H. C. Aguilar, K. A. Matreyek, C. M. Filone, S. T. Hashimi, E. L. Levroney et al., NGlycans on Nipah Virus Fusion Protein Protect against Neutralization but Reduce Membrane Fusion and Viral Entry, J. Virol, vol.80, pp.4878-4889, 2006.

M. M. Al-abdallat, D. C. Payne, S. Alqasrawi, B. Rha, R. A. Tohme et al., Hospital-Associated Outbreak of Middle East Respiratory Syndrome Coronavirus: A Serologic, Epidemiologic, and Clinical Description, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am, vol.59, pp.1225-1233, 2014.

A. Annan, H. J. Baldwin, V. M. Corman, S. M. Klose, M. Owusu et al., Human Betacoronavirus 2c EMC/2012-related Viruses in Bats, Ghana and Europe, Emerg. Infect. Dis, vol.19, pp.456-459, 2013.

Y. M. Arabi, A. A. Arifi, H. H. Balkhy, H. Najm, A. S. Aldawood et al., Clinical Course and Outcomes of Critically Ill Patients With Middle East Respiratory Syndrome Coronavirus Infection, Ann. Intern. Med, vol.160, pp.389-397, 2014.

C. C. Bailey, G. Zhong, I. Huang, and M. Farzan, IFITM-Family Proteins: The Cell's First Line of Antiviral Defense, Annu. Rev. Virol, vol.1, pp.261-283, 2014.

B. Bartosch, J. Dubuisson, and F. Cosset, Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1-E2 Envelope Protein Complexes, J. Exp. Med, vol.197, pp.633-642, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00133783

C. T. Bauch and T. Oraby, Assessing the pandemic potential of MERS-CoV, The Lancet, vol.382, pp.662-664, 2013.

J. D. Beckham, A. Cadena, J. Lin, P. A. Piedra, W. P. Glezen et al., Respiratory viral infections in patients with chronic, obstructive pulmonary disease, J. Infect, vol.50, pp.322-330, 2005.

A. Behrens and M. Crispin, Structural principles controlling HIV envelope glycosylation, Curr. Opin. Struct. Biol, vol.44, pp.125-133, 2017.

S. Belouzard, V. C. Chu, and G. R. Whittaker, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5871-5876, 2009.

S. Belouzard, I. Madu, and G. R. Whittaker, Elastase-mediated Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein at Discrete Sites within the S2 Domain, J. Biol. Chem, vol.285, pp.22758-22763, 2010.

S. Belouzard, J. K. Millet, B. N. Licitra, and G. R. Whittaker, Mechanisms of coronavirus cell entry mediated by the viral spike protein, Viruses, vol.4, pp.1011-1033, 2012.

S. Bertram, R. Dijkman, M. Habjan, A. Heurich, S. Gierer et al., TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium, J. Virol, vol.87, pp.6150-6160, 2013.

J. S. Blijleven, S. Boonstra, P. R. Onck, E. Van-der-giessen, and A. M. Van-oijen, Mechanisms of influenza viral membrane fusion, Rhomboid Superfamily Dev. Dis. Fusion, vol.60, pp.78-88, 2016.

A. Bonavia, B. D. Zelus, D. E. Wentworth, P. J. Talbot, and K. V. Holmes, Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E, J. Virol, vol.77, pp.2530-2538, 2003.

B. J. Bosch, S. L. Smits, and B. L. Haagmans, Membrane ectopeptidases targeted by human coronaviruses, Curr. Opin. Virol, vol.0, pp.55-60, 2014.

A. F. Bradburne, M. L. Bynoe, and D. A. Tyrrell, Effects of a "new" human respiratory virus in volunteers, Br. Med. J, vol.3, pp.767-769, 1967.

R. Breban, J. Riou, and A. Fontanet, Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk, The Lancet, vol.382, pp.694-699, 2013.

J. J. Breslin, I. Mørk, M. K. Smith, L. K. Vogel, E. M. Hemmila et al., Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C, J. Virol, vol.77, pp.4435-4438, 2003.

C. Burkard, M. H. Verheije, O. Wicht, S. I. Van-kasteren, F. J. Van-kuppeveld et al.,

, Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner, PLoS Pathog, vol.10, p.1004502

K. A. Callow, H. F. Parry, M. Sergeant, and D. A. Tyrrell, The time course of the immune response to experimental coronavirus infection of man, Epidemiol. Infect, vol.105, pp.435-446, 1990.

D. Calo, L. Kaminski, and J. Eichler, Protein glycosylation in Archaea: Sweet and extreme, Glycobiology, vol.20, pp.1065-1076, 2010.

E. Calvo, D. Escors, J. A. López, J. M. González, A. Álvarez et al., Phosphorylation and subcellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells, J. Gen. Virol, vol.86, pp.2255-2267, 2005.

Z. Cao, L. Liu, L. Du, C. Zhang, S. Jiang et al., Potent and persistent antibody responses against the receptor-binding domain of SARS-CoV spike protein in recovered patients, Virol. J, vol.7, pp.299-299, 2010.

S. Cauchemez, C. Fraser, M. D. Kerkhove, C. A. Donnelly, S. Riley et al., Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility, Lancet Infect. Dis, vol.14, pp.50-56, 2014.

C. Chan, H. Tsoi, W. Chan, S. Zhai, C. Wong et al., The ion channel activity of the SARScoronavirus 3a protein is linked to its pro-apoptotic function, Int. J. Biochem. Cell Biol, vol.41, pp.2232-2239, 2009.

J. F. Chan, .. To, K. K. , .. Tse, H. Jin et al., Interspecies transmission and emergence of novel viruses: lessons from bats and birds, Trends Microbiol, vol.21, pp.544-555, 2013.

J. F. Chan, S. K. Lau, K. K. To, V. C. Cheng, P. C. Woo et al., Middle East Respiratory Syndrome Coronavirus: Another Zoonotic Betacoronavirus Causing SARS-Like Disease, Clin. Microbiol. Rev, vol.28, pp.465-522, 2015.

J. F. Chan, S. Sridhar, C. C. Yip, S. K. Lau, and P. C. Woo, The role of laboratory diagnostics in emerging viral infections: the example of the Middle East respiratory syndrome epidemic, J. Microbiol, vol.55, pp.172-182, 2017.

K. H. Chan, L. L. Poon, V. C. Cheng, Y. Guan, I. F. Hung et al., Detection of SARS Coronavirus in Patients with Suspected SARS, Emerg. Infect. Dis, vol.10, pp.294-299, 2004.

