N. L. Benowitz, Cigarette smoking and nicotine addiction, Med Clin North Am, vol.76, pp.415-437, 1992.

T. H. Brandon, D. J. Drobes, M. Unrod, B. W. Heckman, J. A. Oliver et al., , 2011.

, Varenicline effects on craving, cue reactivity, and smoking reward, Psychopharmacology, vol.218, pp.391-403

A. R. Caggiula, E. C. Donny, N. Chaudhri, K. A. Perkins, F. F. Evans-martin et al., Importance of nonpharmacological factors in nicotine self-administration, Physiol Behav, vol.77, pp.683-687, 2002.

A. R. Caggiula, E. C. Donny, M. I. Palmatier, X. Liu, N. Chaudhri et al., The role of nicotine in smoking: a dual-reinforcement model, Neb Symp Motiv Neb Symp Motiv, vol.55, pp.91-109, 2009.

A. R. Caggiula, E. C. Donny, A. R. White, N. Chaudhri, S. Booth et al., Cue dependency of nicotine self-administration and smoking, Pharmacol Biochem Behav, vol.70, pp.515-530, 2001.

K. Cahill, S. Stevens, R. Perera, and T. Lancaster, Pharmacological interventions for smoking cessation: an overview and network meta-analysis, Cochrane Database Syst Rev, vol.009329, 2013.

N. Chaudhri, A. R. Caggiula, E. C. Donny, S. Booth, M. A. Gharib et al., Sex differences in the contribution of nicotine and nonpharmacological stimuli to nicotine self-administration in rats, Psychopharmacology, vol.180, pp.258-266, 2005.

N. Chaudhri, A. R. Caggiula, E. C. Donny, M. I. Palmatier, X. Liu et al., Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement, Psychopharmacology, vol.184, pp.353-366, 2006.

K. J. Clemens, B. Lay, and N. M. Holmes, Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues, Addict Biol, vol.22, pp.400-410, 2017.

J. W. Coe, P. R. Brooks, M. G. Vetelino, M. C. Wirtz, E. P. Arnold et al., Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation, J Med Chem, vol.48, pp.3474-3477, 2005.

C. L. Crunelle, M. L. Miller, J. Booij, and . Brink-w-van-den, The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence: a review, Eur Neuropsychopharmacol, vol.20, pp.69-79, 2010.

D. Chiara and G. , Role of dopamine in the behavioural actions of nicotine related to addiction, Eur J Pharmacol, vol.393, pp.295-314, 2000.

E. C. Donny, N. Chaudhri, A. R. Caggiula, F. F. Evans-martin, S. Booth et al., Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement, Psychopharmacology, vol.169, pp.68-76, 2003.

J. O. Ebbert, K. D. Wyatt, J. T. Hays, E. W. Klee, and R. D. Hurt, Varenicline for smoking cessation: efficacy, safety, and treatment recommendations, Patient Prefer Adherence, vol.4, pp.355-362, 2010.

I. Esterlis, A. T. Hillmer, F. Bois, B. Pittman, E. Mcgovern et al., CHRNA4 and ANKK1 Polymorphisms Influence Smoking-Induced Nicotinic Acetylcholine Receptor Upregulation, Nicotine Tob Res, vol.18, pp.1845-1852, 2016.

A. A. Feduccia, S. Chatterjee, and S. E. Bartlett, Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions, Front Mol Neurosci, vol.5, p.83, 2012.

D. Funk, S. Lo, K. Coen, and A. D. Lê, Effects of varenicline on operant self-administration of alcohol and/or nicotine in a rat model of co-abuse, Behav Brain Res, vol.296, pp.157-162, 2016.

V. Garcia-rivas, N. Cannella, and V. Deroche-gamonet, Individual Variations in the Mechanisms of Nicotine Seeking: A Key for Research on Nicotine Dependence, 2016.

V. Garcia-rivas, D. , and V. , Not all smokers appear to seek nicotine for the same reasons: implications for preclinical research in nicotine dependence, Addict Biol, 2018.

J. C. Gass, J. M. Wray, L. W. Hawk, M. C. Mahoney, and T. St, Impact of varenicline on cuespecific craving assessed in the natural environment among treatment-seeking smokers, Psychopharmacology, vol.223, pp.107-116, 2012.

O. George, A. Lloyd, F. I. Carroll, M. I. Damaj, and G. F. Koob, Varenicline blocks nicotine intake in rats with extended access to nicotine self-administration, Psychopharmacology, vol.213, pp.715-722, 2011.

J. Hartmann-boyce, L. F. Stead, K. Cahill, and T. Lancaster, Efficacy of interventions to combat tobacco addiction: Cochrane update of 2013 reviews, Addict Abingdon Engl, vol.109, pp.1414-1425, 2014.

K. E. Hutchison, D. L. Allen, F. M. Filbey, C. Jepson, C. Lerman et al., CHRNA4 and tobacco dependence: from gene regulation to treatment outcome, Arch Gen Psychiatry, vol.64, pp.1078-1086, 2007.

P. H. Janak and K. M. Tye, From circuits to behaviour in the amygdala, Nature, vol.517, pp.284-292, 2015.

C. J. Jordan and Z. Xi, Discovery and development of varenicline for smoking cessation, Expert Opin Drug Discov, vol.0, pp.1-12, 2018.

L. Foll, B. Chakraborty-chatterjee, M. Lev-ran, S. Barnes, C. Pushparaj et al., , 2012.

, Varenicline decreases nicotine self-administration and cue-induced reinstatement of nicotine-seeking behaviour in rats when a long pretreatment time is used, Int J Neuropsychopharmacol, vol.15, pp.1265-1274

L. Houezec, J. Benowitz, and N. L. , Basic and clinical psychopharmacology of nicotine, Clin Chest Med, vol.12, pp.681-699, 1991.

M. E. Levin, M. T. Weaver, M. I. Palmatier, A. R. Caggiula, A. F. Sved et al., Varenicline dose dependently enhances responding for nonpharmacological reinforcers and attenuates the reinforcement-enhancing effects of nicotine, Nicotine Tob Res, vol.14, pp.299-305, 2012.

X. Liu, M. I. Palmatier, A. R. Caggiula, E. C. Donny, and A. F. Sved, Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats, Psychopharmacology, vol.194, pp.463-473, 2007.

R. Niaura, J. T. Hays, D. E. Jorenby, F. T. Leone, J. E. Pappas et al., The efficacy and safety of varenicline for smoking cessation using a flexible dosing strategy in adult smokers: a randomized controlled trial, Curr Med Res Opin, vol.24, pp.1931-1941, 2008.

E. C. O'connor, D. Parker, H. Rollema, and A. N. Mead, The alpha4beta2 nicotinic acetylcholinereceptor partial agonist varenicline inhibits both nicotine self-administration following repeated dosing and reinstatement of nicotine seeking in rats, Psychopharmacology, vol.208, pp.365-376, 2010.

C. Oncken, D. Gonzales, M. Nides, S. Rennard, E. Watsky et al., Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation, Arch Intern Med, vol.166, pp.1571-1577, 2006.

M. I. Palmatier, M. R. Kellicut, B. Sheppard, A. Brown, R. W. Robinson et al., The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats, Pharmacol Biochem Behav, vol.126, pp.50-62, 2014.

M. I. Palmatier, J. E. Lantz, L. C. O'brien, and S. P. Metz, Effects of nicotine on olfactogustatory incentives: preference, palatability, and operant choice tests, Nicotine Tob Res, vol.15, pp.1545-1554, 2013.

M. I. Palmatier, M. E. Levin, K. L. Mays, E. C. Donny, A. R. Caggiula et al., Bupropion and nicotine enhance responding for nondrug reinforcers via dissociable pharmacological mechanisms in rats, Psychopharmacology, vol.207, pp.381-390, 2009.

