V. Smil, W. History, and . Energy, Encyclopedia of Energy, vol.6, pp.549-561, 2004.

C. M. Cipolla, Sources d'énergie et Histoire de l'Humanité, Ann. Hist. Sci. Soc, vol.3, pp.521-534, 1961.

G. Carbonnier and J. Grinevald, Energie et développement, Rev. Int. Polit. développement, vol.2, pp.9-28, 2011.

F. Krausmann, S. Gingrich, N. Eisenmenger, K. Erb, H. Haberl et al., Growth in global materials use, GDP and population during the 20th century, vol.68, pp.2696-2705, 2009.

M. Lepetit and . Xie--xiiie-siècle, Le Monde des Moulins n°59, 2017.

J. Gimpel, La Révolution industrielle au Moyen Âge. Points, 2002.

M. Bloch, Avènement et Conquêtes du Moulin a Eau, Ann. d'histoire économique Soc, vol.7, pp.538-563, 1935.

B. Petroleum, BP Statistical Review of World Energy, vol.66, pp.1-52, 2017.

D. I. Stern, The role of energy in economic growth, Ann. N. Y. Acad. Sci, vol.1219, pp.26-51, 2011.

J. Jancovici, de quoi s'agit-il exactement?, p.30, 2017.

M. Höök, J. Li, K. Johansson, and S. Snowden, Growth Rates of Global Energy Systems and Future Outlooks, Nat. Resour. Res, vol.21, pp.23-41, 2012.

G. Tverberg, World Energy Consumption Since 1820 in Charts, 2012.

S. Sorrell, J. Speirs, R. Bentley, A. Brandt, and R. Miller, Global oil depletion: A review of the evidence, Energy Policy, vol.38, pp.5290-5295, 2010.

P. Aghion and P. Howitt, The economics of growth, 2009.

B. Jean-louis, N. Hervé, S. Claude, and . Dans-le-monde, , 2007.

A. Maddison, Statistics on World Population, GDP, and Per Capita GDP 1-2008 AD, 2008.

N. Armaroli and V. Balzani, The Future of Energy Supply: Challenges and Opportunities, Angew. Chemie Int, vol.46, pp.52-66, 2007.

I. Chapman, The end of Peak Oil? Why this topic is still relevant despite recent denials, Energy Policy, vol.64, pp.93-101, 2014.

M. Höök and X. Tang, Depletion of fossil fuels and anthropogenic climate change-A review, Energy Policy, vol.52, pp.797-809, 2013.

N. Gagnon, C. Hall, and L. Brinker, A Preliminary Investigation of Energy Return on Energy Investment for Global Oil and Gas Production, Energies, vol.2, pp.490-503, 2009.

C. Hall, S. Balogh, and D. Murphy, What is the Minimum EROI that a Sustainable Society Must Have?, Energies, 2, 1, pp.25-47, 2009.

A. Euzen, Le Développement durable à découvert. Cnrs, 2013.

E. Laurent, La face caché du pétrole. Plon, 2006.

P. and L. Billon, The geopolitical economy of "resource wars, Geopolitics, vol.9, pp.1-28, 2004.

P. Moriarty and D. Honnery, What energy levels can the Earth sustain?, Energy Policy, vol.37, pp.2469-2474, 2009.

O. Ellabban, H. Abu-rub, and F. Blaabjerg, Renewable energy resources: Current status, future prospects and their enabling technology, Renew. Sustain. Energy Rev, vol.39, pp.748-764, 2014.

N. Kannan and D. Vakeesan, Solar energy for future world: -A review, Renew. Sustain. Energy Rev, vol.62, pp.1092-1105, 2016.

B. J. De-vries, D. P. Van-vuuren, and M. M. Hoogwijk, Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach, Energy Policy, vol.35, pp.2590-2610, 2007.

A. Slaoui, Électricité photovoltaïque -Matériaux et marchés, 2016.

N. S. Lewis, Toward cost-effective solar energy use, Science, vol.315, pp.798-801, 2007.

J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, and V. Bulovi?, Pathways for solar photovoltaics, Energy Environ. Sci, vol.8, pp.1200-1219, 2015.

G. Lepesant, La transition énergétique face au défi des métaux critiques. Ifri, p.33, 2018.

, SolarPower Europe, Global Market Outlook for Solar Power, 2017.

I. E. Agency, World Energy Outlook 2016 Part B: special focus on renewable energy, 2016.

V. Smil, Examining energy transitions: A dozen insights based on performance, Energy Res. Soc. Sci, vol.22, pp.194-197, 2016.

P. Moriarty and D. Honnery, What is the global potential for renewable energy?, Renew. Sustain. Energy Rev, vol.16, pp.244-252, 2012.

A. Feltrin and A. Freundlich, Material considerations for terawatt level deployment of photovoltaics, Renew. Energy, vol.33, pp.180-185, 2007.

P. Bihouix and B. De-guillebon, Quel futur pour les métaux?, Géologues, vol.170, pp.23-25, 2011.

G. Pitron, La guerre des Métaux Rares. Les liens qui libèrent, 2018.

C. Hocquard and S. M. Act, Les défis des métaux «critiques», Géologues, vol.170, pp.7-14, 2010.

B. Goffé, Chimie et enjeux énergéiques, Édition Diffusion Presse Sciences, 2013.

D. P. Van-vuuren, B. J. Strengers, H. J. De, and . Vries, Long-term perspectives on world metal use-a system-dynamics model, Resour. Policy, vol.25, pp.239-255, 1999.

C. Wadia, A. P. Alivisatos, and D. M. Kammen, Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment, Environ. Sci. Technol, vol.43, 2009.

M. L. Henckens, P. P. Driessen, and E. Worrell, Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals, Resour. Conserv. Recycl, vol.93, pp.1-8, 2014.

M. A. Green, Third generation photovoltaics: Ultra-high conversion efficiency at low cost, Prog. Photovoltaics Res. Appl, vol.9, pp.123-135, 2001.

G. F. Brown and J. Wu, Third generation photovoltaics, Laser Photonics Rev, vol.3, pp.394-405, 2009.

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey et al.,

N. H. Sherif and . Karam, 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett, vol.90, 2007.

D. Nguyen, L. Lombez, F. Gibelli, S. Boyer-richard, A. Le-corre et al., Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature, Nat. Energy, vol.3, pp.236-242, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935187

X. Huang, S. Han, W. Huang, and X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters, Chem. Soc. Rev, vol.42, pp.173-201, 2013.

R. D. Schaller and V. I. Klimov, High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion, Phys. Rev. Lett, vol.92, p.186601, 2004.

M. C. Beard, J. M. Luther, and A. J. Nozik, The promise and challenge of nanostructured solar cells, Nat. Nanotechnol, vol.9, pp.951-954, 2014.

T. Dittrich, A. Belaidi, and A. Ennaoui, Concepts of inorganic solid-state nanostructured solar cells, Sol. Energy Mater. Sol. Cells, vol.95, pp.1527-1536, 2011.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. Mcgehee, Annu. Rev. Mater. Res, vol.41, pp.269-295, 2011.

P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, and L. M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in DyeSensitized Solar Cells, ACS Nano, vol.5, pp.5158-5166, 2011.

D. Van-dam, N. J. Van-hoof, Y. Cui, P. J. Van-veldhoven, E. P. Bakkers et al., High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers, ACS Nano, vol.10, pp.11414-11419, 2016.

Y. Liu, Y. Li, H. Kang, T. Jin, and L. Jiao, Design, synthesis, and energy-related applications of metal sulfides, vol.3, pp.402-421, 2016.

Z. L. Wang, Self-Powered Nanosensors and Nanosystems, Adv. Mater, vol.24, pp.280-285, 2012.

A. Nechibvute, A. Chawanda, and P. Luhanga, Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors, Smart Mater. Res, pp.1-13, 2012.

F. K. Shaikh and S. Zeadally, Energy harvesting in wireless sensor networks: A comprehensive review, Renew. Sustain. Energy Rev, vol.55, pp.1041-1054, 2016.

E. Fadel, V. C. Gungor, L. Nassef, N. Akkari, M. G. Malik et al., A survey on wireless sensor networks for smart grid, Comput. Commun, vol.71, pp.22-33, 2015.

W. Tian, Y. Wang, L. Chen, and L. Li, Self-Powered Nanoscale Photodetectors, Small, 2017.

J. Levasseur, L. , and M. Tech, , vol.81, pp.43-52, 1993.

J. M. Hau, Métallurgie du zinc, vol.33, 2010.

C. Klingshirn, ZnO: From basics towards applications, Phys. status solidi, vol.244, pp.3027-3073, 2007.

A. Janotti and C. G. Van-de-walle, Fundamentals of zinc oxide as a semiconductor, Reports Prog. Phys, vol.72, p.126501, 2009.

D. C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng. B, vol.80, pp.383-387, 2001.

Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm et al., ZnO: growth, doping & processing, Mater. Today, pp.34-40, 2004.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al.,

H. Cho and . Morkoç, A comprehensive review of ZnO materials and devices, J. Appl. Phys, vol.98, 2005.

S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Recent progress in processing and properties of ZnO, Prog. Mater. Sci, vol.50, pp.293-340, 2005.

C. Klingshirn, ZnO: Material, Physics and Applications, pp.782-803, 2007.

Ü. Özgür, D. Hofstetter, and H. Morkoç, ZnO Devices and Applications: A Review of Current Status and Future Prospects, Proc. IEEE, 98, vol.7, pp.1255-1268, 2010.

J. Zhou, N. S. Xu, and Z. L. Wang, Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures, vol.18, pp.2432-2435, 2006.

S. B. Zhang, S. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, vol.63, p.75205, 2001.

D. C. Look and B. Claflin, P-type doping and devices based on ZnO, Phys. Status Solidi, vol.241, pp.624-630, 2004.

C. R. Catlow, A. A. Sokol, and A. Walsh, Microscopic origins of electron and hole stability in ZnO, Chem. Commun, vol.47, 2011.

K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide, vol.104, 2008.

A. Ko?odziejczak-radzimska and T. Jesionowski, Zinc Oxide-From Synthesis to Application: A Review, 2014.

P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: Whats Next?, Nano Lett, vol.10, pp.1529-1536, 2010.

D. Lincot, Solution growth of functional zinc oxide films and nanostructures, MRS Bull, vol.35, 2010.

A. I. Hochbaum and P. Yang, Semiconductor Nanowires for Energy Conversion, Chem. Rev, vol.110, pp.527-546, 2010.

A. B. Djuri?i?, A. M. Ng, and X. Y. Chen, ZnO nanostructures for optoelectronics: Material properties and device applications, Prog. Quantum Electron, vol.34, pp.191-259, 2010.

B. Weintraub, Z. Zhou, Y. Li, and Y. Deng, Solution synthesis of one-dimensional ZnO nanomaterials and their applications, p.1573, 2010.

S. Xu and Z. L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res, vol.4, pp.1013-1098, 2011.

J. L. Gomez and O. Tigli, Zinc oxide nanostructures: from growth to application, J. Mater. Sci, vol.48, pp.612-624, 2013.

J. Zúñiga-pérez, V. Consonni, L. Lymperakis, X. Kong, A. Trampert et al., Polarity in GaN and ZnO: Theory, measurement, growth, and devices, 2016.

R. Kumar, A. Umar, G. Kumar, H. S. Nalwa, A. Kumar et al., Zinc oxide nanostructure-based dye-sensitized solar cells, J. Mater. Sci, vol.52, pp.4743-4795, 2017.

M. Laurenti, S. Stassi, G. Canavese, and V. Cauda, Adv. Mater. Interfaces, 2017.

Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys. Condens. Matter, vol.16, pp.829-858, 2004.

Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang et al., ZnO nanowire growth and devices, vol.47, 2004.

G. Yi, C. Wang, and W. Park, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol, vol.20, pp.22-34, 2005.

A. B. Djuri?i? and Y. H. Leung, Optical Properties of ZnO Nanostructures, vol.2, pp.944-961, 2006.

L. Schmidt-mende and J. L. Macmanus-driscoll, ZnO -nanostructures, defects, and devices, Mater. Today, vol.10, pp.40-48, 2007.

I. Gonzalez-valls and M. Lira-cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review, Energy Environ. Sci, vol.2, issue.1, pp.19-34, 2008.

Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, ZnO Nanostructures for DyeSensitized Solar Cells, Adv. Mater, vol.21, pp.4087-4108, 2009.

S. Baruah and J. Dutta, Hydrothermal growth of ZnO nanostructures, Sci. Technol. Adv. Mater, vol.10, 2009.

M. A. Vergès, A. Mifsud, and C. J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions, J. Chem. Soc. Faraday Trans, vol.86, p.959, 1990.

L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater, vol.15, pp.464-466, 2003.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger et al., General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds, Nano Lett, vol.5, pp.1231-1236, 2005.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson et al., Low-TemperatureWafer-Scale Production of ZnO Nanowire Arrays, Angew. Chemie, vol.115, pp.3139-3142, 2003.

M. Skompska and K. Zar?bska, Electrodeposition of ZnO nanorod arrays on transparent conducting substrates-a review, Electrochim. Acta, vol.127, pp.467-488, 2014.

Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang et al., Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells, Small, vol.6, pp.307-312, 2010.

M. J. Zheng, L. D. Zhang, G. H. Li, and W. Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique, Chem. Phys. Lett, vol.363, pp.123-128, 2002.

J. Wu and S. Liu, Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition, Adv. Mater, vol.14, pp.215-218, 2002.

W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett, vol.80, pp.4232-4234, 2002.

P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson et al., Controlled Growth of ZnO Nanowires and Their Optical Properties, Adv. Funct. Mater, vol.12, 2002.

X. Liu, X. Wu, H. Cao, and R. P. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition, J. Appl. Phys, vol.95, pp.3141-3147, 2004.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett, vol.78, pp.407-409, 2001.

S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh, and H. J. Lee, Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method, Chem. Mater, vol.15, pp.3294-3299, 2003.

Y. Sun, G. M. Fuge, and M. N. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chem. Phys. Lett, vol.396, pp.1-3, 2004.

M. H. Huang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science, vol.292, pp.1897-1899, 2001.

P. Chang, Z. Fan, C. Chien, D. Stichtenoth, C. Ronning et al., Highperformance ZnO nanowire field effect transistors, Appl. Phys. Lett, vol.89, p.133113, 2006.

V. Consonni, E. Sarigiannidou, E. Appert, A. Bocheux, S. Guillemin et al.,

J. Robin, F. Kioseoglou, and . Robaut, Selective Area Growth of Well-Ordered ZnO Nanowire Arrays with Controllable Polarity, ACS Nano, vol.8, pp.4761-4770, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02112193

C. Lévy-clément, R. Tena-zaera, M. A. Ryan, A. Katty, and G. Hodes, CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions, Adv. Mater, vol.17, pp.1512-1515, 2005.

C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. Aplin et al., ZnO Nanowire UV Photodetectors with High Internal Gain, vol.7, pp.1003-1009, 2007.

X. Wang, J. Song, J. Liu, and Z. L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science, vol.316, pp.102-105, 2007.

M. Ahn, K. Park, J. Heo, J. Park, D. Kim et al., Gas sensing properties of defect-controlled ZnO-nanowire gas sensor, Appl. Phys. Lett, vol.93, p.263103, 2008.

J. B. Baxter and E. S. , Nanowire-based dye-sensitized solar cells, Appl. Phys. Lett, vol.86, p.53114, 2005.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nat. Mater, vol.4, pp.455-459, 2005.

J. A. Anta, E. Guillén, and R. Tena-zaera, ZnO-Based Dye-Sensitized Solar Cells, J. Phys. Chem. C, vol.116, pp.11413-11425, 2012.

R. Parize, A. Katerski, I. Gromyko, L. Rapenne, H. Roussel et al., ZnO/TiO2/Sb2S3 Core-Shell Nanowire Heterostructure for Extremely Thin Absorber Solar Cells, J. Phys. Chem. C, vol.121, pp.9672-9680, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758844

K. S. Leschkies, R. Divakar, J. Basu, E. Enache-pommer, J. E. Boercker et al., Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices, Nano Lett, vol.7, pp.1793-1798, 2007.

D. Son, J. Im, H. Kim, and N. Park, 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System, J. Phys. Chem. C, vol.118, pp.16567-16573, 2014.

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches, Adv. Mater, vol.14, pp.158-160, 2002.

S. M. Hatch, J. Briscoe, and S. Dunn, A Self-Powered ZnO-Nanorod/CuSCN UV Photodetector Exhibiting Rapid Response, Adv. Mater, vol.25, pp.867-871, 2013.

Z. L. Wang, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science, vol.5771, pp.242-246, 2006.

G. Zhu, R. Yang, S. Wang, and Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett, vol.10, pp.3151-3155, 2010.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He et al., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett, vol.84, pp.3654-3656, 2004.

K. J. Choi and H. W. Jang, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, vol.10, pp.4083-4099, 2010.

J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee et al., Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology, vol.17, pp.4995-4998, 2006.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik et al., Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett, vol.86, p.243503, 2005.

W. I. Park and G. Yi, Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN, vol.16, pp.87-90, 2004.

S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang et al., Ordered Nanowire Array Blue/Near-UV Light Emitting Diodes, Adv. Mater, vol.22, pp.4749-4753, 2010.

C. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee et al., High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays, Adv. Mater, vol.15, pp.838-841, 2003.

J. Goldberger, D. J. Sirbuly, M. Law, and P. Yang, ZnO Nanowire Transistors, J. Phys. Chem. B, vol.109, pp.9-14, 2005.

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu et al., Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire, Nano Lett, vol.6, pp.2768-2772, 2006.

J. Zang, C. M. Li, X. Cui, J. Wang, X. Sun et al., Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor, Electroanalysis, vol.19, pp.1008-1014, 2007.

P. Yeh, Z. Li, and Z. L. Wang, Schottky-Gated Probe-Free ZnO Nanowire Biosensor, Adv. Mater, vol.21, pp.4975-4978, 2009.

H. Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao et al., ZnO Nanowire Arrays on 3D Hierachical Graphene Foam: Biomarker Detection of Parkinson's Disease, vol.8, pp.1639-1646, 2014.

J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, p-Type ZnO materials: Theory, growth, properties and devices, vol.58, pp.874-985, 2013.

R. Salazar, A. Delamoreanu, C. Levy-clement, and V. Ivanova, ZnO/CdTe and ZnO/CdS core-shell nanowire arrays for extremely thin absorber solar cells, Energy Procedia, vol.10, pp.122-127, 2011.

P. Ni, C. Shan, S. Wang, X. Liu, and D. Shen, Self-powered spectrumselective photodetectors fabricated from n-ZnO/p-NiO core-shell nanowire arrays, J. Mater. Chem. C, vol.1, 2013.

Y. Q. Bie, Z. M. Liao, H. Z. Zhang, G. R. Li, Y. Ye et al., Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions, Adv. Mater, vol.23, pp.649-653, 2011.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni et al., Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells, Nanotechnology, vol.26, p.75401, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01961487

Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das et al., Wafer-Scale HighThroughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays, Nano Lett, vol.10, pp.3414-3419, 2010.

H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, 2009.

H. F. Mcmurdie, M. C. Morris, E. H. Evans, B. Paretzkin, W. Wong-ng et al., Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship, vol.1, pp.64-77, 1986.

C. R. Catlow and A. M. Stoneham, Ionicity in solids, J. Phys. C Solid State Phys, vol.16, pp.4321-4338, 1983.

P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C Solid State Phys, vol.12, pp.4977-4984, 1979.

J. Goniakowski, F. Finocchi, and C. Noguera, Polarity of oxide surfaces and nanostructures, Reports Prog. Phys, vol.71, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00425166

C. Noguera, Polar oxide surfaces, J. Phys. Condens. Matter, vol.12, pp.367-410, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01243115

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster et al., Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. status solidi, vol.241, pp.231-260, 2004.

C. F. Klingshirn, Semiconductor Optics, 2012.

L. Ding, C. Yang, H. He, J. Wang, Z. Tang et al., Verification of Gamma-7 symmetry assignment for the top valence band of ZnO by magneto-optical studies of the free A exciton state, New J. Phys, vol.15, p.33015, 2013.

W. R. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Valence-band ordering and magneto-optic exciton fine structure in ZnO, Phys. Rev. B, vol.65, p.75207, 2002.

M. R. Wagner, J. Schulze, R. Kirste, M. Cobet, A. Hoffmann et al., Gamma-7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies, Phys. Rev. B, vol.80, 2009.

M. R. Wagner, G. Callsen, J. S. Reparaz, R. Kirste, A. Hoffmann et al., Effects of strain on the valence band structure and exciton-polariton energies in ZnO, Phys. Rev. B, vol.88, p.235210, 2013.

A. V. Rodina, M. Strassburg, M. Dworzak, U. Haboeck, A. Hoffmann et al., Magneto-optical properties of bound excitons in ZnO, Phys. Rev. B, vol.69, p.125206, 2004.

D. C. Reynolds and T. C. Collins, Emission from Excited Terminal States of Bound Exciton Complexes, Zeitschrift für Naturforsch. A, vol.24, pp.1311-1316, 1969.

S. Adachi, K. Hazu, T. Sota, S. Chichibu, G. Cantwell et al., Biexcitons and their dephasing processes in ZnO, Phys. status solidi, vol.2, pp.890-895, 2005.

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal, J. Appl. Phys, vol.93, pp.756-758, 2003.

D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell et al., Valence-band ordering in ZnO, Phys. Rev. B, vol.60, pp.2340-2344, 1999.

Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga et al., Plasma assisted molecular beam epitaxy of ZnO on c -plane sapphire: Growth and characterization, J. Appl. Phys, vol.84, pp.3912-3918, 1998.

A. Mang, K. Reimann, and S. Rübenacke, Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, Solid State Commun, vol.94, pp.251-254, 1995.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki et al., Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films, Appl. Phys. Lett, vol.78, pp.1237-1239, 2001.

B. E. Sernelius, K. Berggren, Z. Jin, I. Hamberg, and C. G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping, Phys. Rev. B, vol.37, pp.10244-10248, 1988.

K. J. Kim and Y. R. Park, Large and abrupt optical band gap variation in In-doped ZnO, Appl. Phys. Lett, vol.78, pp.475-477, 2001.

S. V. Bhat and F. L. Deepak, Tuning the bandgap of ZnO by substitution with Mn 2+ , Co 2+ and Ni 2+, Solid State Commun, vol.135, pp.345-347, 2005.

J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada et al., Carrier concentration dependence of band gap shift in n-type ZnO:Al films, J. Appl. Phys, vol.101, issue.8, p.83705, 2007.

B. Wei, K. Zheng, Y. Ji, Y. Zhang, Z. Zhang et al., Size-Dependent Bandgap Modulation of ZnO Nanowires by Tensile Strain, Nano Lett, vol.12, pp.4595-4599, 2012.

L. Kuna, J. Mangeri, P. Gao, and S. Nakhmanson, Stress-Induced Shift of Band Gap in ZnO Nanowires from Finite-Element Modeling, Phys. Rev. Appl, vol.8, p.34031, 2017.

K. Lin, H. Cheng, H. Hsu, and W. Hsieh, Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots, Appl. Phys. Lett, 2006.

A. M. Smith and S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering, vol.43, 2010.

A. Janotti and C. G. Van-de-walle, Native point defects in ZnO, Phys. Rev. B, vol.76, 2007.

Y. Tsur and I. Riess, Self-compensation in semiconductors, Phys. Rev. B, vol.60, pp.8138-8146, 1999.

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Defect energetics in ZnO: A hybrid Hartree-Fock density functional study, Phys. Rev. B, vol.77, p.245202, 2008.

D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton et al., Electrical properties of bulk ZnO, Solid State Commun, vol.105, pp.399-401, 1998.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, Residual Native Shallow Donor in ZnO, Phys. Rev. Lett, vol.82, pp.2552-2555, 1999.

F. Oba, S. R. Nishitani, S. Isotani, H. Adachi, and I. Tanaka, Energetics of native defects in ZnO, J. Appl. Phys, vol.90, pp.824-828, 2001.

F. Oba, M. Choi, A. Togo, and I. Tanaka, Point defects in ZnO: an approach from first principles, Sci. Technol. Adv. Mater, vol.12, p.34302, 2011.

M. D. Mccluskey and S. J. Jokela, Defects in ZnO, J. Appl. Phys, vol.106, 2009.

S. Lany and A. Zunger, Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides, Phys. Rev. Lett, vol.98, 2007.

Y. Kim and C. H. Park, Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping, Phys. Rev. Lett, vol.102, p.86403, 2009.

S. J. Clark, J. Robertson, S. Lany, and A. Zunger, Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals, Phys. Rev. B, vol.81, 2010.

L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov et al., Oxygen vacancies: The origin of n-type conductivity in ZnO, Phys. Rev. B, vol.93, p.235305, 2016.

J. Buckeridge, C. R. Catlow, M. R. Farrow, A. J. Logsdail, D. O. Scanlon et al., Deep vs shallow nature of oxygen vacancies and consequent n-type carrier concentrations in transparent conducting oxides, Phys. Rev. Mater, vol.2, issue.5, p.54604, 2018.

A. Boonchun and W. R. Lambrecht, Electronic structure of defects and doping in ZnO: Oxygen vacancy and nitrogen doping, Phys. status solidi, vol.250, pp.1-11, 2013.

K. Ellmer and A. Bikowski, Intrinsic and extrinsic doping of ZnO and ZnO alloys, J. Phys. D. Appl. Phys, vol.49, p.413002, 2016.

C. G. Van-de-walle, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett, vol.85, pp.1012-1015, 2000.

D. M. Hofmann, A. Hofstaetter, F. Leiter, H. Zhou, F. Henecker et al., Hydrogen: A Relevant Shallow Donor in Zinc Oxide, Phys. Rev. Lett, vol.88, p.45504, 2002.

E. ,

. Lavrov, Infrared absorption spectroscopy of hydrogen-related defects in ZnO, Phys. B Condens. Matter, pp.340-342, 2003.

E. V. Lavrov, Hydrogen in ZnO, Phys. B Condens. Matter, vol.404, pp.5075-5079, 2009.

R. Heinhold, A. Neiman, J. V. Kennedy, A. Markwitz, R. J. Reeves et al., Hydrogen-related excitons and their excited-state transitions in ZnO, Phys. Rev. B, vol.95, pp.1-13, 2017.

C. G. Van-de-walle and J. Neugebauer, Hydrogen In Semiconductors

, Mater. Res, vol.36, pp.179-198, 2006.

L. Wang, X. Zhou, G. J. Exarhos, L. R. Pederson, C. Wang et al., Proton dynamics in ZnO nanorods quantified by in situ solid-state 1 H nuclear magnetic resonance spectroscopy, Appl. Phys. Lett, vol.91, p.173107, 2007.

T. Minami, S. Hirotoshi, H. Nanto, and S. Takata, Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys, vol.24, pp.871-784, 1985.

B. V. Avrutin, D. J. Silversmith, and H. Morkoç, Doping assymetry problem in ZnO: Current status and outlook, Proc. IEEE, 98, vol.7, pp.1269-1280, 2010.

M. D. Mccluskey and S. J. Jokela, Sources of n-type conductivity in ZnO, Phys. B Condens. Matter, pp.355-357, 2007.

H. Von-wenckstern, M. Brandt, H. Schmidt, G. Biehne, R. Pickenhain et al., Donor-like defects in ZnO substrate materials and ZnO thin films, Appl. Phys. A, vol.88, pp.135-139, 2007.

S. Brochen, M. Lafossas, I. Robin, P. Ferret, F. Gemain et al., Residual and intentional n-type doping of ZnO thin films grown by metal-organic vapor phase epitaxy on sapphire and ZnO substrates, J. Appl. Phys, vol.115, p.113508, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00984425

S. Brochen, C. Granier, G. Feuillet, and J. Pernot, Role of deep and shallow donor levels on n -type conductivity of hydrothermal ZnO, Appl. Phys. Lett, vol.100, p.52115, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00740909

J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. Lambrecht, and K. F. Brennan, High field electron transport properties of bulk ZnO, J. Appl. Phys, vol.86, pp.6864-6867, 1999.

K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Growth of 2 inch ZnO bulk single crystal by the hydrothermal method, Semicond. Sci. Technol, vol.20, pp.49-54, 2005.

D. Ehrentraut, K. Maeda, M. Kano, K. Fujii, and T. Fukuda, Next-generation hydrothermal ZnO crystals, J. Cryst. Growth, vol.320, pp.18-22, 2011.

K. Ellmer, Resistivity of polycrystalline zinc oxide films: current status and physical limit, J. Phys. D. Appl. Phys, vol.34, pp.3097-3108, 2001.

E. Ziegler, A. Heinrich, H. Oppermann, and G. Stöver, Electrical properties and nonstoichiometry in ZnO single crystals, Phys. Status Solidi, vol.66, pp.635-648, 1981.

T. Minami, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes, Thin Solid Films, vol.516, pp.5822-5828, 2008.

Y. Liu, Y. Li, and H. Zeng, ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing, J. Nanomater, pp.1-9, 2013.

A. Lyubchyk, A. Vicente, B. Soule, P. U. Alves, T. Mateus et al., Mapping the Electrical Properties of ZnO-Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing, Adv. Electron. Mater, 2016.

C. H. Lee and D. W. Kim, Preparation of Al doped ZnO thin films by MOCVD using ultrasonic atomization, J. Electroceramics, vol.33, pp.1-2, 2014.

H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition, Thin Solid Films, vol.445, pp.263-267, 2003.

C. H. Park, S. B. Zhang, and S. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, vol.66, p.73202, 2002.

M. R. Wagner, T. P. Bartel, R. Kirste, A. Hoffmann, J. Sann et al., Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition, Phys. Rev. B, vol.79, p.35307, 2009.

B. K. Meyer, J. Sann, S. Lautenschläger, M. R. Wagner, and A. Hoffmann, Ionized and neutral donor-bound excitons in ZnO, Phys. Rev. B, vol.76, 2007.

M. D. Fontana, D. Chapron, T. H. Kauffmann, and P. Bourson, Spectroscopie Raman des défauts dans les matériaux, Tech. l'ingénieur, 2017.

J. Barbillat, D. Bougeard, M. Delhaye, F. Fillaux, and S. Raman, , 2017.

M. A. Stroscio and M. Dutta, Phonons in Nanostructures, 2001.

R. Loudon, The Raman effect in crystals, Adv. Phys, vol.13, pp.423-482, 1964.
URL : https://hal.archives-ouvertes.fr/jpa-00206334

D. L. Rousseau, R. P. Bauman, and S. P. Porto, Normal mode determination in crystals, J. Raman Spectrosc, vol.10, pp.253-290, 1981.

T. C. Damen, S. P. Porto, and B. Tell, Raman Effect in Zinc Oxide, Phys. Rev, vol.142, pp.570-574, 1966.

A. Calzolari and M. B. Nardelli, Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach, Sci. Rep, 2013.

C. A. Arguello, D. L. Rousseau, and S. P. Porto, First-Order Raman Effect in WurtziteType Crystals, Phys. Rev, vol.181, pp.1351-1363, 1969.

M. R. Wagner, Fundamental properties of excitons and phonons in ZnO: A spectroscopic study of the dynamics , polarity , and effects of external fields, 2010.

B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, Raman study of the phonon halfwidths and the phonon-plasmon coupling in ZnO, Phys. Status Solidi, vol.119, pp.227-234, 1983.

E. V. Lavrov, F. Herklotz, and J. Weber, Identification of two hydrogen donors in ZnO, Phys. Rev. B, vol.79, p.165210, 2009.

F. Decremps, J. Pellicer-porres, A. M. Saitta, J. Chervin, and A. Polian, Highpressure Raman spectroscopy study of wurtzite ZnO, Phys. Rev. B, vol.65, p.92101, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01921305

T. A. Harriman, Z. Bi, Q. X. Jia, and D. A. Lucca, Frequency shifts of the E 2 high Raman mode due to residual stress in epitaxial ZnO thin films, Appl. Phys. Lett, vol.103, p.121904, 2013.

L. Bergman, M. Dutta, C. Balkas, R. F. Davis, J. A. Christman et al., Raman analysis of the E1 and A1 quasi-longitudinal optical and quasitransverse optical modes in wurtzite AlN, J. Appl. Phys, vol.85, pp.3535-3539, 1999.

L. Bergman, X. Chen, J. Huso, J. L. Morrison, and H. Hoeck, Raman scattering of polar modes of ZnO crystallites, J. Appl. Phys, vol.98, p.93507, 2005.

A. Souissi, C. Sartel, A. Sayari, A. Meftah, A. Lusson et al., Zn-and O-polar surface effects on Raman mode activation in homoepitaxial ZnO thin films, Solid State Commun, vol.152, pp.794-797, 2012.

C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz et al., Raman scattering in ZnO thin films doped with Fe, vol.83, 1974.

F. J. Manjón, B. Marí, J. Serrano, and A. H. Romero, Silent Raman modes in zinc oxide and related nitrides, J. Appl. Phys, vol.97, p.53516, 2005.

R. Cuscó, E. Alarcón-lladó, J. Ibanez, L. Artús, J. Jiménez et al., Temperature dependence of Raman scattering in ZnO, Phys. Rev. B, vol.75, 2007.

C. Noguera and J. Goniakowski, Polarity in oxide nano-objects, Chem. Rev, vol.113, pp.4073-4105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01243110

C. , The chemistry and physics of zinc oxide surfaces, Prog. Surf. Sci, vol.82, issue.2-3, pp.55-120, 2007.

D. Mora-fonz, T. Lazauskas, M. R. Farrow, C. R. Catlow, S. M. Woodley et al., Why Are Polar Surfaces of ZnO Stable?, Chem. Mater, vol.29, pp.5306-5320, 2017.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Phys. Rev. B, vol.56, pp.10024-10027, 1997.

Y. Noel, C. M. Zicovich-wilson, B. Civalleri, P. D'arco, and R. Dovesi, Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches, Phys. Rev. B, vol.65, 2001.

S. Hong, T. Hanada, H. Ko, Y. Chen, T. Yao et al., Control of crystal polarity in a wurtzite crystal: ZnO films grown by plasma-assisted molecular-beam epitaxy on GaN, Phys. Rev. B, vol.65, issue.11, p.115331, 2002.