S. Charrin, F. Le-naour, O. Silvie, P. Milhiet, C. Boucheix et al., Lateral organization of membrane proteins: tetraspanins spin their web, Biochem. J, vol.420, p.133, 2009.

L. Chen, Y. Lin, G. Peng, L. , and F. , Structural basis for multifunctional roles of mammalian aminopeptidase N, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.17966-17971, 2012.

Y. Chen, K. R. Rajashankar, Y. Yang, S. S. Agnihothram, C. Liu et al., Crystal Structure of the Receptor-Binding Domain from Newly Emerged Middle East Respiratory Syndrome Coronavirus, J. Virol, vol.87, pp.10777-10783, 2013.

Y. Chen, S. Lu, H. Jia, Y. Deng, J. Zhou et al., A novel neutralizing monoclonal antibody targeting the Nterminal domain of the MERS-CoV spike protein, Emerg. Microbes Infect, vol.6, p.37, 2017.

G. Chowell, F. Abdirizak, S. Lee, J. Lee, E. Jung et al., Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study, BMC Med, vol.13, p.210, 2015.

L. Cocquerel, C. Voisset, and J. Dubuisson, Hepatitis C virus entry: potential receptors and their biological functions, J. Gen. Virol, vol.87, pp.1075-1084, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105501

J. K. Cook, M. Jackwood, and R. C. Jones, The long view: 40 years of infectious bronchitis research, Avian Pathol, vol.41, pp.239-250, 2012.

V. M. Corman, I. Eckerle, Z. A. Memish, A. M. Liljander, R. Dijkman et al., Link of a ubiquitous human coronavirus to dromedary camels, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.9864-9869, 2016.

V. M. Corman, D. Muth, D. Niemeyer, and C. Drosten, Chapter Eight -Hosts and Sources of Endemic Human Coronaviruses, Advances in Virus, pp.163-188, 2018.

D. Corti and A. Lanzavecchia, Broadly Neutralizing Antiviral Antibodies, Annu. Rev. Immunol, vol.31, pp.705-742, 2013.

J. Corver, R. Broer, P. Van-kasteren, and W. Spaan, GxxxG Motif of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Transmembrane Domain Is Not Involved in Trimerization and Is Not Important for Entry, J. Virol, vol.81, pp.8352-8355, 2007.

R. Daniels, B. Kurowski, A. E. Johnson, and D. N. Hebert, N-Linked Glycans Direct the Cotranslational Folding Pathway of Influenza Hemagglutinin, Mol. Cell, vol.11, pp.79-90, 2003.

B. Delmas and H. Laude, Assembly of coronavirus spike protein into trimers and its role in epitope expression, J. Virol, vol.64, pp.5367-5375, 1990.

B. Delmas, J. Gelfi, E. Kut, H. Sjöström, O. Noren et al., , 1994.

, Determinants essential for the transmissible gastroenteritis virus-receptor interaction reside within a domain of aminopeptidase-N that is distinct from the enzymatic site, J. Virol, vol.68, pp.5216-5224

M. R. Denison, R. L. Graham, E. F. Donaldson, L. D. Eckerle, and R. S. Baric, Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity, RNA Biol, vol.8, pp.270-279, 2011.

K. L. Deshpande, V. A. Fried, M. Ando, and R. G. Webster, Glycosylation affects cleavage of an H5N2 influenza virus hemagglutinin and regulates virulence, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.36-40, 1987.

S. J. Van-deventer, V. E. Dunlock, and A. B. Van-spriel, Molecular interactions shaping the tetraspanin web, Biochem. Soc. Trans. 45, p.741, 2017.

M. H. Dietrich, C. Harprecht, and T. Stehle, The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding, Protein Sci, 2017.

R. Dijkman and L. Van-der-hoek, Human Coronaviruses 229E and NL63: Close Yet Still So Far, J. Formos. Med. Assoc, vol.108, pp.270-279, 2009.

J. F. Drexler, V. M. Corman, and C. Drosten, Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS, Antiviral Res, vol.101, pp.45-56, 2014.

L. Du, Y. Yang, Y. Zhou, L. Lu, F. Li et al., MERS-CoV spike protein: a key target for antivirals, Expert Opin. Ther. Targets, vol.21, pp.131-143, 2017.

J. T. Earnest, M. P. Hantak, J. Park, and T. Gallagher, Coronavirus and Influenza Virus Proteolytic Priming Takes Place in Tetraspanin-Enriched Membrane Microdomains, J. Virol, vol.89, pp.6093-6104, 2015.

J. T. Earnest, M. P. Hantak, K. Li, P. B. Mccray, S. Perlman et al., The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases, PLoS Pathog, vol.13, p.1006546, 2017.

L. D. Eckerle, X. Lu, S. M. Sperry, L. Choi, and M. R. Denison, High Fidelity of Murine Hepatitis Virus Replication Is Decreased in nsp14 Exoribonuclease Mutants, J. Virol, vol.81, pp.12135-12144, 2007.

V. Elden, R. , L. J. , M. , A. et al., Frequent Detection of Human Coronaviruses in Clinical Specimens from Patients with Respiratory Tract Infection by Use of a Novel Real-Time Reverse-Transcriptase Polymerase Chain Reaction, J. Infect. Dis, pp.652-657, 2004.

F. Esper, C. Weibel, D. Ferguson, M. L. Landry, and J. S. Kahn, Evidence of a Novel Human Coronavirus That Is Associated with Respiratory Tract Disease in Infants and Young Children, J. Infect. Dis, vol.191, pp.492-498, 2005.

A. R. Falsey and E. E. Walsh, Viral Pneumonia in Older Adults, Clin. Infect. Dis, vol.42, pp.518-524, 2006.

S. M. Farsani, R. Dijkman, M. F. Jebbink, H. Goossens, M. Ieven et al., The first complete genome sequences of clinical isolates of human coronavirus 229E, Virus Genes, vol.45, pp.433-439, 2012.

A. R. Fehr and S. Perlman, Coronaviruses: An Overview of Their Replication and Pathogenesis, Methods Mol. Biol. Clifton NJ, vol.1282, pp.1-23, 2015.

D. S. Filho, L. V. Ferreira, R. M. Zerbinati, A. F. Tateno, L. V. Boas et al., The Differential Clinical Impact of Human Coronavirus Species in Children With Cystic Fibrosis, J. Infect. Dis, vol.206, pp.384-388, 2012.