M. I. Palmatier, G. L. Matteson, J. J. Black, X. Liu, A. R. Caggiula et al., The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections, Drug Alcohol Depend, vol.89, pp.52-59, 2007.

K. A. Perkins, Acute responses to nicotine and smoking: implications for prevention and treatment of smoking in lower SES women, Drug Alcohol Depend, vol.104, pp.79-86, 2009.

K. A. Perkins and J. L. Karelitz, Influence of reinforcer magnitude and nicotine amount on smoking's acute reinforcement enhancing effects, Drug Alcohol Depend, vol.133, pp.167-171, 2013.

K. A. Perkins and J. L. Karelitz, Sensory reinforcement-enhancing effects of nicotine via smoking, Exp Clin Psychopharmacol, vol.22, pp.511-516, 2014.

K. A. Perkins, J. L. Karelitz, and M. C. Boldry, Nicotine Acutely Enhances Reinforcement from NonDrug Rewards in Humans, Front Psychiatry, vol.8, p.65, 2017.

M. R. Picciotto and W. A. Corrigall, Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics, J Neurosci, vol.22, pp.3338-3341, 2002.

N. A. Rigotti, Strategies to help a smoker who is struggling to quit, JAMA, vol.308, pp.1573-1580, 2012.

H. Rollema, L. K. Chambers, J. W. Coe, J. Glowa, R. S. Hurst et al., Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid, Neuropharmacology, vol.52, pp.985-994, 2007.

H. Rollema, J. W. Coe, L. K. Chambers, R. S. Hurst, S. M. Stahl et al., Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation, Trends Pharmacol Sci, vol.28, pp.316-325, 2007.

J. E. Rose, Nicotine and non nicotine factors in cigarette addiction, Psychopharmacology, vol.184, pp.274-285, 2006.

L. E. Rupprecht, T. T. Smith, R. L. Schassburger, D. M. Buffalari, A. F. Sved et al., Behavioral mechanisms underlying nicotine reinforcement, Curr Top Behav Neurosci, vol.24, pp.19-53, 2015.

E. Schuit, O. A. Panagiotou, M. R. Munafò, D. A. Bennett, A. W. Bergen et al., Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers, Cochrane Database Syst Rev, vol.9, p.11823, 2017.

, Health, United States, 2011.

M. Van-heel, D. Van-gucht, K. Vanbrabant, and F. Baeyens, The Importance of Conditioned Stimuli in Cigarette and E-Cigarette Craving Reduction by E-Cigarettes, Int J Environ Res Public Health, vol.14, issue.2, 2017.

L. M. Yager and T. E. Robinson, Individual variation in the motivational properties of a nicotine cue: sign-trackers vs. goal-trackers, Psychopharmacology, vol.232, pp.3149-3160, 2015.

A. Rescorla, R. Wagner, and A. , A theory of Pavlovian conditioning: The effectiveness of reinforcement and non-reinforcement, Class. Cond. Curr. Res. Theory, 1972.

D. N. Abrous, W. Adriani, M. Montaron, C. Aurousseau, G. Rougon et al., Nicotine self-administration impairs hippocampal plasticity, J. Neurosci. Off. J. Soc. Neurosci, vol.22, pp.3656-3662, 2002.

N. A. Addy, A. Nakijama, and E. D. Levin, Nicotinic mechanisms of memory: effects of acute local DHbetaE and MLA infusions in the basolateral amygdala, Brain Res. Cogn. Brain Res, vol.16, pp.51-57, 2003.

W. Adriani, S. Spijker, V. Deroche-gamonet, G. Laviola, M. Le-moal et al., Evidence for enhanced neurobehavioral vulnerability to nicotine during periadolescence in rats, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.4712-4716, 2003.

F. Ambroggi, A. Ishikawa, H. L. Fields, N. , and S. M. , Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons, Neuron, vol.59, pp.648-661, 2008.

J. Van-amsterdam, A. Opperhuizen, M. Koeter, . Van-den, and W. Brink, Ranking the harm of alcohol, tobacco and illicit drugs for the individual and the population, Eur. Addict. Res, vol.16, pp.202-207, 2010.

Z. Annau and L. J. Kamin, The conditioned emotional response as a function of intensity of the US, J. Comp. Physiol. Psychol, vol.54, pp.428-432, 1961.

J. C. Anthony, L. A. Warner, and R. C. Kessler, Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: Basic findings from the National Comorbidity Survey, Exp. Clin. Psychopharmacol, vol.2, pp.244-268, 1994.

B. Antolin-fontes, J. L. Ables, A. Görlich, and I. Ibañez-tallon, The habenulointerpeduncular pathway in nicotine aversion and withdrawal, Neuropharmacology, vol.96, pp.213-222, 2015.

T. Aosaki, M. Kimura, and A. M. Graybiel, Temporal and spatial characteristics of tonically active neurons of the primate's striatum, J. Neurophysiol, vol.73, pp.1234-1252, 1995.

T. Araud, S. Graw, R. Berger, M. Lee, E. Neveu et al., The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of ?7*nAChR function, Biochem. Pharmacol, vol.82, pp.904-914, 2011.

J. Audrain-mcgovern, D. Rodriguez, A. M. Leventhal, J. Cuevas, K. Rodgers et al., , 2012.

, Where Is the Pleasure in That? Low Hedonic Capacity Predicts Smoking Onset and Escalation, Nicotine Tob. Res, vol.14, pp.1187-1196

J. Audrain-mcgovern, E. P. Wileyto, R. Ashare, J. Cuevas, and A. A. Strasser, Reward and affective regulation in depression-prone smokers, Biol. Psychiatry, vol.76, pp.689-697, 2014.

E. Augier, E. Barbier, R. S. Dulman, V. Licheri, G. Augier et al., A molecular mechanism for choosing alcohol over an alternative reward, Science, vol.360, pp.1321-1326, 2018.

T. B. Baker, S. J. Japuntich, J. M. Hogle, D. E. Mccarthy, and J. J. Curtin, Pharmacologic and Behavioral Withdrawal From Addictive Drugs, Curr. Dir. Psychol. Sci, vol.15, pp.232-236, 2006.

T. B. Baker, M. E. Piper, T. R. Schlam, J. W. Cook, S. S. Smith et al., Are tobacco dependence and withdrawal related amongst heavy smokers? Relevance to conceptualizations of dependence, J. Abnorm. Psychol, vol.121, pp.909-921, 2012.

M. Bani, A. Andorn, and C. Heidbreder, Pharmacologically, are smokers the same as nonsmokers?, Curr. Opin. Pharmacol, vol.14, pp.42-49, 2014.

M. T. Bardo, J. L. Neisewander, and T. H. Kelly, Individual differences and social influences on the neurobehavioral pharmacology of abused drugs, Pharmacol. Rev, vol.65, pp.255-290, 2013.

S. P. Barrett, The effects of nicotine, denicotinized tobacco, and nicotine-containing tobacco on cigarette craving, withdrawal, and self-administration in male and female smokers, Behav. Pharmacol, vol.21, pp.144-152, 2010.

D. M. Barros, M. R. Ramirez, and I. Izquierdo, Modulation of working, short-and long-term memory by nicotinic receptors in the basolateral amygdala in rats, Neurobiol. Learn. Mem, vol.83, pp.113-118, 2005.

S. Bava and S. F. Tapert, Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems, Neuropsychol. Rev, vol.20, pp.398-413, 2010.