Y. Sun, D. J. Riley, and M. N. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B, vol.110, pp.15186-15192, 2006.

A. Wander, F. Schedin, P. Steadman, A. Norris, R. Mcgrath et al., Stability of Polar Oxide Surfaces, Phys. Rev. Lett, vol.86, pp.3811-3814, 2001.

M. Kunat, S. Girol, T. Becker, U. Burghaus, and C. Wöll, Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering, Phys. Rev. B, vol.66, p.81402, 2002.

Z. L. Wang, X. Y. Kong, and J. M. Zuo, Induced Growth of Asymmetric Nanocantilever Arrays on Polar Surfaces, Phys. Rev. Lett, vol.91, p.185502, 2003.

O. Dulub, U. Diebold, and G. Kresse, Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn, Phys. Rev. Lett, vol.90, 2003.

B. Meyer and D. Marx, Density-functional study of the structure and stability of ZnO surfaces, Phys. Rev. B, vol.67, p.35403, 2003.

G. Kresse, O. Dulub, and U. Diebold, Competing stabilization mechanism for the polar ZnO(0001)-Zn surface, Phys. Rev. B, vol.68, p.245409, 2003.

Y. Wang, Q. Y. Xu, X. L. Du, Z. X. Mei, Z. Q. Zeng et al., Determination of the polarity of ZnO thin films by electron energy-loss spectroscopy, Phys. Lett. A, vol.320, pp.322-326, 2004.

B. Meyer, First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen, Phys. Rev. B, vol.69, p.45416, 2004.

M. Losurdo, M. M. Giangregorio, P. Capezzuto, G. Bruno, G. Malandrino et al., Reactivity of ZnO: Impact of polarity and nanostructure, vol.38, pp.291-299, 2005.

X. Wang, Y. Tomita, O. H. Roh, M. Ohsugi, S. B. Che et al., Polarity control of ZnO films grown on nitrided c-sapphire by molecularbeam epitaxy, Appl. Phys. Lett, vol.86, pp.1-4, 2005.

S. Lautenschlaeger, J. Sann, N. Volbers, B. K. Meyer, A. Hoffmann et al., Asymmetry in the excitonic recombinations and impurity incorporation of the two polar faces of homoepitaxially grown ZnO films, Phys. Rev. B, vol.77, p.144108, 2008.

S. H. Lee, T. Minegishi, J. S. Park, S. H. Park, J. Ha et al., Ordered Arrays of ZnO Nanorods Grown on Periodically Polarity-Inverted Surfaces, vol.8, pp.2419-2422, 2008.

W. W. Lee, S. B. Kim, J. Yi, W. T. Nichols, and W. Park, Surface Polarity-Dependent Cathodoluminescence in Hydrothermally Grown ZnO Hexagonal Rods, J. Phys. Chem. C, vol.116, pp.456-460, 2012.

G. Perillat-merceroz, R. Thierry, P. Jouneau, P. Ferret, and G. Feuillet, Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire, Nanotechnology, vol.23, p.125702, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00802733

S. Guillemin, L. Rapenne, H. Roussel, E. Sarigiannidou, G. Brémond et al., Formation Mechanisms of ZnO Nanowires: The Crucial Role of Crystal Orientation and Polarity, J. Phys. Chem. C, vol.117, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067047

J. Park and T. Yao, Polarity Determination of Polarity-Controlled ZnO Films Using Photoresponse Characteristics, J. Electron. Mater, vol.42, pp.716-719, 2013.

V. Sallet, C. Sartel, C. Vilar, A. Lusson, and P. Galtier, Opposite crystal polarities observed in spontaneous and vapour-liquid-solid grown ZnO nanowires, Appl. Phys. Lett, vol.102, p.182103, 2013.

K. Sun, H. Su, and W. Li, Stability of polar ZnO surfaces studied by pair potential method and local energy density method, Theor. Chem. Acc, vol.133, 1427.

C. Tang, M. J. Spencer, and A. S. Barnard, Activity of ZnO polar surfaces: an insight from surface energies, Phys. Chem. Chem. Phys, vol.16, pp.22139-22144, 2014.

N. Rathore, D. V. Rao, and S. K. Sarkar, Growth of a polarity controlled ZnO nanorod array on a glass/FTO substrate by chemical bath deposition, RSC Adv, vol.5, pp.28251-28257, 2015.

I. Shtepliuk, V. Khranovskyy, and R. Yakimova, Theoretical study of O-and Zn-face polarity effect on the optical properties of the conventional and staggered ZnO/Zn1-xCdxO/ZnO quantum wells, Thin Solid Films, vol.594, pp.323-327, 2015.

Y. Wu, C. Liao, C. Hsieh, P. Lee, Y. Wei et al., Local Electronic Structures and Polarity of ZnO Nanorods Grown on GaN Substrates, J. Phys. Chem. C, vol.119, pp.5122-5128, 2015.

H. Kato, M. Sano, K. Miyamoto, and T. Yao, High-quality ZnO epilayers grown on Znface ZnO substrates by plasma-assisted molecular beam epitaxy, J. Cryst. Growth, vol.265, pp.375-381, 2004.

D. A. Scrymgeour, T. L. Sounart, N. C. Simmons, and J. W. Hsu, Polarity and piezoelectric response of solution grown zinc oxide nanocrystals on silver, J. Appl. Phys, vol.101, issue.1, p.14316, 2007.

A. N. Mariano and R. E. Hanneman, Crystallographic Polarity of ZnO Crystals, J. Appl. Phys, vol.34, issue.2, p.384, 1963.

S. Lautenschlaeger, S. Eisermann, M. N. Hofmann, U. Roemer, M. Pinnisch et al., Morphological, structural and electrical investigations on non-polar a-plane ZnO epilayers, J. Cryst. Growth, vol.312, 2010.

M. W. Allen, P. Miller, R. J. Reeves, and S. M. Durbin, Influence of spontaneous polarization on the electrical and optical properties of bulk, single crystal ZnO, Appl. Phys. Lett, vol.90, p.62104, 2007.

M. W. Allen, R. Heinhold, P. Miller, M. J. Henseler, R. J. Mendelsberg et al., Polarity effects in the optical properties of hydrothermal ZnO, Appl. Phys. Lett, vol.103, p.231109, 2013.

S. Lautenschlaeger, S. Eisermann, G. Haas, E. A. Zolnowski, M. N. Hofmann et al., Optical signatures of nitrogen acceptors in ZnO, Phys. Rev. B, vol.85, p.235204, 2012.

Y. Dong, Z. Fang, D. C. Look, G. Cantwell, J. Zhang et al., Znand O-face polarity effects at ZnO surfaces and metal interfaces, Appl. Phys. Lett, vol.93, 2008.

Y. Dong, Z. Fang, D. C. Look, D. R. Doutt, M. J. Hetzer et al., Polarityrelated asymetry at ZnO surfaces and metal interfaces, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.27, 1710.

Y. Dong, Z. Fang, D. C. Look, D. R. Doutt, G. Cantwell et al.,

J. Brillson, Defects at oxygen plasma cleaned ZnO polar surfaces, J. Appl. Phys, vol.108, 2010.

H. Moormann, D. Kohl, and G. Heiland, Work function and band bending on clean cleaved zinc oxide surfaces, Surf. Sci, vol.80, pp.261-264, 1979.

S. A. Chevtchenko, J. C. Moore, Ü. Özgür, X. Gu, A. A. Baski et al., Comparative study of the (0001) and (0001¯) surfaces of ZnO, Appl. Phys. Lett, vol.89, 2006.

K. Ozawa and K. Mase, Comparison of the surface electronic structures of H-adsorbed ZnO surfaces: An angle-resolved photoelectron spectroscopy study, Phys. Rev. B, vol.83, p.125406, 2011.

L. F. Piper, A. R. Preston, A. Fedorov, S. W. Cho, A. Demasi et al., Direct evidence of metallicity at ZnO (000-1)-(1x1) surfaces from angle-resolved photoemission spectroscopy, Phys. Rev. B, vol.81, p.233305, 2010.

M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Lima-pimenta et al., Playing with Polarity, Phys. status solidi, vol.228, pp.505-512, 2001.

H. Iwanaga, M. Fujii, and S. Takeuchi, Effects of crystal polarity on the morphology of II-VI compounds, Phase Transitions, vol.66, pp.1-4, 1998.

W. Li, E. Shi, W. Zhong, and Z. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth, vol.203, 1999.

R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher et al., Photoluminescence measurements from the two polar faces of ZnO, J. Appl. Phys, vol.88, p.3454, 2000.

M. Valtiner, M. Todorova, G. Grundmeier, and J. Neugebauer, Temperature stabilized surface reconstructions at polar ZnO(0001), Phys. Rev. Lett, vol.103, pp.6-9, 2009.

W. Göpel, J. Pollmann, I. Ivanov, and B. Reihl, Angle-resolved photoemission from polar and nonpolar zinc oxide surfaces, Phys. Rev. B, vol.26, pp.3144-3150, 1982.

A. Calzolari, M. Bazzani, and A. Catellani, Dipolar and charge transfer effects on the atomic stabilization of ZnO polar surfaces, Surf. Sci, vol.607, pp.181-186, 2013.

O. Dulub, L. A. Boatner, and U. Diebold, STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-1)-O, (10-10), and (11-20) surfaces, Surf. Sci, vol.519, pp.201-217, 2002.

E. D. Batyrev, J. C. Van-den, and . Heuvel, Modification of the ZnO(0001)-Zn surface under reducing conditions, Phys. Chem. Chem. Phys, vol.13, p.13127, 2011.

F. Ostendorf, S. Torbrügge, and M. Reichling, Atomic scale evidence for faceting stabilization of a polar oxide surface, Phys. Rev. B, vol.77, p.41405, 2008.

S. Torbrügge, F. Ostendorf, and M. Reichling, Stabilization of Zinc-Terminated ZnO(0001) by a Modified Surface Stoichiometry, J. Phys. Chem. C, vol.113, pp.4909-4914, 2009.

J. Lauritsen, S. Porsgaard, M. K. Rasmussen, M. C. Jensen, R. Bechstein et al., Stabilization Principles for Polar Surfaces of ZnO, vol.5, pp.5987-5994, 2011.

R. Wahl, J. V. Lauritsen, F. Besenbacher, and G. Kresse, Stabilization mechanism for the polar ZnO(000-1)-O surface, Phys. Rev. B, vol.87, p.85313, 2013.

V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat et al., Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule, Phys. Rev. Lett, vol.90, p.106102, 2003.

M. Kunat, S. G. Girol, U. Burghaus, and C. Wöll, The Interaction of Water with the Oxygen-Terminated, Polar Surface of ZnO, J. Phys. Chem. B, vol.107, pp.14350-14356, 2003.

M. Valtiner, S. Borodin, and G. Grundmeier, Preparation and characterisation of hydroxide stabilised ZnO(0001)-Zn-OH surfaces, Phys. Chem. Chem. Phys, vol.9, pp.2406-2412, 2007.

C. M. Schlepütz, Y. Yang, N. S. Husseini, R. Heinhold, H. Kim et al., The presence of a (1 × 1) oxygen overlayer on ZnO(0001) surfaces and at Schottky interfaces, J. Phys. Condens. Matter, vol.24, p.95007, 2012.

T. Becker, S. Hövel, M. Kunat, C. Boas, U. Burghaus et al., Interaction of hydrogen with metal oxides: the case of the polar ZnO(0001) surface, Surf. Sci, vol.486, pp.502-506, 2001.

M. Valtiner, M. Todorova, and J. Neugebauer, Hydrogen adsorption on polar ZnO(0001)-Zn: Extending equilibrium surface phase diagrams to kinetically stabilized structures, Phys. Rev. B, vol.82, p.165418, 2010.

Y. Yang, C. M. Schlepütz, F. Bellucci, M. W. Allen, S. M. Durbin et al., Structural investigation of ZnO O-polar (000-1) surfaces and Schottky interfaces, Surf. Sci, vol.610, pp.22-26, 2013.

A. B. Yankovich, B. Puchala, F. Wang, J. Seo, D. Morgan et al., Stable p-Type Conduction from Sb-Decorated Head-to-Head Basal Plane Inversion Domain Boundaries in ZnO Nanowires, Nano Lett, vol.12, pp.1311-1316, 2012.

R. Jacobs, B. Zheng, B. Puchala, P. M. Voyles, A. B. Yankovich et al., Counterintuitive Reconstruction of the Polar O-Terminated ZnO Surface with Zinc Vacancies and Hydrogen, J. Phys. Chem. Lett, vol.7, pp.4483-4487, 2016.

A. Wander and N. M. Harrison, An ab-initio study of ZnO(11-20), Surf. Sci, vol.468, pp.851-855, 2000.

A. Wander and N. ,

. Harrison, An ab initio study of ZnO(10-10), Surf. Sci, vol.457, pp.342-346, 2000.

N. L. Marana, V. M. Longo, E. Longo, J. B. Martins, and J. R. Sambrano, Electronic and Structural Properties of the (101? 0) and (112? 0) ZnO Surfaces, J. Phys. Chem. A, vol.112, pp.8958-8963, 2008.

S. Na and C. Park, First-Principles Study of the Surface of Wurtzite ZnO and ZnS -Implications for Nanostructure Formation, J. Korean Phys. Soc, vol.54, issue.2, pp.867-872, 2009.

K. Ozawa, Y. Oba, K. Edamoto, M. Higashiguchi, Y. Miura et al., Valence-band structure of the polar ZnO surfaces studied by angle-resolved photoelectron spectroscopy, Phys. Rev. B, vol.79, p.75314, 2009.

B. G. Wang, E. W. Shi, and W. Z. Zhong, Understanding and Controlling the Morphology of ZnO Crystallites under Hydrothermal Conditions, Cryst. Res. Technol, vol.32, pp.659-667, 1997.

M. W. Allen, S. M. Durbin, and J. B. Metson, Silver oxide Schottky contacts on n-type ZnO, Appl. Phys. Lett, vol.91, 2007.

M. W. Allen, C. H. Swartz, T. H. Myers, T. D. Veal, C. F. Mcconville et al., Bulk transport measurements in ZnO: The effect of surface electron layers, Phys. Rev. B, vol.81, issue.075211, 2010.

J. Lahiri, S. Senanayake, and M. Batzill, Soft x-ray photoemission of clean and sulfurcovered polar ZnO surfaces: A view of the stabilization of polar oxide surfaces, Phys. Rev. B, vol.78, p.155414, 2008.

L. J. Brillson and Y. Lu, ZnO Schottky barriers and Ohmic contacts, J. Appl. Phys, vol.109, p.121301, 2011.

H. Tampo, P. Fons, A. Yamada, K. Kim, H. Shibata et al., Determination of crystallographic polarity of ZnO layers, Appl. Phys. Lett, vol.87, p.141904, 2005.

M. Mehta and C. Meier, Controlled Etching Behavior of O-Polar and Zn-Polar ZnO Single Crystals, J. Electrochem. Soc, vol.158, pp.119-123, 2011.

M. Tanaka, Convergent-beam electron diffraction, Acta Crystallogr. Sect. A Found. Crystallogr, vol.50, pp.261-286, 1994.

T. Mitate, Y. Sonoda, and N. Kuwano, Polarity Determination of Wurtzite and Zincblende Structures by TEM, Phys. status solidi, vol.192, pp.383-388, 2002.

D. P. Nicholls, R. Vincent, D. Cherns, Y. Sun, and M. N. Ashfold, Polarity determination of zinc oxide nanorods by defocused convergent-beam electron diffraction, Philos. Mag. Lett, vol.87, pp.417-421, 2007.

N. G. Nanowires, A. Droplets, L. Largeau, E. Galopin, N. Gogneau et al.,

N. Glas and . Gan, Cryst. Growth Des, vol.12, issue.111, pp.2724-2729, 2012.

J. Jasinski, D. Zhang, J. Parra, V. Katkanant, and V. J. Leppert, Application of channeling-enhanced electron energy-loss spectroscopy for polarity determination in ZnO nanopillars, Appl. Phys. Lett, vol.92, p.93104, 2008.

M. De-la-mata, C. Magen, J. Gazquez, M. I. Utama, M. Heiss et al., Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis, vol.12, pp.2579-2586, 2012.

S. Guillemin, E. Sarigiannidou, E. Appert, F. Donatini, G. Renou et al., Spontaneous shape transition of thin films into ZnO nanowires with high structural and optical quality, Nanoscale, vol.7, pp.16994-17003, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01298390

T. Ohnishi, A. Ohtomo, M. Kawasaki, K. Takahashi, M. Yoshimoto et al., Determination of surface polarity of c-axis oriented ZnO films by coaxial impactcollision ion scattering spectroscopy, Appl. Phys. Lett, vol.72, 1998.

O. Romanyuk, S. Fernández-garrido, P. Ji?í?ek, I. Barto?, L. Geelhaar et al., Non-destructive assessment of the polarity of GaN nanowire ensembles using low-energy electron diffraction and x-ray photoelectron diffraction, Appl. Phys. Lett, vol.106, p.21602, 2015.

K. M. Jones, P. Visconti, F. Yun, A. A. Baski, and H. Morkoç, Investigation of inversion domains in GaN by electric-force microscopy, Appl. Phys. Lett, vol.78, pp.2497-2499, 2001.

