kanuka, E. Kuranaga, K. Takemoto, T. Hiratou, H. Okano et al., Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development, 2005.

, EMBO J, vol.24, pp.3793-806

A. Kaul, E. Schuster, and B. H. Jennings, The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription, PLoS Genet, vol.10, 2014.

N. S. Kenneth and C. S. Duckett, IAP proteins: regulators of cell migration and development, 2012.

, Curr. Opin. Cell Biol, vol.24, pp.871-876

J. F. Kerr, History of the events leading to the formulation of the apoptosis concept, Toxicology, vol.181, issue.182, pp.457-459, 2002.

J. F. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: a Basic Biological Phenomenon With Wide-Ranging Implications in Tissue Kinetics, Br. J. Cancer, vol.26, pp.239-257, 1972.

,

M. K. Khokha, J. Yeh, T. C. Grammer, and R. M. Harland, Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures, 2005.

, Dev. Cell, vol.8, pp.401-411

M. Kofron, New roles for FoxH1 in patterning the early embryo, Development, vol.131, pp.5065-5078, 2004.

M. Kofron, T. Demel, J. Xanthos, J. Lohr, B. Sun et al., , p.239

J. Heasman, Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors, Development, vol.126, pp.5759-5770, 1999.

T. Kojima, S. Ishimaru, S. Higashijima, E. Takayama, H. Akimaru et al., Identification of a different-type homeobox gene, BarH1, possibly causing Bar (B) and Om(1D) mutations in Drosophila, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.4343-4350, 1991.

A. Koto, E. Kuranaga, and M. Miura, Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development, J. Cell Biol, vol.187, pp.219-250, 2009.

,

M. Ku and D. Melton, Xwnt-11: a maternally expressed Xenopus wnt gene, Development, vol.119, pp.1161-1173, 1993.

K. Kuida, T. S. Zheng, S. Na, C. Kuan, D. Yang et al., Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature, vol.384, pp.368-372, 1996.

S. Kumar and D. Cakouros, Transcriptional control of the core cell-death machinery, Trends Biochem. Sci, vol.29, pp.193-202, 2004.

E. Kuranaga, H. Kanuka, A. Tonoki, K. Takemoto, T. Tomioka et al., Drosophila IKK-related kinase regulates nonapoptotic function of caspases via degradation of IAPs, Cell, vol.126, pp.583-96, 2006.

,

H. Kuroda, O. Wessely, and E. M. De-robertis, Neural induction in Xenopus: Requirement for ectodermal and endomesodermal signals via Chordin, Noggin, ?-Catenin, and Cerberus, PLoS Biol, vol.2, 2004.

L. M. Kutscher and S. Shaham, Non-apoptotic cell death in animal development, Cell Death Differ, vol.24, pp.1326-1336, 2017.

A. F. Laing, S. Lowell, and J. M. Brickman, Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression, Dev. Biol, vol.397, pp.56-66, 2014.

,

C. A. Larabell, M. Torres, B. A. Rowning, C. Yost, J. R. Miller et al., Establishment of the Dorso-ventral Axis in Xenopus Embryos is Presaged by Early Asymmetries in ?-Catenin That Are Modulated by the Wnt Signaling Pathway, J. Cell Biol, vol.136, pp.1123-1136, 1997.

M. N. Laurent, I. L. Blitz, C. Hashimoto, U. Rothbächer, and K. W. Cho, The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann's organizer, Development, vol.124, pp.4905-4916, 1997.

R. Lea, N. Papalopulu, E. Amaya, and K. Dorey, Temporal and spatial expression of FGF ligands and receptors during Xenopus development, Dev. Dyn, vol.238, pp.1467-1479, 2009.

,

S. Lee, S. Lim, S. Cha, J. Yoon, S. Lee et al., Inhibition of FGF signaling converts dorsal mesoderm to ventral mesoderm in early Xenopus embryos, Differentiation, vol.82, pp.99-107, 2011.