N. L. Benowitz, Cigarette smoking and nicotine addiction, Med. Clin. North Am, vol.76, pp.415-437, 1992.

N. L. Benowitz, Nicotine addiction, N. Engl. J. Med, vol.362, pp.2295-2303, 2010.

M. Besson, V. David, M. Baudonnat, P. Cazala, J. Guilloux et al., Alpha7-nicotinic receptors modulate nicotine-induced reinforcement and extracellular dopamine outflow in the mesolimbic system in mice, Psychopharmacology (Berl.), vol.220, pp.1-14, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01463713

T. H. Brandon, D. J. Drobes, M. Unrod, B. W. Heckman, J. A. Oliver et al., Varenicline effects on craving, cue reactivity, and smoking reward, Psychopharmacology (Berl.), vol.218, pp.391-403, 2011.

L. H. Brauer, F. M. Behm, J. D. Lane, E. C. Westman, C. Perkins et al., Individual differences in smoking reward from de-nicotinized cigarettes, Nicotine Tob. Res, vol.3, pp.101-109, 2001.

N. Breslau, N. Fenn, and E. L. Peterson, Early smoking initiation and nicotine dependence in a cohort of young adults, Drug Alcohol Depend, vol.33, pp.129-137, 1993.

N. Breslau, M. M. Kilbey, A. , and P. , DSM-III-R nicotine dependence in young adults: prevalence, correlates and associated psychiatric disorders, Addict. Abingdon Engl, vol.89, pp.743-754, 1994.

S. L. Brown and L. N. Rinelli, Family Structure, Family Processes, and Adolescent Smoking and Drinking, J. Res. Adolesc. Off. J. Soc. Res. Adolesc, vol.20, pp.259-273, 2010.

D. H. Brunzell and J. M. Mcintosh, Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia, 2012.

, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.37, pp.1134-1143

S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett et al., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments, Clin. Chem, vol.55, pp.611-622, 2009.

R. Cachope, Y. Mateo, B. N. Mathur, J. Irving, H. Wang et al., Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing, Cell Rep, vol.2, pp.33-41, 2012.

A. R. Caggiula, E. C. Donny, A. R. White, N. Chaudhri, S. Booth et al., Cue dependency of nicotine self-administration and smoking, Pharmacol. Biochem. Behav, vol.70, pp.515-530, 2001.

A. R. Caggiula, E. C. Donny, N. Chaudhri, K. A. Perkins, F. F. Evans-martin et al., Importance of nonpharmacological factors in nicotine self-administration, Physiol. Behav, vol.77, pp.683-687, 2002.

A. R. Caggiula, E. C. Donny, M. I. Palmatier, X. Liu, N. Chaudhri et al., The role of nicotine in smoking: a dual-reinforcement model, Neb. Symp. Motiv. Neb. Symp. Motiv, vol.55, pp.91-109, 2009.

K. Cahill, S. Stevens, R. Perera, and T. Lancaster, Pharmacological interventions for smoking cessation: an overview and network meta-analysis, Cochrane Database Syst. Rev. CD009329, 2013.

C. Cameli, E. Bacchelli, M. De-paola, G. Giucastro, S. Cifiello et al., Genetic variation in CHRNA7 and CHRFAM7A is associated with nicotine dependence and response to varenicline treatment, Eur. J. Hum. Genet. EJHG, 2018.

, Smoking and Tobacco Use Fact Sheet, Centers for Disease Control and Prevention, 2018.

A. Cepeda-benito, T. , and S. T. , The use of a dual-task procedure for the assessment of cognitive effort associated with cigarette craving, Psychopharmacology (Berl.), vol.127, pp.155-163, 1996.

J. P. Changeux, M. Kasai, and C. Y. Lee, Use of a snake venom toxin to characterize the cholinergic receptor protein, Proc. Natl. Acad. Sci. U. S. A, vol.67, pp.1241-1247, 1970.

N. Chaudhri, A. R. Caggiula, E. C. Donny, S. Booth, M. Gharib et al., Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine, Psychopharmacology (Berl.), vol.189, pp.27-36, 2006.

C. Chiamulera, Cue reactivity in nicotine and tobacco dependence: a "multiple-action" model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli, Brain Res. Brain Res. Rev, vol.48, pp.74-97, 2005.

J. W. Coe, P. R. Brooks, M. G. Vetelino, M. C. Wirtz, E. P. Arnold et al., Varenicline: an alpha4beta2 nicotinic receptor partial agonist for smoking cessation, J. Med. Chem, vol.48, pp.3474-3477, 2005.

C. R. Coggins, E. L. Murrelle, R. A. Carchman, and C. Heidbreder, Light and intermittent cigarette smokers: a review, Psychopharmacology (Berl.), vol.207, pp.343-363, 1989.

A. Cohen, G. , and O. , Animal models of nicotine exposure: relevance to second-hand smoking, electronic cigarette use, and compulsive smoking, Front. Psychiatry, vol.4, p.41, 2013.

A. Cohen, G. F. Koob, G. , and O. , Robust Escalation of Nicotine Intake with Extended Access to Nicotine Self-Administration and Intermittent Periods of Abstinence, Neuropsychopharmacology, vol.37, pp.2153-2160, 2012.

C. Cohen, G. Perrault, G. Griebel, and P. Soubrié, Nicotine-associated cues maintain nicotine-seeking behavior in rats several weeks after nicotine withdrawal: reversal by the cannabinoid (CB1) receptor antagonist, rimonabant (SR141716), 2005.

, Publ. Am. Coll. Neuropsychopharmacol, vol.30, pp.145-155

C. A. Conklin, T. , and S. T. , Applying extinction research and theory to cue-exposure addiction treatments, Addict. Abingdon Engl, vol.97, pp.155-167, 2002.

A. Constantin, C. , and P. B. , Reinforcement enhancement by nicotine in adult rats: behavioral selectivity and relation to mode of delivery and blood nicotine levels, 2018.

, Psychopharmacology (Berl.), vol.235, pp.641-650

C. Contet, K. N. Whisler, H. Jarrell, P. J. Kenny, and A. Markou, Patterns of responding differentiate intravenous nicotine self-administration from responding for a visual stimulus in C57BL/6J mice, Psychopharmacology (Berl.), vol.212, pp.283-299, 2010.

J. W. Cook, M. E. Piper, A. M. Leventhal, T. R. Schlam, M. C. Fiore et al., , 2015.

, Anhedonia as a component of the tobacco withdrawal syndrome, J. Abnorm. Psychol, vol.124, pp.215-225

W. A. Corrigall and K. M. Coen, Selective dopamine antagonists reduce nicotine selfadministration, Psychopharmacology (Berl.), vol.104, pp.171-176, 1991.

W. A. Corrigall, K. M. Coen, and K. L. Adamson, Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area, Brain Res, vol.653, pp.278-284, 1994.

Y. Cui, J. M. Engelmann, J. Xian, J. A. Minnix, C. Y. Lam et al., Pharmacological intervention and abstinence in smokers undergoing cessation treatment: A psychophysiological study, Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol, vol.123, pp.25-34, 2018.

F. Dajas-bailador and S. Wonnacott, Nicotinic acetylcholine receptors and the regulation of neuronal signalling, Trends Pharmacol. Sci, vol.25, pp.317-324, 2004.

J. Dallery, E. J. Houtsmuller, W. B. Pickworth, and M. L. Stitzer, Effects of cigarette nicotine content and smoking pace on subsequent craving and smoking, Psychopharmacology (Berl.), vol.165, pp.172-180, 2003.

J. A. Dani, Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine, Int. Rev. Neurobiol, vol.124, pp.3-19, 2015.

J. A. Dani and D. Bertrand, Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system, Annu. Rev. Pharmacol. Toxicol, vol.47, pp.699-729, 2007.