L. Vayssieres, K. Keis, S. Lindquist, and A. Hagfeldt, Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO, J. Phys. Chem. B, vol.105, pp.3350-3352, 2001.

C. M. Lieber and Z. L. Wang, Functional Nanowires, MRS Bull, vol.32, pp.99-108, 2007.

K. Fujita, K. Murata, T. Nakazawa, and I. Kayama, Crystal shapes of zinc oxide prepared by the homogeneous precipitation method, J. Ceram. Assoc. Japan, vol.92, pp.227-230, 1984.

A. M. Lord, T. G. Maffeis, A. S. Walton, D. M. Kepaptsoglou, Q. M. Ramasse et al., Factors that determine and limit the resistivity of highquality individual ZnO nanowires, Nanotechnology, vol.24, 2013.

E. Schlenker, A. Bakin, T. Weimann, P. Hinze, D. H. Weber et al., On the difficulties in characterizing ZnO nanowires, vol.19, p.365707, 2008.

A. Bugallo, F. Donatini, C. Sartel, V. Sallet, and J. Pernot, Metallic core conduction in unintentionally doped ZnO nanowire, Appl. Phys. Express, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01319871

Z. Fan, D. Wang, P. Chang, W. Tseng, and J. G. Lu, ZnO nanowire field-effect transistor and oxygen sensing property, Appl. Phys. Lett, vol.85, pp.5923-5925, 2004.

Q. H. Li, Q. Wan, Y. X. Liang, and T. H. Wang, Electronic transport through individual ZnO nanowires, Appl. Phys. Lett, vol.84, pp.4556-4558, 2004.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang et al., Size Dependence of Gas Sensitivity of ZnO Nanorods, J. Phys. Chem. C, vol.111, 1900.

C. Hung and W. Whang, A novel low-temperature growth and characterization of single crystal ZnO nanorods, Mater. Chem. Phys, vol.82, pp.705-710, 2003.

V. Consonni, L. Rapenne, G. Renou, H. Roussel, L. Gérard et al., Identifying and mapping the polytypes and orientation relationships in ZnO/CdSe core-shell nanowire arrays, Nanotechnology, vol.27, p.445712, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390674

P. Chang, C. Chien, D. Stichtenoth, C. Ronning, and J. G. Lu, Finite size effect in ZnO nanowires, Appl. Phys. Lett, vol.90, 2007.

Y. Ma, Z. Zhang, F. Zhou, L. Lu, A. Jin et al., Hopping conduction in single ZnO nanowires, Nanotechnology, vol.16, pp.746-749, 2005.

A. Umar, B. Kim, J. Kim, and Y. B. Hahn, Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation, Nanotechnology, vol.18, 2007.

Q. Zhang, J. Qi, Y. Huang, X. Li, and Y. Zhang, Negative differential resistance in ZnO nanowires induced by surface state modulation, Mater. Chem. Phys, vol.131, 2011.

E. P. Bakkers, M. T. Borgström, and M. A. Verheijen, Epitaxial Growth of III-V Nanowires on Group IV Substrates, vol.32, pp.117-122, 2007.

F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Phys. Rev. B, vol.74, p.121302, 2006.

S. Raychaudhuri and E. T. Yu, Critical dimensions in coherently strained coaxial nanowire heterostructures, J. Appl. Phys, vol.99, p.114308, 2006.

Y. Gu, I. L. Kuskovsky, M. Yin, S. O'brien, and G. F. Neumark, Quantum confinement in ZnO nanorods, Appl. Phys. Lett, vol.85, pp.3833-3835, 2004.

L. Jin and L. Li, Quantum simulation of ZnO nanowire piezotronics, Nano Energy, vol.15, pp.776-781, 2015.

S. Y. Kim, Y. S. Yeon, S. M. Park, J. H. Kim, and J. K. Song, Exciton states of quantum confined ZnO nanorods, Chem. Phys. Lett, vol.462, pp.100-103, 2008.

Z. Wu, J. B. Neaton, and J. C. Grossman, Quantum Confinement and Electronic Properties of Tapered Silicon Nanowires, Phys. Rev. Lett, vol.100, p.246804, 2008.

Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. Mckenzie, and J. W. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells, Nano Lett, vol.8, pp.1501-1505, 2008.

J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor et al., Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays, Nano Lett, vol.9, pp.279-282, 2009.

E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett, vol.10, pp.1082-1087, 2010.

O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. P. Bakkers et al., Large Photonic Strength of Highly Tunable Resonant Nanowire Materials, Nano Lett, vol.9, pp.930-934, 2009.

J. Michallon, D. Bucci, A. Morand, M. Zanuccoli, V. Consonni et al., Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells, Opt. Express, vol.22, p.1174, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112082

B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, J. Appl. Phys, vol.97, p.114302, 2005.

K. P. Musselman, A. Wisnet, D. C. Iza, H. C. Hesse, C. Scheu et al., Strong Efficiency Improvements in Ultra-low-Cost Inorganic Nanowire Solar Cells, Adv. Mater, vol.22, pp.254-258, 2010.

X. Chen, P. Lin, X. Yan, Z. Bai, H. Yuan et al., Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metaloxide solar cells, ACS Appl. Mater. Interfaces, vol.7, issue.5, pp.3216-3223, 2015.

K. Govender, D. S. Boyle, P. B. Kenway, and P. O'brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J. Mater. Chem, vol.14, pp.2575-2591, 2004.

L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang, Solution-Grown Zinc Oxide Nanowires, Inorg. Chem, vol.45, pp.7535-7543, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00382874

S. Yamabi and H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions, J. Mater. Chem, vol.12, pp.3773-3778, 2002.

R. A. Reichle, K. G. Mccurdy, and L. G. Hepler, Zinc Hydroxide: Solubility Product and Hydroxy-complex Stability Constants from 12.5-75 °C, Can. J. Chem, vol.53, pp.3841-3845, 1975.

A. Degen and M. Kosec, Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution, J. Eur. Ceram. Soc, vol.20, pp.667-673, 2000.

Y. Lee and H. Yang, Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dyesensitized solar cells, J. Solid State Chem, vol.184, pp.615-623, 2011.

M. N. Ashfold, R. P. Doherty, N. G. Ndifor-angwafor, D. J. Riley, and Y. Sun, The kinetics of the hydrothermal growth of ZnO nanostructures, Thin Solid Films, vol.515, pp.8679-8683, 2007.

K. M. Mcpeak, M. A. Becker, N. G. Britton, H. Majidi, B. A. Bunker et al., Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition, vol.22, pp.6162-6170, 2010.

J. J. Cheng, S. M. Nicaise, K. K. Berggren, and S. Grade?ak, Dimensional Tailoring of Hydrothermally Grown Zinc Oxide Nanowire Arrays, Nano Lett, vol.16, pp.753-759, 2016.

M. Wang, Y. Zhou, Y. Zhang, H. Hahn, and E. Jung, From Zn(OH)2 to ZnO : a study on the mechanism of phase transformation, CrystEngComm, vol.13, pp.6024-6026, 2011.

K. M. Mcpeak, T. P. Le, N. G. Britton, Z. S. Nickolov, Y. A. Elabd et al., Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): Understanding the role of HMTA in ZnO nanowire growth, Langmuir, vol.27, pp.3672-3677, 2011.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan et al., Arrays of ZnO/ZnxCd1-x Se Nanocables: Band Gap Engineering and Photovoltaic Applications, vol.11, pp.4138-4143, 2011.

U. Diebold, L. V. Koplitz, and O. Dulub, Atomic-scale properties of low-index ZnO surfaces, Appl. Surf. Sci, vol.237, pp.1-4, 2004.

A. Sugunan, H. C. Warad, M. Boman, and J. Dutta, Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine, J. Sol-Gel Sci. Technol, vol.39, pp.49-56, 2006.

R. Parize, J. Garnier, O. Chaix-pluchery, C. Verrier, E. Appert et al., Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition, J. Phys. Chem. C, vol.120, pp.5242-5250, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456346

X. Zhao, J. Y. Lee, C. Kim, J. Heo, C. M. Shin et al., Dependence of the properties of hydrothermally grown ZnO on precursor concentration, Phys. E Low-dimensional Syst. Nanostructures, vol.41, pp.1423-1426, 2009.

J. Qiu, X. Li, W. He, S. Park, H. Kim et al., The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method, Nanotechnology, 2009.

Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks et al., Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater, vol.17, pp.1001-1006, 2005.

T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang, Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays, Nanotechnology, vol.18, p.35605, 2007.

M. Wang, C. Ye, Y. Zhang, H. Wang, X. Zeng et al., Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous solution method, J. Mater. Sci. Mater. Electron, vol.19, pp.211-216, 2008.

W. Wu, G. Hu, S. Cui, Y. Zhou, and H. Wu, Epitaxy of Vertical ZnO Nanorod Arrays on Highly (001)-Oriented ZnO Seed Monolayer by a Hydrothermal Route, Cryst. Growth Des, vol.8, pp.4014-4020, 2008.

L. L. Yang, Q. X. Zhao, and M. Willander, Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method, J. Alloys Compd, vol.469, pp.623-629, 2009.

G. Kenanakis, D. Vernardou, E. Koudoumas, and N. Katsarakis, Growth of c-axis oriented ZnO nanowires from aqueous solution: The decisive role of a seed layer for controlling the wires' diameter, J. Cryst. Growth, vol.311, pp.4799-4804, 2009.

S. Guillemin, V. Consonni, E. Appert, E. Puyoo, L. Rapenne et al., Critical Nucleation Effects on the Structural Relationship Between ZnO Seed Layer and Nanowires, J. Phys. Chem. C, vol.116, pp.25106-25111, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00781306

S. Guillemin, E. Appert, H. Roussel, B. Doisneau, R. Parize et al., Controlling the Structural Properties of Single Step, Dip Coated ZnO Seed Layers for Growing Perfectly Aligned Nanowire Arrays, J. Phys. Chem. C, vol.119, pp.21694-21703, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01545111

S. Guillemin, R. Parize, J. Carabetta, V. Cantelli, D. Albertini et al., Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition, Nanotechnology, vol.28, p.95704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02073055

A. Manekkathodi, M. Lu, C. W. Wang, and L. Chen, Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics, Adv. Mater, vol.22, pp.4059-4063, 2010.

A. Dev, S. K. Panda, S. Kar, S. Chakrabarti, and S. Chaudhuri, Surfactant-Assisted Route to Synthesize Well-Aligned ZnO Nanorod Arrays on Sol?Gel-Derived ZnO Thin Films, J. Phys. Chem. B, vol.110, pp.14266-14272, 2006.

J. Song and S. Lim, Effect of Seed Layer on the Growth of ZnO Nanorods, J. Phys. Chem. C, vol.111, pp.596-600, 2007.

J. Liu, J. She, S. Deng, J. Chen, and N. Xu, Ultrathin Seed-Layer for Tuning Density of ZnO Nanowire Arrays and Their Field Emission Characteristics, J. Phys. Chem. C, vol.112, pp.11685-11690, 2008.

S. Chen and J. Wu, Nucleation mechanisms and their influences on characteristics of ZnO nanorod arrays prepared by a hydrothermal method, Acta Mater, vol.59, pp.841-847, 2011.

J. E. Boercker, J. B. Schmidt, and E. S. , Transport Limited Growth of Zinc Oxide Nanowires, Cryst. Growth Des, vol.9, pp.2783-2789, 2009.

X. Zhang, M. Lu, Y. Zhang, L. Chen, and Z. L. Wang, Fabrication of a HighBrightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film, Adv. Mater, vol.21, pp.2767-2770, 2009.

F. Schuster, B. Laumer, R. R. Zamani, C. Magén, J. R. Morante et al., p-GaN/n-ZnO Heterojunction Nanowires: Optoelectronic Properties and the Role of Interface Polarity, vol.8, pp.4376-4384, 2014.

S. Xu, N. Adiga, S. Ba, T. Dasgupta, C. F. Wu et al., Optimizing and Improving the Growth Quality of ZnO Nanowire Arrays Guided by Statistical Design of Experiments, ACS Nano, vol.3, pp.1803-1812, 2009.

J. Tian, J. Hu, S. Li, F. Zhang, J. Liu et al., Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires, Nanotechnology, 2011.

S. Baruah and J. Dutta, pH-dependent growth of zinc oxide nanorods, J. Cryst. Growth, vol.311, pp.2549-2554, 2009.

J. M. Lee, Y. No, S. Kim, H. Park, and W. Park, Strong interactive growth behaviours in solution-phase synthesis of three-dimensional metal oxide nanostructures, Nat. Commun, vol.6, p.6325, 2015.

S. Xu, Y. Ding, Y. Wei, H. Fang, Y. Shen et al., J. Am. Chem. Soc, vol.131, pp.6670-6671, 2009.

S. Zhang, Y. Shen, H. Fang, S. Xu, J. Song et al., Growth and replication of ordered ZnO nanowire arrays on general flexible substrates, J. Mater. Chem, 2010.

S. M. Nicaise, J. J. Cheng, A. Kiani, S. Grade?ak, and K. K. Berggren, Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications, Nanotechnology, vol.26, issue.7, 2015.

K. Watanabe, T. Nagata, S. Oh, Y. Wakayama, T. Sekiguchi et al., Arbitrary cross-section SEM-cathodoluminescence imaging of growth sectors and local carrier concentrations within micro-sampled semiconductor nanorods, Nat. Commun, vol.7, p.10609, 2016.

Y. Kim, C. Lee, Y. J. Hong, G. Yi, S. S. Kim et al., Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method, Appl. Phys. Lett, vol.89, p.163128, 2006.

J. Cui and U. Gibson, Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures, Nanotechnology, vol.18, 2007.

B. Weintraub, Y. Deng, and Z. L. Wang, Position-Controlled Seedless Growth of ZnO Nanorod Arrays on a Polymer Substrate via Wet Chemical Synthesis, J. Phys. Chem. C, vol.111, pp.10162-10165, 2007.

J. Volk, A. Ha?kansson, H. T. Miyazaki, T. Nagata, J. Shimizu et al., Fully engineered homoepitaxial zinc oxide nanopillar array for near-surface light wave manipulation, Appl. Phys. Lett, vol.92, p.183114, 2008.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai et al., Patterned Growth of Vertically Aligned ZnO Nanowire Arrays on Inorganic Substrates at Low Temperature without Catalyst, J. Am. Chem. Soc, vol.130, pp.14958-14959, 2008.

R. Erdélyi, T. Nagata, D. J. Rogers, F. H. Teherani, Z. E. Horváth et al., Investigations into the Impact of the Template Layer on ZnO Nanowire Arrays Made Using Low Temperature Wet Chemical Growth, Cryst. Growth Des, vol.11, pp.2515-2519, 2011.

T. Yang, K. Cheng, G. Cheng, B. Hu, S. Wang et al., Position-Controlled Hydrothermal Growth of Periodic Individual ZnO Nanorod Arrays on Indium Tin Oxide Substrate, J. Phys. Chem. C, vol.118, pp.20613-20619, 2014.

X. Wang, C. J. Summers, and Z. L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett, vol.4, pp.423-426, 2004.

D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu et al., Periodic ZnO Nanorod Arrays Defined by Polystyrene Microsphere Self-Assembled Monolayers, Nano Lett, vol.6, pp.2375-2378, 2006.

Z. Szabó, J. Volk, E. Fülöp, A. Deák, and I. Bársony, Regular ZnO nanopillar arrays by nanosphere photolithography, Photonics Nanostructures -Fundam. Appl, vol.11, pp.1-7, 2013.

C. Li, G. Hong, P. Wang, D. Yu, and L. Qi, Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals, Chem. Mater, vol.21, pp.891-897, 2009.

K. S. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, Polymer-Templated Hydrothermal Growth of Vertically Aligned Single-Crystal ZnO Nanorods and Morphological Transformations Using Structural Polarity, Adv. Funct. Mater, vol.20, pp.3055-3063, 2010.

D. Yuan, R. Guo, Y. Wei, W. Wu, Y. Ding et al., Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation, Adv. Funct. Mater, vol.20, pp.3484-3489, 2010.

T. Ma?rtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert et al., Nanowire Arrays Defined by Nanoimprint Lithography, Nano Lett, vol.4, pp.699-702, 2004.

S. J. Kwon, J. Park, and J. Park, Patterned growth of ZnO nanorods by micromolding of sol-gel-derived seed layer, Appl. Phys. Lett, vol.87, p.133112, 2005.

J. J. Richardson, D. Estrada, S. P. Denbaars, C. J. Hawker, and L. M. Campos, A facile route to patterned epitaxial ZnO nanostructures by soft lithography, J. Mater. Chem, vol.21, p.14417, 2011.

S. Oh, T. Nagata, J. Volk, and Y. Wakayama, Nanoimprint for Fabrication of Highly Ordered Epitaxial ZnO Nanorods on Transparent Conductive Oxide Films, Appl. Phys. Express, vol.5, p.95003, 2012.

Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng et al., Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires, J. Phys. Chem. C, vol.117, pp.1197-1203, 2013.