C. R. Fontes-garfias, C. Shan, H. Luo, A. E. Muruato, D. B. Medeiros et al., Functional analysis of glycosylation of Zika virus envelope protein, Cell Rep, vol.21, pp.1180-1190, 2017.

D. Forni, R. Cagliani, M. Clerici, and M. Sironi, Molecular Evolution of Human Coronavirus Genomes, Trends Microbiol, 2017.

H. Frickmann, S. Jungblut, T. O. Hirche, U. Groß, M. Kuhns et al., Spectrum of viral infections in patients with cystic fibrosis, Eur. J. Microbiol. Immunol, vol.2, pp.161-175, 2012.

M. Fukushi, Y. Yoshinaka, Y. Matsuoka, S. Hatakeyama, Y. Ishizaka et al., Monitoring of S protein maturation in the endoplasmic reticulum by calnexin is important for the infectivity of severe acute respiratory syndrome coronavirus, J. Virol, vol.86, pp.11745-11753, 2012.

P. Gagneux and A. Varki, Evolutionary considerations in relating oligosaccharide diversity to biological function, Glycobiology, vol.9, pp.747-755, 1999.

H. Gao, H. Yao, S. Yang, L. , and L. , From SARS to MERS: evidence and speculation, Front. Med, vol.10, pp.377-382, 2016.

J. Gao, G. Lu, J. Qi, Y. Li, Y. Wu et al., Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus, J. Virol, vol.87, pp.13134-13140, 2013.

J. Garbino, S. Crespo, J. Aubert, T. Rochat, B. Ninet et al., A Prospective Hospital-Based Study of the Clinical Impact of Non-Severe Acute Respiratory Syndrome (Non-SARS)-Related Human Coronavirus Infection, Clin. Infect. Dis, vol.43, pp.1009-1015, 2006.

E. R. Gaunt, A. Hardie, E. C. Claas, P. Simmonds, and K. E. Templeton, Epidemiology and Clinical Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected over 3 Years Using a Novel Multiplex Real-Time PCR Method, J. Clin. Microbiol, vol.48, pp.2940-2947, 2010.

X. Ge, J. Li, X. Yang, A. A. Chmura, G. Zhu et al., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature, vol.503, pp.535-538, 2013.

S. Gierer, S. Bertram, F. Kaup, F. Wrensch, A. Heurich et al., The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies, J. Virol, vol.87, pp.5502-5511, 2013.

W. P. Glezen, S. B. Greenberg, R. L. Atmar, P. A. Piedra, and R. B. Couch, Impact of Respiratory Virus Infections on Persons With Chronic Underlying Conditions, JAMA, vol.283, pp.499-505, 2000.

M. Godet, J. Grosclaude, B. Delmas, and H. Laude, Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein, J. Virol, vol.68, pp.8008-8016, 1994.

A. Goffard, N. Callens, B. Bartosch, C. Wychowski, F. Cosset et al., Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins, J. Virol, vol.79, pp.8400-8409, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00105458

K. W. Graepel, X. Lu, J. B. Case, N. R. Sexton, E. C. Smith et al., Proofreading-Deficient Coronaviruses Adapt for Increased Fitness over LongTerm Passage without Reversion of Exoribonuclease-Inactivating Mutations, MBio, vol.8, pp.1503-1520, 2017.

R. L. Graham, M. M. Becker, L. D. Eckerle, M. Bolles, M. R. Denison et al., A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease, Nat. Med, vol.18, p.1820, 2012.

S. B. Greenberg, M. Allen, J. Wilson, and R. L. Atmar, Respiratory Viral Infections in Adults With and Without Chronic Obstructive Pulmonary Disease, Am. J. Respir. Crit. Care Med, vol.162, pp.167-173, 2000.

L. M. Gretebeck and K. Subbarao, Animal models for SARS and MERS coronaviruses, Curr. Opin. Virol, vol.13, pp.123-129, 2015.

Y. Guan, B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang et al., Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science, vol.302, pp.276-278, 2003.

B. Guery, J. Poissy, L. El-mansouf, C. Séjourné, N. Ettahar et al., Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission, The Lancet, vol.381, pp.2265-2272, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02266768

C. A. De-haan and P. J. Rottier, Molecular interactions in the assembly of coronaviruses, Adv. Virus Res, vol.64, pp.165-230, 2005.

D. Hamre and J. J. Procknow, A New Virus Isolated from the Human Respiratory Tract, Exp. Biol. Med, vol.121, pp.190-193, 1966.

D. P. Han, M. Lohani, and M. W. Cho, Specific asparagine-linked glycosylation sites are critical for DC-SIGN-and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry, J. Virol, vol.81, pp.12029-12039, 2007.

, Règles d'hygiène pour la prise en charge des patients suspects d, HCSP, 2013.

T. Heald-sargent and T. Gallagher, Ready, Set, Fuse! The Coronavirus Spike Protein and Acquisition of Fusion Competence, Viruses, vol.4, pp.557-580, 2012.

A. Helenius, A. , and M. , Intracellular Functions of N-Linked Glycans, Science, vol.291, 2001.

F. Helle, G. Vieyres, L. Elkrief, C. Popescu, C. Wychowski et al., Role of NLinked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions, J. Virol, vol.84, pp.11905-11915, 2010.

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, p.801, 2005.

S. M. Hitzerd, S. E. Verbrugge, G. Ossenkoppele, G. Jansen, and G. J. Peters, Positioning of aminopeptidase inhibitors in next generation cancer therapy, Amino Acids, vol.46, pp.793-808, 2014.

L. Van-der-hoek, K. Pyrc, M. F. Jebbink, W. Vermeulen-oost, R. J. Berkhout et al., Identification of a new human coronavirus, Nat. Med, vol.10, pp.368-373, 2004.

L. Van-der-hoek, K. Pyrc, and B. Berkhout, Human coronavirus NL63, a new respiratory virus, FEMS Microbiol. Rev, vol.30, pp.760-773, 2006.

H. Hofmann, K. Hattermann, A. Marzi, T. Gramberg, M. Geier et al., S Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients, J. Virol, vol.78, pp.6134-6142, 2004.

H. Hofmann, K. Pyrc, L. Van-der-hoek, M. Geier, B. Berkhout et al., Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.7988-7993, 2005.

H. Hofmann, G. Simmons, A. J. Rennekamp, C. Chaipan, T. Gramberg et al., Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors, J. Virol, vol.80, pp.8639-8652, 2006.

D. S. Hui, S. Perlman, and A. Zumla, Spread of MERS to South Korea and China, Lancet Respir. Med, vol.3, pp.509-510, 2015.