J. A. Dani, K. A. Radcliffe, and V. I. Pidoplichko, Variations in desensitization of nicotinic acetylcholine receptors from hippocampus and midbrain dopamine areas, Eur. J. Pharmacol, vol.393, pp.31-38, 2000.

V. Deroche-gamonet, D. Belin, and P. V. Piazza, Evidence for addiction-like behavior in the rat, Science, vol.305, pp.1014-1017, 2004.

G. Di-chiara and V. Bassareo, Reward system and addiction: what dopamine does and doesn't do, Curr. Opin. Pharmacol, vol.7, pp.69-76, 2007.

P. Di-ciano and B. J. Everitt, Direct interactions between the basolateral amygdala and nucleus accumbens core underlie cocaine-seeking behavior by rats, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.7167-7173, 2004.

J. R. Difranza, A 2015 Update on The Natural History and Diagnosis of Nicotine Addiction. Curr, Pediatr. Rev, vol.11, pp.43-55, 2015.

E. C. Donny and M. Jones, Prolonged exposure to denicotinized cigarettes with or without transdermal nicotine, Drug Alcohol Depend, vol.104, pp.23-33, 2009.

E. C. Donny, A. R. Caggiula, M. M. Mielke, K. S. Jacobs, C. Rose et al., , 1998.

, Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency, Psychopharmacology (Berl.), vol.136, pp.83-90

E. C. Donny, N. Chaudhri, A. R. Caggiula, F. F. Evans-martin, S. Booth et al., Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement, Psychopharmacology (Berl.), vol.169, pp.68-76, 2003.

E. C. Donny, E. Houtsmuller, and M. L. Stitzer, Smoking in the absence of nicotine: behavioral, subjective and physiological effects over 11 days, Addict. Abingdon Engl, vol.102, pp.324-334, 2007.

R. Durand-de-cuttoli, S. Mondoloni, F. Marti, D. Lemoine, C. Nguyen et al., Manipulating midbrain dopamine neurons and reward-related behaviors with light-controllable nicotinic acetylcholine receptors, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875646

B. Ellenbroek, Y. , and J. , Rodent models in neuroscience research: is it a rat race?, Dis. Model. Mech, vol.9, pp.1079-1087, 2016.

. Eurostat, Tobacco Consumption News Release, 2016.

B. J. Everitt and T. W. Robbins, Neural systems of reinforcement for drug addiction: from actions to habits to compulsion, Nat. Neurosci, vol.8, pp.1481-1489, 2005.

B. J. Everitt, J. A. Parkinson, M. C. Olmstead, M. Arroyo, P. Robledo et al., , 1999.

, Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems, Ann. N. Y. Acad. Sci, vol.877, pp.412-438

M. Falcone, W. Cao, L. Bernardo, R. F. Tyndale, J. Loughead et al., Brain Responses to Smoking Cues Differ Based on Nicotine Metabolism Rate, Biol. Psychiatry, vol.80, pp.190-197, 2016.

A. A. Feduccia, S. Chatterjee, and S. E. Bartlett, Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions, Front. Mol. Neurosci, vol.5, 2012.

S. G. Ferguson and S. Shiffman, The relevance and treatment of cue-induced cravings in tobacco dependence, J. Subst. Abuse Treat, vol.36, pp.235-243, 2009.

S. G. Ferguson, S. Shiffman, M. Dunbar, and N. Schüz, Higher stimulus control is associated with less cigarette intake in daily smokers, Psychol. Addict. Behav. J. Soc. Psychol. Addict. Behav, vol.30, pp.229-237, 2016.

W. W. Fernando, R. J. Wellman, and J. R. Difranza, The relationship between level of cigarette consumption and latency to the onset of retrospectively reported withdrawal symptoms, Psychopharmacology (Berl.), vol.188, pp.335-342, 2006.

S. Frahm, M. A. Slimak, L. Ferrarese, J. Santos-torres, B. Antolin-fontes et al., Aversion to nicotine is regulated by the balanced activity of ?4 and ?5 nicotinic receptor subunits in the medial habenula, Neuron, vol.70, pp.522-535, 2011.

T. Franklin, Z. Wang, J. J. Suh, R. Hazan, J. Cruz et al., Effects of varenicline on smoking cue-triggered neural and craving responses, Arch. Gen. Psychiatry, vol.68, pp.516-526, 2011.

X. Gallego, S. Molas, A. Amador-arjona, M. J. Marks, N. Robles et al., Overexpression of the CHRNA5/A3/B4 genomic cluster in mice increases the sensitivity to nicotine and modifies its reinforcing effects, Amino Acids, vol.43, pp.897-909, 2012.

J. A. Gandelman, P. Newhouse, and W. D. Taylor, Nicotine and networks: Potential for enhancement of mood and cognition in late-life depression, Neurosci. Biobehav. Rev, vol.84, pp.289-298, 2018.

M. Gao, Y. Jin, K. Yang, D. Zhang, R. J. Lukas et al., Mechanisms involved in systemic nicotine-induced glutamatergic synaptic plasticity on dopamine neurons in the ventral tegmental area, J. Neurosci. Off. J. Soc. Neurosci, vol.30, pp.13814-13825, 2010.

V. Garcia-rivas and V. Gamonet, Not all smokers appear to seek nicotine for the same reasons: implications for preclinical research in nicotine dependence, Addict. Biol, 2018.

V. Garcia-rivas, N. Cannella, and V. Gamonet, Individual Variations in the Mechanisms of Nicotine Seeking: A Key for Research on Nicotine Dependence, 2017.

, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.42, pp.584-586

O. García-rodríguez, C. Blanco, M. M. Wall, S. Wang, C. J. Jin et al., Toward a comprehensive developmental model of smoking initiation and nicotine dependence, Drug Alcohol Depend, vol.144, pp.160-169, 2014.

A. Gasbarri, A. Sulli, and M. G. Packard, The dopaminergic mesencephalic projections to the hippocampal formation in the rat, Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.21, pp.1-22, 1997.

J. C. Gass, J. M. Wray, L. W. Hawk, M. C. Mahoney, T. et al., Impact of varenicline on cue-specific craving assessed in the natural environment among treatment-seeking smokers, Psychopharmacology (Berl.), vol.223, pp.107-116, 2012.

T. J. Glynn, P. Greenwald, S. M. Mills, and M. W. Manley, Youth Tobacco Use in the UnitedStates -Problem, Progress, Goals, and Potential Solutions, Prev. Med, vol.22, pp.568-575, 1993.

M. Goodchild, N. Nargis, and E. T. Espaignet, Global economic cost of smokingattributable diseases, Tob. Control, vol.27, pp.58-64, 2018.

C. Gotti, M. Zoli, and F. Clementi, Brain nicotinic acetylcholine receptors: native subtypes and their relevance, Trends Pharmacol. Sci, vol.27, pp.482-491, 2006.

P. E. Grebenstein, D. Burroughs, S. A. Roiko, P. R. Pentel, and M. G. Lesage, Predictors of the nicotine reinforcement threshold, compensation, and elasticity of demand in a rodent model of nicotine reduction policy, Drug Alcohol Depend, vol.151, pp.181-193, 2015.

J. W. Grimm, C. Ratliff, K. North, J. Barnes, C. et al., Nicotine increases sucrose selfadministration and seeking in rats, Addict. Biol, vol.17, pp.623-633, 2012.

K. Guillem, C. Vouillac, M. R. Azar, L. H. Parsons, G. F. Koob et al., , 2005.

, Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats, J. Neurosci. Off. J. Soc. Neurosci, vol.25, pp.8593-8600

G. Haller, T. Druley, F. L. Vallania, R. D. Mitra, P. Li et al., Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence, Hum. Mol. Genet, vol.21, pp.647-655, 2012.