C. Zhang, X. Huang, H. Liu, S. J. Chua, and C. A. Ross, Large-area zinc oxide nanorod arrays templated by nanoimprint lithography: Control of morphologies and optical properties, Nanotechnology, vol.27, 2016.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt et al., Directed Spatial Organization of Zinc Oxide Nanorods, Nano Lett, vol.5, pp.83-86, 2005.

J. Lee, M. Hon, Y. Chung, and I. Leu, Microcontact Printing of Organic Self-Assembled Monolayers for Patterned Growth of Well-Aligned ZnO Nanorod Arrays and their Field-Emission Properties, J. Am. Ceram. Soc, vol.92, pp.2192-2196, 2009.

R. Kitsomboonloha, S. Baruah, M. T. Myint, V. Subramanian, and J. Dutta, Selective growth of zinc oxide nanorods on inkjet printed seed patterns, J. Cryst. Growth, vol.311, pp.2352-2358, 2009.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias et al., Electron beam lithography: resolution limits and applications, Appl. Surf. Sci, vol.164, pp.111-117, 2000.

J. Volk, T. Nagata, R. Erdélyi, I. Bársony, A. L. Tóth et al., Highly Uniform Epitaxial ZnO Nanorod Arrays for Nanopiezotronics, Nanoscale Res. Lett, vol.4, pp.699-704, 2009.

C. L. Haynes and R. P. Van-duyne, Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics, J. Phys. Chem. B, vol.105, pp.5599-5611, 2001.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars, Nanotechnology, vol.18, 2007.

P. X. Gao and Z. L. Wang, Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process, J. Phys. Chem. B, vol.108, pp.7534-7537, 2004.

J. Park, K. H. Kim, S. H. Park, E. Yoon, and T. Yao, Catalyst-Free Growth of Vertically Aligned ZnO Nanostructures Arrays on Periodically Polarity-Inverted Substrate, Appl. Phys. Express, 2010.

J. Park and T. Yao, Position-controlled vertical arrays of single-crystalline ZnO nanowires on periodically polarity inverted templates, J. Alloys Compd, vol.513, pp.180-183, 2012.

S. Käbisch, M. A. Gluba, C. Klimm, S. Krause, N. Koch et al., Polarity driven morphology of zinc oxide nanostructures, Appl. Phys. Lett, vol.103, p.103106, 2013.

S. Käbisch, M. Timpel, H. Kirmse, M. A. Gluba, N. Koch et al., Polarity of pulsed laser deposited ZnO nanostructures, Appl. Phys. Lett, vol.108, p.83114, 2016.

J. B. Baxter, F. Wu, and E. S. , Growth mechanism and characterization of zinc oxide hexagonal columns, Appl. Phys. Lett, vol.83, 2003.

Y. Sun, D. Cherns, R. P. Doherty, J. L. Warren, and P. J. Heard, Reduction of threading dislocations in ZnO/(0001) sapphire film heterostructure by epitaxial lateral overgrowth of nanorods, J. Appl. Phys, vol.104, p.23533, 2008.

G. Perillat-merceroz, P. H. Jouneau, G. Feuillet, R. Thierry, M. Rosina et al., MOCVD growth mechanisms of ZnO nanorods, J. Phys. Conf. Ser, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00601939

D. Cherns and Y. Sun, Defect reduction by epitaxial lateral overgrowth of nanorods in ZnO/(0001) sapphire films, Appl. Phys. Lett, vol.92, p.51909, 2008.

N. Rathore and S. K. Sarkar, Dopant induced polarity inversion in polar ZnO nanorods, J. Mater. Sci. Mater. Electron, vol.27, pp.12312-12317, 2016.

W. Shockley, The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors, vol.28, pp.435-489, 1949.

A. Cuevas, The Recombination Parameter J0, Energy Procedia, vol.55, pp.53-62, 2014.

M. A. Hamdy and R. L. Call, The effect of the diode ideality factor on the experimental determination of series resistance of solar cells, Sol. Cells, vol.20, pp.119-126, 1987.

W. Shockley and W. T. Read, Statistics of the Recombination of Holes and Electrons, Phys. Rev, vol.87, pp.835-842, 1952.

O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, The origin of ideality factors n > 2 of shunts and surfaces in the dark IV curves of Si solar cells, Proc. 21st Eur, pp.626-628, 2006.

A. Jain and A. Kapoor, A new method to determine the diode ideality factor of real solar cell using Lambert W-function, Sol. Energy Mater. Sol. Cells, vol.85, pp.391-396, 2005.

C. Lévy-clément and J. Elias, Optimization of the design of extremely thin absorber solar cells based on electrodeposited ZnO nanowires, ChemPhysChem, vol.14, pp.2321-2330, 2013.

I. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith et al., Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, Adv. Funct. Mater, vol.19, pp.2431-2436, 2009.

J. W. Murphy, I. Mejia, B. E. Gnade, and M. A. Quevedo-lopez, Evaluation of CdS interfacial layers in ZnO nanowire/poly(3-hexylthiophene) solar cells, J. Nanomater, 2012.

S. H. Im, C. S. Lim, J. A. Chang, Y. H. Lee, N. Maiti et al.,

S. Grätzel and . Seok, Toward interaction of sensitizer and functional moieties in holetransporting materials for efficient semiconductor-sensitized solar cells, Nano Lett, vol.11, pp.4789-4793, 2011.

L. J. Lauhon, M. S. Gudiksen, and C. M. Lieber, Semiconductor nanowire heterostructures, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.362, pp.1247-1260, 2004.

M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt et al., ZnO?Al2O3 and ZnO?TiO2 Core?Shell Nanowire Dye-Sensitized Solar Cells, J. Phys. Chem. B, vol.110, pp.22652-22663, 2006.

M. Jin, J. Jo, J. Kim, K. An, M. S. Jeong et al., Effects of TiO2 Interfacial Atomic Layers on Device Performances and Exciton Dynamics in ZnO Nanorod Polymer Solar Cells, ACS Appl. Mater. Interfaces, vol.6, pp.11649-11656, 2014.

Z. Chen, B. Li, X. Mo, S. Li, J. Wen et al., Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3, Appl. Phys. Lett, vol.110, p.123504, 2017.

L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu et al., Adv. Sci, 2016.

X. Chen, P. Lin, X. Yan, Z. Bai, H. Yuan et al., Three-Dimensional Ordered ZnO/Cu2O Nanoheterojunctions for Efficient Metal-Oxide Solar Cells, ACS Appl. Mater. Interfaces, vol.7, issue.5, pp.3216-3223, 2015.

D. C. Iza, D. Muñoz-rojas, K. P. Musselman, J. Weickert, A. C. Jakowetz et al., Nanostructured conformal hybrid solar cells: a promising architecture towards complete charge collection and light absorption, Nanoscale Res. Lett, vol.8, issue.1, p.359, 2013.

E. Monroy, F. Omn, and F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol, vol.18, pp.33-51, 2003.

L. Peng, L. Hu, and X. Fang, Energy harvesting for nanostructured self-powered photodetectors, Adv. Funct. Mater, vol.24, pp.2591-2610, 2014.

W. Tian, H. Lu, and L. Li, Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures, Nano Res, vol.8, pp.382-405, 2015.

H. Chen, K. Liu, L. Hu, A. A. Al-ghamdi, and X. Fang, New concept ultraviolet photodetectors, Mater. Today, vol.18, pp.493-502, 2015.

L. Su, W. Yang, J. Cai, H. Chen, and X. Fang, Self-Powered Ultraviolet Photodetectors Driven by Built-In Electric Field, Small, vol.13, p.1701687, 2017.

F. Teng, K. Hu, W. Ouyang, and X. Fang, Photoelectric Detectors Based on Inorganic p-Type Semiconductor Materials, Adv. Mater, vol.1706262, p.1706262, 2018.

G. Konstantatos and E. H. Sargent, Nanostructured materials for photon detection, Nat. Nanotechnol, vol.5, pp.391-400, 2010.

L. Sang, M. Liao, and M. Sumiya, A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures, Sensors, vol.13, pp.10482-10518, 2013.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon et al., High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm, Science, vol.325, pp.1665-1667, 2009.

S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl et al., High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates, Adv. Funct. Mater, vol.21, pp.4464-4469, 2011.

L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong et al., An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt, Adv. Mater, vol.24, pp.2305-2309, 2012.

L. Mandal, M. Deo, A. Yengantiwar, A. Banpurkar, J. Jog et al., A Quasi-Liquid Iontronic-Electronic Light-Harvesting Hybrid Photodetector with Giant Response, Adv. Mater, vol.24, pp.3686-3691, 2012.

Z. Bai, X. Yan, X. Chen, H. Liu, Y. Shen et al., ZnO nanowire array ultraviolet photodetectors with self-powered properties, Curr. Appl. Phys, vol.13, pp.165-169, 2013.

S. Lu, J. Qi, S. Liu, Z. Zhang, Z. Wang et al., Piezotronic Interface Engineering on ZnO/Au-Based Schottky Junction for Enhanced Photoresponse of a Flexible Self-Powered UV Detector, ACS Appl. Mater. Interfaces, vol.6, pp.14116-14122, 2014.

Q. Li, L. Wei, Y. Xie, K. Zhang, L. Liu et al., ZnO nanoneedle/H2O solid-liquid heterojunction-based self-powered ultraviolet detector, Nanoscale Res. Lett, vol.8, issue.1, p.415, 2013.

Z. Bai, M. Fu, and Y. Zhang, Vertically aligned and ordered ZnO/CdS nanowire arrays for self-powered UV-visible photosensing, J. Mater. Sci, vol.52, pp.1308-1317, 2017.

A. Kudo, H. Yanagi, K. Ueda, H. Hosono, H. Kawazoe et al., Fabrication of transparent p-n heterojunction thin film diodes based entirely on oxide semiconductors, Appl. Phys. Lett, vol.75, pp.2851-2853, 1999.

I. Jeong, J. H. Kim, and S. Im, Ultraviolet-enhanced photodiode employing n-ZnO/pSi structure, Appl. Phys. Lett, vol.83, pp.2946-2948, 2003.

H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe et al., Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO, Appl. Phys. Lett, vol.83, pp.1029-1031, 2003.

Y. I. Alivov, Ü. Özgür, S. Do?an, D. Johnstone, V. Avrutin et al., Photoresponse of n-ZnO?p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett, vol.86, p.241108, 2005.

H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang et al., High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO / p-GaN Heterojunction High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO / p-GaN, J. Phys. Chem. C, vol.112, 2008.

J. Garnier, R. Parize, E. Appert, O. Chaix-pluchery, A. Kaminski-cachopo et al., Physical Properties of Annealed ZnO Nanowire/CuSCN Heterojunctions for Self-Powered UV Photodetectors, ACS Appl. Mater. Interfaces, vol.7, pp.5820-5829, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02012970

C. Wang, J. Xu, S. Shi, Y. Zhang, Y. Gao et al., Optimizing performance of Cu2O/ZnO nanorods heterojunction based self-powered photodetector with ZnO seed layer, J. Phys. Chem. Solids, vol.103, pp.218-223, 2016.

P. Ghamgosar, F. Rigoni, S. You, I. Dobryden, M. G. Kohan et al., ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors, Nano Energy, vol.51, pp.308-316, 2018.

Z. Wang, R. Yu, C. Pan, Z. Li, J. Yang et al., Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing, Nat. Commun, vol.6, 2015.

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su et al., W-1) Self-Powered Solar-Blind Photodetector Based on Individual ZnO-Ga2O3 Heterostructures, An Ultrahigh Responsivity, vol.27, issue.9, p.1700264, 2017.

S. Yang, J. Gong, and Y. Deng, A sandwich-structured ultraviolet photodetector driven only by opposite heterojunctions, J. Mater. Chem, vol.22, p.13899, 2012.

O. Game, U. Singh, T. Kumari, A. Banpurkar, and S. Ogale, ZnO(N)-Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor, Nanoscale, vol.6, pp.503-513, 2014.

B. Ouyang, K. Zhang, and Y. Yang, Self-Powered UV Photodetector Array Based on P3HT/ZnO Nanowire Array Heterojunction, Adv. Mater. Technol, vol.2, pp.1-7, 2017.

L. Su, Q. Zhang, T. Wu, M. Chen, Y. Su et al., Highperformance zero-bias ultraviolet photodetector based on P-GaN/N-ZnO heterojunction, Appl. Phys. Lett, vol.105, p.72106, 2014.

J. Garnier, R. Parize, E. Appert, O. Chaix-pluchery, A. Kaminski-cachopo et al., Physical Properties of Annealed ZnO Nanowire/CuSCN Heterojunctions for Self-Powered UV Photodetectors, ACS Appl. Mater. Interfaces, vol.7, pp.5820-5829, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02012970

M. Patel and J. Kim, Transparent NiO/ZnO heterojunction for ultra-performing zerobias ultraviolet photodetector on plastic substrate, J. Alloys Compd, vol.729, pp.796-801, 2017.

Y. Shen, X. Yan, Z. Bai, X. Zheng, Y. Sun et al., A selfpowered ultraviolet photodetector based on solution-processed P-NiO/N-ZnO nanorod array heterojunction, RSC Adv, vol.5, pp.5976-5981, 2015.

N. G. Elfadill, M. R. Hashim, K. M. Saron, K. M. Chahrour, M. A. Qaeed et al., Ultraviolet-Visible photo-response of p-Cu2O/n-ZnO heterojunction prepared on flexible (PET) substrate, Mater. Chem. Phys, vol.156, pp.54-60, 2015.

B. O'regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, vol.353, pp.737-740, 1991.

T. V. Arjunan and T. S. Senthil, Review: Dye sensitised solar cells, Mater. Technol. Adv. Perform. Mater, vol.28, pp.9-14, 2013.

M. K. Nazeeruddin, E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: A brief overview, Sol. Energy, vol.85, pp.1172-1178, 2011.

S. Mathew, A. Yella, P. Gao, R. Humphry-baker, B. F. Curchod et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem, vol.6, pp.242-249, 2014.

R. Vittal and K. Ho, Zinc oxide based dye-sensitized solar cells: A review, Renew. Sustain. Energy Rev, vol.70, pp.920-935, 2016.

N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero et al., Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells, Angew. Chemie Int, vol.50, pp.12321-12325, 2011.

T. Muto, G. Larramona, and G. Dennler, Unexpected Performances of Flat Sb2S3-Based Hybrid Extremely Thin Absorber Solar Cells, Appl. Phys. Express, 2013.

S. Mozaffari, M. R. Nateghi, and M. B. Zarandi, An overview of the Challenges in the commercialization of dye sensitized solar cells, Renew. Sustain. Energy Rev, vol.71, pp.675-686, 2016.

G. Hodes and D. Cahen, All-Solid-State, Semiconductor-Sensitized Nanoporous Solar Cells, Acc. Chem. Res, vol.45, pp.705-713, 2012.

R. Konenkamp, P. Hoyer, and . Wahi, Heterojunctions and devices of colloidal semiconductor films and quantum dots, J. Appl. Phys, vol.79, pp.7029-7035, 1996.

R. Tena-zaera, A. Katty, S. Bastide, C. Lévy-clément, B. O'regan et al., ZnO/CdTe/CuSCN, a promising heterostructure to act as inorganic eta-solar cell, Thin Solid Films, vol.483, pp.372-377, 2005.

J. Xu, X. Yang, H. Wang, X. Chen, C. Luan et al., Arrays of ZnO/ZnxCd1-x Nanocables: Band Gap Engineering and Photovoltaic Applications, vol.11, pp.4138-4143, 2011.

R. Tena-zaera, M. A. Ryan, A. Katty, G. Hodes, S. Bastide et al., Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell, Comptes Rendus Chim, vol.9, pp.717-729, 2006.

Y. Tak, S. J. Hong, J. S. Lee, and K. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion, J. Mater. Chem, vol.19, 2009.

G. Kartopu, D. Turkay, C. Ozcan, W. Hadibrata, P. Aurang et al., Photovoltaic performance of CdS/CdTe junctions on ZnO nanorod arrays, Sol. Energy Mater. Sol. Cells, vol.176, pp.100-108, 2018.

I. Kaiser, K. Ernst, C. Fischer, R. Könenkamp, C. Rost et al., The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta), Sol. Energy Mater. Sol. Cells, vol.67, pp.89-96, 2001.

M. Krunks, A. Katerski, T. Dedova, I. O. Acik, and A. Mere, Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array, Sol. Energy Mater. Sol. Cells, vol.92, pp.1016-1019, 2008.

M. Krunks, E. Kärber, A. Katerski, K. Otto, I. Acik et al., Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray, Sol. Energy Mater. Sol. Cells, vol.94, pp.1191-1195, 2010.

Z. Liu, J. Han, L. Han, K. Guo, Y. Li et al., Fabrication of ZnO/CuS core/shell nanoarrays for inorganic-organic heterojunction solar cells, Mater. Chem. Phys, vol.141, pp.804-809, 2013.

Z. Liu, J. Huang, J. Han, T. Hong, J. Zhang et al., CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells, Phys. Chem. Chem. Phys, vol.18, pp.16615-16620, 2016.

J. Han, Z. Liu, X. Zheng, K. Guo, X. Zhang et al., Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic-organic hybrid solar cells, RSC Adv, 2014.