R. J. Hulswit, C. A. De-haan, and B. Bosch, Chapter TwoCoronavirus Spike Protein and Tropism Changes, Advances in Virus Research, pp.29-57, 2016.

M. Jev?nik, T. Ur?i?, N. ?igon, L. Lusa, U. Krivec et al., , 2012.

, Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease, BMC Infect. Dis, vol.12, pp.365-365

S. Jiang, L. Lu, Q. Liu, W. Xu, and L. Du, Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines, Emerg. Microbes Infect, vol.1, p.13, 2012.

H. R. Jonsdottir and R. Dijkman, Coronaviruses and the human airway: a universal system for virus-host interaction studies, Virol. J, vol.13, p.24, 2016.

Y. Kawaoka, C. W. Naeve, and R. G. Webster, Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin?, Virology, vol.139, pp.303-316, 1984.

M. Kawase, K. Shirato, S. Matsuyama, and F. Taguchi, Protease-mediated entry via the endosome of human coronavirus 229E, J. Virol, vol.83, pp.712-721, 2009.

R. N. Kirchdoerfer, C. A. Cottrell, N. Wang, J. Pallesen, H. M. Yassine et al., Pre-fusion structure of a human coronavirus spike protein, Nature, vol.531, pp.118-121, 2016.

K. Knoops, M. Kikkert, S. H. Van-den-worm, J. C. Zevenhoven-dobbe, Y. Van-der-meer et al., SARS-Coronavirus Replication Is Supported by a Reticulovesicular Network of Modified Endoplasmic Reticulum, PLoS Biol, vol.6, p.226, 2008.

A. F. Kolb, A. Hegyi, and S. G. Siddell, Identification of residues critical for the human coronavirus 229E receptor function of human aminopeptidase N, J. Gen. Virol, vol.78, pp.2795-2802, 1997.

L. Lamriben, J. B. Graham, B. M. Adams, and D. N. Hebert, N-glycan based ER molecular chaperone and protein quality control system: the calnexin binding cycle, Traffic Cph. Den, vol.17, pp.308-326, 2016.

A. Larkin and B. Imperiali, The Expanding Horizons of Asparagine-Linked Glycosylation, Biochemistry (Mosc.), vol.50, pp.4411-4426, 2011.

C. Lassnig, C. M. Sanchez, M. Egerbacher, I. Walter, S. Majer et al., Development of a transgenic mouse model susceptible to human coronavirus 229E, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8275-8280, 2005.

S. K. Lau, C. , and J. F. , Coronaviruses: emerging and re-emerging pathogens in humans and animals, Virol. J, vol.12, p.209, 2015.

S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. Tsoi et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci, vol.102, pp.14040-14045, 2005.

S. K. Lau, P. C. Woo, C. C. Yip, H. Tse, H. Tsoi et al., Coronavirus HKU1 and Other Coronavirus Infections in Hong Kong, J. Clin. Microbiol, vol.44, pp.2063-2071, 2006.

S. K. Lau, P. C. Woo, K. S. Li, A. K. Tsang, R. Y. Fan et al., Discovery of a Novel Coronavirus, China Rattus Coronavirus HKU24, from Norway Rats Supports the Murine Origin of Betacoronavirus 1 and Has Implications for the Ancestor of Betacoronavirus Lineage A, J. Virol, vol.89, pp.3076-3092, 2015.

S. K. Lau, Y. Feng, H. Chen, H. K. Luk, W. Yang et al., Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination, J. Virol, vol.89, pp.10532-10547, 2015.

P. T. Law, C. Wong, T. C. Au, C. Chuck, S. Kong et al., The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells, J. Gen. Virol, vol.86, pp.1921-1930, 2005.

F. Li, Structure, Function, and Evolution of Coronavirus Spike Proteins, Annu. Rev. Virol, vol.3, pp.237-261, 2016.

C. Li, W. Li, E. Lucio-de-esesarte, H. Guo, P. Van-den-elzen et al., Cell Attachment Domains of the Porcine Epidemic Diarrhea Virus Spike Protein Are Key Targets of Neutralizing Antibodies, J. Virol, p.91, 2017.

F. Li, W. Li, M. Farzan, and S. C. Harrison, Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor, Science, vol.309, pp.1864-1868, 2005.

W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong et al., Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, vol.426, pp.450-454, 2003.

W. Li, Z. Shi, M. Yu, W. Ren, C. Smith et al., Bats Are Natural Reservoirs of SARS-Like Coronaviruses, Science, vol.310, pp.676-679, 2005.

Y. Li, J. Fang, and G. Ao, Cathepsin B and L inhibitors: a patent review (2010 -present), Expert Opin. Ther. Pat, vol.27, pp.643-656, 2017.

C. Liu, Y. Feng, F. Gao, Q. Zhang, W. et al., Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion, Biochem. Biophys. Res. Commun, vol.345, pp.1108-1115, 2006.

Y. Lo, S. Lin, S. Wang, C. Wang, Y. Chiu et al., Oligomerization of the carboxyl terminal domain of the human coronavirus 229E nucleocapsid protein, FEBS Lett, vol.587, pp.120-127, 2013.

G. Lu, Y. Hu, Q. Wang, J. Qi, F. Gao et al., Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26, Nature, vol.500, pp.227-231, 2013.

W. Lu, B. Zheng, K. Xu, W. Schwarz, L. Du et al., Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.12540-12545, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00619943

G. Ma, Y. Feng, F. Gao, J. Wang, C. Liu et al., Biochemical and biophysical characterization of the transmissible gastroenteritis coronavirus fusion core, Biochem. Biophys. Res. Commun, vol.337, pp.1301-1307, 2005.

Y. Ma, L. Wu, N. Shaw, Y. Gao, J. Wang et al., Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.9436-9441, 2015.

I. G. Madu, S. L. Roth, S. Belouzard, and G. R. Whittaker, Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome, 2009.

, Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide, J. Virol, vol.83, pp.7411-7421

J. B. Mahony, A. Petrich, and M. Smieja, Molecular diagnosis of respiratory virus infections, Crit. Rev. Clin. Lab. Sci, vol.48, pp.217-249, 2011.

J. K. Martin-j-b-raamsman, H. A. De, and V. G. De, Characterization of the Coronavirus Mouse Hepatitis Virus Strain A59 Small Membrane Protein E, J. Virol, vol.74, p.2333, 2000.