G. Haller, P. Li, C. Esch, S. Hsu, A. M. Goate et al., Functional Characterization Improves Associations between Rare Non-Synonymous Variants in CHRNB4 and Smoking Behavior, PLoS ONE, vol.9, 2014.

J. L. Harenza, P. P. Muldoon, M. De-biasi, M. I. Damaj, and M. F. Miles, Genetic variation within the Chrna7 gene modulates nicotine reward-like phenotypes in mice, Genes Brain Behav, vol.13, pp.213-225, 2014.

A. C. Harris, P. R. Pentel, and M. G. Lesage, Correlates of individual differences in compensatory nicotine self-administration in rats following a decrease in nicotine unit dose, Psychopharmacology (Berl.), vol.205, pp.599-611, 2009.

J. Hartmann-boyce, L. F. Stead, K. Cahill, and T. Lancaster, Efficacy of interventions to combat tobacco addiction: Cochrane update of 2013 reviews, Addict. Abingdon Engl, vol.109, pp.1414-1425, 2014.

W. E. Hawkins, M. J. Hawkins, and J. Seeley, Stress, Health-Related Behavior and Quality of Life on Depressive Symptomatology in a Sample of Adolescents, Psychol. Rep, vol.71, pp.183-186, 1992.

S. S. Hecht, S. E. Murphy, S. G. Carmella, C. L. Zimmerman, L. Losey et al., Effects of reduced cigarette smoking on the uptake of a tobacco-specific lung carcinogen, J. Natl. Cancer Inst, vol.96, pp.107-115, 2004.

J. E. Henningfield and S. R. Goldberg, Nicotine as a reinforcer in human subjects and laboratory animals, Pharmacol. Biochem. Behav, vol.19, pp.989-992, 1983.

N. Hiroi, A. , and S. , Genetic susceptibility to substance dependence, Mol. Psychiatry, vol.10, pp.336-344, 2005.

N. Hiroi and D. Scott, Constitutional mechanisms of vulnerability and resilience to nicotine dependence, Mol. Psychiatry, vol.14, pp.653-667, 2009.

B. Hitsman, L. Hogarth, L. Tseng, J. C. Teige, W. G. Shadel et al., Dissociable effect of acute varenicline on tonic versus cue-provoked craving in non-treatment-motivated heavy smokers, Drug Alcohol Depend, vol.130, pp.135-141, 2013.

N. R. Hoft, J. A. Stitzel, K. E. Hutchison, and M. A. Ehringer, CHRNB2 promoter region: association with subjective effects to nicotine and gene expression differences, Genes Brain Behav, vol.10, pp.176-185, 2011.

Y. Huang, E. R. Kandel, and A. Levine, Chronic nicotine exposure induces a long-lasting and pathway-specific facilitation of LTP in the amygdala, Learn. Mem. Cold Spring Harb. N, vol.15, pp.603-610, 2008.

K. E. Hutchison, D. L. Allen, F. M. Filbey, C. Jepson, C. Lerman et al., CHRNA4 and tobacco dependence: from gene regulation to treatment outcome, Arch. Gen. Psychiatry, vol.64, pp.1078-1086, 2007.

, Growing up Tobacco Free: Preventing Nicotine Addiction in Children and Youths, 1994.

A. Jamal, D. M. Homa, E. O'connor, S. D. Babb, R. S. Caraballo et al., Current cigarette smoking among adults -United States, MMWR Morb. Mortal. Wkly. Rep, vol.64, pp.1233-1240, 2005.

P. H. Janak and K. M. Tye, From circuits to behaviour in the amygdala, Nature, vol.517, pp.284-292, 2015.

L. Jiang and L. W. Role, Facilitation of cortico-amygdala synapses by nicotine: activitydependent modulation of glutamatergic transmission, J. Neurophysiol, vol.99, 1988.

M. W. Johnson, W. K. Bickel, and A. P. Kirshenbaum, Substitutes for tobacco smoking: a behavioral economic analysis of nicotine gum, denicotinized cigarettes, and nicotinecontaining cigarettes, Drug Alcohol Depend, vol.74, pp.253-264, 2004.

I. W. Jones and S. Wonnacott, Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area, J. Neurosci. Off. J. Soc. Neurosci, vol.24, pp.11244-11252, 2004.

C. J. Jordan and Z. Xi, Discovery and development of varenicline for smoking cessation, Expert Opin. Drug Discov, vol.13, pp.671-683, 2018.

N. Kabbani, J. C. Nordman, B. A. Corgiat, D. P. Veltri, A. Shehu et al., Are nicotinic acetylcholine receptors coupled to G proteins?, BioEssays News Rev, 2013.

, Mol. Cell. Dev. Biol, vol.35, pp.1025-1034

F. Kasanetz, V. Deroche-gamonet, N. Berson, E. Balado, M. Lafourcade et al., Transition to addiction is associated with a persistent impairment in synaptic plasticity, Science, vol.328, pp.1709-1712, 2010.

J. E. Kelsey, L. P. Gerety, and R. M. Guerriero, Electrolytic lesions of the nucleus accumbens core (but not the medial shell) and the basolateral amygdala enhance context-specific locomotor sensitization to nicotine in rats, Behav. Neurosci, vol.123, pp.577-588, 2009.

M. A. Khaled, A. Pushparaj, P. Di-ciano, J. Diaz, L. Foll et al., Dopamine D3 Receptors in the Basolateral Amygdala and the Lateral Habenula Modulate Cue-Induced Reinstatement of Nicotine Seeking, Neuropsychopharmacology, vol.39, pp.3049-3058, 2014.

J. D. Killen and S. P. Fortmann, Craving is associated with smoking relapse: findings from three prospective studies, Exp. Clin. Psychopharmacol, vol.5, pp.137-142, 1997.

R. C. Klein and J. L. Yakel, Functional somato-dendritic alpha7-containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex, J. Physiol, vol.576, pp.865-872, 2006.

R. P. Klett, B. W. Fulpius, D. Cooper, M. Smith, E. Reich et al., The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated from Electrophorus electricus, J. Biol. Chem, vol.248, pp.6841-6853, 1973.

R. Klink, A. De-kerchove-d'exaerde, M. Zoli, and J. P. Changeux, Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei, J. Neurosci. Off. J. Soc. Neurosci, vol.21, pp.1452-1463, 2001.

M. Koch, A. Schmid, and H. U. Schnitzler, Role of muscles accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward, 2000.

, Psychopharmacology (Berl.), vol.152, pp.67-73

G. F. Koob and N. D. Volkow, Neurocircuitry of Addiction, Neuropsychopharmacology, vol.35, pp.217-238, 2010.

G. F. Koob, S. H. Ahmed, B. Boutrel, S. A. Chen, P. J. Kenny et al., Neurobiological mechanisms in the transition from drug use to drug dependence, Neurosci. Biobehav. Rev, vol.27, pp.739-749, 2004.

S. Kröner, J. A. Rosenkranz, A. A. Grace, and G. Barrionuevo, Dopamine modulates excitability of basolateral amygdala neurons in vitro, J. Neurophysiol, vol.93, pp.1598-1610, 2005.

M. G. Kutlu and T. J. Gould, Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory, Physiol. Behav, vol.155, pp.162-171, 2016.

B. Lee, R. N. Gentry, G. B. Bissonette, R. J. Herman, J. J. Mallon et al., Manipulating the revision of reward value during the intertrial interval increases sign tracking and dopamine release, PLoS Biol, vol.16, p.2004015, 2018.

J. O. Lee, J. Cho, Y. Yoon, M. S. Bello, R. Khoddam et al., Developmental Pathways from Parental Socioeconomic Status to Adolescent Substance Use: Alternative and Complementary Reinforcement, J. Youth Adolesc, vol.47, pp.334-348, 2018.