,

P. Lemaire, N. Garrett, and J. B. Gurdon, Expression cloning of Siamois, a xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis, Cell, vol.81, pp.90373-90382, 1995.

D. Levanon, R. E. Goldstein, Y. Bernstein, H. Tang, D. Goldenberg et al., Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.11590-11595, 1998.

,

F. Li, Z. He, J. Shen, Q. Huang, W. Li et al., Apoptotic caspases regulate induction of iPSCs from human fibroblasts, Cell Stem Cell, vol.7, pp.508-528, 2010.

,

H. Y. Li, W. El-yakoubi, and D. L. Shi, Direct regulation of siamois by VegT is required for axis formation in Xenopus embryo, Int. J. Dev. Biol, vol.59, pp.443-451, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01539345

,

S. Li, S. M. Price, H. Cahill, D. K. Ryugo, M. M. Shen et al., Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene, Development, vol.129, pp.3523-3555, 2002.

S. Li, F. Qiu, A. Xu, S. M. Price, and M. Xiang, Barhl1 Regulates Migration and Survival of Cerebellar Granule Cells by Controlling Expression of the Neurotrophin-3 Gene, J. Neurosci, vol.24, pp.3104-3114, 2004.

J. Lim and K. Choi, Bar homeodomain proteins are anti-proneural in the Drosophila eye: transcriptional repression of atonal by Bar prevents ectopic retinal neurogenesis, Development, vol.130, pp.5965-5974, 2003.

C. Y. Lin, S. Erkek, Y. Tong, L. Yin, A. J. Federation et al., Active 241 medulloblastoma enhancers reveal subgroup-specific cellular origins, Nature, vol.530, pp.57-62, 2016.

,

C. Linker and C. D. Stern, Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists, Development, vol.131, pp.5671-5681, 2004.

,

P. Liston, W. G. Fong, and R. G. Korneluk, The inhibitors of apoptosis: there is more to life than Bcl2, Oncogene, vol.22, pp.8568-80, 2003.

F. Liu, O. Van-den-broek, O. Destree, and S. Hoppler, Distinct roles for Xenopus Tcf/Lef genes in mediating specific responses to Wnt/ -catenin signalling in mesoderm development, Development, vol.132, pp.5375-5385, 2005.

J. J. Love, X. Li, D. A. Case, K. Giese, R. Grosschedl et al., Structural basis for DNA bending by the architectural transcription factor LEF-1, Nature, vol.376, pp.791-795, 1995.

M. A. Malikova, M. Van-stry, and K. Symes, Apoptosis regulates notochord development in Xenopus, Dev. Biol, vol.311, pp.434-448, 2007.

C. D. Malone, S. M. Hasan, R. B. Roome, J. Xiong, M. Furlong et al., Mcl-1 regulates the survival of adult neural precursor cells, Mol. Cell. Neurosci, vol.49, pp.439-447, 2012.

O. Mangold and H. Spemann, Über induktion von embryoanlagen durch implantation artfremder organisatoren, Wilhelm Roux. Arch. Entwickl. Mech. Org, vol.100, pp.599-638, 1924.

,

J. Mao, J. Wang, B. Liu, W. Pan, G. H. Farr et al., Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway, Mol. Cell, vol.7, pp.801-809, 2001.

, , pp.224-230

U. Maurer, C. Charvet, A. S. Wagman, E. Dejardin, and D. R. Green, Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1, Mol. Cell, vol.21, pp.749-760, 2006.

,

P. D. Mccrea, W. M. Brieher, and B. M. Gumbiner, Induction of a Secondary Body Axis in Xenopus by Antibodies to ?-catenin, J. Cell Biol, vol.123, pp.477-484, 1993.

R. Mckendry, S. C. Hsu, R. M. Harland, and R. Grosschedl, LEF-1/TCF proteins mediate Wnt-inducible transcription from the xenopus nodal-related 3 promoter, Dev. Biol, vol.192, pp.420-431, 1997.