J. R. Mascola and D. C. Montefiori, HIV-1: nature's master of disguise, Nat. Med, vol.9, pp.393-394, 2003.

P. S. Masters, The molecular biology of coronaviruses, Adv. Virus Res, vol.66, pp.193-292, 2006.

L. Mathys and J. Balzarini, Several N-Glycans on the HIV Envelope Glycoprotein gp120 Preferentially Locate Near Disulphide Bridges and Are Required for Efficient Infectivity and Virus Transmission, PLOS ONE, vol.10, 2015.

S. Matsuyama and F. Taguchi, Two-Step Conformational Changes in a Coronavirus Envelope Glycoprotein Mediated by Receptor Binding and Proteolysis, J. Virol, vol.83, pp.11133-11141, 2009.

S. Matsuyama, M. Ujike, S. Morikawa, M. Tashiro, and F. Taguchi, , 2005.

, Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.12543-12547

Z. A. Memish, N. Mishra, K. J. Olival, S. F. Fagbo, V. Kapoor et al., Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia, Emerg. Infect. Dis, vol.19, pp.1819-1823, 2013.

V. D. Menachery, R. L. Graham, and R. S. Baric, Jumping species-a mechanism for coronavirus persistence and survival, Viral Pathog, vol.23, pp.1-7, 2017.

J. K. Millet and G. R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.15214-15219, 2014.

J. K. Millet and G. R. Whittaker, Host cell proteases: critical determinants of coronavirus tropism and pathogenesis, Virus Res, vol.202, pp.120-134, 2015.

J. K. Millet, M. E. Goldstein, R. N. Labitt, H. Hsu, S. Daniel et al., A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties, Emerg Microbes Infect, vol.5, p.126, 2016.

P. Mina-osorio, The moonlighting enzyme CD13: old and new functions to target, Trends Mol. Med, vol.14, pp.361-371, 2008.

E. Minskaia, T. Hertzig, A. E. Gorbalenya, V. Campanacci, C. Cambillau et al., Discovery of an RNA virus 3??5? exoribonuclease that is critically involved in coronavirus RNA synthesis, Proc. Natl. Acad. Sci. U. S. A, vol.103, p.5108, 2006.

A. S. Monto, Medical reviews, Coronaviruses. Yale J. Biol. Med, vol.47, p.234, 1974.

B. W. Neuman, B. D. Adair, C. Yoshioka, J. D. Quispe, G. Orca et al., Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy, J. Virol, vol.80, pp.7918-7928, 2006.

B. W. Neuman, P. Chamberlain, F. Bowden, J. , and J. , Atlas of coronavirus replicase structure, Nidoviruses I, vol.194, pp.49-66, 2014.

H. Nothaft and C. M. Szymanski, Protein glycosylation in bacteria: sweeter than ever, Nat Rev Micro, vol.8, pp.765-778, 2010.

K. Ohtsubo, M. , and J. D. , Glycosylation in Cellular Mechanisms of Health and Disease, Cell, vol.126, pp.855-867, 2006.

M. Oostra, C. A. De-haan, R. J. De-groot, and P. J. Rottier, , 2006.

, Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M, J. Virol, vol.80, pp.2326-2336

X. Ou, H. Guan, B. Qin, Z. Mu, J. A. Wojdyla et al., Crystal structure of the receptor binding domain of the spike glycoprotein of human betacoronavirus HKU1, Nat. Commun, vol.8, p.15216, 2017.

J. Park, K. Li, A. Barlan, A. R. Fehr, S. Perlman et al., Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism, Proc. Natl. Acad. Sci, vol.113, pp.12262-12267, 2016.

J. S. Peiris, Y. Guan, and K. Y. Yuen, Severe acute respiratory syndrome, Nat. Med, vol.10, pp.88-97, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00167032

G. Peng, D. Sun, K. R. Rajashankar, Z. Qian, K. V. Holmes et al., Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor, Proc. Natl. Acad. Sci, vol.108, pp.10696-10701, 2011.

S. Pfefferle, S. Oppong, J. F. Drexler, F. Gloza-rausch, A. Ipsen et al., Distant Relatives of Severe Acute Respiratory Syndrome Coronavirus and Close Relatives of Human Coronavirus 229E in Bats, Ghana. Emerg. Infect. Dis, vol.15, pp.1377-1384, 2009.

B. Plugge, S. Gazzarrini, M. Nelson, R. Cerana, J. L. Van et al., A Potassium Channel Protein Encoded by Chlorella Virus PBCV-1, Science, vol.287, p.1641, 2000.

J. Poissy, A. Goffard, E. Parmentier-decrucq, R. Favory, M. Kauv et al., Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases, J. Clin. Virol, vol.61, pp.275-278, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02266760

L. Polgár, Chapter 405 -Catalytic Mechanisms of Cysteine Peptidases, Handbook of Proteolytic Enzymes, pp.1773-1784, 2013.

L. Polgár, Chapter 560 -Catalytic Mechanisms of Serine and Threonine Peptidases, Handbook of Proteolytic Enzymes, pp.2524-2534, 2013.

R. Ponnusamy, J. R. Mesters, J. Ziebuhr, R. Moll, and R. Hilgenfeld, Non structural proteins 8 and 9 of human coronavirus 229E, Adv. Exp. Med. Biol, vol.581, pp.49-54, 2006.

L. L. Poon, D. K. Chu, K. H. Chan, O. K. Wong, T. M. Ellis et al., Identification of a Novel Coronavirus in Bats, J. Virol, vol.79, 2001.

B. Pozzetto and G. Révir, Révir -Référentiel en virologie médicale, 2007.

M. M. Prill, M. K. Iwane, K. M. Edwards, J. V. Williams, G. A. Weinberg et al., Human Coronavirus in Young Children Hospitalized for Acute Respiratory Illness and Asymptomatic Controls, Pediatr. Infect. Dis. J, vol.31, pp.235-240, 2012.

T. Raabe, B. Schelle-prinz, and S. G. Siddell, Nucleotide sequence of the gene encoding the spike glycoprotein of human coronavirus HCV 229E, J. Gen. Virol, vol.71, pp.1065-1073, 1990.

V. S. Raj, H. Mou, S. L. Smits, D. H. Dekkers, M. A. Muller et al., Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature, vol.495, pp.251-254, 2013.

M. Raska, L. Czernekova, Z. Moldoveanu, K. Zachova, M. C. Elliott et al., Differential glycosylation of envelope gp120 is associated with differential recognition of HIV-1 by virus-specific antibodies and cell infection, AIDS Res. Ther, vol.11, p.23, 2014.