M. Lenoir, E. Augier, C. Vouillac, A. , and S. H. , A choice-based screening method for compulsive drug users in rats, Curr. Protoc. Neurosci. Chapter, issue.9, p.44, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01153690

A. M. Leventhal, The Sociopharmacology of Tobacco Addiction: Implications for Understanding Health Disparities, Nicotine Tob. Res, vol.18, pp.110-121, 2016.

E. D. Levin and B. B. Simon, Nicotinic acetylcholine involvement in cognitive function in animals, Psychopharmacology (Berl.), vol.138, pp.217-230, 1998.

M. E. Levin, M. T. Weaver, M. I. Palmatier, A. R. Caggiula, A. F. Sved et al., , 2012.

, Varenicline dose dependently enhances responding for nonpharmacological reinforcers and attenuates the reinforcement-enhancing effects of nicotine, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, vol.14, pp.299-305

A. Lex and W. Hauber, Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer, Learn. Mem. Cold Spring Harb. N, vol.15, pp.483-491, 2008.

P. M. Lippiello, S. B. Sears, and K. G. Fernandes, Kinetics and mechanism of L-[3H]nicotine binding to putative high affinity receptor sites in rat brain, Mol. Pharmacol, vol.31, pp.392-400, 1987.

X. Liu, M. I. Palmatier, A. R. Caggiula, E. C. Donny, and A. F. Sved, Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats, 2007.

, Psychopharmacology (Berl.), vol.194, pp.463-473

X. Liu, C. Jernigen, M. Gharib, S. Booth, A. R. Caggiula et al., Effects of dopamine antagonists on drug cue-induced reinstatement of nicotine-seeking behavior in rats, Behav. Pharmacol, vol.21, pp.153-160, 2010.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods San Diego Calif, vol.25, pp.402-408, 2001.

G. Löfroth, Environmental tobacco smoke: overview of chemical composition and genotoxic components, Mutat. Res, vol.222, pp.73-80, 1989.

C. Lovato, A. Watts, and L. F. Stead, Impact of tobacco advertising and promotion on increasing adolescent smoking behaviours, Cochrane Database Syst. Rev, 2011.

A. M. De-lucas-cerrillo, M. C. Maldifassi, F. Arnalich, J. Renart, G. Atienza et al., Function of partially duplicated human ?77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response, J. Biol. Chem, vol.286, pp.594-606, 2011.

D. H. Malin and P. Goyarzu, Rodent models of nicotine withdrawal syndrome, Handb. Exp. Pharmacol, pp.401-434, 2009.

M. Mamoun, A. W. Bergen, J. Shieh, A. Wiggins, and A. L. Brody, Biomarkers of Response to Smoking Cessation Pharmacotherapies: Progress to Date, CNS Drugs, vol.29, pp.359-369, 2015.

H. D. Mansvelder, M. Mertz, and L. W. Role, Nicotinic modulation of synaptic transmission and plasticity in cortico-limbic circuits, Semin. Cell Dev. Biol, vol.20, pp.432-440, 2009.

L. M. Martin and M. A. Sayette, A review of the effects of nicotine on social functioning, Exp. Clin. Psychopharmacol, vol.26, pp.425-439, 2018.

T. M. Mcgranahan, N. E. Patzlaff, S. R. Grady, S. F. Heinemann, and T. K. Booker, ?4?2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.10891-10902, 2011.

W. M. Meil and R. E. See, Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine, Behav. Brain Res, vol.87, pp.139-148, 1997.

S. Mexal, R. Berger, J. Logel, R. G. Ross, R. Freedman et al., Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers, 2010.

, J. Mol. Neurosci. MN, vol.40, pp.185-195

, Results from the 2013 National Survey on Drug Use and Health: Summary of National Findings, NSDUH Series H-48, Substance Abuse and Mental Health Services Administration, 2012.

P. K. Newby and K. L. Tucker, Empirically Derived Eating Patterns Using Factor or Cluster Analysis: A Review, Nutr. Rev, vol.62, pp.177-203, 2004.

R. Niaura, D. B. Abrams, M. Pedraza, P. M. Monti, and D. J. Rohsenow, Smokers' reactions to interpersonal interaction and presentation of smoking cues, Addict. Behav, vol.17, pp.557-566, 1992.

R. Niaura, J. T. Hays, D. E. Jorenby, F. T. Leone, J. E. Pappas et al., The efficacy and safety of varenicline for smoking cessation using a flexible dosing strategy in adult smokers: a randomized controlled trial, Curr. Med. Res. Opin, vol.24, pp.1931-1941, 2008.

D. Nutt, L. A. King, W. Saulsbury, and C. Blakemore, Development of a rational scale to assess the harm of drugs of potential misuse, The Lancet, vol.369, pp.1047-1053, 2007.

L. E. O'dell and T. V. Khroyan, Rodent models of nicotine reward: what do they tell us about tobacco abuse in humans? Pharmacol, Biochem. Behav, vol.91, pp.481-488, 2009.

L. E. O'dell, S. A. Chen, R. T. Smith, S. E. Specio, R. L. Balster et al., Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats, J. Pharmacol. Exp. Ther, vol.320, pp.180-193, 2007.

P. Olausson, J. D. Jentsch, and J. R. Taylor, Nicotine enhances responding with conditioned reinforcement, Psychopharmacology (Berl.), vol.171, pp.173-178, 2004.

C. Oncken, D. Gonzales, M. Nides, S. Rennard, E. Watsky et al., Efficacy and safety of the novel selective nicotinic acetylcholine receptor partial agonist, varenicline, for smoking cessation, Arch. Intern. Med, vol.166, pp.1571-1577, 2006.

J. Palermo-neto, Dopaminergic systems. Dopamine receptors, Psychiatr. Clin. North Am, vol.20, pp.705-721, 1997.

M. I. Palmatier, F. F. Evans-martin, A. Hoffman, A. R. Caggiula, N. Chaudhri et al., Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers, Psychopharmacology (Berl.), vol.184, pp.391-400, 2006.

M. I. Palmatier, G. L. Matteson, J. J. Black, X. Liu, A. R. Caggiula et al., The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections, Drug Alcohol Depend, vol.89, pp.52-59, 2007.

M. I. Palmatier, S. B. Coddington, X. Liu, E. C. Donny, A. R. Caggiula et al., The motivation to obtain nicotine-conditioned reinforcers depends on nicotine dose, Neuropharmacology, vol.55, pp.1425-1430, 2008.

M. I. Palmatier, X. Liu, E. C. Donny, A. R. Caggiula, and A. F. Sved, Metabotropic glutamate 5 receptor (mGluR5) antagonists decrease nicotine seeking, but do not affect the reinforcement enhancing effects of nicotine, Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol, vol.33, pp.2139-2147, 2008.

M. I. Palmatier, K. R. Marks, S. A. Jones, K. S. Freeman, K. M. Wissman et al., The effect of nicotine on sign-tracking and goal-tracking in a Pavlovian conditioned approach paradigm in rats, Psychopharmacology (Berl.), vol.226, pp.247-259, 2013.

M. I. Palmatier, M. R. Kellicut, B. Sheppard, A. Brown, R. W. et al., The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats, Pharmacol. Biochem. Behav, vol.126, pp.50-62, 2014.

D. Paterson and A. Nordberg, Neuronal nicotinic receptors in the human brain, Prog. Neurobiol, vol.61, pp.75-111, 2000.

A. Peacock, J. Leung, S. Larney, S. Colledge, M. Hickman et al., Global statistics on alcohol, tobacco and illicit drug use: 2017 status report, vol.113, pp.1905-1926, 2018.