A. P. Mcmahon and R. T. Moon, Ectopic expression of the proto-oncogene int-1 in Xenopus 242 embryos leads to duplication of the embryonic axis, Cell, vol.58, pp.1075-1084, 1989.

, , pp.90506-90506

R. R. Meehan, D. S. Dunican, A. Ruzov, and S. Pennings, Epigenetic silencing in embryogenesis, Exp. Cell Res, vol.309, pp.241-249, 2005.

,

C. Milet, F. Maczkowiak, D. D. Roche, and A. H. Monsoro-burq, Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos, Proc. Natl. Acad. Sci, vol.110, pp.5528-5533, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183640

,

M. Miura, Apoptotic and nonapoptotic Caspase function in animal development, Cold Spring Harb. Perspect. Biol, vol.4, 2012.

M. Miura, Active participation of cell death in development and organismal homeostasis, 2011.

, Dev. Growth Differ, vol.53, pp.125-161

Z. Mo, S. Li, X. Yang, and M. Xiang, Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells, Development, vol.131, pp.1607-1618, 2004.

,

M. Molenaar, J. Roose, J. Peterson, S. Venanzi, H. Clevers et al., Differential expression of the HMG box transcription factors XTcf-3 and XLef-1 during early Xenopus development, Mech. Dev, vol.75, pp.85-94, 1998.

M. Molenaar, M. Van-de-wetering, M. Oosterwegel, J. Peterson-maduro, S. Godsave et al., XTcf-3 transcription factor mediates ?-catenin-induced axis formation in xenopus embryos, Cell, vol.86, pp.391-399, 1996.

, , pp.80112-80121

B. Mollereau, A. Perez-garijo, A. Bergmann, M. Miura, O. Gerlitz et al., Compensatory proliferation and apoptosis-induced proliferation: A need for clarification, Cell Death Differ, vol.20, p.181, 2013.
URL : https://hal.archives-ouvertes.fr/ensl-00962316

N. Motoyama, F. Wang, K. A. Roth, H. Sawa, K. Nakayama et al., Massive Cell Death of Immature Hematopoietic Cells and Neurons in Bcl-x-deficient mice, Science, vol.267, pp.1506-1516, 1995.

,

J. Muhr, E. Andersson, M. Persson, T. M. Jessell, and J. Ericson, Groucho-mediated transcriptional repression establishes progenitor cell pattern and neuronal fate in the ventral neural tube, Cell, vol.104, pp.283-288, 2001.

I. Muñoz-sanjuán and A. H. Brivanlou, Neural induction, the default model and Embryonic Stem Cells, Nat. Rev. Neurosci, vol.3, pp.1-10, 2002.

Y. I. Nakajima and E. Kuranaga, Caspase-dependent non-apoptotic processes in development, Cell Death Differ, vol.24, pp.1422-1430, 2017.

Y. Nakamura and S. Hoppler, Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges ?-catenin paradigm, Genesis, vol.55, 2017.

R. Nehme, P. Grote, T. Tomasi, S. Löser, H. Holzkamp et al., Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons, Cell Death Differ, vol.17, pp.1266-76, 2010.

,

P. D. Nieuwkoop and J. Faber, Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 1994.

M. Nishita, M. K. Hashimoto, S. Ogata, M. N. Laurent, N. Ueno et al., Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer, Nature, vol.403, pp.781-785, 2000.

K. Nonomura, Y. Yamaguchi, M. Hamachi, M. Koike, Y. Uchiyama et al., Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells, Dev. Cell, vol.27, pp.621-655, 2013.

,

R. Nusse and H. E. Varmus, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome, Cell, vol.31, pp.99-109, 1982.

, , pp.90409-90412

N. Offner, N. Duval, M. Jamrich, and B. Durand, The pro-apoptotic activity of a vertebrate Bar-like homeobox gene plays a key role in patterning the Xenopus neural plate by limiting the number of chordin-and shh-expressing cells, Development, vol.132, pp.1807-1818, 2005.