J. Reguera, C. Santiago, G. Mudgal, D. Ordoño, L. Enjuanes et al., Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies, PLoS Pathog, vol.8, p.1002859, 2012.

J. Reguera, G. Mudgal, C. Santiago, and J. M. Casasnovas, A structural view of coronavirus-receptor interactions, Virus Res, vol.194, pp.3-15, 2014.

L. M. Reinke, M. Spiegel, T. Plegge, A. Hartleib, I. Nehlmeier et al., Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2, PLoS ONE, vol.12, 2017.

Y. Ren, Y. Min, M. Liu, L. Chi, P. Zhao et al., Nglycosylation-mutated HCV envelope glycoprotein complex enhances antigenpresenting activity and cellular and neutralizing antibody responses, 2015.

. Biophys and . Acta,

C. B. Reusken, B. L. Haagmans, M. A. Müller, C. Gutierrez, G. Godeke et al., Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study, Lancet Infect. Dis, vol.13, pp.859-866, 2013.

C. Risco, I. M. Antón, C. Suñé, A. M. Pedregosa, J. M. Martín-alonso et al., Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion, J. Virol, vol.69, pp.5269-5277, 1995.

G. Ritchie, D. J. Harvey, F. Feldmann, U. Stroeher, H. Feldmann et al., Identification of N-linked carbohydrates from severe acute respiratory syndrome (SARS) spike glycoprotein, Virology, vol.399, pp.257-269, 2010.

J. S. Sabir, T. T. Lam, .. Ahmed, M. M. Li, L. Shen et al., Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia, Science, vol.351, p.81, 2016.

S. Abdul-rasool and B. C. , Understanding Human Coronavirus HCoV-NL63, Open Virol. J, vol.4, pp.76-84, 2010.

E. M. Samara and K. A. Abdoun, Concerns about Misinterpretation of Recent Scientific Data Implicating Dromedary Camels in Epidemiology of Middle East Respiratory Syndrome (MERS), MBio, vol.5, pp.1430-1444, 2014.

C. Santiago, G. Mudgal, J. Reguera, R. Recacha, S. Albrecht et al., Allosteric inhibition of aminopeptidase N functions related to tumor growth and virus infection, Sci. Rep, vol.7, p.46045, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02154721

T. Sayaka, K. Tateki, S. G. Siddell, and T. Fumihiro, Localization of major neutralizing epitopes on the S1 polypeptide of the murine coronavirus peplomer glycoprotein, Virus Res, vol.18, pp.99-107, 1991.

H. Schachter, The joys of HexNAc. The synthesis and function of N-andOglycan branches, Glycoconj. J, vol.17, pp.465-483, 2000.

A. Sharif-yakan and S. S. Kanj, Emergence of MERS-CoV in the Middle East: Origins, Transmission, Treatment, and Perspectives, PLoS Pathog, vol.10, p.1004457, 2014.

Y. Shih, C. Chen, S. Liu, K. Chen, Y. Lee et al., Identifying epitopes responsible for neutralizing antibody and DC-SIGN binding on the spike glycoprotein of the severe acute respiratory syndrome coronavirus, J. Virol, vol.80, pp.10315-10324, 2006.

K. Shirato, M. Kawase, O. Watanabe, C. Hirokawa, S. Matsuyama et al., Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein, J. Gen. Virol, vol.93, pp.1908-1917, 2012.

K. Shirato, M. Kawase, and S. Matsuyama, Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2, J. Virol, vol.87, pp.12552-12561, 2013.

K. Shirato, K. Kanou, M. Kawase, and S. Matsuyama, Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry, J. Virol, 2016.

K. Shirato, M. Kawase, and S. Matsuyama, Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry, 2017.

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Progress in Nucleic Acid Research and Molecular Biology, pp.1-40, 2000.

G. Simmons, J. D. Reeves, A. J. Rennekamp, S. M. Amberg, A. J. Piefer et al., Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.4240-4245, 2004.

E. C. Smith, H. Blanc, M. Vignuzzi, and M. R. Denison, Coronaviruses Lacking Exoribonuclease Activity Are Susceptible to Lethal Mutagenesis: Evidence for Proofreading and Potential Therapeutics, PLOS Pathog, vol.9, p.1003565, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00918207

E. J. Snijder, E. Decroly, and J. Ziebuhr, Chapter Three -The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing, Advances in Virus Research, pp.59-126, 2016.

. Société-française-d'hygiène-hospitalière, Actualisation des Précautions standard, 2017.

I. Sola, F. Almazán, S. Zúñiga, and L. Enjuanes, Continuous and Discontinuous RNA Synthesis in Coronaviruses, Annu. Rev. Virol, vol.2, pp.265-288, 2015.

D. F. Steiner, The proprotein convertases, Curr. Opin. Chem. Biol, vol.2, pp.31-39, 1998.

S. Su, G. Wong, W. Shi, J. Liu, A. C. Lai et al., Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses, Trends Microbiol, vol.24, pp.490-502, 2016.

L. Subissi, E. Decroly, M. Bouvet, L. Gluais, B. Canard et al., Les enzymes de la réplication/transcription chez les coronavirus, Virologie, vol.16, pp.199-209, 2012.

T. Suzuki, K. Kitajima, S. Inoue, and Y. Inoue, NGlycosylation/deglycosylation as a mechanism for the post-translational modification/remodification of proteins, Glycoconj. J, vol.12, pp.183-193, 1995.

C. E. Travis-r-ruch, The Coronavirus E Protein: Assembly and Beyond. Viruses, vol.4, p.363, 2012.

S. M. Tusell, S. A. Schittone, and K. V. Holmes, Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range, J. Virol, vol.81, pp.1261-1273, 2007.

M. Ujike and F. Taguchi, Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions, Viruses, vol.7, pp.1700-1725, 2015.

A. Vabret, J. Dina, S. Gouarin, J. Petitjean, V. Tripey et al., Human (non-severe acute respiratory syndrome) coronavirus infections in hospitalised children in France, J. Paediatr. Child Health, vol.44, pp.176-181, 2008.

A. Vabret, J. Dina, E. Brison, J. Brouard, and F. Freymuth, Coronavirus humains (HCoV), Pathol. Biol, vol.57, pp.149-160, 2009.

D. J. Vigerust and V. L. Shepherd, Virus glycosylation: role in virulence and immune interactions, Trends Microbiol, vol.15, pp.211-218, 2007.