Y. Pelloux, J. E. Murray, and B. J. Everitt, Differential vulnerability to the punishment of cocaine related behaviours: effects of locus of punishment, cocaine taking history and alternative reinforcer availability, Psychopharmacology (Berl.), vol.232, pp.125-134, 2015.

M. L. Pergadia, A. Der-avakian, M. S. Souza, P. A. Madden, A. C. Heath et al., Association between nicotine withdrawal and reward responsiveness in humans and rats, JAMA Psychiatry, vol.71, pp.1238-1245, 2014.

K. A. Perkins, Acute responses to nicotine and smoking: implications for prevention and treatment of smoking in lower SES women, Drug Alcohol Depend, vol.104, issue.1, pp.79-86, 2009.

K. A. Perkins and J. L. Karelitz, Reinforcement enhancing effects of nicotine via smoking, Psychopharmacology (Berl.), vol.228, pp.479-486, 2013.

K. A. Perkins and J. L. Karelitz, Sensory reinforcement-enhancing effects of nicotine via smoking, Exp. Clin. Psychopharmacol, vol.22, pp.511-516, 2014.

K. A. Perkins, J. L. Karelitz, and V. C. Michael, Reinforcement enhancing effects of acute nicotine via electronic cigarettes, Drug Alcohol Depend, vol.153, pp.104-108, 2015.

K. A. Perkins, J. L. Karelitz, and M. C. Boldry, Nicotine Acutely Enhances Reinforcement from Non-Drug Rewards in, Humans. Front. Psychiatry, vol.8, p.65, 2017.

K. A. Perkins, J. L. Karelitz, and M. C. Boldry, Reinforcement Enhancing Effects of Nicotine via Patch and Nasal Spray, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, 2018.

J. M. Phillips, K. Mcalonan, W. G. Robb, and V. J. Brown, Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat, Psychopharmacology (Berl.), vol.150, pp.112-116, 2000.

T. M. Piasecki, C. J. Trela, D. Hedeker, and R. J. Mermelstein, Smoking antecedents: separating between-and within-person effects of tobacco dependence in a multiwave ecological momentary assessment investigation of adolescent smoking, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, vol.16, issue.2, pp.119-126, 2014.

P. V. Piazza and V. Gamonet, A multistep general theory of transition to addiction, Psychopharmacology (Berl.), vol.229, pp.387-413, 2013.

P. V. Piazza, V. Deroche, F. Rougé-pont, L. Moal, and M. , Behavioral and biological factors associated with individual vulnerability to psychostimulant abuse, NIDA Res. Monogr, vol.169, pp.105-133, 1998.

P. V. Piazza, V. Deroche-gamonent, F. Rouge-pont, L. Moal, and M. , Vertical shifts in selfadministration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction, J. Neurosci. Off. J. Soc. Neurosci, vol.20, pp.4226-4232, 2000.

M. R. Picciotto, M. Zoli, R. Rimondini, C. Léna, L. M. Marubio et al., Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine, Nature, vol.391, pp.173-177, 1998.

E. M. Pich, S. R. Pagliusi, M. Tessari, D. Talabot-ayer, R. Hooft-van-huijsduijnen et al., Common neural substrates for the addictive properties of nicotine and cocaine, Science, vol.275, pp.83-86, 1997.

V. I. Pidoplichko, J. Noguchi, O. O. Areola, Y. Liang, J. Peterson et al., , 2004.

, Nicotinic cholinergic synaptic mechanisms in the ventral tegmental area contribute to nicotine addiction, Learn. Mem. Cold Spring Harb. N, vol.11, pp.60-69

V. I. Pidoplichko, E. M. Prager, V. Aroniadou-anderjaska, and M. F. Braga, ?7-Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability, J. Neurophysiol, vol.110, pp.2358-2369, 2013.

M. E. Piper, Withdrawal: Expanding a Key Addiction Construct, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, vol.17, pp.1405-1415, 2015.

M. E. Piper, S. A. Vasilenko, J. W. Cook, and S. T. Lanza, What a difference a day makes: differences in initial abstinence response during a smoking cessation attempt, Addict. Abingdon Engl, vol.112, pp.330-339, 2017.

F. E. Pontieri, G. Tanda, F. Orzi, D. Chiara, and G. , Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs, Nature, vol.382, pp.255-257, 1996.

S. Potvin, A. Tikàsz, L. L. Dinh-williams, .. Bourque, J. Mendrek et al., Cigarette Cravings, Impulsivity, and the Brain, vol.6, p.125, 2015.

P. Rada, N. M. Avena, and B. G. Hoebel, Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell, Neuroscience, vol.134, pp.737-744, 2005.

P. Ravva, M. R. Gastonguay, H. M. Faessel, T. C. Lee, and R. Niaura, Pharmacokineticpharmacodynamic modeling of the effect of varenicline on nicotine craving in adult smokers, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, vol.17, pp.106-113, 2015.

L. A. Ray, K. Lunny, S. Bujarski, N. Moallem, J. L. Krull et al., The effects of varenicline on stress-induced and cue-induced craving for cigarettes, Drug Alcohol Depend, vol.131, pp.136-142, 2013.

J. D. Raybuck and T. J. Gould, The role of nicotinic acetylcholine receptors in the medial prefrontal cortex and hippocampus in trace fear conditioning, Neurobiol. Learn. Mem, vol.94, pp.353-363, 2010.

N. A. Rigotti, Strategies to help a smoker who is struggling to quit, JAMA, vol.308, pp.1573-1580, 2012.

M. E. Roberts, L. C. Bidwell, S. M. Colby, and C. J. Gwaltney, With others or alone? Adolescent individual differences in the context of smoking lapses, Health Psychol. Off. J. Div. Health Psychol. Am. Psychol. Assoc, vol.34, pp.1066-1075, 2015.

T. E. Robinson and S. B. Flagel, Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences, Biol. Psychiatry, vol.65, pp.869-873, 2009.

H. Rollema, L. K. Chambers, J. W. Coe, J. Glowa, R. S. Hurst et al., Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid, Neuropharmacology, vol.52, pp.985-994, 2007.

J. E. Rose, Nicotine and nonnicotine factors in cigarette addiction, Psychopharmacology (Berl.), vol.184, pp.274-285, 2006.

J. E. Rose and W. A. Corrigall, Nicotine self-administration in animals and humans: similarities and differences, Psychopharmacology (Berl.), vol.130, pp.28-40, 1997.

J. E. Rose, D. P. Tashkin, A. Ertle, M. C. Zinser, and R. Lafer, Sensory blockade of smoking satisfaction, Pharmacol. Biochem. Behav, vol.23, pp.289-293, 1985.

M. L. Rubinstein, S. Shiffman, A. Moscicki, M. A. Rait, S. Sen et al., Nicotine metabolism and addiction among adolescent smokers, Addict. Abingdon Engl, vol.108, pp.406-412, 2013.

L. E. Rupprecht, T. T. Smith, R. L. Schassburger, D. M. Buffalari, A. F. Sved et al., Behavioral mechanisms underlying nicotine reinforcement, Curr. Top. Behav. Neurosci, vol.24, pp.19-53, 2015.

P. Russo, C. Nastrucci, G. Alzetta, and C. Szalai, Tobacco habit: historical, cultural, neurobiological, and genetic features of people's relationship with an addictive drug, Perspect. Biol. Med, vol.54, pp.557-577, 2011.

J. D. Salamone, M. Correa, A. Farrar, and S. M. Mingote, Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits, Psychopharmacology (Berl.), vol.191, pp.461-482, 2007.