D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang, and S. Guha, The path towards a high-performance solution-processed kesterite solar cell, Sol. Energy Mater. Sol. Cells, vol.95, pp.1421-1436, 2011.

J. Cui and U. J. Gibson, A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells, J. Phys. Chem. C, vol.114, pp.6408-6412, 2010.

K. P. Musselman, A. Marin, A. Wisnet, C. Scheu, J. L. Macmanus-driscoll et al., A Novel Buffering Technique for Aqueous Processing of Zinc Oxide Nanostructures and Interfaces, and Corresponding Improvement of Electrodeposited ZnO-Cu2O Photovoltaics, Adv. Funct. Mater, vol.21, pp.573-582, 2011.

M. Izaki, T. Ohta, M. Kondo, T. Takahashi, F. B. Mohamad et al., Electrodeposited ZnO-Nanowire/Cu2O Photovoltaic Device with Highly Resistive ZnO Intermediate Layer, ACS Appl. Mater. Interfaces, vol.6, pp.13461-13469, 2014.

M. T. Nair, Chemically Deposited Sb, CuS Thin Films, 1998.

Y. Itzhaik, O. Niitsoo, M. Page, and G. Hodes, Sb2S3-Sensitized Nanoporous TiO 2 Solar Cells, J. Phys. Chem. C, vol.113, pp.4254-4256, 2009.

S. Moon, Y. Itzhaik, J. Yum, S. M. Zakeeruddin, G. Hodes et al., Sb2S3-Based Mesoscopic Solar Cell using an Organic Hole Conductor, J. Phys. Chem. Lett, vol.1, pp.1524-1527, 2010.

J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim et al., High-performance nanostructured inorganic-organic heterojunction solar cells, Nano Lett, vol.10, 2010.

M. Y. Versavel and J. A. Haber, Structural and optical properties of amorphous and crystalline antimony sulfide thin-films, Thin Solid Films, vol.515, pp.7171-7176, 2007.

B. R. Sankapal, R. S. Mane, and C. D. Lokhande, Preparation and characterization of Sb2S3 thin films using a successive ionic layer adsorption and reaction ( SILAR ) method, Thin Solid Films, vol.18, pp.1453-1455, 1999.

Y. C. Choi, D. U. Lee, J. H. Noh, E. K. Kim, and S. Seok, Highly Improved Sb2S3 Sensitized-Inorganic-Organic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy, Adv. Funct. Mater, vol.24, pp.3587-3592, 2014.

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, J. Solid State Chem, vol.177, pp.2144-2149, 2004.

J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis, Nat. Mater, vol.10, pp.596-601, 2011.

R. A. Laudise, E. D. Kolb, and A. J. Caporaso, Hydrothermal Growth of Large Sound Crystals of Zinc Oxide, J. Am. Ceram. Soc, vol.47, pp.9-12, 1964.

L. Podrezova, S. Porro, V. Cauda, M. Fontana, and G. Cicero, Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis, Appl. Phys. A, vol.113, pp.623-632, 2013.

T. Cossuet, E. Appert, J. Thomassin, and V. Consonni, Polarity-Dependent Growth Rates of Selective Area Grown ZnO Nanorods by Chemical Bath Deposition, Langmuir, vol.33, pp.6269-6279, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758859

A. Goux, T. Pauporté, J. Chivot, and D. Lincot, Temperature effects on ZnO electrodeposition, Electrochim. Acta, vol.50, pp.2239-2248, 2005.

C. Verrier, Fabrication et caractérisation avancée de cellules photovoltaïques à base de nanofils de ZnO, 2018.

H. Segawa, S. Yamaguchi, Y. Yamazaki, T. Yano, S. Shibata et al., Topgathering pillar array of hybrid organic-inorganic material by means of selforganization, Appl. Phys. A, vol.83, pp.447-451, 2006.

E. H. Oelkers and H. C. Helgeson, Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb, Geochim. Cosmochim. Acta, vol.52, pp.63-85, 1988.

V. Consonni, Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms, Phys. status solidi -Rapid Res. Lett, vol.7, pp.699-712, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067039

E. Palacios-lidón, B. Pérez-garcía, P. Vennéguès, J. Colchero, V. Muñoz-sanjosé et al., Anisotropic chemical etching of semipolar {10-1-1}/{10-1+1} ZnO crystallographic planes: polarity versus dangling bonds, Nanotechnology, 2009.

G. Sengupta, H. S. Ahluwalia, S. Banerjee, and S. P. Sen, Chemisorption of water vapor on zinc oxide, J. Colloid Interface Sci, vol.69, pp.217-224, 1979.

A. Önsten, D. Stoltz, P. Palmgren, S. Yu, M. Göthelid et al., Transition from Triangular Surface Structures to a Disordered Hydroxyl Terminated phase, Water Adsorption on ZnO, vol.114, issue.0001, pp.11157-11161, 2010.

M. Valtiner, S. Borodin, and G. Grundmeier, Stabilization and Acidic Dissolution Mechanism of Single-Crystalline ZnO(0001) Surfaces in Electrolytes Studied by, Situ AFM Imaging and Ex-Situ LEED, vol.24, pp.5350-5358, 2008.

J. Jolivet, De la solution à l'oxyde, 2e édition, Sciences, 1994.

G. A. Parks, The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems, Chem. Rev, vol.65, pp.177-198, 1965.

M. Kosmulski, pH-dependent surface charging and points of zero charge II. Update, J. Colloid Interface Sci, vol.275, pp.214-224, 2004.

R. J. Kershner, J. W. Bullard, and M. J. Cima, Zeta Potential Orientation Dependence of Sapphire Substrates, Langmuir, vol.20, pp.4101-4108, 2004.

J. W. Bullard and M. J. Cima, Orientation Dependence of the Isoelectric Point of TiO2 (Rutile) Surfaces, Langmuir, vol.22, pp.10264-10271, 2006.

F. Donatini and L. S. Dang, A single-step electron beam lithography of buried nanostructures using cathodoluminescence imaging and low temperature, Nanotechnology, vol.21, p.375303, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00985932

J. Hwang, F. Donatini, J. Pernot, R. Thierry, P. Ferret et al., Carrier depletion and exciton diffusion in a single ZnO nanowire, Nanotechnology, vol.22, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00740785

F. Donatini, A. De-luna, P. Bugallo, G. Tchoulfian, C. Chicot et al., Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires, Nano Lett, vol.16, pp.2938-2944, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01319842

A. M. Lord, T. G. Maffeis, M. W. Allen, D. Morgan, P. R. Davies et al., Surface state modulation through wet chemical treatment as a route to controlling the electrical properties of ZnO nanowire arrays investigated with XPS, Appl. Surf. Sci, vol.320, pp.664-669, 2014.

A. M. Lord, T. G. Maffeis, O. Kryvchenkova, R. J. Cobley, K. Kalna et al., Controlling the electrical transport properties of nanocontacts to nanowires, Nano Lett, vol.15, pp.4248-4254, 2015.

N. A. Smith, A. M. Lord, J. E. Evans, C. J. Barnett, R. J. Cobley et al., Forming reproducible non-lithographic nanocontacts to assess the effect of contact compressive strain in nanomaterials, Semicond. Sci. Technol, vol.30, issue.6, 2015.

A. M. Lord, Q. M. Ramasse, D. M. Kepaptsoglou, J. E. Evans, P. R. Davies et al., Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires, Nano Lett, vol.17, pp.687-694, 2017.

T. Cossuet, F. Donatini, A. M. Lord, E. Appert, J. Pernot et al., PolarityDependent High Electrical Conductivity of ZnO Nanorods and Its Relation to Hydrogen, J. Phys. Chem. C, vol.122, pp.22767-22775, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01977892

A. Soudi, C. Hsu, and Y. Gu, Diameter-Dependent Surface Photovoltage and Surface State Density in Single Semiconductor Nanowires, Nano Lett, vol.12, pp.5111-5116, 2012.

Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren et al., Electrical transport properties of single ZnO nanorods, Appl. Phys. Lett, vol.85, 2002.

X. Lin, X. B. He, T. Z. Yang, W. Guo, D. X. Shi et al., Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire, Appl. Phys. Lett, vol.89, p.43103, 2006.

Y. Hu, Y. Liu, H. Xu, X. Liang, L. Peng et al., Quantitative Study on the Effect of Surface Treatments on the Electric Characteristics of ZnO Nanowires, J. Phys. Chem. C, vol.112, pp.14225-14228, 2008.

J. B. Baxter and C. A. Schmuttenmaer, Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy, J. Phys. Chem. B, vol.110, pp.25229-25239, 2006.

I. Mora-seró, F. Fabregat-santiago, B. Denier, J. Bisquert, R. Tena-zaera et al., Determination of carrier density of ZnO nanowires by electrochemical techniques, Appl. Phys. Lett, vol.89, pp.1-4, 2006.

S. Chiu, Y. Lin, and J. Lin, Electrical conduction mechanisms in natively doped ZnO nanowires, Nanotechnology, 2009.

J. H. He, P. H. Chang, C. Y. Chen, and K. T. Tsai, Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt, Nanotechnology, 2009.

A. Soudi, P. Dhakal, and Y. Gu, Diameter dependence of the minority carrier diffusion length in individual ZnO nanowires, Appl. Phys. Lett, 2010.

L. Wang, S. Guillemin, J. Chauveau, V. Sallet, F. Jomard et al., Characterization of carrier concentration in ZnO nanowires by scanning capacitance microscopy, Phys. status solidi, vol.13, pp.576-580, 2016.

A. Janotti and C. G. Van-de-walle, Hydrogen multicentre bonds, Nat. Mater, vol.6, pp.44-47, 2007.

D. G. Thomas and J. J. Lander, Hydrogen as a Donor in Zinc Oxide, J. Chem. Phys, p.25, 1136.

S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho, and K. S. Lim, Highly textured and conductive undoped ZnO film using hydrogen post-treatment, Appl. Phys. Lett, vol.70, 1997.

S. Kohiki, M. Nishitani, T. Wada, T. Hirao, S. Kohiki et al., Enhanced conductivity of zinc oxide thin films by ion implantation of hydrogen atoms, vol.64, pp.11-14, 1994.

Z. Zhang, D. C. Look, R. Schifano, K. M. Johansen, B. G. Svensson et al., Process dependence of H passivation and doping in H-implanted ZnO, J. Phys. D. Appl. Phys, vol.46, p.55107, 2013.

H. Beh, D. Hiller, M. Bruns, A. Welle, H. W. Becker et al., Quasi-metallic behavior of ZnO grown by atomic layer deposition: The role of hydrogen, J. Appl. Phys, vol.122, issue.2, 2017.

E. V. Lavrov, F. Herklotz, and J. Weber, Identification of hydrogen molecules in ZnO, Phys. Rev. Lett, vol.102, pp.18-21, 2009.

S. G. Koch, E. V. Lavrov, and J. Weber, Photoconductive detection of tetrahedrally coordinated hydrogen in ZnO, Phys. Rev. Lett, vol.108, pp.1-4, 2012.

S. G. Koch, E. V. Lavrov, and J. Weber, Interplay between interstitial and substitutional hydrogen donors in ZnO, Phys. Rev. B -Condens. Matter Mater. Phys, vol.89, pp.1-8, 2014.

M. G. Wardle, J. P. Goss, and P. R. Briddon, First-principles study of the diffusion of hydrogen in ZnO, Phys. Rev. Lett, vol.96, pp.1-4, 2006.

J. J. Dong, X. W. Zhang, J. B. You, P. F. Cai, Z. G. Yin et al., Effects of Hydrogen Plasma Treatment on the Electrical and Optical Properties of ZnO Films: Identification of Hydrogen Donors in ZnO, ACS Appl. Mater. Interfaces, vol.2, issue.6, pp.1780-1784, 2010.

J. Lee, M. Nastasi, D. W. Hamby, and D. A. Lucca, Optical observation of donorbound excitons in hydrogen-implanted ZnO, Appl. Phys. Lett, vol.86, p.171102, 2005.

S. Z. Karazhanov, E. S. Marstein, and A. Holt, Hydrogen complexes in Zn deficient ZnO, J. Appl. Phys, vol.105, 2009.

J. Kossmann and C. Hättig, Investigation of interstitial hydrogen and related defects in ZnO, Phys. Chem. Chem. Phys, vol.14, pp.16392-16399, 2012.

F. Herklotz, A. Hupfer, K. M. Johansen, B. G. Svensson, S. G. Koch et al., Infrared absorption on a complex comprising three equivalent hydrogen atoms in ZnO, Phys. Rev. B -Condens. Matter Mater. Phys, vol.92, pp.1-10, 2015.

R. J. Cobley, R. A. Brown, C. J. Barnett, T. G. Maffeis, and M. W. Penny, Quantitative analysis of annealed scanning probe tips using energy dispersive x-ray spectroscopy, Appl. Phys. Lett, vol.102, 2013.

N. F. Mott, Metal-Insulator Transition, Rev. Mod. Phys, vol.40, pp.677-683, 1968.
URL : https://hal.archives-ouvertes.fr/jpa-00209009

S. Brochen, G. Feuillet, J. Santailler, R. Obrecht, M. Lafossas et al., Non-metal to metal transition in n-type ZnO single crystal materials, J. Appl. Phys, vol.121, p.95704, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02006774

E. V. Lavrov, J. Weber, F. Börrnert, C. G. Van-de-walle, and R. Helbig, Hydrogenrelated defects in ZnO studied by infrared absorption spectroscopy, Phys. Rev. B, vol.66, p.165205, 2002.

E. V. Lavrov, F. Börrnert, and J. Weber, Dominant hydrogen-oxygen complex in hydrothermally grown ZnO, Phys. Rev. B, vol.71, p.35205, 2005.

J. G. Reynolds, C. L. Reynolds, A. Mohanta, J. F. Muth, J. E. Rowe et al., Shallow acceptor complexes in p-type ZnO, Appl. Phys. Lett, vol.102, p.152114, 2013.

R. P. Eischens, W. A. Pliskin, and M. J. Low, The infrared spectrum of hydrogen chemisorbed on zinc oxide, J. Catal, vol.1, pp.180-191, 1962.

B. M. Keyes, L. M. Gedvilas, X. Li, and T. J. Coutts, Infrared spectroscopy of polycrystalline ZnO and ZnO:N thin films, J. Cryst. Growth, vol.281, issue.2-4, pp.297-302, 2005.

F. Herklotz, E. V. Lavrov, V. Kolkovsky, J. Weber, and M. Stavola, Charge states of a hydrogen defect with a local vibrational mode at 3326 cm -1 in ZnO, Phys. Rev. B, vol.82, p.115206, 2010.

N. H. Nickel and K. Fleischer, Hydrogen Local Vibrational Modes in Zinc Oxide, Phys. Rev. Lett, vol.90, 2003.

J. E. Bertie and M. Solinas, Infrared and Raman spectra and the vibrational assignment of hexamethylenetetramine-h12 and -d12, J. Chem. Phys, vol.61, p.1666, 1974.

S. A. Studenikin, N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys, vol.84, pp.2287-2294, 1998.

J. K. Dangbégnon, K. Talla, and J. R. Botha, Effect of annealing and hydrogen plasma treatment on the luminescence of hydrothermally grown bulk ZnO, Material, vol.34, pp.920-925, 2012.

F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Evidence of the Zn Vacancy Acting as the Dominant Acceptor in n-Type ZnO, Phys. Rev. Lett, 2003.

C. Verrier, E. Appert, O. Chaix-pluchery, L. Rapenne, Q. Rafhay et al., Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia, Inorg. Chem, vol.56, pp.13111-13122, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758854

C. Verrier, E. Appert, O. Chaix-pluchery, L. Rapenne, Q. Rafhay et al., Tunable Morphology and Doping of ZnO Nanowires by Chemical Bath Deposition Using Aluminum Nitrate, J. Phys. Chem. C, vol.121, pp.3573-3583, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758853

L. Znaidi, Sol-gel-deposited ZnO thin films: A review, Mater. Sci. Eng. B, vol.174, 2010.

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, Fundamentals of sol-gel dip coating, Thin Solid Films, vol.201, pp.97-108, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00249179

L. Landau and B. Levich, Dragging of a Liquid by a Moving Plate, Dynamics of Curved Fronts, XVII, pp.141-153, 1988.

M. Ohyama, H. Kozuka, and T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films, vol.306, pp.78-85, 1997.

L. Znaidi, G. J. Soler-illia, S. Benyahia, C. Sanchez, and A. V. Kanaev, Oriented ZnO thin films synthesis by sol-gel process for laser application, Thin Solid Films, vol.428, 2003.

S. Guillemin, Mécanismes de croissance de nanostructures de ZnO par voie chimie liquide et caractérisation avancée, 2014.

Y. Li, L. Xu, X. Li, X. Shen, and A. Wang, Effect of aging time of ZnO sol on the structural and optical properties of ZnO thin films prepared by sol-gel method, Appl. Surf. Sci, vol.256, pp.4543-4547, 2010.

G. B. Harris and X. , Quantitative measurement of preferred orientation in rolled uranium bars, Philos. Mag. J. Sci, vol.43, pp.113-123, 1952.