A. C. Walls, M. Tortorici, B. Bosch, B. Frenz, P. J. Rottier et al., Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer, Nature, vol.531, pp.114-117, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01664346

A. C. Walls, M. A. Tortorici, B. Frenz, J. Snijder, W. Li et al., Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy, Nat Struct Mol Biol advance online publication, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01664348

E. E. Walsh, J. H. Shin, and A. R. Falsey, Clinical impact of human coronaviruses 229E and OC43 infection in diverse adult populations, J. Infect. Dis, vol.208, pp.1634-1642, 2013.

L. Wang, W. Shi, J. D. Chappell, M. G. Joyce, Y. Zhang et al., Importance of neutralizing monoclonal antibodies targeting multiple antigenic sites on MERS-CoV Spike to avoid neutralization escape, J. Virol, 2018.

N. Wang, X. Shi, L. Jiang, S. Zhang, D. Wang et al., Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4, Cell Res, vol.23, pp.986-993, 2013.

Q. Wang, J. Qi, Y. Yuan, Y. Xuan, P. Han et al., Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26, Cell Host Microbe, vol.16, pp.328-337, 2014.

W. Wang, J. Nie, C. Prochnow, C. Truong, Z. Jia et al., A systematic study of the N-glycosylation sites of HIV-1 envelope protein on infectivity and antibody-mediated neutralization, Retrovirology, vol.10, p.14, 2013.

X. Wei, J. M. Decker, S. Wang, H. Hui, J. C. Kappes et al., Antibody neutralization and escape by HIV-1, Nature, vol.422, p.307, 2003.

S. R. Weiss and J. L. Leibowitz, Coronavirus pathogenesis, Adv. Virus Res, vol.81, pp.85-164, 2011.

D. E. Wentworth and K. V. Holmes, Molecular determinants of species specificity in the coronavirus receptor aminopeptidase N (CD13): influence of Nlinked glycosylation, J. Virol, vol.75, pp.9741-9752, 2001.

J. M. White and G. R. Whittaker, Fusion of Enveloped Viruses in Endosomes, Traffic Cph. Den, vol.17, pp.593-614, 2016.

, WHO | Severe acute respiratory syndrome (SARS), WHO, 2004.

, Summary and risk assessment of current situation in Republic of Korea and China, WHO, 2015.

, WHO | Investigation of cases of human infection with MERS-CoV, WHO, 2015.

, OMS | Prévention et lutte contre les infections lors de la prise en charge de cas probables ou confirmés d'infection par le coronavirus du syndrome respiratoire du Moyen-Orient, WHO, 2015.

, Global summary and risk assessment, WHO, 2016.

, WHO | SARS (Severe Acute Respiratory Syndrome), 2017.

, WHO | Middle East respiratory syndrome coronavirus (MERS-CoV), WHO, 2018.

R. K. Williams, G. S. Jiang, and K. V. Holmes, Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.5533-5536, 1991.

L. Wilson, P. Gage, E. , and G. , Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication, Virology, vol.353, pp.294-306, 2006.

E. De-wit, N. Van-doremalen, D. Falzarano, and V. J. Munster, SARS and MERS: recent insights into emerging coronaviruses, Nat Rev Micro, vol.14, pp.523-534, 2016.

A. H. Wong, D. Zhou, and J. M. Rini, The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing, J. Biol. Chem, vol.287, pp.36804-36813, 2012.

A. H. Wong, A. C. Tomlinson, D. Zhou, M. Satkunarajah, K. Chen et al., Receptor-binding loops in alphacoronavirus adaptation and evolution, Nat. Commun, vol.8, p.1735, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01854628

P. C. Woo, S. K. Lau, C. Chu, K. Chan, H. Tsoi et al., Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia, J. Virol, vol.79, pp.884-895, 2005.

P. C. Woo, S. K. Lau, C. C. Yip, Y. Huang, and K. Yuen, More and More Coronaviruses: Human Coronavirus HKU1. Viruses, vol.1, pp.57-71, 2009.

P. C. Woo, S. K. Lau, C. S. Lam, C. C. Lau, A. K. Tsang et al., Discovery of Seven Novel Mammalian and Avian Coronaviruses in the Genus Deltacoronavirus Supports Bat Coronaviruses as the Gene Source of Alphacoronavirus and Betacoronavirus and Avian Coronaviruses as the Gene Source of Gammacoronavirus and Deltacoronavirus, J. Virol, vol.86, pp.3995-4008, 2012.

F. Wrensch, M. Winkler, and S. Pöhlmann, IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for CholesterolIndependent Mechanisms, Viruses, vol.6, pp.3683-3698, 2014.

K. Wu, W. Li, G. Peng, L. , and F. , Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor, Proc. Natl. Acad. Sci. U. S. A, vol.106, 2009.

Z. Wu, L. Yang, X. Ren, J. Zhang, F. Yang et al., ORF8-Related Genetic Evidence for Chinese Horseshoe Bats as the Source of Human Severe Acute Respiratory Syndrome Coronavirus, J. Infect. Dis, vol.213, pp.579-583, 2016.

X. Xiong, M. A. Tortorici, J. Snijder, C. Yoshioka, A. C. Walls et al., Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections, J. Virol. JVI, pp.1628-1645, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01664357

Y. Yamada and D. X. Liu, Proteolytic Activation of the Spike Protein at a Novel RRRR/S Motif Is Implicated in Furin-Dependent Entry, Syncytium Formation, and Infectivity of Coronavirus Infectious Bronchitis Virus in Cultured Cells, J. Virol, vol.83, pp.8744-8758, 2009.

A. Yan and W. J. Lennarz, Unraveling the Mechanism of Protein NGlycosylation, J. Biol. Chem, vol.280, pp.3121-3124, 2005.

M. Yáñez-mó, M. D. Gutiérrez-lópez, and C. Cabañas, Functional interplay between tetraspanins and proteases, Cell. Mol. Life Sci. CMLS, vol.68, pp.3323-3335, 2011.

Y. Yang, C. Hsu, C. Lai, M. Yen, P. S. Wikramaratna et al., Impact of Comorbidity on Fatality Rate of Patients with Middle East Respiratory Syndrome, Sci. Rep, vol.7, p.11307, 2017.

D. Yangyang, . Wenbo, . Wanghuijuan, . Mengxin, F. Lanjiaming et al., The Amino Acids 736-761 of the MERS-CoV Spike Protein Induce Neutralizing Antibodies: Implications for the Development of Vaccines and Antiviral Agents, Viral Immunol, vol.27, pp.543-550, 2014.

S. S. Yap, T. Nguyen-khuong, P. M. Rudd, A. , and S. , Dengue Virus Glycosylation: What Do We Know?, Front. Microbiol, vol.8, p.1415, 2017.