,

M. Oosterwegel, M. Van-de-wetering, D. Dooijes, L. Klomp, A. Winoto et al., Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functinal motifs in the CD3-e and TCR-a enhancers, J. Exp. Med, 1991.

J. T. Opferman and A. Kothari, Anti-apoptotic BCL-2 family members in development, Cell Death Differ, vol.25, pp.37-45, 2018.

D. M. Ornitz and N. Itoh, The fibroblast growth factor signaling pathway, Wiley Interdiscip. Rev. Dev. Biol, vol.4, pp.215-266, 2015.

N. D. Owens, I. L. Blitz, M. A. Lane, I. Patrushev, J. D. Overton et al., Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development, Cell Rep, vol.14, pp.632-647, 2016.

,

A. Palaparti, A. Baratz, and S. Stifani, The Groucho/transducin-like enhancer of split transcriptional repressors interact with the genetically defined amino-terminal silencing domain of histone H3, J. Biol. Chem, vol.272, pp.26604-26610, 1997.

,

S. S. Paranjpe, U. G. Jacobi, S. J. Van-heeringen, and G. J. Veenstra, A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development, 2013.

, BMC Genomics, vol.14

E. V. Parish, J. O. Mason, and D. J. Price, Expression of Barhl2 and its relationship with Pax6 expression in the forebrain of the mouse embryo, BMC Neurosci, vol.17, p.76, 2016.

D. S. Parker, Y. Y. Ni, J. L. Chang, J. Li, and K. M. Cadigan, Wingless Signaling Induces Widespread Chromatin Remodeling of, Target Loci, vol.28, pp.1815-1828, 2008.

,

K. D. Patterson, O. Cleaver, W. V. Gerber, F. G. White, and P. A. Krieg, Distinct expression patterns for two Xenopus Bar homeobox genes, Dev. Genes Evol, vol.210, pp.140-144, 2000.

,

E. Peden, E. Kimberly, K. Gengyo-ando, S. Mitani, and D. Xue, Control of sex-specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho, Genes Dev, vol.21, pp.3195-207, 2007.

,

M. Peifer, C. Rauskolb, M. Williams, B. Riggleman, and E. Wieschaus, The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation, Development, vol.111, pp.1029-1043, 1991.

N. Perrimon and A. P. Mahowald, Multiple functions of segment polarity genes in Drosophila, Dev. Biol, vol.119, pp.90061-90064, 1987.

S. Piccolo, Y. Sasai, B. Lu, and E. M. De-robertis, Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4, Cell, vol.86, pp.589-598, 1996.

, , pp.80132-80136

S. B. Pierce and D. Kimelman, Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus, Dev. Biol, vol.175, pp.256-264, 1996.

K. I. Pinson, J. Brennan, S. Monkley, B. J. Avery, and W. C. Skarnes, An LDL-receptor-245 related protein mediates Wnt signalling in mice, Nature, vol.407, pp.535-538, 2000.

,

L. Poggi, T. Vottari, G. Barsacchi, J. Wittbrodt, and R. Vignali, The homeobox gene Xbh1 cooperates with proneural genes to specify ganglion cell fate within the Xenopus neural retina, Development, vol.131, pp.2305-2320, 2004.

F. Poy, M. Lepourcelet, R. A. Shivdasani, and M. J. Eck, Structure of a human Tcf4-??-catenin complex, Nat. Struct. Biol, vol.8, pp.1053-1057, 2001.

M. Rachidi and C. Lopes, Differential transcription of Barhl1 homeobox gene in restricted functional domains of the central nervous system suggests a role in brain patterning, 2006.

, J. Dev. Neurosci, vol.24, pp.35-44

G. Reig, M. E. Cabrejos, and M. L. Concha, Functions of BarH transcription factors during embryonic development, Dev. Biol, vol.302, pp.367-375, 2007.

,

B. Reversade and E. M. De-robertis, Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field, Cell, vol.123, pp.1147-1160, 2005.

S. J. Riedl, M. Renatus, R. Schwarzenbacher, Q. Zhou, C. Sun et al., Structural basis for the inhibition of caspase-3 by XIAP, Cell, vol.104, pp.791-800, 2001.