G. Niu, G. Saint-girons, and B. Vilquin, Epitaxial systems combining oxides and semiconductors, Molecular Beam Epitaxy, pp.451-475, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02273398

J. P. Sénateur, R. Madar, F. Weiss, O. Thomas, and A. Abrutis, Brevet Français FR2707671, 1993.

J. Sénateur, C. Dubourdieu, F. Weiss, M. Rosina, and A. Abrutis, Pulsed injection MOCVD of functional electronic oxides, Adv. Mater. Opt. Electron, vol.10, pp.155-161, 2000.

L. J. Guo, Nanoimprint lithography: Methods and material requirements, Adv. Mater, vol.19, pp.495-513, 2007.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett, vol.67, pp.3114-3116, 1995.

Y. Hirai, T. Yoshikawa, N. Takagi, S. Yoshida, and K. Yamamoto, Mechanical Properties of Poly-methyl methacrylate (PMMA) for Nano Imprint Lithography, J. Photopolym. Sci. Technol, vol.16, pp.615-620, 2003.

S. Y. Chou, Sub-10 nm imprint lithography and applications, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.15, 1997.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.14, p.4129, 1996.

L. Guo, P. R. Krauss, and S. Y. Chou, Nanoscale silicon field effect transistors fabricated using imprint lithography, Appl. Phys. Lett, vol.71, pp.1881-1883, 1997.

M. Li, J. Wang, L. Zhuang, and S. Y. Chou, Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography, Appl. Phys. Lett, vol.76, pp.673-675, 2000.

S. Zankovych, T. Hoffmann, J. Seekamp, J. Bruch, and C. M. Torres, Nanoimprint lithography: challenges and prospects, vol.12, pp.91-95, 2001.

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, Mold deformation in nanoimprint lithography, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.22, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00022171

T. D. Bestwick and G. S. Oehrlein, Reactive ion etching of silicon using bromine containing plasmas, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.8, pp.1696-1701, 1990.

S. Kuroda, Abrupt reduction in poly-Si etch rate in HBr/O[sub 2] plasma, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, 1846.

M. Zelsmann, D. Truffier-boutry, A. Francone, C. Alleaume, I. Kurt et al., Double-anchoring fluorinated molecules for antiadhesion mold treatment in UV nanoimprint lithography, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.27, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00394574

T. Cossuet, H. Roussel, J. Chauveau, O. Chaix-pluchery, J. Thomassin et al., Well-ordered ZnO nanowires with controllable inclination on semipolar ZnO surfaces by chemical bath deposition, Nanotechnology, vol.29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02012543

T. J. Baker, B. A. Haskell, F. Wu, P. T. Fini, J. S. Speck et al., Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates, vol.44, pp.920-922, 2005.

A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, Strain-induced polarization in wurtzite III-nitride semipolar layers, J. Appl. Phys, vol.100, p.23522, 2006.

P. Bigenwald, B. Gil, F. Benharrats, K. Zitouni, and A. Kadri, The calculation of semipolar orientations for wurtzitic semiconductor heterostructures: application to nitrides and oxides, Semicond. Sci. Technol, vol.27, 2012.

M. Grundmann and J. Zúñiga-pérez, Pseudomorphic ZnO-based heterostructures: From polar through all semipolar to nonpolar orientations, Phys. status solidi, vol.253, pp.351-360, 2016.

J. E. Northrup, GaN and InGaN(112? 2) surfaces: Group-III adlayers and indium incorporation, Appl. Phys. Lett, vol.95, p.133107, 2009.

J. J. Richardson, I. Koslow, C. Pan, Y. Zhao, J. Ha et al., Semipolar Single-Crystal ZnO Films Deposited by Low-Temperature Aqueous Solution Phase Epitaxy on GaN Light-Emitting Diodes, Appl. Phys. Express, 4, vol.12, p.126502, 2011.

S. Jang, P. Son, J. Kim, S. Lee, and K. H. Baik, K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method, Opt. Mater. Express, 1621.

D. W. Hogan and D. J. Dyson, Angles between planes in the hexagonal and tetragonal crystal systems, Micron, vol.2, pp.59-61, 1970.

Y. Zhang, J. Zhang, and J. Zhu, Stability of wurtzite semipolar surfaces: Algorithms and practices, Phys. Rev. Mater, vol.2, issue.7, p.73401, 2018.

M. Feneberg and K. Thonke, Polarization fields of III-nitrides grown in different crystal orientations, J. Phys. Condens. Matter, vol.19, 2007.

J. Resende, Copper-based p-type semiconducting oxides : From materials to devices, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01793013

T. Cossuet, J. Resende, L. Rapenne, O. Chaix-pluchery, C. Jiménez et al., ZnO/CuCrO2 Core-Shell Nanowire Heterostructures for Self-Powered UV Photodetectors with Fast Response, Adv. Funct. Mater, vol.1803142, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957234

D. B. Rogers, R. D. Shannon, C. T. Prewitt, and J. L. Gillson, Chemistry of Noble Metal Oxides. III. Electrical Transport Properties and Crystal Chemistry of ABO2 Compounds with the Delafossite Structure, vol.10, pp.723-727, 1971.

T. S. Tripathi, J. Niemelä, and M. Karppinen, Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films, J. Mater. Chem. C, vol.3, pp.8364-8371, 2015.

M. A. Marquardt, N. A. Ashmore, and D. P. Cann, Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films, vol.496, pp.146-156, 2006.

R. Nagarajan, A. D. Draeseke, A. W. Sleight, and J. Tate, p -type conductivity in CuCr1-xMgxO2 films and powders, vol.89, pp.8022-8025, 2001.

D. O. Scanlon and G. W. Watson, Understanding the p-type defect chemistry of CuCrO2, J. Mater. Chem, vol.21, 2011.

H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi et al., P-type electrical conduction in transparent thin films of CuAlO2, Nature, vol.389, pp.939-942, 1997.

T. S. Tripathi and M. Karppinen, Enhanced p-Type Transparent Semiconducting Characteristics for ALD-Grown Mg-Substituted CuCrO2 Thin Films, Adv. Electron. Mater, vol.1600341, 2016.

O. Crottaz and F. Kubel, Crystal structure of copper (I) chromium (III) oxide , 3R-CuCrO2, Z. Krist, 1996.

R. Gillen and J. Robertson, Band structure calculations of CuAlO2, CuGaO2, CuInO2, and CuCrO2 by screened exchange, Phys. Rev. B, vol.84, p.35125, 2011.

J. Robertson and S. J. Clark, Limits to doping in oxides, Phys. Rev. B, vol.83, p.75205, 2011.

A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, and P. Tailhades, p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering, J. Mater. Chem. C, vol.3, pp.6012-6024, 2015.

J. Crêpellière, P. L. Popa, N. Bahlawane, R. Leturcq, F. Werner et al., Transparent conductive CuCrO2 thin films deposited by pulsed injection metal organic chemical vapor deposition: up-scalable process technology for an improved transparency/conductivity trade-off, J. Mater. Chem. C, vol.4, pp.4278-4287, 2016.

H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe, H. Hosono et al., Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2, J. Appl. Phys, vol.88, pp.4159-4163, 2000.

D. O. Scanlon, A. Walsh, and G. W. Watson, Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis, Chem. Mater, vol.21, pp.4568-4576, 2009.

D. O. Scanlon and G. W. Watson, Understanding the p-type defect chemistry of CuCrO2, J. Mater. Chem, vol.21, 2011.

R. Nagarajan, N. Duan, M. K. Jayaraj, J. Li, K. A. Vanaja et al., Int. J. Inorg. Mater, vol.3, pp.265-270, 2001.

M. Poienar, V. Hardy, B. Kundys, K. Singh, A. Maignan et al., Revisiting the properties of delafossite CuCrO2: A single crystal study, J. Solid State Chem, vol.185, pp.56-61, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02264057

R. S. Yu and C. M. Wu, Applied Surface Science Characteristics of p-type transparent conductive CuCrO2 thin films, vol.282, pp.92-97, 2013.

R. I. Sánchez-alarcón, G. Oropeza-rosario, A. Gutierrez-villalobos, M. A. Murolópez, R. Martínez-martínez et al., Ultrasonic spray-pyrolyzed CuCrO2 thin films, J. Phys. D. Appl. Phys, vol.49, p.175102, 2016.

L. Farrell, E. Norton, B. J. O'dowd, D. Caffrey, I. V. Shvets et al., Spray pyrolysis growth of a high figure of merit, nano-crystalline, p-type transparent conducting material at low temperature, Appl. Phys. Lett, vol.107, 2015.

L. Farrell, E. Norton, C. M. Smith, D. Caffrey, I. V. Shvets et al., Synthesis of nanocrystalline Cu deficient CuCrO2 a high figure of merit p-type transparent semiconductor, J. Mater. Chem. C, 4, vol.1, pp.126-134, 2016.

S. Götzendörfer, R. Bywalez, and P. Löbmann, Preparation of p-type conducting transparent CuCrO2 and CuAl0.5Cr0.5O2 thin films by sol-gel processing, J. Sol-Gel Sci. Technol, vol.52, pp.113-119, 2009.

H. Chen, W. Yang, and K. Chang, Characterization of delafossite-CuCrO2 thin films prepared by post-annealing using an atmospheric pressure plasma torch, Appl. Surf. Sci, vol.258, pp.8775-8779, 2012.

T. Minami, H. Tanaka, T. Shimakawa, and T. Miyata, Diode UV detectors using oxide semiconductor thin films deposited by magnetron sputtering, Proceedings of SPIE, vol.5274, p.399, 2004.

L. F. Chen, Y. P. Wang, T. W. Chiu, W. C. Shih, M. S. Wu et al., Fabrication of Transparent CuCrO2: Mg/ZnO p-n Junctions Prepared by Magnetron Sputtering on an Indium Tin Oxide Glass Substrate, Jpn. J. Appl. Phys, vol.52, pp.5-7, 2013.

K. Tonooka and N. Kikuchi, Preparation of transparent CuCrO2:Mg/ZnO p-n junctions by pulsed laser deposition, Thin Solid Films, vol.515, pp.2415-2418, 2006.

T. Chiu, K. Tonooka, and N. Kikuchi, Fabrication of transparent CuCrO2:Mg/ZnO p-n junctions prepared by pulsed laser deposition on glass substrate, Vacuum, vol.83, pp.614-617, 2008.

T. Chiu, K. Tonooka, and N. Kikuchi, Fabrication of ZnO and CuCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes, Thin Solid Films, vol.516, pp.5941-5947, 2008.

I. Y. Bu, Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction, Superlattices Microstruct, vol.60, pp.160-168, 2013.

X. Hou and K. Choy, Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition, Chem. Vap. Depos, vol.12, pp.583-596, 2006.

P. Marchand, I. A. Hassan, I. P. Parkin, and C. J. Carmalt, Aerosol-assisted delivery of precursors for chemical vapour deposition: expanding the scope of CVD for materials fabrication, Dalt. Trans, vol.42, 2013.

P. Scherrer, Göttinger Nachrichten Math, vol.2, pp.98-100, 1918.

A. B. Garg, A. K. Mishra, K. K. Pandey, and S. M. Sharma, Multiferroic CuCrO2 under high pressure: In situ X-ray diffraction and Raman spectroscopic studies, J. Appl. Phys, vol.116, p.133514, 2014.

M. Han, J. Wang, Q. Deng, J. Wang, W. Li et al., Effect of annealing temperature on structural, optoelectronic properties and interband transitions of CuCrO2 nanocrystalline films prepared by the sol-gel method, J. Alloys Compd, vol.647, pp.1028-1034, 2015.

O. Aktas, K. D. Truong, T. Otani, G. Balakrishnan, M. J. Clouter et al., Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2, J. Phys. Condens. Matter, vol.24, p.36003, 2012.

J. Pellicer-porres, A. Segura, E. Martínez, A. M. Saitta, A. Polian et al., Vibrational properties of delafossite CuGaO2 at ambient and high pressures, Phys. Rev. B, vol.72, p.64301, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021413

J. Pellicer-porres, D. Martínez-garcía, A. Segura, P. Rodríguez-hernández, A. Muñoz et al., Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations, Phys. Rev. B, vol.74, p.184301, 2006.

M. ??epanovi?, M. Gruji?-broj?in, K. Vojisavljevi?, S. Bernik, and T. Sre?kovi?, Raman study of structural disorder in ZnO nanopowders, J. Raman Spectrosc, vol.41, pp.914-921, 2010.

E. F. Rauch, J. Portillo, S. Nicolopoulos, D. Bultreys, S. Rouvimov et al., Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction, Zeitschrift für Krist, vol.225, pp.103-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528054

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, Phys. status solidi, vol.15, pp.627-637, 1966.

R. Raciti, R. Bahariqushchi, C. Summonte, A. Aydinli, A. Terrasi et al., Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis, J. Appl. Phys, vol.121, p.234304, 2017.

M. S. Farhan, E. Zalnezhad, A. R. Bushroa, and A. A. Sarhan, Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature, Int. J. Precis. Eng. Manuf, vol.14, pp.1465-1469, 2013.

Y. Xu and M. A. Schoonen, The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals, Am. Mineral, vol.85, pp.543-556, 2000.

J. Ding, Y. Sui, W. Fu, H. Yang, B. Zhao et al., ZnO nanorod array / CuAlO2 nanofiber heterojunction on Ni substrate: synthesis and photoelectrochemical properties, vol.22, p.295706, 2011.

S. K. Shaikh, V. V. Ganbavle, S. I. Inamdar, and K. Y. Rajpure, Multifunctional zinc oxide thin films for high-performance UV photodetectors and nitrogen dioxide gas sensors, RSC Adv, vol.6, pp.25641-25650, 2016.

T. F. Zhang, G. A. Wu, J. Z. Wang, Y. Q. Yu, D. Y. Zhang et al., A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction, Nanophotonics, vol.6, pp.1073-1081, 2017.

I. Y. Bu, Optoelectronic properties of novel amorphous CuAlO2/ZnO NWs based heterojunction, Superlattices Microstruct, vol.60, pp.160-168, 2013.

J. E. Bowers and Y. G. Wey, High-Speed Photodetectors, Handbook of Optics, vol.1, 1995.

A. O. Goushcha and B. Tabbert, On response time of semiconductor photodiodes, Opt. Eng, vol.56, issue.1, 2017.

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su et al., mAW -1 ) Self-Powered Solar-Blind Photodetector Based on Individual ZnO-Ga2O3 Heterostructures, An Ultrahigh Responsivity, vol.27, issue.9, p.1700264, 2017.

J. A. Andrade-arvizu, M. Courel-piedrahita, and O. Vigil-galán, SnS-based thin film solar cells: perspectives over the last 25 years, J. Mater. Sci. Mater. Electron, pp.4541-4556, 2015.

B. Ghosh, M. Das, P. Banerjee, and S. Das, Fabrication of the SnS/ZnO heterojunction for PV applications using electrodeposited ZnO films, Semicond. Sci. Technol, 2009.

L. A. Burton and A. Walsh, Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3, J. Phys. Chem. C, vol.116, pp.24262-24267, 2012.

J. M. Skelton, L. A. Burton, F. Oba, and A. Walsh, Chemical and Lattice Stability of the Tin Sulfides, J. Phys. Chem. C, vol.121, pp.6446-6454, 2017.

P. Sinsermsuksakul, L. Sun, S. W. Lee, H. H. Park, S. B. Kim et al., Overcoming Efficiency Limitations of SnS-Based Solar Cells, Adv. Energy Mater, vol.4, pp.1-7, 2014.

M. Parenteau and C. Carlone, Influence of temperature and pressure on the electronic transitions in SnS and SnSe semiconductors, Phys. Rev. B, vol.41, pp.5227-5234, 1990.

J. Vidal, S. Lany, M. D'avezac, A. Zunger, A. Zakutayev et al., Bandstructure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl. Phys. Lett, vol.100, 2012.

N. R. Mathews, H. B. Anaya, M. A. Cortes-jacome, C. Angeles-chavez, and J. A. Toledo-antonio, Tin Sulfide Thin Films by Pulse Electrodeposition: Structural, Morphological, and Optical Properties, vol.157, 2010.

S. S. Hegde, A. G. Kunjomana, K. A. Chandrasekharan, K. Ramesh, and M. Prashantha, Optical and electrical properties of SnS semiconductor crystals grown by physical vapor deposition technique, Phys. B Condens. Matter, vol.406, pp.1143-1148, 2011.

K. Hartman, J. L. Johnson, M. I. Bertoni, D. Recht, M. J. Aziz et al., SnS thin-films by RF sputtering at room temperature, Thin Solid Films, vol.519, pp.7421-7424, 2011.

A. Tanusevski, Optical and photoconductive properties of SnS thin films prepared by electron beam evaporation, Sol. Energy Mater. Sol. Cells, vol.80, pp.297-303, 2003.

P. K. Nair, A. R. Garcia-angelmo, and M. T. Nair, Cubic and orthorhombic SnS thinfilm absorbers for tin sulfide solar cells, Phys. status solidi, vol.213, pp.170-177, 2016.

L. Zhu, L. Wang, F. Xue, L. Chen, J. Fu et al., PiezoPhototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array, Adv. Sci, 2017.

W. Wang, K. K. Leung, W. K. Fong, S. F. Wang, Y. Y. Hui et al., Molecular beam epitaxy growth of high quality p-doped SnS van der Waals epitaxy on a graphene buffer layer, J. Appl. Phys, vol.111, p.93520, 2012.