C. L. Yeager, R. A. Ashmun, R. K. Williams, C. B. Cardellichio, L. H. Shapiro et al., Human aminopeptidase N is a receptor for human coronavirus 229E, Nature, vol.357, pp.420-422, 1992.

Y. Yin, X. Zhang, Y. Qiao, X. Wang, Y. Su et al., Glycosylation at 11Asn on hemagglutinin of H5N1 influenza virus contributes to its biological characteristics, Vet. Res, vol.48, p.81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01644038

Y. Yuan, D. Cao, Y. Zhang, J. Ma, J. Qi et al., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains, Nat. Commun, vol.8, p.15092, 2017.

A. M. Zaki, S. Van-boheemen, T. M. Bestebroer, A. D. Osterhaus, and R. A. Fouchier, Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia, N. Engl. J. Med, vol.367, pp.1814-1820, 2012.

R. Zeng, R. Yang, M. Shi, M. Jiang, Y. Xie et al., Characterization of the 3a Protein of SARS-associated Coronavirus in Infected Vero E6 Cells and SARS Patients, J. Mol. Biol, vol.341, pp.271-279, 2004.

R. Zhang, K. Wang, W. Lv, W. Yu, S. Xie et al., The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production, Viral Membr. Proteins -Channels Cell. Netw, vol.1838, pp.1088-1095, 2014.

S. Zhang, J. Tuo, X. Huang, X. Zhu, D. Zhang et al., Epidemiology characteristics of human coronaviruses in patients with respiratory infection symptoms and phylogenetic analysis of HCoV-OC43 during 2010-2015 in Guangzhou, PLOS ONE, vol.13, p.191789, 2018.

X. Zhang, S. Chen, D. Yang, X. Wang, J. Zhu et al., Role of stem glycans attached to haemagglutinin in the biological characteristics of H5N1 avian influenza virus, J. Gen. Virol, vol.96, pp.1248-1257, 2015.

J. Zheng, Y. Yamada, T. S. Fung, M. Huang, R. Chia et al., Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture, Virology, vol.513, pp.65-74, 2018.

Y. Zhou, K. Lu, S. Pfefferle, S. Bertram, I. Glowacka et al., A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms, J. Virol, vol.84, pp.8753-8764, 2010.

M. Zöller, Tetraspanins: push and pull in suppressing and promoting metastasis, Nat. Rev. Cancer, vol.9, p.40, 2008.

A. Zumla, D. S. Hui, and S. Perlman, Middle East Respiratory Syndrome, Lancet Lond. Engl, vol.386, pp.995-1007, 2015.

A. Zumla, J. F. Chan, E. I. Azhar, D. S. Hui, and K. Yuen, , 2016.

, Coronaviruses -drug discovery and therapeutic options, Nat Rev Drug Discov, vol.15, pp.327-347

, Coronavirus humain NL63

, Coronavirus humain 229E

, Coronavirus humain 229E, vol.04, 2014.

, KF745068.1 Coronavirus du syndrome respiratoire du Moyen-Orient MERS-CoV

, Comparaison Différence des pentes p-value IC95% de la différence

G. Simmons, P. Zmora, S. Gierer, A. Heurich, and S. Pöhlmann, Proteolytic activation of the 196 SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral 197 research, Antiviral Res, vol.100, pp.605-614, 2013.

S. Belouzard, V. C. Chu, and G. R. Whittaker, Activation of the SARS coronavirus spike 199 protein via sequential proteolytic cleavage at two distinct sites, PNAS, vol.106, pp.5871-200, 2009.

I. G. Madu, S. L. Roth, S. Belouzard, and G. R. Whittaker, Characterization of a highly 202 conserved domain within the severe acute respiratory syndrome coronavirus spike protein 203 S2 domain with characteristics of a viral fusion peptide, J Virol, vol.83, pp.7411-7421, 2009.

S. Belouzard, I. Madu, and G. R. Whittaker, Elastase-mediated activation of the severe acute 205 respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain, J 206 Biol Chem, vol.285, pp.22758-22763, 2010.

C. Burkard, M. H. Verheije, O. Wicht, S. I. Van-kasteren, and F. J. Van-kuppeveld,

, Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-209 Dependent Manner, PLoS Pathog, vol.10, p.1004502, 2014.

J. K. Millet and G. R. Whittaker, Host cell entry of Middle East respiratory syndrome 211 coronavirus after two-step, furin-mediated activation of the spike protein, PNAS, vol.212, pp.15214-15223, 2014.

D. Hamre and J. J. Procknow, A new virus isolated from the human respiratory tract, Proc, vol.214

, Soc Exp Biol Med Soc Exp Biol Med N Y N, vol.121, pp.190-193, 1966.

L. Van-der-hoek, Human coronaviruses: what do they cause?, Antivir Ther, vol.12, pp.651-216, 2007.

M. Kawase, K. Shirato, S. Matsuyama, and F. Taguchi, Protease-Mediated Entry via the 218 Endosome of Human Coronavirus 229E, J Virol, vol.83, pp.712-721, 2008.

K. Shirato, K. Kanou, M. Kawase, and S. Matsuyama, Clinical Isolates of Human, vol.220

, Coronavirus 229E Bypass the Endosome for Cell Entry, J Virol, pp.1387-1403, 2016.

S. Bertram, R. Dijkman, M. Habjan, A. Heurich, and S. Gierer, TMPRSS2 Activates 222 the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is 223 Expressed in Viral Target Cells in the Respiratory Epithelium, J Virol, vol.87, p.6160, 2013.

Y. Yamada and D. X. Liu, Proteolytic activation of the spike protein at a novel RRRR/S motif 226 is implicated in furin-dependent entry, syncytium formation, and infectivity of 227 coronavirus infectious bronchitis virus in cultured cells, J Virol, vol.83, pp.8744-8758, 2009.

G. Simmons, D. N. Gosalia, A. J. Rennekamp, J. D. Reeves, and S. L. Diamond, Inhibitors of 229 cathepsin L prevent severe acute respiratory syndrome coronavirus entry, Proc Natl Acad, p.230

U. Sci, , vol.102, pp.11876-11881, 2005.

S. Matsuyama, M. Ujike, S. Morikawa, M. Tashiro, and F. Taguchi, Protease-mediated 232 enhancement of severe acute respiratory syndrome coronavirus infection, Proc Natl Acad, p.233

U. Sci, , vol.102, pp.12543-12547, 2005.