J. Roose, M. Molenaar, J. Peterson, J. Hurenkamp, H. Brantjes et al., The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors, Nature, vol.395, pp.608-612, 1998.

,

B. Rubinfeld, B. Souza, I. Albert, O. Muller, S. H. Chamberlain et al., Association of the APC gene product with ?-catenin. Science (80-. ), vol.262, pp.1731-1734, 1993.

T. Saito, K. Sawamoto, H. Okano, D. J. Anderson, and K. Mikoshiba, Mammalian BarH homologue is a potential regulator of neural bHLH genes, Dev. Biol, vol.199, pp.216-241, 1998.

,

Y. Saka and J. C. Smith, Spatial and temporal patterns of cell division during early Xenopus embryogenesis, Dev. Biol, vol.229, pp.307-318, 2001.

Y. Sasai, B. Lu, H. Steinbeisser, D. Geissert, L. K. Gont et al., Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes, Cell, vol.79, pp.779-790, 1994.

S. Schneider, H. Steinbeisser, R. M. Warga, and P. Hausen, ?-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos, Mech. Dev, vol.57, pp.546-547, 1996.

A. Schohl, F. Fagotto, A. Schohl, and F. Fagotto, ?-catenin, MAPK and Smad signaling during early Xenopus development, Development, vol.134, pp.1454-1454, 2007.

,

H. T. Schwartz and H. R. Horvitz, The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9, Genes Dev, vol.21, pp.3181-94, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00089763

E. Sena, K. Feistel, and B. Durand, An Evolutionarily Conserved Network Mediates Development of the zona limitans intrathalamica, a Sonic Hedgehog-Secreting Caudal Forebrain Signaling Center, J. Dev. Biol, vol.4, p.31, 2016.

A. M. Session, Y. Uno, T. Kwon, J. A. Chapman, A. Toyoda et al.,

S. Mawaribuchi, J. Jenkins, J. Grimwood, J. Schmutz, T. Mitros et al., Genome evolution in the allotetraploid frog Xenopus laevis, Nature, vol.538, pp.336-343, 2016.

S. Shalini, L. Dorstyn, S. Dawar, and S. Kumar, Old, new and emerging functions of caspases, Cell Death Differ, vol.22, pp.526-539, 2015.

E. N. Shiozaki, J. Chai, D. J. Rigotti, S. J. Riedl, P. Li et al., Mechanism of XIAP-mediated inhibition of caspase-9, Mol. Cell, vol.11, pp.54-60, 2003.

H. L. Sive, R. M. Grainger, and R. M. Harland, Microinjection of Xenopus embryos, Cold Spring Harb. Protoc, 2010.

J. C. Smith, B. M. Price, J. B. Green, D. Weigel, and B. G. Herrmann, Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction, Cell, vol.67, pp.79-87, 1991.

S. T. Smith and J. B. Jaynes, A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2-and msh-class homeoproteins, mediates active transcriptional repression in vivo, Development, vol.122, pp.3141-3150, 1996.

W. C. Smith and R. M. Harland, Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos, Cell, vol.70, pp.829-869, 1992.

, , pp.90316-90321

W. C. Smith, R. Mckendry, S. Ribisi, and R. M. Harland, A nodal-related gene defines a physical and functional domain within the Spemann organizer, Cell, vol.82, pp.37-46, 1995.

, , pp.90050-90050

S. Sokol, J. L. Christian, R. T. Moon, and D. A. Melton, Injected Wnt RNA Induces a Complete Body Axis in Xenopus Embryos, Cell, vol.67, pp.741-752, 1991.

S. Y. Sokol, Maintaining embryonic stem cell pluripotency with Wnt signaling, Development, vol.138, pp.4341-4350, 2011.

S. Y. Sokol, Wnt signaling axis specification in vertebrates, Genet. Dev, pp.405-410, 1999.

I. Stancheva, O. El-maarri, J. Walter, A. Niveleau, and R. R. Meehan, DNA methylation at promoter regions regulates the timing of gene activation in Xenopus laevis embryos, 2002.