O. V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-gargand, T. Ericson et al., Atomic Layer Deposition of Cubic and Orthorhombic Phase Tin Monosulfide, Chem. Mater, vol.29, pp.2969-2978, 2017.

I. Baek, J. J. Pyeon, Y. G. Song, T. Chung, H. Kim et al.,

J. Kang, C. S. Choi, J. H. Hwang, S. K. Han, and . Kim, Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures, Chem. Mater, vol.29, pp.8100-8110, 2017.

P. Sinsermsuksakul, K. Hartman, S. Kim, J. Heo, L. Sun et al., Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer, Appl. Phys. Lett, vol.102, p.53901, 2013.

M. Calixto-rodriguez, H. Martinez, A. Sanchez-juarez, J. Campos-alvarez, A. Tiburcio-silver et al., Structural, optical, and electrical properties of tin sulfide thin films grown by spray pyrolysis, Thin Solid Films, vol.517, pp.2497-2499, 2009.

T. H. Sajeesh, A. R. Warrier, C. S. Kartha, and K. P. Vijayakumar, Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS, Thin Solid Films, vol.518, pp.4370-4374, 2010.

A. Tanusevski, Optical and photoelectric properties of SnS thin films prepared by chemical bath deposition, Semicond. Sci. Technol, vol.18, pp.501-505, 2003.

E. Turan, M. Kul, S. Aybek, and M. Zor, Structural and optical properties of SnS semiconductor films produced by chemical bath deposition, J. Phys. D. Appl. Phys, vol.42, 2009.

C. Gao, H. Shen, and L. Sun, Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition, Appl. Surf. Sci, vol.257, pp.6750-6755, 2011.

S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques, J. Semicond, vol.37, p.53001, 2016.

C. Gao, H. Shen, L. Sun, and Z. Shen, Chemical bath deposition of SnS films with different crystal structures, Mater. Lett, vol.65, pp.1413-1415, 2011.

B. Ghosh, M. Das, P. Banerjee, and S. Das, Fabrication and optical properties of SnS thin films by SILAR method, Appl. Surf. Sci, vol.254, pp.6436-6440, 2008.

A. N. Mariano and K. L. Chopra, Polymorphism in Some IV-VI Compouds Induced by High Pressure and Thin-Film Epitaxial Growth, Appl. Phys. Lett, vol.10, pp.282-284, 1967.

E. C. Greyson, J. E. Barton, and T. W. Odom, Tetrahedral Zinc Blende Tin Sulfide Nanoand Microcrystals, vol.2, pp.368-371, 2006.

D. Avellaneda, M. T. Nair, and P. K. Nair, Polymorphic Tin Sulfide Thin Films of Zinc Blende and Orthorhombic Structures by Chemical Deposition, J. Electrochem. Soc, vol.155, 2008.

C. Gao, H. Shen, L. Sun, H. Huang, L. Lu et al., Preparation of SnS films with zinc blende structure by successive ionic layer adsorption and reaction method, Mater. Lett, vol.64, pp.2177-2179, 2010.

P. Mani, K. Manikandan, and J. J. Prince, Influence of molar concentration on triethanolamine (TEA) added tin sulfide (SnS) thin films by SILAR method, J. Mater. Sci. Mater. Electron, vol.27, pp.9255-9264, 2016.

A. R. Garcia-angelmo, R. Romano-trujillo, J. Campos-Álvarez, O. Gomez-daza, M. T. Nair et al., Thin film solar cell of SnS absorber with cubic crystalline structure, Phys. status solidi, vol.212, pp.2332-2340, 2015.

M. Ichimura, Calculation of band offsets at the CdS/SnS heterojunction, Sol. Energy Mater. Sol. Cells, vol.93, pp.375-378, 2009.

A. Rabkin, S. Samuha, R. E. Abutbul, V. Ezersky, L. Meshi et al., New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System, Nano Lett, vol.15, pp.2174-2179, 2015.

R. E. Abutbul, A. R. Garcia-angelmo, Z. Burshtein, M. T. Nair, P. K. Nair et al., Crystal structure of a large cubic tin monosulfide polymorph: an unraveled puzzle, vol.18, pp.5188-5194, 2016.

R. E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov et al., Synthesis and properties of nanocrystalline ?-SnS -a new cubic phase of tin sulphide, RSC Adv, vol.6, pp.5848-5855, 2016.

K. O. Hara, S. Suzuki, and N. Usami, Formation of metastable cubic phase in SnS thin films fabricated by thermal evaporation, Thin Solid Films, vol.639, pp.7-11, 2017.

I. Y. Ahmet, M. S. Hill, A. L. Johnson, and L. M. Peter, Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursor, Chem. Mater, vol.27, pp.7680-7688, 2015.

S. Polivtseva, I. O. Acik, A. Katerski, A. Mere, V. Mikli et al., Tin sulfide films by spray pyrolysis technique using L-cysteine as a novel sulfur source, Phys. Status Solidi Curr. Top. Solid State Phys, vol.13, pp.18-23, 2016.

U. Chalapathi, B. Poornaprakash, and S. Park, Growth and properties of cubic SnS films prepared by chemical bath deposition using EDTA as the complexing agent, J. Alloys Compd, vol.689, pp.938-944, 2016.

J. Breternitz, R. Gunder, H. Hempel, S. Binet, I. Ahmet et al., Facile Bulk Synthesis of ?-Cubic SnS, Inorg. Chem, vol.56, pp.11455-11457, 2017.

A. Javed, M. Qurat-ul-ain, and . Bashir, Controlled growth, structure and optical properties of Fe-doped cubic ?-SnS thin films, J. Alloys Compd, vol.759, pp.14-21, 2018.

R. E. Abutbul, E. Segev, U. Argaman, G. Makov, and Y. Golan, Phase Tin and Germanium Monochalcogenide Semiconductors: An Emerging Materials System, p.1706285, 2018.

R. E. Abutbul, E. Segev, S. Samuha, L. Zeiri, V. Ezersky et al., A new nanocrystalline binary phase: synthesis and properties of cubic tin monoselenide, vol.18, 1918.

E. Segev, U. Argaman, R. E. Abutbul, Y. Golan, and G. Makov, A new cubic prototype structure in the IV-VI monochalcogenide system: a DFT study, vol.19, pp.1751-1761, 2017.

S. U. Rehman, F. K. Butt, B. Haq, S. Alfaify, W. S. Khan et al., Exploring novel phase of tin sulfide for photon/energy harvesting materials, Sol. Energy, vol.169, pp.648-657, 2018.

J. M. Skelton, L. A. Burton, F. Oba, and A. Walsh, Metastable cubic tin sulfide: A novel phonon-stable chiral semiconductor, APL Mater, vol.5, 2017.

V. Stevanovi?, K. Hartman, R. Jaramillo, S. Ramanathan, T. Buonassisi et al., Variations of ionization potential and electron affinity as a function of surface orientation: The case of orthorhombic SnS, Appl. Phys. Lett, vol.104, p.211603, 2014.

D. Avellaneda, G. Delgado, M. T. Nair, and P. K. Nair, Structural and chemical transformations in SnS thin films used in chemically deposited photovoltaic cells, Thin Solid Films, vol.515, pp.5771-5776, 2007.

E. Barrios-salgado, L. A. Rodríguez-guadarrama, M. L. García, L. G. Martínez, M. T. Nair et al., Thin film solar cells of cubic structured SnS-SnSe, Phys. status solidi, vol.214, p.1700036, 2017.

M. Ichimura and H. Takagi, Electrodeposited ZnO/SnS Heterostructures for Solar Cell Application, Jpn. J. Appl. Phys, vol.47, pp.7845-7847, 2008.

I. Y. Bu, Investigation of novel heterojunction: P-type SnS coated n-type ZnO nanowire, Superlattices Microstruct, vol.88, pp.704-710, 2015.

M. Ristov, G. Sinadinovski, and I. Grozdanov, Chemical deposition of Cu2O thin films, Thin Solid Films, vol.123, pp.63-67, 1985.

Y. F. Nicolau, Solution deposition of thin solid compound films by a successive ioniclayer adsorption and reaction process, Appl. Surf. Sci, vol.2, pp.1061-1074, 1985.

Y. F. Nicolau, ZnS, CdS, and Zn1-xCdxS Thin Films Deposited by the Successive Ionic Layer Adsorption and Reaction Process, J. Electrochem. Soc, vol.137, p.2915, 1990.

H. M. Pathan and C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci, vol.27, pp.85-111, 2004.

G. Korotcenkov, V. Tolstoy, and J. Schwank, Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides, Meas. Sci. Technol, vol.17, pp.1861-1869, 2006.

B. Ghosh, M. Das, P. Banerjee, and S. Das, Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method, Semicond. Sci. Technol, vol.23, p.125013, 2008.

K. G. Deepa and J. Nagaraju, Development of SnS quantum dot solar cells by SILAR method, Mater. Sci. Semicond. Process, vol.27, pp.649-653, 2014.

Y. Akaltun, A. Astam, A. Cerhan, and T. Çayir, Effect of thickness on electrical properties of SILAR deposited SnS thin films, AIP Conf. Proc, 1722.

E. Yücel, Y. Yücel, and M. Durak, Optimization of growth parameters for absorber material SnS thin films grown by SILAR method using response surface methodology, J. Mater. Sci. Mater. Electron, vol.28, pp.2206-2214, 2017.

B. R. Sankapal, R. S. Mane, and C. D. Lokhande, Successive ionic layer adsorption and reaction (SILAR) method for the deposition of large area (?10 cm 2 ) tin disulfide (SnS2) thin films, Mater. Res. Bull, vol.35, 2000.

N. G. Deshpande, A. A. Sagade, Y. G. Gudage, C. D. Lokhande, and R. Sharma, Growth and characterization of tin disulfide (SnS2) thin film deposited by successive ionic layer adsorption and reaction (SILAR) technique, J. Alloys Compd, vol.436, pp.421-426, 2007.

R. Parize, Architectures radiales à base de nanofils de ZnO pour des applications photovoltaïques, 2018.

U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep, vol.48, pp.5-8, 2003.

L. E. Greene, M. Law, B. D. Yuhas, and P. Yang, ZnO?TiO2 Core?Shell Nanorod/P3HT Solar Cells, J. Phys. Chem. C, vol.111, pp.18451-18456, 2007.

M. Ritala and M. Leskelä, Atomic layer epitaxy -a valuable tool for nanotechnology?, Nanotechnology, vol.10, pp.19-24, 1999.

S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev, vol.110, pp.111-131, 2010.

T. Ohsaka, F. Izumi, and Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc, vol.7, pp.321-324, 1978.

C. Cheng, W. Li, T. Wong, K. M. Ho, K. K. Fung et al., Zn2TiO4?ZnO Nanowire Axial Heterostructures Formed by Unilateral Diffusion, J. Phys. Chem. C, vol.115, pp.78-82, 2011.

H. P. Zhang, H. F. Lin, Y. Zheng, Y. F. Hu, and A. Maclennan, The catalytic activity and chemical structure of nano MoS2 synthesized in a controlled environment, React. Chem. Eng, vol.1, pp.165-175, 2016.

M. Pettine, F. J. Millero, and G. Macchi, Hydrolysis of tin(II) in aqueous solutions, Anal. Chem, vol.53, pp.1039-1043, 1981.

M. Kosmulski, The significance of the difference in the point of zero charge between rutile and anatase, Adv. Colloid Interface Sci, vol.99, pp.255-264, 2002.

J. M. Skelton, L. A. Burton, A. J. Jackson, F. Oba, S. C. Parker et al., Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3 : vibrational spectra and thermal transport, Phys. Chem. Chem. Phys, vol.19, pp.12452-12465, 2017.

S. Sohila, M. Rajalakshmi, C. Ghosh, A. K. Arora, and C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles, J. Alloys Compd, vol.509, pp.5843-5847, 2011.

P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, Atomic Layer Deposition of Tin Monosulfide Thin Films, Adv. Energy Mater, vol.1, pp.1116-1125, 2011.

U. Chalapathi, B. Poornaprakash, and S. H. Park, Effect of post-deposition annealing on the growth and properties of cubic SnS films, Superlattices Microstruct, vol.103, pp.221-229, 2017.

R. Parize, T. Cossuet, E. Appert, O. Chaix-pluchery, H. Roussel et al., Synthesis and properties of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures using the SILAR technique, CrystEngComm, vol.20, pp.4455-4462, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02013008

K. C. Sanal, R. B. Morales, V. E. Flores, S. Shaji, P. K. Nair et al., Co-sputtered Zn1-xMgO films and interfacial band offsets at heterojunctions with SnS-CUB, J. Alloys Compd, vol.763, pp.909-915, 2018.

Z. H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-mende, T. M. Brown et al., Advances in hole transport materials engineering for stable and efficient perovskite solar cells, Nano Energy, vol.34, pp.271-305, 2016.

Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka et al., Enhancement in the efficiency of an organic-inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer, J. Mater. Chem. A, vol.2, pp.13827-13830, 2014.

S. K. Hau, H. Yip, N. S. Baek, J. Zou, K. O'malley et al., Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett, vol.92, 2008.

V. Consonni, S. Renet, J. Garnier, P. Gergaud, L. Artús et al., Improvement of the physical properties of ZnO/CdTe core-shell nanowire arrays by CdCl2 heat treatment for solar cells, Nanoscale Res. Lett, vol.9, issue.1, p.222, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01067041

H. Qiu, J. H. Shim, J. Cho, and J. M. Mativetsky, Nanoscale Insight into Performance Loss Mechanisms in P3HT:ZnO Nanorod Solar Cells, ACS Appl. Energy Mater, 2018.

D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen et al., Effect of polymer processing on the performance of poly(3-hexylthiophene)/ ZnO nanorod photovoltaic devices, J. Phys. Chem. C, vol.111, pp.16640-16645, 2007.

M. T. Lloyd, R. P. Prasankumar, M. B. Sinclair, A. C. Mayer, D. C. Olson et al., Impact of interfacial polymer morphology on photoexcitation dynamics and device performance in P3HT/ZnO heterojunctions, J. Mater. Chem, vol.19, 2009.

R. Parize, T. Cossuet, O. Chaix-pluchery, H. Roussel, E. Appert et al., In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction, Materials & Design, vol.121, pp.1-10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758843

T. Cossuet, E. Appert, J. Thomassin, and V. Consonni, Polarity-dependent growth rates of selective area grown ZnO nanorods by chemical bath deposition, Langmuir, vol.33, pp.6269-6279, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01758859

R. Parize, T. Cossuet, E. Appert, O. Chaix-pluchery, H. Roussel et al., Synthesis and properties of ZnO/TiO2/Sb2S3 core-shell nanowire heterostructures using the SILAR technique, CrystEngComm, vol.20, pp.4455-4462, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02013008

T. Cossuet, J. Resende, L. Rapenne, O. Chaix-pluchery, C. Jimenez et al., ZnO / CuCrO2 core-shell nanowire heterostructures for self-powered UV photodetectors with fast response, Advanced Functional Materials, vol.28, p.1803142, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957234

T. Cossuet, H. Roussel, J. Chauveau, O. Chaix-pluchery, J. Thomassin et al., Well-ordered ZnO nanowires with controllable inclination on semipolar ZnO surfaces by chemical bath deposition, Nanotechnology, vol.29, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02012543

T. Cossuet, F. Donatini, A. M. Lord, E. Appert, J. Pernot et al., Polaritydependent high electrical conductivity of ZnO nanorods and its relation to hydrogen, The Journal of Physical Chemistry C, vol.122, pp.22767-22775, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01977892

. Gdr-cnrs-pulse, . Marseille, ;. T. France, A. Cossuet, J. L. Bocheux et al., Selective area growth of ZnO nanowires with controllable polarity using chemical bath deposition, 2016.

T. Cossuet, R. Parize, A. Katerski, I. Gromyko, O. Chaix-pluchery et al., ZnO / Sb2S3 core-shell nanowire heterostructures for ETA solar cells, Journées Nationales des Nanofils semiconducteurs, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01981237

É. Phoenix, ;. T. Cossuet, R. Parize, A. Katerski, I. Gromyko et al., ZnO / Sb2S3 core-shell nanowire heterostructures for ETA solar cells, MRS Spring Meeting, 2018.

É. Phoenix, ;. T. Cossuet, J. Resende, L. Rapenne, O. Chaix-pluchery et al., ZnO / CuCrO2 Core-Shell Nanowire Heterostructures for Self-Powered UV Photodetectors, 2018.

E. Meeting, ;. T. Cossuet, J. Resende, L. Rapenne, O. Chaix-pluchery et al., Selective area growth of ZnO nanowires with controllable polarity using chemical bath deposition, 2016.

N. Week, . Lund, ;. T. Suède, E. Cossuet, J. Appert et al., Polarity-dependent selective area growth of ZnO nanowires by chemical bath deposition

N. Week, . Lund, . Suède, /. Zno, J. Cossuet et al., CuCrO2 core shell nanowire heterostructures for self-powered UV photodetectors

T. Cossuet, E. Appert, J. Thomassin, F. Donatini, A. M. Lord et al., Polaritydependent selective area growth of ZnO nanorods by chemical bath deposition, Journées Nationales des Nanofils semiconducteurs, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01981240