R. Salas, R. Sturm, J. Boulter, D. Biasi, and M. , Nicotinic receptors in the habenulointerpeduncular system are necessary for nicotine withdrawal in mice, J. Neurosci. Off. J. Soc. Neurosci, vol.29, pp.3014-3018, 2009.

P. B. Sargent, The diversity of neuronal nicotinic acetylcholine receptors, Annu. Rev. Neurosci, vol.16, pp.403-443, 1993.

C. E. Sartor, C. N. Lessov-schlaggar, J. F. Scherrer, K. K. Bucholz, P. A. Madden et al., Initial response to cigarettes predicts rate of progression to regular smoking: findings from an offspring-of-twins design, Addict. Behav, vol.35, pp.771-778, 2010.

B. Schilström, N. Rawal, M. Mameli-engvall, G. G. Nomikos, and T. H. Svensson, Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes, 2003.

, J. Neuropsychopharmacol, vol.6, pp.1-11

H. D. Schmidt and R. C. Pierce, Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat, Neuroscience, vol.142, pp.451-461, 2006.

E. Schuit, O. A. Panagiotou, M. R. Munafò, D. A. Bennett, A. W. Bergen et al., , 2017.

, Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers, Cochrane Database Syst. Rev, vol.9, p.11823

B. M. Sharp, Basolateral amygdala, nicotinic cholinergic receptors, and nicotine: Pharmacological effects and addiction in animal models and humans, Eur. J. Neurosci, 2018.

S. Shiffman and L. Terhorst, Intermittent and daily smokers' subjective responses to smoking, Psychopharmacology (Berl.), vol.234, pp.2911-2917, 2017.

S. Shiffman, M. S. Dunbar, S. M. Scholl, and H. A. Tindle, Smoking motives of daily and non-daily smokers: a profile analysis, Drug Alcohol Depend, vol.126, pp.362-368, 2012.

S. Shiffman, M. S. Dunbar, and S. G. Ferguson, Stimulus control in intermittent and daily smokers, Psychol. Addict. Behav. J. Soc. Psychol. Addict. Behav, vol.29, pp.847-855, 2015.

M. A. Slimak, J. L. Ables, S. Frahm, B. Antolin-fontes, J. Santos-torres et al., Habenular expression of rare missense variants of the ?4 nicotinic receptor subunit alters nicotine consumption, Front. Hum. Neurosci, vol.8, p.12, 2014.

S. S. Smith and M. C. Fiore, The epidemiology of tobacco use, dependence, and cessation in the United States, Prim. Care, vol.26, pp.433-461, 1999.

T. T. Smith, R. L. Schassburger, D. M. Buffalari, A. F. Sved, D. et al., Low-dose nicotine self-administration is reduced in adult male rats naïve to high doses of nicotine: implications for nicotine product standards, Exp. Clin. Psychopharmacol, vol.22, pp.453-459, 2014.

R. L. Stedman, The chemical composition of tobacco and tobacco smoke, Chem. Rev, vol.68, pp.153-207, 1968.

Y. Svyryd, A. Ramírez-venegas, B. Sánchez-hernández, A. Aguayo-gómez, L. Luna-muñoz et al., Genetic Risk Determinants for Cigarette Smoking Dependence in Mexican Mestizo Families, 2016.

, Res. Off. J. Soc. Res. Nicotine Tob, vol.18, pp.620-625

D. W. Tang, B. Hello, M. Mroziewicz, L. K. Fellows, R. F. Tyndale et al., Genetic variation in CYP2A6 predicts neural reactivity to smoking cues as measured using fMRI, NeuroImage, vol.60, pp.2136-2143, 2012.

A. R. Tapper, S. L. Mckinney, R. Nashmi, J. Schwarz, P. Deshpande et al., Nicotine activation of alpha4* receptors: sufficient for reward, tolerance, and sensitization, Science, vol.306, pp.1029-1032, 2004.

S. Threlfell, T. Lalic, N. J. Platt, K. A. Jennings, K. Deisseroth et al., Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons, Neuron, vol.75, pp.58-64, 2012.

S. T. Tiffany and D. M. Hakenewerth, The production of smoking urges through an imagery manipulation: Psychophysiological and verbal manifestations, Addict. Behav, vol.16, pp.389-400, 1991.

S. T. Tiffany, L. S. Cox, and C. A. Elash, Effects of transdermal nicotine patches on abstinence-induced and cue-elicited craving in cigarette smokers, J. Consult. Clin. Psychol, vol.68, pp.233-240, 2000.

H. A. Tindle and S. Shiffman, Smoking cessation behavior among intermittent smokers versus daily smokers, Am. J. Public Health, vol.101, pp.1-3, 2011.

I. Tochitsky, M. R. Banghart, A. Mourot, J. Z. Yao, B. Gaub et al., , 2012.

, Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors, Nat. Chem, vol.4, pp.105-111

D. Van-gucht, O. Van-den-bergh, T. Beckers, and D. Vansteenwegen, Smoking behavior in context: where and when do people smoke?, J. Behav. Ther. Exp. Psychiatry, vol.41, pp.172-177, 2010.

F. Versace, E. M. Stevens, J. D. Robinson, Y. Cui, M. M. Deweese et al., Brain Responses to CigaretteRelated and Emotional Images in Smokers During Smoking Cessation: No Effect of Varenicline or Bupropion on the Late Positive Potential, Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob, 2017.

N. D. Volkow and T. Li, Drug addiction: the neurobiology of behaviour gone awry, Nat. Rev. Neurosci, vol.5, pp.963-970, 2004.

E. Wada, K. Wada, J. Boulter, E. Deneris, S. Heinemann et al., Distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat, J. Comp. Neurol, vol.284, pp.314-335, 1989.

T. L. Wallace and D. Bertrand, Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex, Biochem. Pharmacol, vol.85, pp.1713-1720, 2013.

R. B. Whitelaw, A. Markou, T. W. Robbins, and B. J. Everitt, Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a secondorder schedule of reinforcement, Psychopharmacology (Berl.), vol.127, pp.213-224, 1996.

, World health statistics, 2017.

C. E. Wilcox, E. D. Claus, V. D. Calhoun, S. Rachakonda, R. A. Littlewood et al., Default mode network deactivation to smoking cue relative to food cue predicts treatment outcome in nicotine use disorder, Addict. Biol, vol.23, pp.412-424, 2018.

D. Wilson, M. Wakefield, N. Owen, and L. Roberts, Characteristics of heavy smokers, Prev. Med, vol.21, pp.311-319, 1992.

R. A. Wise, Role of brain dopamine in food reward and reinforcement, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.361, pp.1149-1158, 2006.

J. R. Wooltorton, V. I. Pidoplichko, R. S. Broide, D. , and J. A. , Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas, J. Neurosci. Off. J. Soc. Neurosci, vol.23, pp.3176-3185, 2003.

, Tobacco Fact Sheet, 2018.

M. R. Zarrindast, J. Meshkani, A. Rezayof, R. Beigzadeh, and P. Rostami, Nicotinic acetylcholine receptors of the dorsal hippocampus and the basolateral amygdala are involved in ethanol-induced conditioned place preference, Neuroscience, vol.168, pp.505-513, 2010.

D. Zelena, K. Demeter, J. Haller, and D. Balázsfi, Considerations for the use of virally delivered genetic tools for in-vivo circuit analysis and behavior in mutant mice: a practical guide to optogenetics, Behav. Pharmacol, vol.28, pp.598-609, 2017.

P. J. Zhu, R. R. Stewart, J. M. Mcintosh, and F. F. Weight, Activation of nicotinic acetylcholine receptors increases the frequency of spontaneous GABAergic IPSCs in rat basolateral amygdala neurons, J. Neurophysiol, vol.94, pp.3081-3091, 2005.