, Biol, vol.243, pp.155-165

H. J. Standley, O. Destrée, M. Kofron, C. Wylie, and J. Heasman, Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes, Dev. Biol, vol.289, pp.318-328, 2006.

,

C. D. Stern, Neural induction: 10 years on since the "default model, Curr Opin Cell Biol, vol.18, pp.692-697, 2006.

A. Streit and C. D. Stern, Neural induction, Trends Genet, vol.15, pp.20-24, 1999.

A. Streit, K. J. Lee, I. Woo, C. Roberts, T. M. Jessell et al., Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo, Development, vol.125, pp.507-519, 1998.

N. Sudou, S. Yamamoto, H. Ogino, and M. Taira, Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer, Development, vol.139, pp.1651-1661, 2012.

,

N. Sundaram, Q. Tao, C. Wylie, and J. Heasman, The role of maternal CREB in early embryogenesis of Xenopus laevis, Dev. Biol, vol.261, pp.337-352, 2003.

,

Y. Suzuki, Y. Nakabayashi, and R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death, Proc. Natl. Acad. Sci, vol.98, pp.8662-8667, 2001.

V. F. Taelman, R. Dobrowolski, J. Plouhinec, L. C. Fuentealba, P. P. Vorwald et al., Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes, Cell, vol.143, pp.1136-1184, 2010.

,

S. Takahashi, C. Yokota, K. Takano, K. Tanegashima, Y. Onuma et al., Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center, Development, vol.127, pp.5319-5348, 2000.

W. Tam, C. Y. Lim, J. Han, J. Zhang, Y. Ang et al., TCell Factor 3 Regulates Embryonic Stem Cell Pluripotency and Self-Renewal by the Transcriptional Control of Multiple Lineage Pathways, Stem Cells, vol.26, pp.2019-2031, 2008.

,

L. W. Thomas, C. Lam, and S. W. Edwards, Mcl-1; the molecular regulation of protein function, FEBS Lett, vol.584, pp.2981-2989, 2010.

C. Tickle, How the embryo makes a limb: Determination, polarity and identity, J. Anat, vol.227, pp.418-430, 2015.

H. T. Tran, B. Sekkali, G. Van-imschoot, S. Janssens, and K. Vleminckx, Wnt/?-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.16160-16165, 2010.

,

A. Travis, A. Amsterdam, C. Belanger, and R. Grosschedl, LEF-1, a gene encoding a lymphoid-specific with protein, an HMG domain, regulates T-cell receptor ? enhancer function, Genes Dev, vol.5, pp.880-894, 1991.

Y. Tsuchiya, S. Murai, and S. Yamashita, Apoptosis-inhibiting activities of BIR family proteins in Xenopus egg extracts, FEBS J, vol.272, pp.2237-2250, 2005.

,

Y. Tsuchiya and S. Yamashita, Anti-apoptotic Activity and Proteasome-mediated Degradation of Xenopus Mcl-1 Protein in Egg Extracts, J. Biol. Chem, vol.286, pp.15806-15814, 2011.

,

S. Tsuji and C. Hashimoto, Choice of either ? -catenin or Groucho / TLE as a co-factor for Xtcf-3 determines dorsal-ventral cell fate of diencephalon during Xenopus development, 2005.

G. Dev and . Evol, , pp.275-284

W. Turki-judeh and A. J. Courey, Groucho : A Corepressor with Instructive Roles in Development, Curr. Top. Dev. Biol, vol.98, pp.65-96, 2012.

F. Ulloa and J. Briscoe, Morphogens and the control of cell proliferation and patterning in the spinal cord, Cell Cycle, vol.6, pp.2640-2649, 2007.

R. Van-amerongen and R. Nusse, Towards an integrated view of Wnt signaling in development, Development, vol.136, pp.3205-3214, 2009.

M. Van-de-wetering, M. Oosterwegel, D. Dooijes, and H. Clevers, Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequencespecific HMG box, EMBO J, vol.10, pp.23-132, 1991.

M. Van-de-wetering, M. Oosterwegel, K. Van-norren, and H. Clevers, Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes, EMBO J, vol.12, pp.3847-54, 1993.

M. Van-stry, K. A. Mclaughlin, P. Ataliotis, and K. Symes, The mitochondrial-apoptotic pathway is triggered in Xenopus mesoderm cells deprived of PDGF receptor signaling during gastrulation, Dev. Biol, vol.268, pp.232-242, 2004.

M. Varjosalo and J. Taipale, Hedgehog: functions and mechanisms, Genes Dev, vol.22, pp.2454-2472, 2008.

J. P. Vincent and J. C. Gerhart, Subcortical rotation in Xenopus eggs: An early step in embryonic axis specification, Dev. Biol, vol.123, pp.90411-90419, 1987.

C. R. Vinson, S. Conover, and P. N. Adler, A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains, Nature, vol.338, pp.263-264, 1989.

A. Visel, J. A. Akiyama, M. Shoukry, V. Afzal, E. M. Rubin et al., Functional autonomy of distant-acting human enhancers, Genomics, vol.93, pp.509-513, 2009.

,

A. Visel, M. J. Blow, Z. Li, T. Zhang, J. A. Akiyama et al., ChIP-seq accurately predicts tissue-specific activity of enhancers, Nature, vol.457, pp.854-858, 2009.

,

A. Visel, E. M. Rubin, and L. A. Pennacchio, Genomic views of distant-acting enhancers, Nature, vol.461, pp.199-205, 2009.

A. Vonica and B. M. Gumbiner, The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity, 2007.

, Biol, vol.312, pp.90-102

T. Watabe, S. Kim, A. Candia, U. Rothb, C. Hashimoto et al., Molecular mechanisms of Spemann's organizer formation : conserved growth factor synergy between Xenopus and mouse, Genes Dev, pp.3038-3050, 1995.

Y. Wei, T. Fan, and M. Yu, Inhibitor of apoptosis proteins and apoptosis, Acta Biochim. Biophys. Sin. (Shanghai), vol.40, pp.278-288, 2008.

M. Weil, M. D. Jacobson, and M. C. Raff, Is programmed cell death required for neural tube closure?, Curr. Biol, vol.7, pp.281-284, 1997.

O. Wessely, J. I. Kim, D. Geissert, U. Tran, and E. M. De-robertis, Analysis of Spemann organizer formation in Xenopus embryos by cDNA macroarrays, Dev. Biol, vol.269, pp.552-566, 2004.

,

J. A. White and J. Heasman, Maternal Control of Pattern Formation in Xenopus laevis, J. Exp. Zool. (Mol Dev Evol), vol.310, pp.73-84, 2008.

K. White, E. Arama, and J. M. Hardwick, Controlling caspase activity in life and death, PLoS Genet, vol.1, pp.1-6, 2017.

J. C. Wilkinson, A. S. Wilkinson, F. L. Scott, R. A. Csomos, G. S. Salvesen et al., Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs): A caspaseindependent mechanism for apoptotic inhibition, J. Biol. Chem, vol.279, pp.51082-51090, 2004.

,

P. A. Wilson and A. Hemmati-brivanlou, Induction of epidermis and inhibition of neural fate by Bmp-4, Nature, vol.376, pp.331-333, 1995.

S. I. Wilson and T. Edlund, Neural induction: Toward a unifying mechanism, Nat. Neurosci, vol.4, pp.1161-1168, 2001.

C. Wylie, M. Kofron, C. Payne, R. Anderson, M. Hosobuchi et al., Maternal beta-catenin establishes a "dorsal signal" in early Xenopus embryos, Development, vol.122, pp.2987-96, 1996.

X. Xie, D. Zhang, B. Zhao, M. Lu, M. You et al., I?B kinase ? and TANK-binding kinase 1 activate AKT by direct phosphorylation, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.6474-6479, 2011.

,

S. Xu, F. Cheng, J. Liang, W. Wu, and J. Zhang, Maternal xNorrin, a canonical Wnt signaling agonist and TGF-? antagonist, controls early neuroectoderm specification in Xenopus, PLoS Biol, vol.10, 2012.

K. Yamaguchi, S. Nagai, J. Ninomiya-tsuji, M. Nishita, K. Tamai et al., , p.251

E. Shibuya, H. Matsumoto, and K. , XIAP , a cellular member of the inhibitor of apoptosis protein family , links the receptors to TAB1 -TAK1 in the BMP signaling pathway 18, pp.179-187, 1999.

Y. Yamaguchi and M. Miura, Programmed Cell Death in Neurodevelopment, Dev. Cell, vol.32, pp.478-490, 2015.

Y. Yamaguchi, N. Shinotsuka, K. Nonomura, K. Takemoto, K. Kuida et al., Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure, J. Cell Biol, vol.195, pp.1047-1060, 2011.

K. Yamamizu, A. A. Sharov, Y. Piao, M. Amano, H. Yu et al., Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines, Sci. Rep, vol.6, 2016.

I. Yanai, L. Peshkin, P. Jorgensen, and M. W. Kirschner, Mapping Gene Expression in two Xenopus Species: Evolutionary Constraints and Developmental Flexibility, Dev. Cell, vol.20, pp.483-96, 2011.

J. Yang, C. Tan, R. S. Darken, P. A. Wilson, and P. S. Klein, beta-Catenin/Tcf-regulated transcription prior to the midblastula transition, Development, vol.129, pp.5743-5752, 2002.

,

J. Yao and D. S. Kessler, Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer, Development, vol.128, pp.2975-2987, 2001.

Y. Yao, P. J. Minor, Y. T. Zhao, Y. Jeong, A. M. Pani et al., Cis-regulatory architecture of a brain signaling center predates the origin of chordates, Nat. Genet, vol.48, pp.575-580, 2016.

,

Y. Yasuoka, Y. Suzuki, S. Takahashi, H. Someya, N. Sudou et al., Occupancy of tissue-specific cis-regulatory modules by Otx2 and TLE/Groucho for embryonic head specification, Nat. Commun, vol.5, 2014.

W. Yeo and J. Gautier, A role for programmed cell death during early neurogenesis in Xenopus, Dev. Biol, vol.260, pp.222-229, 2003.

C. H. Yi and J. Yuan, The Jekyll and Hyde functions of caspases, Dev. Cell, vol.16, pp.21-34, 2009.

F. Yi, L. Pereira, J. A. Hoffman, B. R. Shy, C. M. Yuen et al., Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal, 2011.

, Cell Biol, vol.13, pp.762-770

C. Yost, M. Torres, J. R. Miller, E. Huang, D. Kimelman et al., The axisinducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3, Genes Dev, vol.10, pp.1443-1454, 1996.

,

D. Zechner, Y. Fujita, J. Hülsken, T. Müller, I. Walther et al., ?-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system, 2003.

, Dev. Biol, vol.258, pp.123-127

J. Zhang, D. W. Houston, M. King, . Lou, C. Payne et al., The role of maternal VegT in establishing the primary germ layers in Xenopus embryos, Cell, vol.94, pp.515-524, 1998.

Q. Zhong, W. Gao, F. Du, and X. Wang, Mule/ARF-BP1, a BH3-only E3 Ubiquitin Ligase, Catalyzes the Polyubiquitination of Mcl-1 and Regulates Apoptosis, Cell, vol.121, pp.1085-1095, 2005.

,

L. B. Zimmerman, J. M. De-jesús-escobar, and R. M. Harland, The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4, Cell, vol.86, pp.599-606, 1996.

, , pp.80133-80139

V. Zuzarte-luís and J. M. Hurlé, Programmed cell death in the developing limb, Int. J. Dev. Biol, vol.46, pp.871-876, 2002.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190